summaryrefslogtreecommitdiff
path: root/servers/physics_3d/shape_3d_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics_3d/shape_3d_sw.cpp')
-rw-r--r--servers/physics_3d/shape_3d_sw.cpp1655
1 files changed, 1655 insertions, 0 deletions
diff --git a/servers/physics_3d/shape_3d_sw.cpp b/servers/physics_3d/shape_3d_sw.cpp
new file mode 100644
index 0000000000..61c32b779a
--- /dev/null
+++ b/servers/physics_3d/shape_3d_sw.cpp
@@ -0,0 +1,1655 @@
+/*************************************************************************/
+/* shape_3d_sw.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "shape_3d_sw.h"
+
+#include "core/math/geometry.h"
+#include "core/math/quick_hull.h"
+#include "core/sort_array.h"
+
+#define _POINT_SNAP 0.001953125
+#define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002
+#define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998
+
+void Shape3DSW::configure(const AABB &p_aabb) {
+ aabb = p_aabb;
+ configured = true;
+ for (Map<ShapeOwner3DSW *, int>::Element *E = owners.front(); E; E = E->next()) {
+ ShapeOwner3DSW *co = (ShapeOwner3DSW *)E->key();
+ co->_shape_changed();
+ }
+}
+
+Vector3 Shape3DSW::get_support(const Vector3 &p_normal) const {
+
+ Vector3 res;
+ int amnt;
+ get_supports(p_normal, 1, &res, amnt);
+ return res;
+}
+
+void Shape3DSW::add_owner(ShapeOwner3DSW *p_owner) {
+
+ Map<ShapeOwner3DSW *, int>::Element *E = owners.find(p_owner);
+ if (E) {
+ E->get()++;
+ } else {
+ owners[p_owner] = 1;
+ }
+}
+
+void Shape3DSW::remove_owner(ShapeOwner3DSW *p_owner) {
+
+ Map<ShapeOwner3DSW *, int>::Element *E = owners.find(p_owner);
+ ERR_FAIL_COND(!E);
+ E->get()--;
+ if (E->get() == 0) {
+ owners.erase(E);
+ }
+}
+
+bool Shape3DSW::is_owner(ShapeOwner3DSW *p_owner) const {
+
+ return owners.has(p_owner);
+}
+
+const Map<ShapeOwner3DSW *, int> &Shape3DSW::get_owners() const {
+ return owners;
+}
+
+Shape3DSW::Shape3DSW() {
+
+ custom_bias = 0;
+ configured = false;
+}
+
+Shape3DSW::~Shape3DSW() {
+
+ ERR_FAIL_COND(owners.size());
+}
+
+Plane PlaneShape3DSW::get_plane() const {
+
+ return plane;
+}
+
+void PlaneShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ // gibberish, a plane is infinity
+ r_min = -1e7;
+ r_max = 1e7;
+}
+
+Vector3 PlaneShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ return p_normal * 1e15;
+}
+
+bool PlaneShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ bool inters = plane.intersects_segment(p_begin, p_end, &r_result);
+ if (inters)
+ r_normal = plane.normal;
+ return inters;
+}
+
+bool PlaneShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ return plane.distance_to(p_point) < 0;
+}
+
+Vector3 PlaneShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ if (plane.is_point_over(p_point)) {
+ return plane.project(p_point);
+ } else {
+ return p_point;
+ }
+}
+
+Vector3 PlaneShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ return Vector3(); //wtf
+}
+
+void PlaneShape3DSW::_setup(const Plane &p_plane) {
+
+ plane = p_plane;
+ configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2)));
+}
+
+void PlaneShape3DSW::set_data(const Variant &p_data) {
+
+ _setup(p_data);
+}
+
+Variant PlaneShape3DSW::get_data() const {
+
+ return plane;
+}
+
+PlaneShape3DSW::PlaneShape3DSW() {
+}
+
+//
+
+real_t RayShape3DSW::get_length() const {
+
+ return length;
+}
+
+bool RayShape3DSW::get_slips_on_slope() const {
+ return slips_on_slope;
+}
+
+void RayShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ // don't think this will be even used
+ r_min = 0;
+ r_max = 1;
+}
+
+Vector3 RayShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ if (p_normal.z > 0)
+ return Vector3(0, 0, length);
+ else
+ return Vector3(0, 0, 0);
+}
+
+void RayShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
+
+ if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ r_amount = 2;
+ r_supports[0] = Vector3(0, 0, 0);
+ r_supports[1] = Vector3(0, 0, length);
+ } else if (p_normal.z > 0) {
+ r_amount = 1;
+ *r_supports = Vector3(0, 0, length);
+ } else {
+ r_amount = 1;
+ *r_supports = Vector3(0, 0, 0);
+ }
+}
+
+bool RayShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ return false; //simply not possible
+}
+
+bool RayShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ return false; //simply not possible
+}
+
+Vector3 RayShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ Vector3 s[2] = {
+ Vector3(0, 0, 0),
+ Vector3(0, 0, length)
+ };
+
+ return Geometry::get_closest_point_to_segment(p_point, s);
+}
+
+Vector3 RayShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ return Vector3();
+}
+
+void RayShape3DSW::_setup(real_t p_length, bool p_slips_on_slope) {
+
+ length = p_length;
+ slips_on_slope = p_slips_on_slope;
+ configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length)));
+}
+
+void RayShape3DSW::set_data(const Variant &p_data) {
+
+ Dictionary d = p_data;
+ _setup(d["length"], d["slips_on_slope"]);
+}
+
+Variant RayShape3DSW::get_data() const {
+
+ Dictionary d;
+ d["length"] = length;
+ d["slips_on_slope"] = slips_on_slope;
+ return d;
+}
+
+RayShape3DSW::RayShape3DSW() {
+
+ length = 1;
+ slips_on_slope = false;
+}
+
+/********** SPHERE *************/
+
+real_t SphereShape3DSW::get_radius() const {
+
+ return radius;
+}
+
+void SphereShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ real_t d = p_normal.dot(p_transform.origin);
+
+ // figure out scale at point
+ Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
+ real_t scale = local_normal.length();
+
+ r_min = d - (radius)*scale;
+ r_max = d + (radius)*scale;
+}
+
+Vector3 SphereShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ return p_normal * radius;
+}
+
+void SphereShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
+
+ *r_supports = p_normal * radius;
+ r_amount = 1;
+}
+
+bool SphereShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ return Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal);
+}
+
+bool SphereShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ return p_point.length() < radius;
+}
+
+Vector3 SphereShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ Vector3 p = p_point;
+ float l = p.length();
+ if (l < radius)
+ return p_point;
+ return (p / l) * radius;
+}
+
+Vector3 SphereShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ real_t s = 0.4 * p_mass * radius * radius;
+ return Vector3(s, s, s);
+}
+
+void SphereShape3DSW::_setup(real_t p_radius) {
+
+ radius = p_radius;
+ configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0)));
+}
+
+void SphereShape3DSW::set_data(const Variant &p_data) {
+
+ _setup(p_data);
+}
+
+Variant SphereShape3DSW::get_data() const {
+
+ return radius;
+}
+
+SphereShape3DSW::SphereShape3DSW() {
+
+ radius = 0;
+}
+
+/********** BOX *************/
+
+void BoxShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ // no matter the angle, the box is mirrored anyway
+ Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
+
+ real_t length = local_normal.abs().dot(half_extents);
+ real_t distance = p_normal.dot(p_transform.origin);
+
+ r_min = distance - length;
+ r_max = distance + length;
+}
+
+Vector3 BoxShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ Vector3 point(
+ (p_normal.x < 0) ? -half_extents.x : half_extents.x,
+ (p_normal.y < 0) ? -half_extents.y : half_extents.y,
+ (p_normal.z < 0) ? -half_extents.z : half_extents.z);
+
+ return point;
+}
+
+void BoxShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
+
+ static const int next[3] = { 1, 2, 0 };
+ static const int next2[3] = { 2, 0, 1 };
+
+ for (int i = 0; i < 3; i++) {
+
+ Vector3 axis;
+ axis[i] = 1.0;
+ real_t dot = p_normal.dot(axis);
+ if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ //Vector3 axis_b;
+
+ bool neg = dot < 0;
+ r_amount = 4;
+
+ Vector3 point;
+ point[i] = half_extents[i];
+
+ int i_n = next[i];
+ int i_n2 = next2[i];
+
+ static const real_t sign[4][2] = {
+
+ { -1.0, 1.0 },
+ { 1.0, 1.0 },
+ { 1.0, -1.0 },
+ { -1.0, -1.0 },
+ };
+
+ for (int j = 0; j < 4; j++) {
+
+ point[i_n] = sign[j][0] * half_extents[i_n];
+ point[i_n2] = sign[j][1] * half_extents[i_n2];
+ r_supports[j] = neg ? -point : point;
+ }
+
+ if (neg) {
+ SWAP(r_supports[1], r_supports[2]);
+ SWAP(r_supports[0], r_supports[3]);
+ }
+
+ return;
+ }
+
+ r_amount = 0;
+ }
+
+ for (int i = 0; i < 3; i++) {
+
+ Vector3 axis;
+ axis[i] = 1.0;
+
+ if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ r_amount = 2;
+
+ int i_n = next[i];
+ int i_n2 = next2[i];
+
+ Vector3 point = half_extents;
+
+ if (p_normal[i_n] < 0) {
+ point[i_n] = -point[i_n];
+ }
+ if (p_normal[i_n2] < 0) {
+ point[i_n2] = -point[i_n2];
+ }
+
+ r_supports[0] = point;
+ point[i] = -point[i];
+ r_supports[1] = point;
+ return;
+ }
+ }
+ /* USE POINT */
+
+ Vector3 point(
+ (p_normal.x < 0) ? -half_extents.x : half_extents.x,
+ (p_normal.y < 0) ? -half_extents.y : half_extents.y,
+ (p_normal.z < 0) ? -half_extents.z : half_extents.z);
+
+ r_amount = 1;
+ r_supports[0] = point;
+}
+
+bool BoxShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ AABB aabb(-half_extents, half_extents * 2.0);
+
+ return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal);
+}
+
+bool BoxShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z);
+}
+
+Vector3 BoxShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ int outside = 0;
+ Vector3 min_point;
+
+ for (int i = 0; i < 3; i++) {
+
+ if (Math::abs(p_point[i]) > half_extents[i]) {
+ outside++;
+ if (outside == 1) {
+ //use plane if only one side matches
+ Vector3 n;
+ n[i] = SGN(p_point[i]);
+
+ Plane p(n, half_extents[i]);
+ min_point = p.project(p_point);
+ }
+ }
+ }
+
+ if (!outside)
+ return p_point; //it's inside, don't do anything else
+
+ if (outside == 1) //if only above one plane, this plane clearly wins
+ return min_point;
+
+ //check segments
+ float min_distance = 1e20;
+ Vector3 closest_vertex = half_extents * p_point.sign();
+ Vector3 s[2] = {
+ closest_vertex,
+ closest_vertex
+ };
+
+ for (int i = 0; i < 3; i++) {
+
+ s[1] = closest_vertex;
+ s[1][i] = -s[1][i]; //edge
+
+ Vector3 closest_edge = Geometry::get_closest_point_to_segment(p_point, s);
+
+ float d = p_point.distance_to(closest_edge);
+ if (d < min_distance) {
+ min_point = closest_edge;
+ min_distance = d;
+ }
+ }
+
+ return min_point;
+}
+
+Vector3 BoxShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ real_t lx = half_extents.x;
+ real_t ly = half_extents.y;
+ real_t lz = half_extents.z;
+
+ return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly));
+}
+
+void BoxShape3DSW::_setup(const Vector3 &p_half_extents) {
+
+ half_extents = p_half_extents.abs();
+
+ configure(AABB(-half_extents, half_extents * 2));
+}
+
+void BoxShape3DSW::set_data(const Variant &p_data) {
+
+ _setup(p_data);
+}
+
+Variant BoxShape3DSW::get_data() const {
+
+ return half_extents;
+}
+
+BoxShape3DSW::BoxShape3DSW() {
+}
+
+/********** CAPSULE *************/
+
+void CapsuleShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ Vector3 n = p_transform.basis.xform_inv(p_normal).normalized();
+ real_t h = (n.z > 0) ? height : -height;
+
+ n *= radius;
+ n.z += h * 0.5;
+
+ r_max = p_normal.dot(p_transform.xform(n));
+ r_min = p_normal.dot(p_transform.xform(-n));
+}
+
+Vector3 CapsuleShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ Vector3 n = p_normal;
+
+ real_t h = (n.z > 0) ? height : -height;
+
+ n *= radius;
+ n.z += h * 0.5;
+ return n;
+}
+
+void CapsuleShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
+
+ Vector3 n = p_normal;
+
+ real_t d = n.z;
+
+ if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ // make it flat
+ n.z = 0.0;
+ n.normalize();
+ n *= radius;
+
+ r_amount = 2;
+ r_supports[0] = n;
+ r_supports[0].z += height * 0.5;
+ r_supports[1] = n;
+ r_supports[1].z -= height * 0.5;
+
+ } else {
+
+ real_t h = (d > 0) ? height : -height;
+
+ n *= radius;
+ n.z += h * 0.5;
+ r_amount = 1;
+ *r_supports = n;
+ }
+}
+
+bool CapsuleShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ Vector3 norm = (p_end - p_begin).normalized();
+ real_t min_d = 1e20;
+
+ Vector3 res, n;
+ bool collision = false;
+
+ Vector3 auxres, auxn;
+ bool collided;
+
+ // test against cylinder and spheres :-|
+
+ collided = Geometry::segment_intersects_cylinder(p_begin, p_end, height, radius, &auxres, &auxn);
+
+ if (collided) {
+ real_t d = norm.dot(auxres);
+ if (d < min_d) {
+ min_d = d;
+ res = auxres;
+ n = auxn;
+ collision = true;
+ }
+ }
+
+ collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * 0.5), radius, &auxres, &auxn);
+
+ if (collided) {
+ real_t d = norm.dot(auxres);
+ if (d < min_d) {
+ min_d = d;
+ res = auxres;
+ n = auxn;
+ collision = true;
+ }
+ }
+
+ collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * -0.5), radius, &auxres, &auxn);
+
+ if (collided) {
+ real_t d = norm.dot(auxres);
+
+ if (d < min_d) {
+ min_d = d;
+ res = auxres;
+ n = auxn;
+ collision = true;
+ }
+ }
+
+ if (collision) {
+
+ r_result = res;
+ r_normal = n;
+ }
+ return collision;
+}
+
+bool CapsuleShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ if (Math::abs(p_point.z) < height * 0.5) {
+ return Vector3(p_point.x, p_point.y, 0).length() < radius;
+ } else {
+ Vector3 p = p_point;
+ p.z = Math::abs(p.z) - height * 0.5;
+ return p.length() < radius;
+ }
+}
+
+Vector3 CapsuleShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ Vector3 s[2] = {
+ Vector3(0, 0, -height * 0.5),
+ Vector3(0, 0, height * 0.5),
+ };
+
+ Vector3 p = Geometry::get_closest_point_to_segment(p_point, s);
+
+ if (p.distance_to(p_point) < radius)
+ return p_point;
+
+ return p + (p_point - p).normalized() * radius;
+}
+
+Vector3 CapsuleShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
+}
+
+void CapsuleShape3DSW::_setup(real_t p_height, real_t p_radius) {
+
+ height = p_height;
+ radius = p_radius;
+ configure(AABB(Vector3(-radius, -radius, -height * 0.5 - radius), Vector3(radius * 2, radius * 2, height + radius * 2.0)));
+}
+
+void CapsuleShape3DSW::set_data(const Variant &p_data) {
+
+ Dictionary d = p_data;
+ ERR_FAIL_COND(!d.has("radius"));
+ ERR_FAIL_COND(!d.has("height"));
+ _setup(d["height"], d["radius"]);
+}
+
+Variant CapsuleShape3DSW::get_data() const {
+
+ Dictionary d;
+ d["radius"] = radius;
+ d["height"] = height;
+ return d;
+}
+
+CapsuleShape3DSW::CapsuleShape3DSW() {
+
+ height = radius = 0;
+}
+
+/********** CONVEX POLYGON *************/
+
+void ConvexPolygonShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ int vertex_count = mesh.vertices.size();
+ if (vertex_count == 0)
+ return;
+
+ const Vector3 *vrts = &mesh.vertices[0];
+
+ for (int i = 0; i < vertex_count; i++) {
+
+ real_t d = p_normal.dot(p_transform.xform(vrts[i]));
+
+ if (i == 0 || d > r_max)
+ r_max = d;
+ if (i == 0 || d < r_min)
+ r_min = d;
+ }
+}
+
+Vector3 ConvexPolygonShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ Vector3 n = p_normal;
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ int vertex_count = mesh.vertices.size();
+ if (vertex_count == 0)
+ return Vector3();
+
+ const Vector3 *vrts = &mesh.vertices[0];
+
+ for (int i = 0; i < vertex_count; i++) {
+
+ real_t d = n.dot(vrts[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ return vrts[vert_support_idx];
+}
+
+void ConvexPolygonShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
+
+ const Geometry::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+
+ const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
+ int ec = mesh.edges.size();
+
+ const Vector3 *vertices = mesh.vertices.ptr();
+ int vc = mesh.vertices.size();
+
+ //find vertex first
+ real_t max = 0;
+ int vtx = 0;
+
+ for (int i = 0; i < vc; i++) {
+
+ real_t d = p_normal.dot(vertices[i]);
+
+ if (i == 0 || d > max) {
+ max = d;
+ vtx = i;
+ }
+ }
+
+ for (int i = 0; i < fc; i++) {
+
+ if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ int ic = faces[i].indices.size();
+ const int *ind = faces[i].indices.ptr();
+
+ bool valid = false;
+ for (int j = 0; j < ic; j++) {
+ if (ind[j] == vtx) {
+ valid = true;
+ break;
+ }
+ }
+
+ if (!valid)
+ continue;
+
+ int m = MIN(p_max, ic);
+ for (int j = 0; j < m; j++) {
+
+ r_supports[j] = vertices[ind[j]];
+ }
+ r_amount = m;
+ return;
+ }
+ }
+
+ for (int i = 0; i < ec; i++) {
+
+ real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal);
+ dot = ABS(dot);
+ if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) {
+
+ r_amount = 2;
+ r_supports[0] = vertices[edges[i].a];
+ r_supports[1] = vertices[edges[i].b];
+ return;
+ }
+ }
+
+ r_supports[0] = vertices[vtx];
+ r_amount = 1;
+}
+
+bool ConvexPolygonShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ const Geometry::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+
+ const Vector3 *vertices = mesh.vertices.ptr();
+
+ Vector3 n = p_end - p_begin;
+ real_t min = 1e20;
+ bool col = false;
+
+ for (int i = 0; i < fc; i++) {
+
+ if (faces[i].plane.normal.dot(n) > 0)
+ continue; //opposing face
+
+ int ic = faces[i].indices.size();
+ const int *ind = faces[i].indices.ptr();
+
+ for (int j = 1; j < ic - 1; j++) {
+
+ Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]);
+ Vector3 result;
+ if (f.intersects_segment(p_begin, p_end, &result)) {
+ real_t d = n.dot(result);
+ if (d < min) {
+ min = d;
+ r_result = result;
+ r_normal = faces[i].plane.normal;
+ col = true;
+ }
+
+ break;
+ }
+ }
+ }
+
+ return col;
+}
+
+bool ConvexPolygonShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ const Geometry::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+
+ for (int i = 0; i < fc; i++) {
+
+ if (faces[i].plane.distance_to(p_point) >= 0)
+ return false;
+ }
+
+ return true;
+}
+
+Vector3 ConvexPolygonShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ const Geometry::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+ const Vector3 *vertices = mesh.vertices.ptr();
+
+ bool all_inside = true;
+ for (int i = 0; i < fc; i++) {
+
+ if (!faces[i].plane.is_point_over(p_point))
+ continue;
+
+ all_inside = false;
+ bool is_inside = true;
+ int ic = faces[i].indices.size();
+ const int *indices = faces[i].indices.ptr();
+
+ for (int j = 0; j < ic; j++) {
+
+ Vector3 a = vertices[indices[j]];
+ Vector3 b = vertices[indices[(j + 1) % ic]];
+ Vector3 n = (a - b).cross(faces[i].plane.normal).normalized();
+ if (Plane(a, n).is_point_over(p_point)) {
+ is_inside = false;
+ break;
+ }
+ }
+
+ if (is_inside) {
+ return faces[i].plane.project(p_point);
+ }
+ }
+
+ if (all_inside) {
+ return p_point;
+ }
+
+ float min_distance = 1e20;
+ Vector3 min_point;
+
+ //check edges
+ const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
+ int ec = mesh.edges.size();
+ for (int i = 0; i < ec; i++) {
+
+ Vector3 s[2] = {
+ vertices[edges[i].a],
+ vertices[edges[i].b]
+ };
+
+ Vector3 closest = Geometry::get_closest_point_to_segment(p_point, s);
+ float d = closest.distance_to(p_point);
+ if (d < min_distance) {
+ min_distance = d;
+ min_point = closest;
+ }
+ }
+
+ return min_point;
+}
+
+Vector3 ConvexPolygonShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
+}
+
+void ConvexPolygonShape3DSW::_setup(const Vector<Vector3> &p_vertices) {
+
+ Error err = QuickHull::build(p_vertices, mesh);
+ if (err != OK)
+ ERR_PRINT("Failed to build QuickHull");
+
+ AABB _aabb;
+
+ for (int i = 0; i < mesh.vertices.size(); i++) {
+
+ if (i == 0)
+ _aabb.position = mesh.vertices[i];
+ else
+ _aabb.expand_to(mesh.vertices[i]);
+ }
+
+ configure(_aabb);
+}
+
+void ConvexPolygonShape3DSW::set_data(const Variant &p_data) {
+
+ _setup(p_data);
+}
+
+Variant ConvexPolygonShape3DSW::get_data() const {
+
+ return mesh.vertices;
+}
+
+ConvexPolygonShape3DSW::ConvexPolygonShape3DSW() {
+}
+
+/********** FACE POLYGON *************/
+
+void FaceShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ for (int i = 0; i < 3; i++) {
+
+ Vector3 v = p_transform.xform(vertex[i]);
+ real_t d = p_normal.dot(v);
+
+ if (i == 0 || d > r_max)
+ r_max = d;
+
+ if (i == 0 || d < r_min)
+ r_min = d;
+ }
+}
+
+Vector3 FaceShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ for (int i = 0; i < 3; i++) {
+
+ real_t d = p_normal.dot(vertex[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ return vertex[vert_support_idx];
+}
+
+void FaceShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
+
+ Vector3 n = p_normal;
+
+ /** TEST FACE AS SUPPORT **/
+ if (normal.dot(n) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ r_amount = 3;
+ for (int i = 0; i < 3; i++) {
+
+ r_supports[i] = vertex[i];
+ }
+ return;
+ }
+
+ /** FIND SUPPORT VERTEX **/
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ for (int i = 0; i < 3; i++) {
+
+ real_t d = n.dot(vertex[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ /** TEST EDGES AS SUPPORT **/
+
+ for (int i = 0; i < 3; i++) {
+
+ int nx = (i + 1) % 3;
+ if (i != vert_support_idx && nx != vert_support_idx)
+ continue;
+
+ // check if edge is valid as a support
+ real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n);
+ dot = ABS(dot);
+ if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+
+ r_amount = 2;
+ r_supports[0] = vertex[i];
+ r_supports[1] = vertex[nx];
+ return;
+ }
+ }
+
+ r_amount = 1;
+ r_supports[0] = vertex[vert_support_idx];
+}
+
+bool FaceShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ bool c = Geometry::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result);
+ if (c) {
+ r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal;
+ if (r_normal.dot(p_end - p_begin) > 0) {
+ r_normal = -r_normal;
+ }
+ }
+
+ return c;
+}
+
+bool FaceShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ return false; //face is flat
+}
+
+Vector3 FaceShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point);
+}
+
+Vector3 FaceShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
+}
+
+FaceShape3DSW::FaceShape3DSW() {
+
+ configure(AABB());
+}
+
+Vector<Vector3> ConcavePolygonShape3DSW::get_faces() const {
+
+ Vector<Vector3> rfaces;
+ rfaces.resize(faces.size() * 3);
+
+ for (int i = 0; i < faces.size(); i++) {
+
+ Face f = faces.get(i);
+
+ for (int j = 0; j < 3; j++) {
+
+ rfaces.set(i * 3 + j, vertices.get(f.indices[j]));
+ }
+ }
+
+ return rfaces;
+}
+
+void ConcavePolygonShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ int count = vertices.size();
+ if (count == 0) {
+ r_min = 0;
+ r_max = 0;
+ return;
+ }
+ const Vector3 *vptr = vertices.ptr();
+
+ for (int i = 0; i < count; i++) {
+
+ real_t d = p_normal.dot(p_transform.xform(vptr[i]));
+
+ if (i == 0 || d > r_max)
+ r_max = d;
+ if (i == 0 || d < r_min)
+ r_min = d;
+ }
+}
+
+Vector3 ConcavePolygonShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ int count = vertices.size();
+ if (count == 0)
+ return Vector3();
+
+ const Vector3 *vptr = vertices.ptr();
+
+ Vector3 n = p_normal;
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ for (int i = 0; i < count; i++) {
+
+ real_t d = n.dot(vptr[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ return vptr[vert_support_idx];
+}
+
+void ConcavePolygonShape3DSW::_cull_segment(int p_idx, _SegmentCullParams *p_params) const {
+
+ const BVH *bvh = &p_params->bvh[p_idx];
+
+ /*
+ if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
+ return; //test against whole AABB, which isn't very costly
+ */
+
+ //printf("addr: %p\n",bvh);
+ if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) {
+
+ return;
+ }
+
+ if (bvh->face_index >= 0) {
+
+ Vector3 res;
+ Vector3 vertices[3] = {
+ p_params->vertices[p_params->faces[bvh->face_index].indices[0]],
+ p_params->vertices[p_params->faces[bvh->face_index].indices[1]],
+ p_params->vertices[p_params->faces[bvh->face_index].indices[2]]
+ };
+
+ if (Geometry::segment_intersects_triangle(
+ p_params->from,
+ p_params->to,
+ vertices[0],
+ vertices[1],
+ vertices[2],
+ &res)) {
+
+ real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
+ //TODO, seems segmen/triangle intersection is broken :(
+ if (d > 0 && d < p_params->min_d) {
+
+ p_params->min_d = d;
+ p_params->result = res;
+ p_params->normal = Plane(vertices[0], vertices[1], vertices[2]).normal;
+ p_params->collisions++;
+ }
+ }
+
+ } else {
+
+ if (bvh->left >= 0)
+ _cull_segment(bvh->left, p_params);
+ if (bvh->right >= 0)
+ _cull_segment(bvh->right, p_params);
+ }
+}
+
+bool ConcavePolygonShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
+
+ if (faces.size() == 0)
+ return false;
+
+ // unlock data
+ const Face *fr = faces.ptr();
+ const Vector3 *vr = vertices.ptr();
+ const BVH *br = bvh.ptr();
+
+ _SegmentCullParams params;
+ params.from = p_begin;
+ params.to = p_end;
+ params.collisions = 0;
+ params.dir = (p_end - p_begin).normalized();
+
+ params.faces = fr;
+ params.vertices = vr;
+ params.bvh = br;
+
+ params.min_d = 1e20;
+ // cull
+ _cull_segment(0, &params);
+
+ if (params.collisions > 0) {
+
+ r_result = params.result;
+ r_normal = params.normal;
+ return true;
+ } else {
+
+ return false;
+ }
+}
+
+bool ConcavePolygonShape3DSW::intersect_point(const Vector3 &p_point) const {
+
+ return false; //face is flat
+}
+
+Vector3 ConcavePolygonShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ return Vector3();
+}
+
+void ConcavePolygonShape3DSW::_cull(int p_idx, _CullParams *p_params) const {
+
+ const BVH *bvh = &p_params->bvh[p_idx];
+
+ if (!p_params->aabb.intersects(bvh->aabb))
+ return;
+
+ if (bvh->face_index >= 0) {
+
+ const Face *f = &p_params->faces[bvh->face_index];
+ FaceShape3DSW *face = p_params->face;
+ face->normal = f->normal;
+ face->vertex[0] = p_params->vertices[f->indices[0]];
+ face->vertex[1] = p_params->vertices[f->indices[1]];
+ face->vertex[2] = p_params->vertices[f->indices[2]];
+ p_params->callback(p_params->userdata, face);
+
+ } else {
+
+ if (bvh->left >= 0) {
+
+ _cull(bvh->left, p_params);
+ }
+
+ if (bvh->right >= 0) {
+
+ _cull(bvh->right, p_params);
+ }
+ }
+}
+
+void ConcavePolygonShape3DSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
+
+ // make matrix local to concave
+ if (faces.size() == 0)
+ return;
+
+ AABB local_aabb = p_local_aabb;
+
+ // unlock data
+ const Face *fr = faces.ptr();
+ const Vector3 *vr = vertices.ptr();
+ const BVH *br = bvh.ptr();
+
+ FaceShape3DSW face; // use this to send in the callback
+
+ _CullParams params;
+ params.aabb = local_aabb;
+ params.face = &face;
+ params.faces = fr;
+ params.vertices = vr;
+ params.bvh = br;
+ params.callback = p_callback;
+ params.userdata = p_userdata;
+
+ // cull
+ _cull(0, &params);
+}
+
+Vector3 ConcavePolygonShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
+}
+
+struct _VolumeSW_BVH_Element {
+
+ AABB aabb;
+ Vector3 center;
+ int face_index;
+};
+
+struct _VolumeSW_BVH_CompareX {
+
+ _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
+
+ return a.center.x < b.center.x;
+ }
+};
+
+struct _VolumeSW_BVH_CompareY {
+
+ _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
+
+ return a.center.y < b.center.y;
+ }
+};
+
+struct _VolumeSW_BVH_CompareZ {
+
+ _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
+
+ return a.center.z < b.center.z;
+ }
+};
+
+struct _VolumeSW_BVH {
+
+ AABB aabb;
+ _VolumeSW_BVH *left;
+ _VolumeSW_BVH *right;
+
+ int face_index;
+};
+
+_VolumeSW_BVH *_volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements, int p_size, int &count) {
+
+ _VolumeSW_BVH *bvh = memnew(_VolumeSW_BVH);
+
+ if (p_size == 1) {
+ //leaf
+ bvh->aabb = p_elements[0].aabb;
+ bvh->left = nullptr;
+ bvh->right = nullptr;
+ bvh->face_index = p_elements->face_index;
+ count++;
+ return bvh;
+ } else {
+
+ bvh->face_index = -1;
+ }
+
+ AABB aabb;
+ for (int i = 0; i < p_size; i++) {
+
+ if (i == 0)
+ aabb = p_elements[i].aabb;
+ else
+ aabb.merge_with(p_elements[i].aabb);
+ }
+ bvh->aabb = aabb;
+ switch (aabb.get_longest_axis_index()) {
+
+ case 0: {
+
+ SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareX> sort_x;
+ sort_x.sort(p_elements, p_size);
+
+ } break;
+ case 1: {
+
+ SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareY> sort_y;
+ sort_y.sort(p_elements, p_size);
+ } break;
+ case 2: {
+
+ SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareZ> sort_z;
+ sort_z.sort(p_elements, p_size);
+ } break;
+ }
+
+ int split = p_size / 2;
+ bvh->left = _volume_sw_build_bvh(p_elements, split, count);
+ bvh->right = _volume_sw_build_bvh(&p_elements[split], p_size - split, count);
+
+ //printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
+ count++;
+ return bvh;
+}
+
+void ConcavePolygonShape3DSW::_fill_bvh(_VolumeSW_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) {
+
+ int idx = p_idx;
+
+ p_bvh_array[idx].aabb = p_bvh_tree->aabb;
+ p_bvh_array[idx].face_index = p_bvh_tree->face_index;
+ //printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
+
+ if (p_bvh_tree->left) {
+ p_bvh_array[idx].left = ++p_idx;
+ _fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx);
+
+ } else {
+
+ p_bvh_array[p_idx].left = -1;
+ }
+
+ if (p_bvh_tree->right) {
+ p_bvh_array[idx].right = ++p_idx;
+ _fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx);
+
+ } else {
+
+ p_bvh_array[p_idx].right = -1;
+ }
+
+ memdelete(p_bvh_tree);
+}
+
+void ConcavePolygonShape3DSW::_setup(Vector<Vector3> p_faces) {
+
+ int src_face_count = p_faces.size();
+ if (src_face_count == 0) {
+ configure(AABB());
+ return;
+ }
+ ERR_FAIL_COND(src_face_count % 3);
+ src_face_count /= 3;
+
+ const Vector3 *facesr = p_faces.ptr();
+
+ Vector<_VolumeSW_BVH_Element> bvh_array;
+ bvh_array.resize(src_face_count);
+
+ _VolumeSW_BVH_Element *bvh_arrayw = bvh_array.ptrw();
+
+ faces.resize(src_face_count);
+ Face *facesw = faces.ptrw();
+
+ vertices.resize(src_face_count * 3);
+
+ Vector3 *verticesw = vertices.ptrw();
+
+ AABB _aabb;
+
+ for (int i = 0; i < src_face_count; i++) {
+
+ Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]);
+
+ bvh_arrayw[i].aabb = face.get_aabb();
+ bvh_arrayw[i].center = bvh_arrayw[i].aabb.position + bvh_arrayw[i].aabb.size * 0.5;
+ bvh_arrayw[i].face_index = i;
+ facesw[i].indices[0] = i * 3 + 0;
+ facesw[i].indices[1] = i * 3 + 1;
+ facesw[i].indices[2] = i * 3 + 2;
+ facesw[i].normal = face.get_plane().normal;
+ verticesw[i * 3 + 0] = face.vertex[0];
+ verticesw[i * 3 + 1] = face.vertex[1];
+ verticesw[i * 3 + 2] = face.vertex[2];
+ if (i == 0)
+ _aabb = bvh_arrayw[i].aabb;
+ else
+ _aabb.merge_with(bvh_arrayw[i].aabb);
+ }
+
+ int count = 0;
+ _VolumeSW_BVH *bvh_tree = _volume_sw_build_bvh(bvh_arrayw, src_face_count, count);
+
+ bvh.resize(count + 1);
+
+ BVH *bvh_arrayw2 = bvh.ptrw();
+
+ int idx = 0;
+ _fill_bvh(bvh_tree, bvh_arrayw2, idx);
+
+ configure(_aabb); // this type of shape has no margin
+}
+
+void ConcavePolygonShape3DSW::set_data(const Variant &p_data) {
+
+ _setup(p_data);
+}
+
+Variant ConcavePolygonShape3DSW::get_data() const {
+
+ return get_faces();
+}
+
+ConcavePolygonShape3DSW::ConcavePolygonShape3DSW() {
+}
+
+/* HEIGHT MAP SHAPE */
+
+Vector<real_t> HeightMapShape3DSW::get_heights() const {
+
+ return heights;
+}
+int HeightMapShape3DSW::get_width() const {
+
+ return width;
+}
+int HeightMapShape3DSW::get_depth() const {
+
+ return depth;
+}
+real_t HeightMapShape3DSW::get_cell_size() const {
+
+ return cell_size;
+}
+
+void HeightMapShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
+
+ //not very useful, but not very used either
+ p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal, 0), r_min, r_max);
+}
+
+Vector3 HeightMapShape3DSW::get_support(const Vector3 &p_normal) const {
+
+ //not very useful, but not very used either
+ return get_aabb().get_support(p_normal);
+}
+
+bool HeightMapShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const {
+
+ return false;
+}
+
+bool HeightMapShape3DSW::intersect_point(const Vector3 &p_point) const {
+ return false;
+}
+
+Vector3 HeightMapShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
+
+ return Vector3();
+}
+
+void HeightMapShape3DSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
+}
+
+Vector3 HeightMapShape3DSW::get_moment_of_inertia(real_t p_mass) const {
+
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
+}
+
+void HeightMapShape3DSW::_setup(Vector<real_t> p_heights, int p_width, int p_depth, real_t p_cell_size) {
+
+ heights = p_heights;
+ width = p_width;
+ depth = p_depth;
+ cell_size = p_cell_size;
+
+ const real_t *r = heights.ptr();
+
+ AABB aabb;
+
+ for (int i = 0; i < depth; i++) {
+
+ for (int j = 0; j < width; j++) {
+
+ real_t h = r[i * width + j];
+
+ Vector3 pos(j * cell_size, h, i * cell_size);
+ if (i == 0 || j == 0)
+ aabb.position = pos;
+ else
+ aabb.expand_to(pos);
+ }
+ }
+
+ configure(aabb);
+}
+
+void HeightMapShape3DSW::set_data(const Variant &p_data) {
+
+ ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
+ Dictionary d = p_data;
+ ERR_FAIL_COND(!d.has("width"));
+ ERR_FAIL_COND(!d.has("depth"));
+ ERR_FAIL_COND(!d.has("cell_size"));
+ ERR_FAIL_COND(!d.has("heights"));
+
+ int width = d["width"];
+ int depth = d["depth"];
+ real_t cell_size = d["cell_size"];
+ Vector<real_t> heights = d["heights"];
+
+ ERR_FAIL_COND(width <= 0);
+ ERR_FAIL_COND(depth <= 0);
+ ERR_FAIL_COND(cell_size <= CMP_EPSILON);
+ ERR_FAIL_COND(heights.size() != (width * depth));
+ _setup(heights, width, depth, cell_size);
+}
+
+Variant HeightMapShape3DSW::get_data() const {
+
+ ERR_FAIL_V(Variant());
+}
+
+HeightMapShape3DSW::HeightMapShape3DSW() {
+
+ width = 0;
+ depth = 0;
+ cell_size = 0;
+}