summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/giprobe.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'servers/rendering/renderer_rd/shaders/giprobe.glsl')
-rw-r--r--servers/rendering/renderer_rd/shaders/giprobe.glsl779
1 files changed, 779 insertions, 0 deletions
diff --git a/servers/rendering/renderer_rd/shaders/giprobe.glsl b/servers/rendering/renderer_rd/shaders/giprobe.glsl
new file mode 100644
index 0000000000..b931461b31
--- /dev/null
+++ b/servers/rendering/renderer_rd/shaders/giprobe.glsl
@@ -0,0 +1,779 @@
+#[compute]
+
+#version 450
+
+VERSION_DEFINES
+
+#ifdef MODE_DYNAMIC
+layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
+#else
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+#endif
+
+#ifndef MODE_DYNAMIC
+
+#define NO_CHILDREN 0xFFFFFFFF
+#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)
+
+struct CellChildren {
+ uint children[8];
+};
+
+layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
+ CellChildren data[];
+}
+cell_children;
+
+struct CellData {
+ uint position; // xyz 10 bits
+ uint albedo; //rgb albedo
+ uint emission; //rgb normalized with e as multiplier
+ uint normal; //RGB normal encoded
+};
+
+layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
+ CellData data[];
+}
+cell_data;
+
+#endif // MODE DYNAMIC
+
+#define LIGHT_TYPE_DIRECTIONAL 0
+#define LIGHT_TYPE_OMNI 1
+#define LIGHT_TYPE_SPOT 2
+
+#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)
+
+struct Light {
+ uint type;
+ float energy;
+ float radius;
+ float attenuation;
+
+ vec3 color;
+ float cos_spot_angle;
+
+ vec3 position;
+ float inv_spot_attenuation;
+
+ vec3 direction;
+ bool has_shadow;
+};
+
+layout(set = 0, binding = 3, std140) uniform Lights {
+ Light data[MAX_LIGHTS];
+}
+lights;
+
+#endif // MODE COMPUTE LIGHT
+
+#ifdef MODE_SECOND_BOUNCE
+
+layout(set = 0, binding = 5) uniform texture3D color_texture;
+
+#ifdef MODE_ANISOTROPIC
+layout(set = 0, binding = 7) uniform texture3D aniso_pos_texture;
+layout(set = 0, binding = 8) uniform texture3D aniso_neg_texture;
+#endif // MODE ANISOTROPIC
+
+#endif // MODE_SECOND_BOUNCE
+
+#ifndef MODE_DYNAMIC
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ ivec3 limits;
+ uint stack_size;
+
+ float emission_scale;
+ float propagation;
+ float dynamic_range;
+
+ uint light_count;
+ uint cell_offset;
+ uint cell_count;
+ float aniso_strength;
+ uint pad;
+}
+params;
+
+layout(set = 0, binding = 4, std430) buffer Outputs {
+ vec4 data[];
+}
+outputs;
+
+#endif // MODE DYNAMIC
+
+layout(set = 0, binding = 9) uniform texture3D texture_sdf;
+layout(set = 0, binding = 10) uniform sampler texture_sampler;
+
+#ifdef MODE_WRITE_TEXTURE
+
+layout(rgba8, set = 0, binding = 5) uniform restrict writeonly image3D color_tex;
+
+#ifdef MODE_ANISOTROPIC
+
+layout(r16ui, set = 0, binding = 6) uniform restrict writeonly uimage3D aniso_pos_tex;
+layout(r16ui, set = 0, binding = 7) uniform restrict writeonly uimage3D aniso_neg_tex;
+
+#endif
+
+#endif
+
+#ifdef MODE_DYNAMIC
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ ivec3 limits;
+ uint light_count; //when not lighting
+ ivec3 x_dir;
+ float z_base;
+ ivec3 y_dir;
+ float z_sign;
+ ivec3 z_dir;
+ float pos_multiplier;
+ ivec2 rect_pos;
+ ivec2 rect_size;
+ ivec2 prev_rect_ofs;
+ ivec2 prev_rect_size;
+ bool flip_x;
+ bool flip_y;
+ float dynamic_range;
+ bool on_mipmap;
+ float propagation;
+ float pad[3];
+}
+params;
+
+#ifdef MODE_DYNAMIC_LIGHTING
+
+layout(rgba8, set = 0, binding = 5) uniform restrict readonly image2D source_albedo;
+layout(rgba8, set = 0, binding = 6) uniform restrict readonly image2D source_normal;
+layout(rgba8, set = 0, binding = 7) uniform restrict readonly image2D source_orm;
+//layout (set=0,binding=8) uniform texture2D source_depth;
+layout(rgba16f, set = 0, binding = 11) uniform restrict image2D emission;
+layout(r32f, set = 0, binding = 12) uniform restrict image2D depth;
+
+#endif
+
+#ifdef MODE_DYNAMIC_SHRINK
+
+layout(rgba16f, set = 0, binding = 5) uniform restrict readonly image2D source_light;
+layout(r32f, set = 0, binding = 6) uniform restrict readonly image2D source_depth;
+
+#ifdef MODE_DYNAMIC_SHRINK_WRITE
+
+layout(rgba16f, set = 0, binding = 7) uniform restrict writeonly image2D light;
+layout(r32f, set = 0, binding = 8) uniform restrict writeonly image2D depth;
+
+#endif // MODE_DYNAMIC_SHRINK_WRITE
+
+#ifdef MODE_DYNAMIC_SHRINK_PLOT
+
+layout(rgba8, set = 0, binding = 11) uniform restrict image3D color_texture;
+
+#ifdef MODE_ANISOTROPIC
+
+layout(r16ui, set = 0, binding = 12) uniform restrict writeonly uimage3D aniso_pos_texture;
+layout(r16ui, set = 0, binding = 13) uniform restrict writeonly uimage3D aniso_neg_texture;
+
+#endif // MODE ANISOTROPIC
+
+#endif //MODE_DYNAMIC_SHRINK_PLOT
+
+#endif // MODE_DYNAMIC_SHRINK
+
+//layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
+
+#endif // MODE DYNAMIC
+
+#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)
+
+float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
+ vec3 cell_size = 1.0 / vec3(params.limits);
+ float occlusion = 1.0;
+ while (distance > 0.5) { //use this to avoid precision errors
+ float advance = texture(sampler3D(texture_sdf, texture_sampler), from * cell_size).r * 255.0 - 1.0;
+ if (advance < 0.0) {
+ occlusion = 0.0;
+ break;
+ }
+
+ occlusion = min(advance, occlusion);
+
+ advance = max(distance_adv, advance - mod(advance, distance_adv)); //should always advance in multiples of distance_adv
+
+ from += direction * advance;
+ distance -= advance;
+ }
+
+ return occlusion; //max(0.0,distance);
+}
+
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+
+bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) {
+ if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
+ light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
+ attenuation = 1.0;
+
+ } else {
+ light_pos = lights.data[light].position;
+ float distance = length(pos - light_pos);
+ if (distance >= lights.data[light].radius) {
+ return false;
+ }
+
+ attenuation = get_omni_attenuation(distance, 1.0 / lights.data[light].radius, lights.data[light].attenuation);
+
+ if (lights.data[light].type == LIGHT_TYPE_SPOT) {
+ vec3 rel = normalize(pos - light_pos);
+ float cos_spot_angle = lights.data[light].cos_spot_angle;
+ float cos_angle = dot(rel, lights.data[light].direction);
+ if (cos_angle < cos_spot_angle) {
+ return false;
+ }
+
+ float scos = max(cos_angle, cos_spot_angle);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
+ attenuation *= 1.0 - pow(spot_rim, lights.data[light].inv_spot_attenuation);
+ }
+ }
+
+ return true;
+}
+
+float get_normal_advance(vec3 p_normal) {
+ vec3 normal = p_normal;
+ vec3 unorm = abs(normal);
+
+ if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
+ // x code
+ unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
+ } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
+ // y code
+ unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
+ } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
+ // z code
+ unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
+ } else {
+ // oh-no we messed up code
+ // has to be
+ unorm = vec3(1.0, 0.0, 0.0);
+ }
+
+ return 1.0 / dot(normal, unorm);
+}
+
+void clip_segment(vec4 plane, vec3 begin, inout vec3 end) {
+ vec3 segment = begin - end;
+ float den = dot(plane.xyz, segment);
+
+ //printf("den is %i\n",den);
+ if (den < 0.0001) {
+ return;
+ }
+
+ float dist = (dot(plane.xyz, begin) - plane.w) / den;
+
+ if (dist < 0.0001 || dist > 1.0001) {
+ return;
+ }
+
+ end = begin + segment * -dist;
+}
+
+bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, inout vec3 light_dir) {
+ float attenuation;
+ vec3 light_pos;
+
+ if (!compute_light_vector(index, pos, attenuation, light_pos)) {
+ return false;
+ }
+
+ light_dir = normalize(pos - light_pos);
+
+ if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal, light_dir) >= 0)) {
+ return false; //not facing the light, or attenuation is near zero
+ }
+
+ if (lights.data[index].has_shadow) {
+ float distance_adv = get_normal_advance(light_dir);
+
+ vec3 to = pos;
+ if (length(normal) > 0.2) {
+ to += normal * distance_adv * 0.51;
+ } else {
+ to -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion
+ }
+
+ //clip
+ clip_segment(mix(vec4(-1.0, 0.0, 0.0, 0.0), vec4(1.0, 0.0, 0.0, float(params.limits.x - 1)), bvec4(light_dir.x < 0.0)), to, light_pos);
+ clip_segment(mix(vec4(0.0, -1.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, float(params.limits.y - 1)), bvec4(light_dir.y < 0.0)), to, light_pos);
+ clip_segment(mix(vec4(0.0, 0.0, -1.0, 0.0), vec4(0.0, 0.0, 1.0, float(params.limits.z - 1)), bvec4(light_dir.z < 0.0)), to, light_pos);
+
+ float distance = length(to - light_pos);
+ if (distance < 0.1) {
+ return false; // hit
+ }
+
+ distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
+ light_pos = to - light_dir * distance;
+
+ //from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion
+
+ /*float dist = raymarch(distance,distance_adv,light_pos,light_dir);
+
+ if (dist > distance_adv) {
+ return false;
+ }
+
+ attenuation *= 1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
+ */
+
+ float occlusion = raymarch(distance, distance_adv, light_pos, light_dir);
+
+ if (occlusion == 0.0) {
+ return false;
+ }
+
+ attenuation *= occlusion; //1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
+ }
+
+ light = lights.data[index].color * attenuation * lights.data[index].energy;
+ return true;
+}
+
+#endif // MODE COMPUTE LIGHT
+
+void main() {
+#ifndef MODE_DYNAMIC
+
+ uint cell_index = gl_GlobalInvocationID.x;
+ if (cell_index >= params.cell_count) {
+ return;
+ }
+ cell_index += params.cell_offset;
+
+ uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
+ vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
+
+#endif
+
+ /////////////////COMPUTE LIGHT///////////////////////////////
+
+#ifdef MODE_COMPUTE_LIGHT
+
+ vec3 pos = vec3(posu) + vec3(0.5);
+
+ vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff, (cell_data.data[cell_index].emission >> 9) & 0x1ff, (cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0);
+ vec3 normal = unpackSnorm4x8(cell_data.data[cell_index].normal).xyz;
+
+#ifdef MODE_ANISOTROPIC
+ vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
+ const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
+#else
+ vec3 accum = vec3(0.0);
+#endif
+
+ for (uint i = 0; i < params.light_count; i++) {
+ vec3 light;
+ vec3 light_dir;
+ if (!compute_light_at_pos(i, pos, normal.xyz, light, light_dir)) {
+ continue;
+ }
+
+ light *= albedo.rgb;
+
+#ifdef MODE_ANISOTROPIC
+ for (uint j = 0; j < 6; j++) {
+ accum[j] += max(0.0, dot(accum_dirs[j], -light_dir)) * light;
+ }
+#else
+ if (length(normal) > 0.2) {
+ accum += max(0.0, dot(normal, -light_dir)) * light;
+ } else {
+ //all directions
+ accum += light;
+ }
+#endif
+ }
+
+#ifdef MODE_ANISOTROPIC
+
+ for (uint i = 0; i < 6; i++) {
+ vec3 light = accum[i];
+ if (length(normal) > 0.2) {
+ light += max(0.0, dot(accum_dirs[i], -normal)) * emission;
+ } else {
+ light += emission;
+ }
+
+ outputs.data[cell_index * 6 + i] = vec4(light, 0.0);
+ }
+
+#else
+ outputs.data[cell_index] = vec4(accum + emission, 0.0);
+
+#endif
+
+#endif //MODE_COMPUTE_LIGHT
+
+ /////////////////SECOND BOUNCE///////////////////////////////
+
+#ifdef MODE_SECOND_BOUNCE
+ vec3 pos = vec3(posu) + vec3(0.5);
+ ivec3 ipos = ivec3(posu);
+ vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
+
+#ifdef MODE_ANISOTROPIC
+ vec3 accum[6];
+ const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
+
+ /*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
+ vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
+ vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb;
+ accum[0]=src_col * src_aniso_pos.x;
+ accum[1]=src_col * src_aniso_neg.x;
+ accum[2]=src_col * src_aniso_pos.y;
+ accum[3]=src_col * src_aniso_neg.y;
+ accum[4]=src_col * src_aniso_pos.z;
+ accum[5]=src_col * src_aniso_neg.z;*/
+
+ accum[0] = outputs.data[cell_index * 6 + 0].rgb;
+ accum[1] = outputs.data[cell_index * 6 + 1].rgb;
+ accum[2] = outputs.data[cell_index * 6 + 2].rgb;
+ accum[3] = outputs.data[cell_index * 6 + 3].rgb;
+ accum[4] = outputs.data[cell_index * 6 + 4].rgb;
+ accum[5] = outputs.data[cell_index * 6 + 5].rgb;
+
+#else
+ vec3 accum = outputs.data[cell_index].rgb;
+
+#endif
+
+ if (length(normal.xyz) > 0.2) {
+ vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
+ vec3 tangent = normalize(cross(v0, normal.xyz));
+ vec3 bitangent = normalize(cross(tangent, normal.xyz));
+ mat3 normal_mat = mat3(tangent, bitangent, normal.xyz);
+
+#define MAX_CONE_DIRS 6
+
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
+ vec3(0.0, 0.0, 1.0),
+ vec3(0.866025, 0.0, 0.5),
+ vec3(0.267617, 0.823639, 0.5),
+ vec3(-0.700629, 0.509037, 0.5),
+ vec3(-0.700629, -0.509037, 0.5),
+ vec3(0.267617, -0.823639, 0.5));
+
+ float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
+ float tan_half_angle = 0.577;
+
+ for (int i = 0; i < MAX_CONE_DIRS; i++) {
+ vec3 direction = normal_mat * cone_dirs[i];
+ vec4 color = vec4(0.0);
+ {
+ float dist = 1.5;
+ float max_distance = length(vec3(params.limits));
+ vec3 cell_size = 1.0 / vec3(params.limits);
+
+#ifdef MODE_ANISOTROPIC
+ vec3 aniso_normal = mix(direction, normal.xyz, params.aniso_strength);
+#endif
+ while (dist < max_distance && color.a < 0.95) {
+ float diameter = max(1.0, 2.0 * tan_half_angle * dist);
+ vec3 uvw_pos = (pos + dist * direction) * cell_size;
+ float half_diameter = diameter * 0.5;
+ //check if outside, then break
+ //if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) {
+ // break;
+ //}
+
+ float log2_diameter = log2(diameter);
+ vec4 scolor = textureLod(sampler3D(color_texture, texture_sampler), uvw_pos, log2_diameter);
+#ifdef MODE_ANISOTROPIC
+
+ vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
+ vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
+
+ scolor.rgb *= dot(max(vec3(0.0), (aniso_normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-aniso_normal * aniso_neg)), vec3(1.0));
+#endif
+ float a = (1.0 - color.a);
+ color += a * scolor;
+ dist += half_diameter;
+ }
+ }
+ color *= cone_weights[i] * vec4(albedo.rgb, 1.0) * params.dynamic_range; //restore range
+#ifdef MODE_ANISOTROPIC
+ for (uint j = 0; j < 6; j++) {
+ accum[j] += max(0.0, dot(accum_dirs[j], direction)) * color.rgb;
+ }
+#else
+ accum += color.rgb;
+#endif
+ }
+ }
+
+#ifdef MODE_ANISOTROPIC
+
+ outputs.data[cell_index * 6 + 0] = vec4(accum[0], 0.0);
+ outputs.data[cell_index * 6 + 1] = vec4(accum[1], 0.0);
+ outputs.data[cell_index * 6 + 2] = vec4(accum[2], 0.0);
+ outputs.data[cell_index * 6 + 3] = vec4(accum[3], 0.0);
+ outputs.data[cell_index * 6 + 4] = vec4(accum[4], 0.0);
+ outputs.data[cell_index * 6 + 5] = vec4(accum[5], 0.0);
+#else
+ outputs.data[cell_index] = vec4(accum, 0.0);
+
+#endif
+
+#endif // MODE_SECOND_BOUNCE
+
+ /////////////////UPDATE MIPMAPS///////////////////////////////
+
+#ifdef MODE_UPDATE_MIPMAPS
+
+ {
+#ifdef MODE_ANISOTROPIC
+ vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
+#else
+ vec3 light_accum = vec3(0.0);
+#endif
+ float count = 0.0;
+ for (uint i = 0; i < 8; i++) {
+ uint child_index = cell_children.data[cell_index].children[i];
+ if (child_index == NO_CHILDREN) {
+ continue;
+ }
+#ifdef MODE_ANISOTROPIC
+ light_accum[0] += outputs.data[child_index * 6 + 0].rgb;
+ light_accum[1] += outputs.data[child_index * 6 + 1].rgb;
+ light_accum[2] += outputs.data[child_index * 6 + 2].rgb;
+ light_accum[3] += outputs.data[child_index * 6 + 3].rgb;
+ light_accum[4] += outputs.data[child_index * 6 + 4].rgb;
+ light_accum[5] += outputs.data[child_index * 6 + 5].rgb;
+
+#else
+ light_accum += outputs.data[child_index].rgb;
+
+#endif
+
+ count += 1.0;
+ }
+
+ float divisor = mix(8.0, count, params.propagation);
+#ifdef MODE_ANISOTROPIC
+ outputs.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0);
+ outputs.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0);
+ outputs.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0);
+ outputs.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0);
+ outputs.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0);
+ outputs.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0);
+
+#else
+ outputs.data[cell_index] = vec4(light_accum / divisor, 0.0);
+#endif
+ }
+#endif
+
+ ///////////////////WRITE TEXTURE/////////////////////////////
+
+#ifdef MODE_WRITE_TEXTURE
+ {
+#ifdef MODE_ANISOTROPIC
+ vec3 accum_total = vec3(0.0);
+ accum_total += outputs.data[cell_index * 6 + 0].rgb;
+ accum_total += outputs.data[cell_index * 6 + 1].rgb;
+ accum_total += outputs.data[cell_index * 6 + 2].rgb;
+ accum_total += outputs.data[cell_index * 6 + 3].rgb;
+ accum_total += outputs.data[cell_index * 6 + 4].rgb;
+ accum_total += outputs.data[cell_index * 6 + 5].rgb;
+
+ float accum_total_energy = max(dot(accum_total, GREY_VEC), 0.00001);
+ vec3 iso_positive = vec3(dot(outputs.data[cell_index * 6 + 0].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 2].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 4].rgb, GREY_VEC)) / vec3(accum_total_energy);
+ vec3 iso_negative = vec3(dot(outputs.data[cell_index * 6 + 1].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 3].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 5].rgb, GREY_VEC)) / vec3(accum_total_energy);
+
+ {
+ uint aniso_pos = uint(clamp(iso_positive.b * 31.0, 0.0, 31.0));
+ aniso_pos |= uint(clamp(iso_positive.g * 63.0, 0.0, 63.0)) << 5;
+ aniso_pos |= uint(clamp(iso_positive.r * 31.0, 0.0, 31.0)) << 11;
+ imageStore(aniso_pos_tex, ivec3(posu), uvec4(aniso_pos));
+ }
+
+ {
+ uint aniso_neg = uint(clamp(iso_negative.b * 31.0, 0.0, 31.0));
+ aniso_neg |= uint(clamp(iso_negative.g * 63.0, 0.0, 63.0)) << 5;
+ aniso_neg |= uint(clamp(iso_negative.r * 31.0, 0.0, 31.0)) << 11;
+ imageStore(aniso_neg_tex, ivec3(posu), uvec4(aniso_neg));
+ }
+
+ imageStore(color_tex, ivec3(posu), vec4(accum_total / params.dynamic_range, albedo.a));
+
+#else
+
+ imageStore(color_tex, ivec3(posu), vec4(outputs.data[cell_index].rgb / params.dynamic_range, albedo.a));
+
+#endif
+ }
+#endif
+
+ ///////////////////DYNAMIC LIGHTING/////////////////////////////
+
+#ifdef MODE_DYNAMIC
+
+ ivec2 pos_xy = ivec2(gl_GlobalInvocationID.xy);
+ if (any(greaterThanEqual(pos_xy, params.rect_size))) {
+ return; //out of bounds
+ }
+
+ ivec2 uv_xy = pos_xy;
+ if (params.flip_x) {
+ uv_xy.x = params.rect_size.x - pos_xy.x - 1;
+ }
+ if (params.flip_y) {
+ uv_xy.y = params.rect_size.y - pos_xy.y - 1;
+ }
+
+#ifdef MODE_DYNAMIC_LIGHTING
+
+ {
+ float z = params.z_base + imageLoad(depth, uv_xy).x * params.z_sign;
+
+ ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z);
+
+ vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0;
+ normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z;
+
+ vec4 albedo = imageLoad(source_albedo, uv_xy);
+
+ //determine the position in space
+
+ vec3 accum = vec3(0.0);
+ for (uint i = 0; i < params.light_count; i++) {
+ vec3 light;
+ vec3 light_dir;
+ if (!compute_light_at_pos(i, vec3(pos) * params.pos_multiplier, normal, light, light_dir)) {
+ continue;
+ }
+
+ light *= albedo.rgb;
+
+ accum += max(0.0, dot(normal, -light_dir)) * light;
+ }
+
+ accum += imageLoad(emission, uv_xy).xyz;
+
+ imageStore(emission, uv_xy, vec4(accum, albedo.a));
+ imageStore(depth, uv_xy, vec4(z));
+ }
+
+#endif // MODE DYNAMIC LIGHTING
+
+#ifdef MODE_DYNAMIC_SHRINK
+
+ {
+ vec4 accum = vec4(0.0);
+ float accum_z = 0.0;
+ float count = 0.0;
+
+ for (int i = 0; i < 4; i++) {
+ ivec2 ofs = pos_xy * 2 + ivec2(i & 1, i >> 1) - params.prev_rect_ofs;
+ if (any(lessThan(ofs, ivec2(0))) || any(greaterThanEqual(ofs, params.prev_rect_size))) {
+ continue;
+ }
+ if (params.flip_x) {
+ ofs.x = params.prev_rect_size.x - ofs.x - 1;
+ }
+ if (params.flip_y) {
+ ofs.y = params.prev_rect_size.y - ofs.y - 1;
+ }
+
+ vec4 light = imageLoad(source_light, ofs);
+ if (light.a == 0.0) { //ignore empty
+ continue;
+ }
+ accum += light;
+ float z = imageLoad(source_depth, ofs).x;
+ accum_z += z * 0.5; //shrink half too
+ count += 1.0;
+ }
+
+ if (params.on_mipmap) {
+ accum.rgb /= mix(8.0, count, params.propagation);
+ accum.a /= 8.0;
+ } else {
+ accum /= 4.0;
+ }
+
+ if (count == 0.0) {
+ accum_z = 0.0; //avoid nan
+ } else {
+ accum_z /= count;
+ }
+
+#ifdef MODE_DYNAMIC_SHRINK_WRITE
+
+ imageStore(light, uv_xy, accum);
+ imageStore(depth, uv_xy, vec4(accum_z));
+#endif
+
+#ifdef MODE_DYNAMIC_SHRINK_PLOT
+
+ if (accum.a < 0.001) {
+ return; //do not blit if alpha is too low
+ }
+
+ ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z);
+
+ float z_frac = fract(accum_z);
+
+ for (int i = 0; i < 2; i++) {
+ ivec3 pos3d = pos + abs(params.z_dir) * i;
+ if (any(lessThan(pos3d, ivec3(0))) || any(greaterThanEqual(pos3d, params.limits))) {
+ //skip if offlimits
+ continue;
+ }
+ vec4 color_blit = accum * (i == 0 ? 1.0 - z_frac : z_frac);
+ vec4 color = imageLoad(color_texture, pos3d);
+ color.rgb *= params.dynamic_range;
+
+#if 0
+ color.rgb = mix(color.rgb,color_blit.rgb,color_blit.a);
+ color.a+=color_blit.a;
+#else
+
+ float sa = 1.0 - color_blit.a;
+ vec4 result;
+ result.a = color.a * sa + color_blit.a;
+ if (result.a == 0.0) {
+ result = vec4(0.0);
+ } else {
+ result.rgb = (color.rgb * color.a * sa + color_blit.rgb * color_blit.a) / result.a;
+ color = result;
+ }
+
+#endif
+ color.rgb /= params.dynamic_range;
+ imageStore(color_texture, pos3d, color);
+ //imageStore(color_texture,pos3d,vec4(1,1,1,1));
+
+#ifdef MODE_ANISOTROPIC
+ //do not care about anisotropy for dynamic objects, just store full lit in all directions
+ imageStore(aniso_pos_texture, pos3d, uvec4(0xFFFF));
+ imageStore(aniso_neg_texture, pos3d, uvec4(0xFFFF));
+
+#endif // ANISOTROPIC
+ }
+#endif // MODE_DYNAMIC_SHRINK_PLOT
+ }
+#endif
+
+#endif // MODE DYNAMIC
+}