diff options
Diffstat (limited to 'servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl')
-rw-r--r-- | servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl b/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl new file mode 100644 index 0000000000..c832223b1e --- /dev/null +++ b/servers/rendering/rasterizer_rd/shaders/giprobe_write.glsl @@ -0,0 +1,335 @@ +/* clang-format off */ +[compute] + +#version 450 + +VERSION_DEFINES + +layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; +/* clang-format on */ + +#define NO_CHILDREN 0xFFFFFFFF +#define GREY_VEC vec3(0.33333, 0.33333, 0.33333) + +struct CellChildren { + uint children[8]; +}; + +layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer { + CellChildren data[]; +} +cell_children; + +struct CellData { + uint position; // xyz 10 bits + uint albedo; //rgb albedo + uint emission; //rgb normalized with e as multiplier + uint normal; //RGB normal encoded +}; + +layout(set = 0, binding = 2, std430) buffer CellDataBuffer { + CellData data[]; +} +cell_data; + +#define LIGHT_TYPE_DIRECTIONAL 0 +#define LIGHT_TYPE_OMNI 1 +#define LIGHT_TYPE_SPOT 2 + +#ifdef MODE_COMPUTE_LIGHT + +struct Light { + uint type; + float energy; + float radius; + float attenuation; + + vec3 color; + float spot_angle_radians; + + vec3 position; + float spot_attenuation; + + vec3 direction; + bool has_shadow; +}; + +layout(set = 0, binding = 3, std140) uniform Lights { + Light data[MAX_LIGHTS]; +} +lights; + +#endif + +layout(push_constant, binding = 0, std430) uniform Params { + ivec3 limits; + uint stack_size; + + float emission_scale; + float propagation; + float dynamic_range; + + uint light_count; + uint cell_offset; + uint cell_count; + uint pad[2]; +} +params; + +layout(set = 0, binding = 4, std140) uniform Outputs { + vec4 data[]; +} +output; + +#ifdef MODE_COMPUTE_LIGHT + +uint raymarch(float distance, float distance_adv, vec3 from, vec3 direction) { + + uint result = NO_CHILDREN; + + ivec3 size = ivec3(max(max(params.limits.x, params.limits.y), params.limits.z)); + + while (distance > -distance_adv) { //use this to avoid precision errors + + uint cell = 0; + + ivec3 pos = ivec3(from); + + if (all(greaterThanEqual(pos, ivec3(0))) && all(lessThan(pos, size))) { + + ivec3 ofs = ivec3(0); + ivec3 half_size = size / 2; + + for (int i = 0; i < params.stack_size - 1; i++) { + + bvec3 greater = greaterThanEqual(pos, ofs + half_size); + + ofs += mix(ivec3(0), half_size, greater); + + uint child = 0; //wonder if this can be done faster + if (greater.x) { + child |= 1; + } + if (greater.y) { + child |= 2; + } + if (greater.z) { + child |= 4; + } + + cell = cell_children.data[cell].children[child]; + if (cell == NO_CHILDREN) + break; + + half_size >>= ivec3(1); + } + + if (cell != NO_CHILDREN) { + return cell; //found cell! + } + } + + from += direction * distance_adv; + distance -= distance_adv; + } + + return NO_CHILDREN; +} + +bool compute_light_vector(uint light, uint cell, vec3 pos, out float attenuation, out vec3 light_pos) { + + if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) { + + light_pos = pos - lights.data[light].direction * length(vec3(params.limits)); + attenuation = 1.0; + + } else { + + light_pos = lights.data[light].position; + float distance = length(pos - light_pos); + if (distance >= lights.data[light].radius) { + return false; + } + + attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation); + + if (lights.data[light].type == LIGHT_TYPE_SPOT) { + + vec3 rel = normalize(pos - light_pos); + float angle = acos(dot(rel, lights.data[light].direction)); + if (angle > lights.data[light].spot_angle_radians) { + return false; + } + + float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); + attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); + } + } + + return true; +} + +float get_normal_advance(vec3 p_normal) { + + vec3 normal = p_normal; + vec3 unorm = abs(normal); + + if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { + // x code + unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0); + } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { + // y code + unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0); + } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { + // z code + unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); + } else { + // oh-no we messed up code + // has to be + unorm = vec3(1.0, 0.0, 0.0); + } + + return 1.0 / dot(normal, unorm); +} + +#endif + +void main() { + + uint cell_index = gl_GlobalInvocationID.x; + if (cell_index >= params.cell_count) { + return; + } + cell_index += params.cell_offset; + + uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21); + vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo); + +#ifdef MODE_COMPUTE_LIGHT + + vec3 pos = vec3(posu) + vec3(0.5); + + vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission & 0x3FF, (cell_data.data[cell_index].emission >> 10) & 0x7FF, cell_data.data[cell_index].emission >> 21)) * params.emission_scale; + vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); + +#ifdef MODE_ANISOTROPIC + vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); + const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0)); +#else + vec3 accum = vec3(0.0); +#endif + + for (uint i = 0; i < params.light_count; i++) { + + float attenuation; + vec3 light_pos; + + if (!compute_light_vector(i, cell_index, pos, attenuation, light_pos)) { + continue; + } + + vec3 light_dir = pos - light_pos; + float distance = length(light_dir); + light_dir = normalize(light_dir); + + if (length(normal.xyz) > 0.2 && dot(normal.xyz, light_dir) >= 0) { + continue; //not facing the light + } + + if (lights.data[i].has_shadow) { + + float distance_adv = get_normal_advance(light_dir); + + distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always + + vec3 from = pos - light_dir * distance; //approximate + from -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion + + uint result = raymarch(distance, distance_adv, from, light_dir); + + if (result != cell_index) { + continue; //was occluded + } + } + + vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy; + +#ifdef MODE_ANISOTROPIC + for (uint j = 0; j < 6; j++) { + accum[j] += max(0.0, dot(accum_dir, -light_dir)) * light + emission; + } +#else + if (length(normal.xyz) > 0.2) { + accum += max(0.0, dot(normal.xyz, -light_dir)) * light + emission; + } else { + //all directions + accum += light + emission; + } +#endif + } + +#ifdef MODE_ANISOTROPIC + + output.data[cell_index * 6 + 0] = vec4(accum[0], 0.0); + output.data[cell_index * 6 + 1] = vec4(accum[1], 0.0); + output.data[cell_index * 6 + 2] = vec4(accum[2], 0.0); + output.data[cell_index * 6 + 3] = vec4(accum[3], 0.0); + output.data[cell_index * 6 + 4] = vec4(accum[4], 0.0); + output.data[cell_index * 6 + 5] = vec4(accum[5], 0.0); +#else + output.data[cell_index] = vec4(accum, 0.0); + +#endif + +#endif //MODE_COMPUTE_LIGHT + +#ifdef MODE_UPDATE_MIPMAPS + + { +#ifdef MODE_ANISOTROPIC + vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); +#else + vec3 light_accum = vec3(0.0); +#endif + float count = 0.0; + for (uint i = 0; i < 8; i++) { + uint child_index = cell_children.data[cell_index].children[i]; + if (child_index == NO_CHILDREN) { + continue; + } +#ifdef MODE_ANISOTROPIC + light_accum[1] += output.data[child_index * 6 + 0].rgb; + light_accum[2] += output.data[child_index * 6 + 1].rgb; + light_accum[3] += output.data[child_index * 6 + 2].rgb; + light_accum[4] += output.data[child_index * 6 + 3].rgb; + light_accum[5] += output.data[child_index * 6 + 4].rgb; + light_accum[6] += output.data[child_index * 6 + 5].rgb; + +#else + light_accum += output.data[child_index].rgb; + +#endif + + count += 1.0; + } + + float divisor = mix(8.0, count, params.propagation); +#ifdef MODE_ANISOTROPIC + output.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0); + output.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0); + output.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0); + output.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0); + output.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0); + output.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0); + +#else + output.data[cell_index] = vec4(light_accum / divisor, 0.0); +#endif + } +#endif + +#ifdef MODE_WRITE_TEXTURE + { + } +#endif +} |