summaryrefslogtreecommitdiff
path: root/servers/physics_3d/joints/hinge_joint_3d_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics_3d/joints/hinge_joint_3d_sw.cpp')
-rw-r--r--servers/physics_3d/joints/hinge_joint_3d_sw.cpp450
1 files changed, 450 insertions, 0 deletions
diff --git a/servers/physics_3d/joints/hinge_joint_3d_sw.cpp b/servers/physics_3d/joints/hinge_joint_3d_sw.cpp
new file mode 100644
index 0000000000..57605aac7b
--- /dev/null
+++ b/servers/physics_3d/joints/hinge_joint_3d_sw.cpp
@@ -0,0 +1,450 @@
+/*************************************************************************/
+/* hinge_joint_sw.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+/*
+Adapted to Godot from the Bullet library.
+*/
+
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "hinge_joint_3d_sw.h"
+
+static void plane_space(const Vector3 &n, Vector3 &p, Vector3 &q) {
+
+ if (Math::abs(n.z) > Math_SQRT12) {
+ // choose p in y-z plane
+ real_t a = n[1] * n[1] + n[2] * n[2];
+ real_t k = 1.0 / Math::sqrt(a);
+ p = Vector3(0, -n[2] * k, n[1] * k);
+ // set q = n x p
+ q = Vector3(a * k, -n[0] * p[2], n[0] * p[1]);
+ } else {
+ // choose p in x-y plane
+ real_t a = n.x * n.x + n.y * n.y;
+ real_t k = 1.0 / Math::sqrt(a);
+ p = Vector3(-n.y * k, n.x * k, 0);
+ // set q = n x p
+ q = Vector3(-n.z * p.y, n.z * p.x, a * k);
+ }
+}
+
+HingeJoint3DSW::HingeJoint3DSW(Body3DSW *rbA, Body3DSW *rbB, const Transform &frameA, const Transform &frameB) :
+ Joint3DSW(_arr, 2) {
+
+ A = rbA;
+ B = rbB;
+
+ m_rbAFrame = frameA;
+ m_rbBFrame = frameB;
+ // flip axis
+ m_rbBFrame.basis[0][2] *= real_t(-1.);
+ m_rbBFrame.basis[1][2] *= real_t(-1.);
+ m_rbBFrame.basis[2][2] *= real_t(-1.);
+
+ //start with free
+ m_lowerLimit = Math_PI;
+ m_upperLimit = -Math_PI;
+
+ m_useLimit = false;
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+
+ tau = 0.3;
+
+ m_angularOnly = false;
+ m_enableAngularMotor = false;
+
+ A->add_constraint(this, 0);
+ B->add_constraint(this, 1);
+}
+
+HingeJoint3DSW::HingeJoint3DSW(Body3DSW *rbA, Body3DSW *rbB, const Vector3 &pivotInA, const Vector3 &pivotInB,
+ const Vector3 &axisInA, const Vector3 &axisInB) :
+ Joint3DSW(_arr, 2) {
+
+ A = rbA;
+ B = rbB;
+
+ m_rbAFrame.origin = pivotInA;
+
+ // since no frame is given, assume this to be zero angle and just pick rb transform axis
+ Vector3 rbAxisA1 = rbA->get_transform().basis.get_axis(0);
+
+ Vector3 rbAxisA2;
+ real_t projection = axisInA.dot(rbAxisA1);
+ if (projection >= 1.0f - CMP_EPSILON) {
+ rbAxisA1 = -rbA->get_transform().basis.get_axis(2);
+ rbAxisA2 = rbA->get_transform().basis.get_axis(1);
+ } else if (projection <= -1.0f + CMP_EPSILON) {
+ rbAxisA1 = rbA->get_transform().basis.get_axis(2);
+ rbAxisA2 = rbA->get_transform().basis.get_axis(1);
+ } else {
+ rbAxisA2 = axisInA.cross(rbAxisA1);
+ rbAxisA1 = rbAxisA2.cross(axisInA);
+ }
+
+ m_rbAFrame.basis = Basis(rbAxisA1.x, rbAxisA2.x, axisInA.x,
+ rbAxisA1.y, rbAxisA2.y, axisInA.y,
+ rbAxisA1.z, rbAxisA2.z, axisInA.z);
+
+ Quat rotationArc = Quat(axisInA, axisInB);
+ Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1);
+ Vector3 rbAxisB2 = axisInB.cross(rbAxisB1);
+
+ m_rbBFrame.origin = pivotInB;
+ m_rbBFrame.basis = Basis(rbAxisB1.x, rbAxisB2.x, -axisInB.x,
+ rbAxisB1.y, rbAxisB2.y, -axisInB.y,
+ rbAxisB1.z, rbAxisB2.z, -axisInB.z);
+
+ //start with free
+ m_lowerLimit = Math_PI;
+ m_upperLimit = -Math_PI;
+
+ m_useLimit = false;
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+
+ tau = 0.3;
+
+ m_angularOnly = false;
+ m_enableAngularMotor = false;
+
+ A->add_constraint(this, 0);
+ B->add_constraint(this, 1);
+}
+
+bool HingeJoint3DSW::setup(real_t p_step) {
+
+ m_appliedImpulse = real_t(0.);
+
+ if (!m_angularOnly) {
+ Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
+ Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
+ Vector3 relPos = pivotBInW - pivotAInW;
+
+ Vector3 normal[3];
+ if (Math::is_zero_approx(relPos.length_squared())) {
+ normal[0] = Vector3(real_t(1.0), 0, 0);
+ } else {
+ normal[0] = relPos.normalized();
+ }
+
+ plane_space(normal[0], normal[1], normal[2]);
+
+ for (int i = 0; i < 3; i++) {
+ memnew_placement(&m_jac[i], JacobianEntry3DSW(
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
+ pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
+ normal[i],
+ A->get_inv_inertia(),
+ A->get_inv_mass(),
+ B->get_inv_inertia(),
+ B->get_inv_mass()));
+ }
+ }
+
+ //calculate two perpendicular jointAxis, orthogonal to hingeAxis
+ //these two jointAxis require equal angular velocities for both bodies
+
+ //this is unused for now, it's a todo
+ Vector3 jointAxis0local;
+ Vector3 jointAxis1local;
+
+ plane_space(m_rbAFrame.basis.get_axis(2), jointAxis0local, jointAxis1local);
+
+ Vector3 jointAxis0 = A->get_transform().basis.xform(jointAxis0local);
+ Vector3 jointAxis1 = A->get_transform().basis.xform(jointAxis1local);
+ Vector3 hingeAxisWorld = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
+
+ memnew_placement(&m_jacAng[0], JacobianEntry3DSW(jointAxis0,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+
+ memnew_placement(&m_jacAng[1], JacobianEntry3DSW(jointAxis1,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+
+ memnew_placement(&m_jacAng[2], JacobianEntry3DSW(hingeAxisWorld,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+
+ // Compute limit information
+ real_t hingeAngle = get_hinge_angle();
+
+ //set bias, sign, clear accumulator
+ m_correction = real_t(0.);
+ m_limitSign = real_t(0.);
+ m_solveLimit = false;
+ m_accLimitImpulse = real_t(0.);
+
+ //if (m_lowerLimit < m_upperLimit)
+ if (m_useLimit && m_lowerLimit <= m_upperLimit) {
+ //if (hingeAngle <= m_lowerLimit*m_limitSoftness)
+ if (hingeAngle <= m_lowerLimit) {
+ m_correction = (m_lowerLimit - hingeAngle);
+ m_limitSign = 1.0f;
+ m_solveLimit = true;
+ }
+ //else if (hingeAngle >= m_upperLimit*m_limitSoftness)
+ else if (hingeAngle >= m_upperLimit) {
+ m_correction = m_upperLimit - hingeAngle;
+ m_limitSign = -1.0f;
+ m_solveLimit = true;
+ }
+ }
+
+ //Compute K = J*W*J' for hinge axis
+ Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
+ m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) +
+ B->compute_angular_impulse_denominator(axisA));
+
+ return true;
+}
+
+void HingeJoint3DSW::solve(real_t p_step) {
+
+ Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
+ Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
+
+ //real_t tau = real_t(0.3);
+
+ //linear part
+ if (!m_angularOnly) {
+ Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
+ Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
+
+ Vector3 vel1 = A->get_velocity_in_local_point(rel_pos1);
+ Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2);
+ Vector3 vel = vel1 - vel2;
+
+ for (int i = 0; i < 3; i++) {
+ const Vector3 &normal = m_jac[i].m_linearJointAxis;
+ real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal();
+
+ real_t rel_vel;
+ rel_vel = normal.dot(vel);
+ //positional error (zeroth order error)
+ real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
+ real_t impulse = depth * tau / p_step * jacDiagABInv - rel_vel * jacDiagABInv;
+ m_appliedImpulse += impulse;
+ Vector3 impulse_vector = normal * impulse;
+ A->apply_impulse(pivotAInW - A->get_transform().origin, impulse_vector);
+ B->apply_impulse(pivotBInW - B->get_transform().origin, -impulse_vector);
+ }
+ }
+
+ {
+ ///solve angular part
+
+ // get axes in world space
+ Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
+ Vector3 axisB = B->get_transform().basis.xform(m_rbBFrame.basis.get_axis(2));
+
+ const Vector3 &angVelA = A->get_angular_velocity();
+ const Vector3 &angVelB = B->get_angular_velocity();
+
+ Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
+ Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
+
+ Vector3 angAorthog = angVelA - angVelAroundHingeAxisA;
+ Vector3 angBorthog = angVelB - angVelAroundHingeAxisB;
+ Vector3 velrelOrthog = angAorthog - angBorthog;
+ {
+ //solve orthogonal angular velocity correction
+ real_t relaxation = real_t(1.);
+ real_t len = velrelOrthog.length();
+ if (len > real_t(0.00001)) {
+ Vector3 normal = velrelOrthog.normalized();
+ real_t denom = A->compute_angular_impulse_denominator(normal) +
+ B->compute_angular_impulse_denominator(normal);
+ // scale for mass and relaxation
+ velrelOrthog *= (real_t(1.) / denom) * m_relaxationFactor;
+ }
+
+ //solve angular positional correction
+ Vector3 angularError = -axisA.cross(axisB) * (real_t(1.) / p_step);
+ real_t len2 = angularError.length();
+ if (len2 > real_t(0.00001)) {
+ Vector3 normal2 = angularError.normalized();
+ real_t denom2 = A->compute_angular_impulse_denominator(normal2) +
+ B->compute_angular_impulse_denominator(normal2);
+ angularError *= (real_t(1.) / denom2) * relaxation;
+ }
+
+ A->apply_torque_impulse(-velrelOrthog + angularError);
+ B->apply_torque_impulse(velrelOrthog - angularError);
+
+ // solve limit
+ if (m_solveLimit) {
+ real_t amplitude = ((angVelB - angVelA).dot(axisA) * m_relaxationFactor + m_correction * (real_t(1.) / p_step) * m_biasFactor) * m_limitSign;
+
+ real_t impulseMag = amplitude * m_kHinge;
+
+ // Clamp the accumulated impulse
+ real_t temp = m_accLimitImpulse;
+ m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0));
+ impulseMag = m_accLimitImpulse - temp;
+
+ Vector3 impulse = axisA * impulseMag * m_limitSign;
+ A->apply_torque_impulse(impulse);
+ B->apply_torque_impulse(-impulse);
+ }
+ }
+
+ //apply motor
+ if (m_enableAngularMotor) {
+ //todo: add limits too
+ Vector3 angularLimit(0, 0, 0);
+
+ Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
+ real_t projRelVel = velrel.dot(axisA);
+
+ real_t desiredMotorVel = m_motorTargetVelocity;
+ real_t motor_relvel = desiredMotorVel - projRelVel;
+
+ real_t unclippedMotorImpulse = m_kHinge * motor_relvel;
+ //todo: should clip against accumulated impulse
+ real_t clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
+ clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
+ Vector3 motorImp = clippedMotorImpulse * axisA;
+
+ A->apply_torque_impulse(motorImp + angularLimit);
+ B->apply_torque_impulse(-motorImp - angularLimit);
+ }
+ }
+}
+/*
+void HingeJointSW::updateRHS(real_t timeStep)
+{
+ (void)timeStep;
+
+}
+*/
+
+static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) {
+ real_t coeff_1 = Math_PI / 4.0f;
+ real_t coeff_2 = 3.0f * coeff_1;
+ real_t abs_y = Math::abs(y);
+ real_t angle;
+ if (x >= 0.0f) {
+ real_t r = (x - abs_y) / (x + abs_y);
+ angle = coeff_1 - coeff_1 * r;
+ } else {
+ real_t r = (x + abs_y) / (abs_y - x);
+ angle = coeff_2 - coeff_1 * r;
+ }
+ return (y < 0.0f) ? -angle : angle;
+}
+
+real_t HingeJoint3DSW::get_hinge_angle() {
+ const Vector3 refAxis0 = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(0));
+ const Vector3 refAxis1 = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(1));
+ const Vector3 swingAxis = B->get_transform().basis.xform(m_rbBFrame.basis.get_axis(1));
+
+ return atan2fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
+}
+
+void HingeJoint3DSW::set_param(PhysicsServer3D::HingeJointParam p_param, real_t p_value) {
+
+ switch (p_param) {
+
+ case PhysicsServer3D::HINGE_JOINT_BIAS: tau = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER: m_upperLimit = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS: m_biasFactor = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_MAX: break; // Can't happen, but silences warning
+ }
+}
+
+real_t HingeJoint3DSW::get_param(PhysicsServer3D::HingeJointParam p_param) const {
+
+ switch (p_param) {
+
+ case PhysicsServer3D::HINGE_JOINT_BIAS: return tau;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER: return m_upperLimit;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER: return m_lowerLimit;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS: return m_biasFactor;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS: return m_limitSoftness;
+ case PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION: return m_relaxationFactor;
+ case PhysicsServer3D::HINGE_JOINT_MOTOR_TARGET_VELOCITY: return m_motorTargetVelocity;
+ case PhysicsServer3D::HINGE_JOINT_MOTOR_MAX_IMPULSE: return m_maxMotorImpulse;
+ case PhysicsServer3D::HINGE_JOINT_MAX: break; // Can't happen, but silences warning
+ }
+
+ return 0;
+}
+
+void HingeJoint3DSW::set_flag(PhysicsServer3D::HingeJointFlag p_flag, bool p_value) {
+
+ switch (p_flag) {
+ case PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor = p_value; break;
+ case PhysicsServer3D::HINGE_JOINT_FLAG_MAX: break; // Can't happen, but silences warning
+ }
+}
+bool HingeJoint3DSW::get_flag(PhysicsServer3D::HingeJointFlag p_flag) const {
+
+ switch (p_flag) {
+ case PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT: return m_useLimit;
+ case PhysicsServer3D::HINGE_JOINT_FLAG_ENABLE_MOTOR: return m_enableAngularMotor;
+ case PhysicsServer3D::HINGE_JOINT_FLAG_MAX: break; // Can't happen, but silences warning
+ }
+
+ return false;
+}