diff options
Diffstat (limited to 'servers/rendering/rasterizer_rd/shaders/giprobe.glsl')
-rw-r--r-- | servers/rendering/rasterizer_rd/shaders/giprobe.glsl | 788 |
1 files changed, 788 insertions, 0 deletions
diff --git a/servers/rendering/rasterizer_rd/shaders/giprobe.glsl b/servers/rendering/rasterizer_rd/shaders/giprobe.glsl new file mode 100644 index 0000000000..fd09f96a57 --- /dev/null +++ b/servers/rendering/rasterizer_rd/shaders/giprobe.glsl @@ -0,0 +1,788 @@ +/* clang-format off */ +[compute] + +#version 450 + +VERSION_DEFINES + +#ifdef MODE_DYNAMIC +layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; +#else +layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; +#endif +/* clang-format on */ + +#ifndef MODE_DYNAMIC + +#define NO_CHILDREN 0xFFFFFFFF +#define GREY_VEC vec3(0.33333, 0.33333, 0.33333) + +struct CellChildren { + uint children[8]; +}; + +layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer { + CellChildren data[]; +} +cell_children; + +struct CellData { + uint position; // xyz 10 bits + uint albedo; //rgb albedo + uint emission; //rgb normalized with e as multiplier + uint normal; //RGB normal encoded +}; + +layout(set = 0, binding = 2, std430) buffer CellDataBuffer { + CellData data[]; +} +cell_data; + +#endif // MODE DYNAMIC + +#define LIGHT_TYPE_DIRECTIONAL 0 +#define LIGHT_TYPE_OMNI 1 +#define LIGHT_TYPE_SPOT 2 + +#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING) + +struct Light { + + uint type; + float energy; + float radius; + float attenuation; + + vec3 color; + float spot_angle_radians; + + vec3 position; + float spot_attenuation; + + vec3 direction; + bool has_shadow; +}; + +layout(set = 0, binding = 3, std140) uniform Lights { + Light data[MAX_LIGHTS]; +} +lights; + +#endif // MODE COMPUTE LIGHT + +#ifdef MODE_SECOND_BOUNCE + +layout(set = 0, binding = 5) uniform texture3D color_texture; + +#ifdef MODE_ANISOTROPIC +layout(set = 0, binding = 7) uniform texture3D aniso_pos_texture; +layout(set = 0, binding = 8) uniform texture3D aniso_neg_texture; +#endif // MODE ANISOTROPIC + +#endif // MODE_SECOND_BOUNCE + +#ifndef MODE_DYNAMIC + +layout(push_constant, binding = 0, std430) uniform Params { + ivec3 limits; + uint stack_size; + + float emission_scale; + float propagation; + float dynamic_range; + + uint light_count; + uint cell_offset; + uint cell_count; + float aniso_strength; + uint pad; +} +params; + +layout(set = 0, binding = 4, std430) buffer Outputs { + vec4 data[]; +} +outputs; + +#endif // MODE DYNAMIC + +layout(set = 0, binding = 9) uniform texture3D texture_sdf; +layout(set = 0, binding = 10) uniform sampler texture_sampler; + +#ifdef MODE_WRITE_TEXTURE + +layout(rgba8, set = 0, binding = 5) uniform restrict writeonly image3D color_tex; + +#ifdef MODE_ANISOTROPIC + +layout(r16ui, set = 0, binding = 6) uniform restrict writeonly uimage3D aniso_pos_tex; +layout(r16ui, set = 0, binding = 7) uniform restrict writeonly uimage3D aniso_neg_tex; + +#endif + +#endif + +#ifdef MODE_DYNAMIC + +layout(push_constant, binding = 0, std430) uniform Params { + ivec3 limits; + uint light_count; //when not lighting + ivec3 x_dir; + float z_base; + ivec3 y_dir; + float z_sign; + ivec3 z_dir; + float pos_multiplier; + ivec2 rect_pos; + ivec2 rect_size; + ivec2 prev_rect_ofs; + ivec2 prev_rect_size; + bool flip_x; + bool flip_y; + float dynamic_range; + bool on_mipmap; + float propagation; + float pad[3]; +} +params; + +#ifdef MODE_DYNAMIC_LIGHTING + +layout(rgba8, set = 0, binding = 5) uniform restrict readonly image2D source_albedo; +layout(rgba8, set = 0, binding = 6) uniform restrict readonly image2D source_normal; +layout(rgba8, set = 0, binding = 7) uniform restrict readonly image2D source_orm; +//layout (set=0,binding=8) uniform texture2D source_depth; +layout(rgba16f, set = 0, binding = 11) uniform restrict image2D emission; +layout(r32f, set = 0, binding = 12) uniform restrict image2D depth; + +#endif + +#ifdef MODE_DYNAMIC_SHRINK + +layout(rgba16f, set = 0, binding = 5) uniform restrict readonly image2D source_light; +layout(r32f, set = 0, binding = 6) uniform restrict readonly image2D source_depth; + +#ifdef MODE_DYNAMIC_SHRINK_WRITE + +layout(rgba16f, set = 0, binding = 7) uniform restrict writeonly image2D light; +layout(r32f, set = 0, binding = 8) uniform restrict writeonly image2D depth; + +#endif // MODE_DYNAMIC_SHRINK_WRITE + +#ifdef MODE_DYNAMIC_SHRINK_PLOT + +layout(rgba8, set = 0, binding = 11) uniform restrict image3D color_texture; + +#ifdef MODE_ANISOTROPIC + +layout(r16ui, set = 0, binding = 12) uniform restrict writeonly uimage3D aniso_pos_texture; +layout(r16ui, set = 0, binding = 13) uniform restrict writeonly uimage3D aniso_neg_texture; + +#endif // MODE ANISOTROPIC + +#endif //MODE_DYNAMIC_SHRINK_PLOT + +#endif // MODE_DYNAMIC_SHRINK + +//layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex; + +#endif // MODE DYNAMIC + +#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING) + +float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) { + + vec3 cell_size = 1.0 / vec3(params.limits); + float occlusion = 1.0; + while (distance > 0.5) { //use this to avoid precision errors + float advance = texture(sampler3D(texture_sdf, texture_sampler), from * cell_size).r * 255.0 - 1.0; + if (advance < 0.0) { + occlusion = 0.0; + break; + } + + occlusion = min(advance, occlusion); + + advance = max(distance_adv, advance - mod(advance, distance_adv)); //should always advance in multiples of distance_adv + + from += direction * advance; + distance -= advance; + } + + return occlusion; //max(0.0,distance); +} + +bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) { + + if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) { + + light_pos = pos - lights.data[light].direction * length(vec3(params.limits)); + attenuation = 1.0; + + } else { + + light_pos = lights.data[light].position; + float distance = length(pos - light_pos); + if (distance >= lights.data[light].radius) { + return false; + } + + attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation); + + if (lights.data[light].type == LIGHT_TYPE_SPOT) { + + vec3 rel = normalize(pos - light_pos); + float angle = acos(dot(rel, lights.data[light].direction)); + if (angle > lights.data[light].spot_angle_radians) { + return false; + } + + float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); + attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); + } + } + + return true; +} + +float get_normal_advance(vec3 p_normal) { + + vec3 normal = p_normal; + vec3 unorm = abs(normal); + + if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { + // x code + unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0); + } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { + // y code + unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0); + } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { + // z code + unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); + } else { + // oh-no we messed up code + // has to be + unorm = vec3(1.0, 0.0, 0.0); + } + + return 1.0 / dot(normal, unorm); +} + +void clip_segment(vec4 plane, vec3 begin, inout vec3 end) { + + vec3 segment = begin - end; + float den = dot(plane.xyz, segment); + + //printf("den is %i\n",den); + if (den < 0.0001) { + return; + } + + float dist = (dot(plane.xyz, begin) - plane.w) / den; + + if (dist < 0.0001 || dist > 1.0001) { + return; + } + + end = begin + segment * -dist; +} + +bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, inout vec3 light_dir) { + float attenuation; + vec3 light_pos; + + if (!compute_light_vector(index, pos, attenuation, light_pos)) { + return false; + } + + light_dir = normalize(pos - light_pos); + + if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal, light_dir) >= 0)) { + return false; //not facing the light, or attenuation is near zero + } + + if (lights.data[index].has_shadow) { + + float distance_adv = get_normal_advance(light_dir); + + vec3 to = pos; + if (length(normal) > 0.2) { + to += normal * distance_adv * 0.51; + } else { + to -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion + } + + //clip + clip_segment(mix(vec4(-1.0, 0.0, 0.0, 0.0), vec4(1.0, 0.0, 0.0, float(params.limits.x - 1)), bvec4(light_dir.x < 0.0)), to, light_pos); + clip_segment(mix(vec4(0.0, -1.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, float(params.limits.y - 1)), bvec4(light_dir.y < 0.0)), to, light_pos); + clip_segment(mix(vec4(0.0, 0.0, -1.0, 0.0), vec4(0.0, 0.0, 1.0, float(params.limits.z - 1)), bvec4(light_dir.z < 0.0)), to, light_pos); + + float distance = length(to - light_pos); + if (distance < 0.1) { + return false; // hit + } + + distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always + light_pos = to - light_dir * distance; + + //from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion + + /*float dist = raymarch(distance,distance_adv,light_pos,light_dir); + + if (dist > distance_adv) { + return false; + } + + attenuation *= 1.0 - smoothstep(0.1*distance_adv,distance_adv,dist); + */ + + float occlusion = raymarch(distance, distance_adv, light_pos, light_dir); + + if (occlusion == 0.0) { + return false; + } + + attenuation *= occlusion; //1.0 - smoothstep(0.1*distance_adv,distance_adv,dist); + } + + light = lights.data[index].color * attenuation * lights.data[index].energy; + return true; +} + +#endif // MODE COMPUTE LIGHT + +void main() { + +#ifndef MODE_DYNAMIC + + uint cell_index = gl_GlobalInvocationID.x; + if (cell_index >= params.cell_count) { + return; + } + cell_index += params.cell_offset; + + uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21); + vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo); + +#endif + + /////////////////COMPUTE LIGHT/////////////////////////////// + +#ifdef MODE_COMPUTE_LIGHT + + vec3 pos = vec3(posu) + vec3(0.5); + + vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff, (cell_data.data[cell_index].emission >> 9) & 0x1ff, (cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0); + vec3 normal = unpackSnorm4x8(cell_data.data[cell_index].normal).xyz; + +#ifdef MODE_ANISOTROPIC + vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); + const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0)); +#else + vec3 accum = vec3(0.0); +#endif + + for (uint i = 0; i < params.light_count; i++) { + + vec3 light; + vec3 light_dir; + if (!compute_light_at_pos(i, pos, normal.xyz, light, light_dir)) { + continue; + } + + light *= albedo.rgb; + +#ifdef MODE_ANISOTROPIC + for (uint j = 0; j < 6; j++) { + + accum[j] += max(0.0, dot(accum_dirs[j], -light_dir)) * light; + } +#else + if (length(normal) > 0.2) { + accum += max(0.0, dot(normal, -light_dir)) * light; + } else { + //all directions + accum += light; + } +#endif + } + +#ifdef MODE_ANISOTROPIC + + for (uint i = 0; i < 6; i++) { + vec3 light = accum[i]; + if (length(normal) > 0.2) { + light += max(0.0, dot(accum_dirs[i], -normal)) * emission; + } else { + light += emission; + } + + outputs.data[cell_index * 6 + i] = vec4(light, 0.0); + } + +#else + outputs.data[cell_index] = vec4(accum + emission, 0.0); + +#endif + +#endif //MODE_COMPUTE_LIGHT + + /////////////////SECOND BOUNCE/////////////////////////////// + +#ifdef MODE_SECOND_BOUNCE + vec3 pos = vec3(posu) + vec3(0.5); + ivec3 ipos = ivec3(posu); + vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); + +#ifdef MODE_ANISOTROPIC + vec3 accum[6]; + const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0)); + + /*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range; + vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb; + vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb; + accum[0]=src_col * src_aniso_pos.x; + accum[1]=src_col * src_aniso_neg.x; + accum[2]=src_col * src_aniso_pos.y; + accum[3]=src_col * src_aniso_neg.y; + accum[4]=src_col * src_aniso_pos.z; + accum[5]=src_col * src_aniso_neg.z;*/ + + accum[0] = outputs.data[cell_index * 6 + 0].rgb; + accum[1] = outputs.data[cell_index * 6 + 1].rgb; + accum[2] = outputs.data[cell_index * 6 + 2].rgb; + accum[3] = outputs.data[cell_index * 6 + 3].rgb; + accum[4] = outputs.data[cell_index * 6 + 4].rgb; + accum[5] = outputs.data[cell_index * 6 + 5].rgb; + +#else + vec3 accum = outputs.data[cell_index].rgb; + +#endif + + if (length(normal.xyz) > 0.2) { + + vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); + vec3 tangent = normalize(cross(v0, normal.xyz)); + vec3 bitangent = normalize(cross(tangent, normal.xyz)); + mat3 normal_mat = mat3(tangent, bitangent, normal.xyz); + +#define MAX_CONE_DIRS 6 + + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.0, 0.0, 1.0), + vec3(0.866025, 0.0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); + float tan_half_angle = 0.577; + + for (int i = 0; i < MAX_CONE_DIRS; i++) { + + vec3 direction = normal_mat * cone_dirs[i]; + vec4 color = vec4(0.0); + { + + float dist = 1.5; + float max_distance = length(vec3(params.limits)); + vec3 cell_size = 1.0 / vec3(params.limits); + +#ifdef MODE_ANISOTROPIC + vec3 aniso_normal = mix(direction, normal.xyz, params.aniso_strength); +#endif + while (dist < max_distance && color.a < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec3 uvw_pos = (pos + dist * direction) * cell_size; + float half_diameter = diameter * 0.5; + //check if outside, then break + //if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { + // break; + //} + + float log2_diameter = log2(diameter); + vec4 scolor = textureLod(sampler3D(color_texture, texture_sampler), uvw_pos, log2_diameter); +#ifdef MODE_ANISOTROPIC + + vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture, texture_sampler), uvw_pos, log2_diameter).rgb; + vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture, texture_sampler), uvw_pos, log2_diameter).rgb; + + scolor.rgb *= dot(max(vec3(0.0), (aniso_normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-aniso_normal * aniso_neg)), vec3(1.0)); +#endif + float a = (1.0 - color.a); + color += a * scolor; + dist += half_diameter; + } + } + color *= cone_weights[i] * vec4(albedo.rgb, 1.0) * params.dynamic_range; //restore range +#ifdef MODE_ANISOTROPIC + for (uint j = 0; j < 6; j++) { + + accum[j] += max(0.0, dot(accum_dirs[j], direction)) * color.rgb; + } +#else + accum += color.rgb; +#endif + } + } + +#ifdef MODE_ANISOTROPIC + + outputs.data[cell_index * 6 + 0] = vec4(accum[0], 0.0); + outputs.data[cell_index * 6 + 1] = vec4(accum[1], 0.0); + outputs.data[cell_index * 6 + 2] = vec4(accum[2], 0.0); + outputs.data[cell_index * 6 + 3] = vec4(accum[3], 0.0); + outputs.data[cell_index * 6 + 4] = vec4(accum[4], 0.0); + outputs.data[cell_index * 6 + 5] = vec4(accum[5], 0.0); +#else + outputs.data[cell_index] = vec4(accum, 0.0); + +#endif + +#endif // MODE_SECOND_BOUNCE + + /////////////////UPDATE MIPMAPS/////////////////////////////// + +#ifdef MODE_UPDATE_MIPMAPS + + { +#ifdef MODE_ANISOTROPIC + vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); +#else + vec3 light_accum = vec3(0.0); +#endif + float count = 0.0; + for (uint i = 0; i < 8; i++) { + uint child_index = cell_children.data[cell_index].children[i]; + if (child_index == NO_CHILDREN) { + continue; + } +#ifdef MODE_ANISOTROPIC + light_accum[0] += outputs.data[child_index * 6 + 0].rgb; + light_accum[1] += outputs.data[child_index * 6 + 1].rgb; + light_accum[2] += outputs.data[child_index * 6 + 2].rgb; + light_accum[3] += outputs.data[child_index * 6 + 3].rgb; + light_accum[4] += outputs.data[child_index * 6 + 4].rgb; + light_accum[5] += outputs.data[child_index * 6 + 5].rgb; + +#else + light_accum += outputs.data[child_index].rgb; + +#endif + + count += 1.0; + } + + float divisor = mix(8.0, count, params.propagation); +#ifdef MODE_ANISOTROPIC + outputs.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0); + outputs.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0); + outputs.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0); + outputs.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0); + outputs.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0); + outputs.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0); + +#else + outputs.data[cell_index] = vec4(light_accum / divisor, 0.0); +#endif + } +#endif + + ///////////////////WRITE TEXTURE///////////////////////////// + +#ifdef MODE_WRITE_TEXTURE + { + +#ifdef MODE_ANISOTROPIC + vec3 accum_total = vec3(0.0); + accum_total += outputs.data[cell_index * 6 + 0].rgb; + accum_total += outputs.data[cell_index * 6 + 1].rgb; + accum_total += outputs.data[cell_index * 6 + 2].rgb; + accum_total += outputs.data[cell_index * 6 + 3].rgb; + accum_total += outputs.data[cell_index * 6 + 4].rgb; + accum_total += outputs.data[cell_index * 6 + 5].rgb; + + float accum_total_energy = max(dot(accum_total, GREY_VEC), 0.00001); + vec3 iso_positive = vec3(dot(outputs.data[cell_index * 6 + 0].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 2].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 4].rgb, GREY_VEC)) / vec3(accum_total_energy); + vec3 iso_negative = vec3(dot(outputs.data[cell_index * 6 + 1].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 3].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 5].rgb, GREY_VEC)) / vec3(accum_total_energy); + + { + uint aniso_pos = uint(clamp(iso_positive.b * 31.0, 0.0, 31.0)); + aniso_pos |= uint(clamp(iso_positive.g * 63.0, 0.0, 63.0)) << 5; + aniso_pos |= uint(clamp(iso_positive.r * 31.0, 0.0, 31.0)) << 11; + imageStore(aniso_pos_tex, ivec3(posu), uvec4(aniso_pos)); + } + + { + uint aniso_neg = uint(clamp(iso_negative.b * 31.0, 0.0, 31.0)); + aniso_neg |= uint(clamp(iso_negative.g * 63.0, 0.0, 63.0)) << 5; + aniso_neg |= uint(clamp(iso_negative.r * 31.0, 0.0, 31.0)) << 11; + imageStore(aniso_neg_tex, ivec3(posu), uvec4(aniso_neg)); + } + + imageStore(color_tex, ivec3(posu), vec4(accum_total / params.dynamic_range, albedo.a)); + +#else + + imageStore(color_tex, ivec3(posu), vec4(outputs.data[cell_index].rgb / params.dynamic_range, albedo.a)); + +#endif + } +#endif + + ///////////////////DYNAMIC LIGHTING///////////////////////////// + +#ifdef MODE_DYNAMIC + + ivec2 pos_xy = ivec2(gl_GlobalInvocationID.xy); + if (any(greaterThanEqual(pos_xy, params.rect_size))) { + return; //out of bounds + } + + ivec2 uv_xy = pos_xy; + if (params.flip_x) { + uv_xy.x = params.rect_size.x - pos_xy.x - 1; + } + if (params.flip_y) { + uv_xy.y = params.rect_size.y - pos_xy.y - 1; + } + +#ifdef MODE_DYNAMIC_LIGHTING + + { + float z = params.z_base + imageLoad(depth, uv_xy).x * params.z_sign; + + ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z); + + vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0; + normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z; + + vec4 albedo = imageLoad(source_albedo, uv_xy); + + //determine the position in space + + vec3 accum = vec3(0.0); + for (uint i = 0; i < params.light_count; i++) { + + vec3 light; + vec3 light_dir; + if (!compute_light_at_pos(i, vec3(pos) * params.pos_multiplier, normal, light, light_dir)) { + continue; + } + + light *= albedo.rgb; + + accum += max(0.0, dot(normal, -light_dir)) * light; + } + + accum += imageLoad(emission, uv_xy).xyz; + + imageStore(emission, uv_xy, vec4(accum, albedo.a)); + imageStore(depth, uv_xy, vec4(z)); + } + +#endif // MODE DYNAMIC LIGHTING + +#ifdef MODE_DYNAMIC_SHRINK + + { + vec4 accum = vec4(0.0); + float accum_z = 0.0; + float count = 0.0; + + for (int i = 0; i < 4; i++) { + ivec2 ofs = pos_xy * 2 + ivec2(i & 1, i >> 1) - params.prev_rect_ofs; + if (any(lessThan(ofs, ivec2(0))) || any(greaterThanEqual(ofs, params.prev_rect_size))) { + continue; + } + if (params.flip_x) { + ofs.x = params.prev_rect_size.x - ofs.x - 1; + } + if (params.flip_y) { + ofs.y = params.prev_rect_size.y - ofs.y - 1; + } + + vec4 light = imageLoad(source_light, ofs); + if (light.a == 0.0) { //ignore empty + continue; + } + accum += light; + float z = imageLoad(source_depth, ofs).x; + accum_z += z * 0.5; //shrink half too + count += 1.0; + } + + if (params.on_mipmap) { + accum.rgb /= mix(8.0, count, params.propagation); + accum.a /= 8.0; + } else { + accum /= 4.0; + } + + if (count == 0.0) { + accum_z = 0.0; //avoid nan + } else { + accum_z /= count; + } + +#ifdef MODE_DYNAMIC_SHRINK_WRITE + + imageStore(light, uv_xy, accum); + imageStore(depth, uv_xy, vec4(accum_z)); +#endif + +#ifdef MODE_DYNAMIC_SHRINK_PLOT + + if (accum.a < 0.001) { + return; //do not blit if alpha is too low + } + + ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z); + + float z_frac = fract(accum_z); + + for (int i = 0; i < 2; i++) { + ivec3 pos3d = pos + abs(params.z_dir) * i; + if (any(lessThan(pos3d, ivec3(0))) || any(greaterThanEqual(pos3d, params.limits))) { + //skip if offlimits + continue; + } + vec4 color_blit = accum * (i == 0 ? 1.0 - z_frac : z_frac); + vec4 color = imageLoad(color_texture, pos3d); + color.rgb *= params.dynamic_range; + +#if 0 + color.rgb = mix(color.rgb,color_blit.rgb,color_blit.a); + color.a+=color_blit.a; +#else + + float sa = 1.0 - color_blit.a; + vec4 result; + result.a = color.a * sa + color_blit.a; + if (result.a == 0.0) { + result = vec4(0.0); + } else { + result.rgb = (color.rgb * color.a * sa + color_blit.rgb * color_blit.a) / result.a; + color = result; + } + +#endif + color.rgb /= params.dynamic_range; + imageStore(color_texture, pos3d, color); + //imageStore(color_texture,pos3d,vec4(1,1,1,1)); + +#ifdef MODE_ANISOTROPIC + //do not care about anisotropy for dynamic objects, just store full lit in all directions + imageStore(aniso_pos_texture, pos3d, uvec4(0xFFFF)); + imageStore(aniso_neg_texture, pos3d, uvec4(0xFFFF)); + +#endif // ANISOTROPIC + } +#endif // MODE_DYNAMIC_SHRINK_PLOT + } +#endif + +#endif // MODE DYNAMIC +} |