summaryrefslogtreecommitdiff
path: root/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl')
-rw-r--r--servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl335
1 files changed, 335 insertions, 0 deletions
diff --git a/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl b/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl
new file mode 100644
index 0000000000..c832223b1e
--- /dev/null
+++ b/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl
@@ -0,0 +1,335 @@
+/* clang-format off */
+[compute]
+
+#version 450
+
+VERSION_DEFINES
+
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+/* clang-format on */
+
+#define NO_CHILDREN 0xFFFFFFFF
+#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)
+
+struct CellChildren {
+ uint children[8];
+};
+
+layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
+ CellChildren data[];
+}
+cell_children;
+
+struct CellData {
+ uint position; // xyz 10 bits
+ uint albedo; //rgb albedo
+ uint emission; //rgb normalized with e as multiplier
+ uint normal; //RGB normal encoded
+};
+
+layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
+ CellData data[];
+}
+cell_data;
+
+#define LIGHT_TYPE_DIRECTIONAL 0
+#define LIGHT_TYPE_OMNI 1
+#define LIGHT_TYPE_SPOT 2
+
+#ifdef MODE_COMPUTE_LIGHT
+
+struct Light {
+ uint type;
+ float energy;
+ float radius;
+ float attenuation;
+
+ vec3 color;
+ float spot_angle_radians;
+
+ vec3 position;
+ float spot_attenuation;
+
+ vec3 direction;
+ bool has_shadow;
+};
+
+layout(set = 0, binding = 3, std140) uniform Lights {
+ Light data[MAX_LIGHTS];
+}
+lights;
+
+#endif
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ ivec3 limits;
+ uint stack_size;
+
+ float emission_scale;
+ float propagation;
+ float dynamic_range;
+
+ uint light_count;
+ uint cell_offset;
+ uint cell_count;
+ uint pad[2];
+}
+params;
+
+layout(set = 0, binding = 4, std140) uniform Outputs {
+ vec4 data[];
+}
+output;
+
+#ifdef MODE_COMPUTE_LIGHT
+
+uint raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
+
+ uint result = NO_CHILDREN;
+
+ ivec3 size = ivec3(max(max(params.limits.x, params.limits.y), params.limits.z));
+
+ while (distance > -distance_adv) { //use this to avoid precision errors
+
+ uint cell = 0;
+
+ ivec3 pos = ivec3(from);
+
+ if (all(greaterThanEqual(pos, ivec3(0))) && all(lessThan(pos, size))) {
+
+ ivec3 ofs = ivec3(0);
+ ivec3 half_size = size / 2;
+
+ for (int i = 0; i < params.stack_size - 1; i++) {
+
+ bvec3 greater = greaterThanEqual(pos, ofs + half_size);
+
+ ofs += mix(ivec3(0), half_size, greater);
+
+ uint child = 0; //wonder if this can be done faster
+ if (greater.x) {
+ child |= 1;
+ }
+ if (greater.y) {
+ child |= 2;
+ }
+ if (greater.z) {
+ child |= 4;
+ }
+
+ cell = cell_children.data[cell].children[child];
+ if (cell == NO_CHILDREN)
+ break;
+
+ half_size >>= ivec3(1);
+ }
+
+ if (cell != NO_CHILDREN) {
+ return cell; //found cell!
+ }
+ }
+
+ from += direction * distance_adv;
+ distance -= distance_adv;
+ }
+
+ return NO_CHILDREN;
+}
+
+bool compute_light_vector(uint light, uint cell, vec3 pos, out float attenuation, out vec3 light_pos) {
+
+ if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
+
+ light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
+ attenuation = 1.0;
+
+ } else {
+
+ light_pos = lights.data[light].position;
+ float distance = length(pos - light_pos);
+ if (distance >= lights.data[light].radius) {
+ return false;
+ }
+
+ attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation);
+
+ if (lights.data[light].type == LIGHT_TYPE_SPOT) {
+
+ vec3 rel = normalize(pos - light_pos);
+ float angle = acos(dot(rel, lights.data[light].direction));
+ if (angle > lights.data[light].spot_angle_radians) {
+ return false;
+ }
+
+ float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
+ attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
+ }
+ }
+
+ return true;
+}
+
+float get_normal_advance(vec3 p_normal) {
+
+ vec3 normal = p_normal;
+ vec3 unorm = abs(normal);
+
+ if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
+ // x code
+ unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
+ } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
+ // y code
+ unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
+ } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
+ // z code
+ unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
+ } else {
+ // oh-no we messed up code
+ // has to be
+ unorm = vec3(1.0, 0.0, 0.0);
+ }
+
+ return 1.0 / dot(normal, unorm);
+}
+
+#endif
+
+void main() {
+
+ uint cell_index = gl_GlobalInvocationID.x;
+ if (cell_index >= params.cell_count) {
+ return;
+ }
+ cell_index += params.cell_offset;
+
+ uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
+ vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
+
+#ifdef MODE_COMPUTE_LIGHT
+
+ vec3 pos = vec3(posu) + vec3(0.5);
+
+ vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission & 0x3FF, (cell_data.data[cell_index].emission >> 10) & 0x7FF, cell_data.data[cell_index].emission >> 21)) * params.emission_scale;
+ vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
+
+#ifdef MODE_ANISOTROPIC
+ vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
+ const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
+#else
+ vec3 accum = vec3(0.0);
+#endif
+
+ for (uint i = 0; i < params.light_count; i++) {
+
+ float attenuation;
+ vec3 light_pos;
+
+ if (!compute_light_vector(i, cell_index, pos, attenuation, light_pos)) {
+ continue;
+ }
+
+ vec3 light_dir = pos - light_pos;
+ float distance = length(light_dir);
+ light_dir = normalize(light_dir);
+
+ if (length(normal.xyz) > 0.2 && dot(normal.xyz, light_dir) >= 0) {
+ continue; //not facing the light
+ }
+
+ if (lights.data[i].has_shadow) {
+
+ float distance_adv = get_normal_advance(light_dir);
+
+ distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
+
+ vec3 from = pos - light_dir * distance; //approximate
+ from -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion
+
+ uint result = raymarch(distance, distance_adv, from, light_dir);
+
+ if (result != cell_index) {
+ continue; //was occluded
+ }
+ }
+
+ vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy;
+
+#ifdef MODE_ANISOTROPIC
+ for (uint j = 0; j < 6; j++) {
+ accum[j] += max(0.0, dot(accum_dir, -light_dir)) * light + emission;
+ }
+#else
+ if (length(normal.xyz) > 0.2) {
+ accum += max(0.0, dot(normal.xyz, -light_dir)) * light + emission;
+ } else {
+ //all directions
+ accum += light + emission;
+ }
+#endif
+ }
+
+#ifdef MODE_ANISOTROPIC
+
+ output.data[cell_index * 6 + 0] = vec4(accum[0], 0.0);
+ output.data[cell_index * 6 + 1] = vec4(accum[1], 0.0);
+ output.data[cell_index * 6 + 2] = vec4(accum[2], 0.0);
+ output.data[cell_index * 6 + 3] = vec4(accum[3], 0.0);
+ output.data[cell_index * 6 + 4] = vec4(accum[4], 0.0);
+ output.data[cell_index * 6 + 5] = vec4(accum[5], 0.0);
+#else
+ output.data[cell_index] = vec4(accum, 0.0);
+
+#endif
+
+#endif //MODE_COMPUTE_LIGHT
+
+#ifdef MODE_UPDATE_MIPMAPS
+
+ {
+#ifdef MODE_ANISOTROPIC
+ vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
+#else
+ vec3 light_accum = vec3(0.0);
+#endif
+ float count = 0.0;
+ for (uint i = 0; i < 8; i++) {
+ uint child_index = cell_children.data[cell_index].children[i];
+ if (child_index == NO_CHILDREN) {
+ continue;
+ }
+#ifdef MODE_ANISOTROPIC
+ light_accum[1] += output.data[child_index * 6 + 0].rgb;
+ light_accum[2] += output.data[child_index * 6 + 1].rgb;
+ light_accum[3] += output.data[child_index * 6 + 2].rgb;
+ light_accum[4] += output.data[child_index * 6 + 3].rgb;
+ light_accum[5] += output.data[child_index * 6 + 4].rgb;
+ light_accum[6] += output.data[child_index * 6 + 5].rgb;
+
+#else
+ light_accum += output.data[child_index].rgb;
+
+#endif
+
+ count += 1.0;
+ }
+
+ float divisor = mix(8.0, count, params.propagation);
+#ifdef MODE_ANISOTROPIC
+ output.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0);
+ output.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0);
+ output.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0);
+ output.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0);
+ output.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0);
+ output.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0);
+
+#else
+ output.data[cell_index] = vec4(light_accum / divisor, 0.0);
+#endif
+ }
+#endif
+
+#ifdef MODE_WRITE_TEXTURE
+ {
+ }
+#endif
+}