summaryrefslogtreecommitdiff
path: root/servers/physics_3d/godot_shape_3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics_3d/godot_shape_3d.cpp')
-rw-r--r--servers/physics_3d/godot_shape_3d.cpp2204
1 files changed, 2204 insertions, 0 deletions
diff --git a/servers/physics_3d/godot_shape_3d.cpp b/servers/physics_3d/godot_shape_3d.cpp
new file mode 100644
index 0000000000..5364a9833d
--- /dev/null
+++ b/servers/physics_3d/godot_shape_3d.cpp
@@ -0,0 +1,2204 @@
+/*************************************************************************/
+/* godot_shape_3d.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "godot_shape_3d.h"
+
+#include "core/io/image.h"
+#include "core/math/convex_hull.h"
+#include "core/math/geometry_3d.h"
+#include "core/templates/sort_array.h"
+
+// GodotHeightMapShape3D is based on Bullet btHeightfieldTerrainShape.
+
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002
+#define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998
+
+#define _CYLINDER_EDGE_IS_VALID_SUPPORT_THRESHOLD 0.002
+#define _CYLINDER_FACE_IS_VALID_SUPPORT_THRESHOLD 0.999
+
+void GodotShape3D::configure(const AABB &p_aabb) {
+ aabb = p_aabb;
+ configured = true;
+ for (const KeyValue<GodotShapeOwner3D *, int> &E : owners) {
+ GodotShapeOwner3D *co = (GodotShapeOwner3D *)E.key;
+ co->_shape_changed();
+ }
+}
+
+Vector3 GodotShape3D::get_support(const Vector3 &p_normal) const {
+ Vector3 res;
+ int amnt;
+ FeatureType type;
+ get_supports(p_normal, 1, &res, amnt, type);
+ return res;
+}
+
+void GodotShape3D::add_owner(GodotShapeOwner3D *p_owner) {
+ Map<GodotShapeOwner3D *, int>::Element *E = owners.find(p_owner);
+ if (E) {
+ E->get()++;
+ } else {
+ owners[p_owner] = 1;
+ }
+}
+
+void GodotShape3D::remove_owner(GodotShapeOwner3D *p_owner) {
+ Map<GodotShapeOwner3D *, int>::Element *E = owners.find(p_owner);
+ ERR_FAIL_COND(!E);
+ E->get()--;
+ if (E->get() == 0) {
+ owners.erase(E);
+ }
+}
+
+bool GodotShape3D::is_owner(GodotShapeOwner3D *p_owner) const {
+ return owners.has(p_owner);
+}
+
+const Map<GodotShapeOwner3D *, int> &GodotShape3D::get_owners() const {
+ return owners;
+}
+
+GodotShape3D::~GodotShape3D() {
+ ERR_FAIL_COND(owners.size());
+}
+
+Plane GodotWorldBoundaryShape3D::get_plane() const {
+ return plane;
+}
+
+void GodotWorldBoundaryShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ // gibberish, a plane is infinity
+ r_min = -1e7;
+ r_max = 1e7;
+}
+
+Vector3 GodotWorldBoundaryShape3D::get_support(const Vector3 &p_normal) const {
+ return p_normal * 1e15;
+}
+
+bool GodotWorldBoundaryShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ bool inters = plane.intersects_segment(p_begin, p_end, &r_result);
+ if (inters) {
+ r_normal = plane.normal;
+ }
+ return inters;
+}
+
+bool GodotWorldBoundaryShape3D::intersect_point(const Vector3 &p_point) const {
+ return plane.distance_to(p_point) < 0;
+}
+
+Vector3 GodotWorldBoundaryShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ if (plane.is_point_over(p_point)) {
+ return plane.project(p_point);
+ } else {
+ return p_point;
+ }
+}
+
+Vector3 GodotWorldBoundaryShape3D::get_moment_of_inertia(real_t p_mass) const {
+ return Vector3(); // not applicable.
+}
+
+void GodotWorldBoundaryShape3D::_setup(const Plane &p_plane) {
+ plane = p_plane;
+ configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2)));
+}
+
+void GodotWorldBoundaryShape3D::set_data(const Variant &p_data) {
+ _setup(p_data);
+}
+
+Variant GodotWorldBoundaryShape3D::get_data() const {
+ return plane;
+}
+
+GodotWorldBoundaryShape3D::GodotWorldBoundaryShape3D() {
+}
+
+//
+
+real_t GodotSeparationRayShape3D::get_length() const {
+ return length;
+}
+
+bool GodotSeparationRayShape3D::get_slide_on_slope() const {
+ return slide_on_slope;
+}
+
+void GodotSeparationRayShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ // don't think this will be even used
+ r_min = 0;
+ r_max = 1;
+}
+
+Vector3 GodotSeparationRayShape3D::get_support(const Vector3 &p_normal) const {
+ if (p_normal.z > 0) {
+ return Vector3(0, 0, length);
+ } else {
+ return Vector3(0, 0, 0);
+ }
+}
+
+void GodotSeparationRayShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+ r_amount = 2;
+ r_type = FEATURE_EDGE;
+ r_supports[0] = Vector3(0, 0, 0);
+ r_supports[1] = Vector3(0, 0, length);
+ } else if (p_normal.z > 0) {
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+ *r_supports = Vector3(0, 0, length);
+ } else {
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+ *r_supports = Vector3(0, 0, 0);
+ }
+}
+
+bool GodotSeparationRayShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ return false; //simply not possible
+}
+
+bool GodotSeparationRayShape3D::intersect_point(const Vector3 &p_point) const {
+ return false; //simply not possible
+}
+
+Vector3 GodotSeparationRayShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ Vector3 s[2] = {
+ Vector3(0, 0, 0),
+ Vector3(0, 0, length)
+ };
+
+ return Geometry3D::get_closest_point_to_segment(p_point, s);
+}
+
+Vector3 GodotSeparationRayShape3D::get_moment_of_inertia(real_t p_mass) const {
+ return Vector3();
+}
+
+void GodotSeparationRayShape3D::_setup(real_t p_length, bool p_slide_on_slope) {
+ length = p_length;
+ slide_on_slope = p_slide_on_slope;
+ configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length)));
+}
+
+void GodotSeparationRayShape3D::set_data(const Variant &p_data) {
+ Dictionary d = p_data;
+ _setup(d["length"], d["slide_on_slope"]);
+}
+
+Variant GodotSeparationRayShape3D::get_data() const {
+ Dictionary d;
+ d["length"] = length;
+ d["slide_on_slope"] = slide_on_slope;
+ return d;
+}
+
+GodotSeparationRayShape3D::GodotSeparationRayShape3D() {}
+
+/********** SPHERE *************/
+
+real_t GodotSphereShape3D::get_radius() const {
+ return radius;
+}
+
+void GodotSphereShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ real_t d = p_normal.dot(p_transform.origin);
+
+ // figure out scale at point
+ Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
+ real_t scale = local_normal.length();
+
+ r_min = d - (radius)*scale;
+ r_max = d + (radius)*scale;
+}
+
+Vector3 GodotSphereShape3D::get_support(const Vector3 &p_normal) const {
+ return p_normal * radius;
+}
+
+void GodotSphereShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ *r_supports = p_normal * radius;
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+}
+
+bool GodotSphereShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ return Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal);
+}
+
+bool GodotSphereShape3D::intersect_point(const Vector3 &p_point) const {
+ return p_point.length() < radius;
+}
+
+Vector3 GodotSphereShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ Vector3 p = p_point;
+ real_t l = p.length();
+ if (l < radius) {
+ return p_point;
+ }
+ return (p / l) * radius;
+}
+
+Vector3 GodotSphereShape3D::get_moment_of_inertia(real_t p_mass) const {
+ real_t s = 0.4 * p_mass * radius * radius;
+ return Vector3(s, s, s);
+}
+
+void GodotSphereShape3D::_setup(real_t p_radius) {
+ radius = p_radius;
+ configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0)));
+}
+
+void GodotSphereShape3D::set_data(const Variant &p_data) {
+ _setup(p_data);
+}
+
+Variant GodotSphereShape3D::get_data() const {
+ return radius;
+}
+
+GodotSphereShape3D::GodotSphereShape3D() {}
+
+/********** BOX *************/
+
+void GodotBoxShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ // no matter the angle, the box is mirrored anyway
+ Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
+
+ real_t length = local_normal.abs().dot(half_extents);
+ real_t distance = p_normal.dot(p_transform.origin);
+
+ r_min = distance - length;
+ r_max = distance + length;
+}
+
+Vector3 GodotBoxShape3D::get_support(const Vector3 &p_normal) const {
+ Vector3 point(
+ (p_normal.x < 0) ? -half_extents.x : half_extents.x,
+ (p_normal.y < 0) ? -half_extents.y : half_extents.y,
+ (p_normal.z < 0) ? -half_extents.z : half_extents.z);
+
+ return point;
+}
+
+void GodotBoxShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ static const int next[3] = { 1, 2, 0 };
+ static const int next2[3] = { 2, 0, 1 };
+
+ for (int i = 0; i < 3; i++) {
+ Vector3 axis;
+ axis[i] = 1.0;
+ real_t dot = p_normal.dot(axis);
+ if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
+ //Vector3 axis_b;
+
+ bool neg = dot < 0;
+ r_amount = 4;
+ r_type = FEATURE_FACE;
+
+ Vector3 point;
+ point[i] = half_extents[i];
+
+ int i_n = next[i];
+ int i_n2 = next2[i];
+
+ static const real_t sign[4][2] = {
+ { -1.0, 1.0 },
+ { 1.0, 1.0 },
+ { 1.0, -1.0 },
+ { -1.0, -1.0 },
+ };
+
+ for (int j = 0; j < 4; j++) {
+ point[i_n] = sign[j][0] * half_extents[i_n];
+ point[i_n2] = sign[j][1] * half_extents[i_n2];
+ r_supports[j] = neg ? -point : point;
+ }
+
+ if (neg) {
+ SWAP(r_supports[1], r_supports[2]);
+ SWAP(r_supports[0], r_supports[3]);
+ }
+
+ return;
+ }
+
+ r_amount = 0;
+ }
+
+ for (int i = 0; i < 3; i++) {
+ Vector3 axis;
+ axis[i] = 1.0;
+
+ if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+ r_amount = 2;
+ r_type = FEATURE_EDGE;
+
+ int i_n = next[i];
+ int i_n2 = next2[i];
+
+ Vector3 point = half_extents;
+
+ if (p_normal[i_n] < 0) {
+ point[i_n] = -point[i_n];
+ }
+ if (p_normal[i_n2] < 0) {
+ point[i_n2] = -point[i_n2];
+ }
+
+ r_supports[0] = point;
+ point[i] = -point[i];
+ r_supports[1] = point;
+ return;
+ }
+ }
+ /* USE POINT */
+
+ Vector3 point(
+ (p_normal.x < 0) ? -half_extents.x : half_extents.x,
+ (p_normal.y < 0) ? -half_extents.y : half_extents.y,
+ (p_normal.z < 0) ? -half_extents.z : half_extents.z);
+
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+ r_supports[0] = point;
+}
+
+bool GodotBoxShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ AABB aabb(-half_extents, half_extents * 2.0);
+
+ return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal);
+}
+
+bool GodotBoxShape3D::intersect_point(const Vector3 &p_point) const {
+ return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z);
+}
+
+Vector3 GodotBoxShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ int outside = 0;
+ Vector3 min_point;
+
+ for (int i = 0; i < 3; i++) {
+ if (Math::abs(p_point[i]) > half_extents[i]) {
+ outside++;
+ if (outside == 1) {
+ //use plane if only one side matches
+ Vector3 n;
+ n[i] = SIGN(p_point[i]);
+
+ Plane p(n, half_extents[i]);
+ min_point = p.project(p_point);
+ }
+ }
+ }
+
+ if (!outside) {
+ return p_point; //it's inside, don't do anything else
+ }
+
+ if (outside == 1) { //if only above one plane, this plane clearly wins
+ return min_point;
+ }
+
+ //check segments
+ real_t min_distance = 1e20;
+ Vector3 closest_vertex = half_extents * p_point.sign();
+ Vector3 s[2] = {
+ closest_vertex,
+ closest_vertex
+ };
+
+ for (int i = 0; i < 3; i++) {
+ s[1] = closest_vertex;
+ s[1][i] = -s[1][i]; //edge
+
+ Vector3 closest_edge = Geometry3D::get_closest_point_to_segment(p_point, s);
+
+ real_t d = p_point.distance_to(closest_edge);
+ if (d < min_distance) {
+ min_point = closest_edge;
+ min_distance = d;
+ }
+ }
+
+ return min_point;
+}
+
+Vector3 GodotBoxShape3D::get_moment_of_inertia(real_t p_mass) const {
+ real_t lx = half_extents.x;
+ real_t ly = half_extents.y;
+ real_t lz = half_extents.z;
+
+ return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly));
+}
+
+void GodotBoxShape3D::_setup(const Vector3 &p_half_extents) {
+ half_extents = p_half_extents.abs();
+
+ configure(AABB(-half_extents, half_extents * 2));
+}
+
+void GodotBoxShape3D::set_data(const Variant &p_data) {
+ _setup(p_data);
+}
+
+Variant GodotBoxShape3D::get_data() const {
+ return half_extents;
+}
+
+GodotBoxShape3D::GodotBoxShape3D() {}
+
+/********** CAPSULE *************/
+
+void GodotCapsuleShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ Vector3 n = p_transform.basis.xform_inv(p_normal).normalized();
+ real_t h = height * 0.5 - radius;
+
+ n *= radius;
+ n.y += (n.y > 0) ? h : -h;
+
+ r_max = p_normal.dot(p_transform.xform(n));
+ r_min = p_normal.dot(p_transform.xform(-n));
+}
+
+Vector3 GodotCapsuleShape3D::get_support(const Vector3 &p_normal) const {
+ Vector3 n = p_normal;
+
+ real_t h = height * 0.5 - radius;
+
+ n *= radius;
+ n.y += (n.y > 0) ? h : -h;
+ return n;
+}
+
+void GodotCapsuleShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ Vector3 n = p_normal;
+
+ real_t d = n.y;
+
+ if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+ // make it flat
+ n.y = 0.0;
+ n.normalize();
+ n *= radius;
+
+ r_amount = 2;
+ r_type = FEATURE_EDGE;
+ r_supports[0] = n;
+ r_supports[0].y += height * 0.5 - radius;
+ r_supports[1] = n;
+ r_supports[1].y -= height * 0.5 - radius;
+
+ } else {
+ real_t h = height * 0.5 - radius;
+
+ n *= radius;
+ n.y += (d > 0) ? h : -h;
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+ *r_supports = n;
+ }
+}
+
+bool GodotCapsuleShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ Vector3 norm = (p_end - p_begin).normalized();
+ real_t min_d = 1e20;
+
+ Vector3 res, n;
+ bool collision = false;
+
+ Vector3 auxres, auxn;
+ bool collided;
+
+ // test against cylinder and spheres :-|
+
+ collided = Geometry3D::segment_intersects_cylinder(p_begin, p_end, height - radius * 2.0, radius, &auxres, &auxn, 1);
+
+ if (collided) {
+ real_t d = norm.dot(auxres);
+ if (d < min_d) {
+ min_d = d;
+ res = auxres;
+ n = auxn;
+ collision = true;
+ }
+ }
+
+ collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * 0.5 - radius, 0), radius, &auxres, &auxn);
+
+ if (collided) {
+ real_t d = norm.dot(auxres);
+ if (d < min_d) {
+ min_d = d;
+ res = auxres;
+ n = auxn;
+ collision = true;
+ }
+ }
+
+ collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * -0.5 + radius, 0), radius, &auxres, &auxn);
+
+ if (collided) {
+ real_t d = norm.dot(auxres);
+
+ if (d < min_d) {
+ min_d = d;
+ res = auxres;
+ n = auxn;
+ collision = true;
+ }
+ }
+
+ if (collision) {
+ r_result = res;
+ r_normal = n;
+ }
+ return collision;
+}
+
+bool GodotCapsuleShape3D::intersect_point(const Vector3 &p_point) const {
+ if (Math::abs(p_point.y) < height * 0.5 - radius) {
+ return Vector3(p_point.x, 0, p_point.z).length() < radius;
+ } else {
+ Vector3 p = p_point;
+ p.y = Math::abs(p.y) - height * 0.5 + radius;
+ return p.length() < radius;
+ }
+}
+
+Vector3 GodotCapsuleShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ Vector3 s[2] = {
+ Vector3(0, -height * 0.5 + radius, 0),
+ Vector3(0, height * 0.5 - radius, 0),
+ };
+
+ Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s);
+
+ if (p.distance_to(p_point) < radius) {
+ return p_point;
+ }
+
+ return p + (p_point - p).normalized() * radius;
+}
+
+Vector3 GodotCapsuleShape3D::get_moment_of_inertia(real_t p_mass) const {
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
+}
+
+void GodotCapsuleShape3D::_setup(real_t p_height, real_t p_radius) {
+ height = p_height;
+ radius = p_radius;
+ configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2, height, radius * 2)));
+}
+
+void GodotCapsuleShape3D::set_data(const Variant &p_data) {
+ Dictionary d = p_data;
+ ERR_FAIL_COND(!d.has("radius"));
+ ERR_FAIL_COND(!d.has("height"));
+ _setup(d["height"], d["radius"]);
+}
+
+Variant GodotCapsuleShape3D::get_data() const {
+ Dictionary d;
+ d["radius"] = radius;
+ d["height"] = height;
+ return d;
+}
+
+GodotCapsuleShape3D::GodotCapsuleShape3D() {}
+
+/********** CYLINDER *************/
+
+void GodotCylinderShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ Vector3 cylinder_axis = p_transform.basis.get_axis(1).normalized();
+ real_t axis_dot = cylinder_axis.dot(p_normal);
+
+ Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
+ real_t scale = local_normal.length();
+ real_t scaled_radius = radius * scale;
+ real_t scaled_height = height * scale;
+
+ real_t length;
+ if (Math::abs(axis_dot) > 1.0) {
+ length = scaled_height * 0.5;
+ } else {
+ length = Math::abs(axis_dot * scaled_height * 0.5) + scaled_radius * Math::sqrt(1.0 - axis_dot * axis_dot);
+ }
+
+ real_t distance = p_normal.dot(p_transform.origin);
+
+ r_min = distance - length;
+ r_max = distance + length;
+}
+
+Vector3 GodotCylinderShape3D::get_support(const Vector3 &p_normal) const {
+ Vector3 n = p_normal;
+ real_t h = (n.y > 0) ? height : -height;
+ real_t s = Math::sqrt(n.x * n.x + n.z * n.z);
+ if (Math::is_zero_approx(s)) {
+ n.x = radius;
+ n.y = h * 0.5;
+ n.z = 0.0;
+ } else {
+ real_t d = radius / s;
+ n.x = n.x * d;
+ n.y = h * 0.5;
+ n.z = n.z * d;
+ }
+
+ return n;
+}
+
+void GodotCylinderShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ real_t d = p_normal.y;
+ if (Math::abs(d) > _CYLINDER_FACE_IS_VALID_SUPPORT_THRESHOLD) {
+ real_t h = (d > 0) ? height : -height;
+
+ Vector3 n = p_normal;
+ n.x = 0.0;
+ n.z = 0.0;
+ n.y = h * 0.5;
+
+ r_amount = 3;
+ r_type = FEATURE_CIRCLE;
+ r_supports[0] = n;
+ r_supports[1] = n;
+ r_supports[1].x += radius;
+ r_supports[2] = n;
+ r_supports[2].z += radius;
+ } else if (Math::abs(d) < _CYLINDER_EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+ // make it flat
+ Vector3 n = p_normal;
+ n.y = 0.0;
+ n.normalize();
+ n *= radius;
+
+ r_amount = 2;
+ r_type = FEATURE_EDGE;
+ r_supports[0] = n;
+ r_supports[0].y += height * 0.5;
+ r_supports[1] = n;
+ r_supports[1].y -= height * 0.5;
+ } else {
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+ r_supports[0] = get_support(p_normal);
+ return;
+
+ Vector3 n = p_normal;
+ real_t h = n.y * Math::sqrt(0.25 * height * height + radius * radius);
+ if (Math::abs(h) > 1.0) {
+ // Top or bottom surface.
+ n.y = (n.y > 0.0) ? height * 0.5 : -height * 0.5;
+ } else {
+ // Lateral surface.
+ n.y = height * 0.5 * h;
+ }
+
+ real_t s = Math::sqrt(n.x * n.x + n.z * n.z);
+ if (Math::is_zero_approx(s)) {
+ n.x = 0.0;
+ n.z = 0.0;
+ } else {
+ real_t scaled_radius = radius / s;
+ n.x = n.x * scaled_radius;
+ n.z = n.z * scaled_radius;
+ }
+
+ r_supports[0] = n;
+ }
+}
+
+bool GodotCylinderShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ return Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &r_result, &r_normal, 1);
+}
+
+bool GodotCylinderShape3D::intersect_point(const Vector3 &p_point) const {
+ if (Math::abs(p_point.y) < height * 0.5) {
+ return Vector3(p_point.x, 0, p_point.z).length() < radius;
+ }
+ return false;
+}
+
+Vector3 GodotCylinderShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ if (Math::absf(p_point.y) > height * 0.5) {
+ // Project point to top disk.
+ real_t dir = p_point.y > 0.0 ? 1.0 : -1.0;
+ Vector3 circle_pos(0.0, dir * height * 0.5, 0.0);
+ Plane circle_plane(Vector3(0.0, dir, 0.0), circle_pos);
+ Vector3 proj_point = circle_plane.project(p_point);
+
+ // Clip position.
+ Vector3 delta_point_1 = proj_point - circle_pos;
+ real_t dist_point_1 = delta_point_1.length_squared();
+ if (!Math::is_zero_approx(dist_point_1)) {
+ dist_point_1 = Math::sqrt(dist_point_1);
+ proj_point = circle_pos + delta_point_1 * MIN(dist_point_1, radius) / dist_point_1;
+ }
+
+ return proj_point;
+ } else {
+ Vector3 s[2] = {
+ Vector3(0, -height * 0.5, 0),
+ Vector3(0, height * 0.5, 0),
+ };
+
+ Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s);
+
+ if (p.distance_to(p_point) < radius) {
+ return p_point;
+ }
+
+ return p + (p_point - p).normalized() * radius;
+ }
+}
+
+Vector3 GodotCylinderShape3D::get_moment_of_inertia(real_t p_mass) const {
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
+}
+
+void GodotCylinderShape3D::_setup(real_t p_height, real_t p_radius) {
+ height = p_height;
+ radius = p_radius;
+ configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0)));
+}
+
+void GodotCylinderShape3D::set_data(const Variant &p_data) {
+ Dictionary d = p_data;
+ ERR_FAIL_COND(!d.has("radius"));
+ ERR_FAIL_COND(!d.has("height"));
+ _setup(d["height"], d["radius"]);
+}
+
+Variant GodotCylinderShape3D::get_data() const {
+ Dictionary d;
+ d["radius"] = radius;
+ d["height"] = height;
+ return d;
+}
+
+GodotCylinderShape3D::GodotCylinderShape3D() {}
+
+/********** CONVEX POLYGON *************/
+
+void GodotConvexPolygonShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ int vertex_count = mesh.vertices.size();
+ if (vertex_count == 0) {
+ return;
+ }
+
+ const Vector3 *vrts = &mesh.vertices[0];
+
+ for (int i = 0; i < vertex_count; i++) {
+ real_t d = p_normal.dot(p_transform.xform(vrts[i]));
+
+ if (i == 0 || d > r_max) {
+ r_max = d;
+ }
+ if (i == 0 || d < r_min) {
+ r_min = d;
+ }
+ }
+}
+
+Vector3 GodotConvexPolygonShape3D::get_support(const Vector3 &p_normal) const {
+ Vector3 n = p_normal;
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ int vertex_count = mesh.vertices.size();
+ if (vertex_count == 0) {
+ return Vector3();
+ }
+
+ const Vector3 *vrts = &mesh.vertices[0];
+
+ for (int i = 0; i < vertex_count; i++) {
+ real_t d = n.dot(vrts[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ return vrts[vert_support_idx];
+}
+
+void GodotConvexPolygonShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+
+ const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
+ int ec = mesh.edges.size();
+
+ const Vector3 *vertices = mesh.vertices.ptr();
+ int vc = mesh.vertices.size();
+
+ r_amount = 0;
+ ERR_FAIL_COND_MSG(vc == 0, "Convex polygon shape has no vertices.");
+
+ //find vertex first
+ real_t max = 0;
+ int vtx = 0;
+
+ for (int i = 0; i < vc; i++) {
+ real_t d = p_normal.dot(vertices[i]);
+
+ if (i == 0 || d > max) {
+ max = d;
+ vtx = i;
+ }
+ }
+
+ for (int i = 0; i < fc; i++) {
+ if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
+ int ic = faces[i].indices.size();
+ const int *ind = faces[i].indices.ptr();
+
+ bool valid = false;
+ for (int j = 0; j < ic; j++) {
+ if (ind[j] == vtx) {
+ valid = true;
+ break;
+ }
+ }
+
+ if (!valid) {
+ continue;
+ }
+
+ int m = MIN(p_max, ic);
+ for (int j = 0; j < m; j++) {
+ r_supports[j] = vertices[ind[j]];
+ }
+ r_amount = m;
+ r_type = FEATURE_FACE;
+ return;
+ }
+ }
+
+ for (int i = 0; i < ec; i++) {
+ real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal);
+ dot = ABS(dot);
+ if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) {
+ r_amount = 2;
+ r_type = FEATURE_EDGE;
+ r_supports[0] = vertices[edges[i].a];
+ r_supports[1] = vertices[edges[i].b];
+ return;
+ }
+ }
+
+ r_supports[0] = vertices[vtx];
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+}
+
+bool GodotConvexPolygonShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+
+ const Vector3 *vertices = mesh.vertices.ptr();
+
+ Vector3 n = p_end - p_begin;
+ real_t min = 1e20;
+ bool col = false;
+
+ for (int i = 0; i < fc; i++) {
+ if (faces[i].plane.normal.dot(n) > 0) {
+ continue; //opposing face
+ }
+
+ int ic = faces[i].indices.size();
+ const int *ind = faces[i].indices.ptr();
+
+ for (int j = 1; j < ic - 1; j++) {
+ Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]);
+ Vector3 result;
+ if (f.intersects_segment(p_begin, p_end, &result)) {
+ real_t d = n.dot(result);
+ if (d < min) {
+ min = d;
+ r_result = result;
+ r_normal = faces[i].plane.normal;
+ col = true;
+ }
+
+ break;
+ }
+ }
+ }
+
+ return col;
+}
+
+bool GodotConvexPolygonShape3D::intersect_point(const Vector3 &p_point) const {
+ const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+
+ for (int i = 0; i < fc; i++) {
+ if (faces[i].plane.distance_to(p_point) >= 0) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+Vector3 GodotConvexPolygonShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
+ int fc = mesh.faces.size();
+ const Vector3 *vertices = mesh.vertices.ptr();
+
+ bool all_inside = true;
+ for (int i = 0; i < fc; i++) {
+ if (!faces[i].plane.is_point_over(p_point)) {
+ continue;
+ }
+
+ all_inside = false;
+ bool is_inside = true;
+ int ic = faces[i].indices.size();
+ const int *indices = faces[i].indices.ptr();
+
+ for (int j = 0; j < ic; j++) {
+ Vector3 a = vertices[indices[j]];
+ Vector3 b = vertices[indices[(j + 1) % ic]];
+ Vector3 n = (a - b).cross(faces[i].plane.normal).normalized();
+ if (Plane(n, a).is_point_over(p_point)) {
+ is_inside = false;
+ break;
+ }
+ }
+
+ if (is_inside) {
+ return faces[i].plane.project(p_point);
+ }
+ }
+
+ if (all_inside) {
+ return p_point;
+ }
+
+ real_t min_distance = 1e20;
+ Vector3 min_point;
+
+ //check edges
+ const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
+ int ec = mesh.edges.size();
+ for (int i = 0; i < ec; i++) {
+ Vector3 s[2] = {
+ vertices[edges[i].a],
+ vertices[edges[i].b]
+ };
+
+ Vector3 closest = Geometry3D::get_closest_point_to_segment(p_point, s);
+ real_t d = closest.distance_to(p_point);
+ if (d < min_distance) {
+ min_distance = d;
+ min_point = closest;
+ }
+ }
+
+ return min_point;
+}
+
+Vector3 GodotConvexPolygonShape3D::get_moment_of_inertia(real_t p_mass) const {
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
+}
+
+void GodotConvexPolygonShape3D::_setup(const Vector<Vector3> &p_vertices) {
+ Error err = ConvexHullComputer::convex_hull(p_vertices, mesh);
+ if (err != OK) {
+ ERR_PRINT("Failed to build convex hull");
+ }
+
+ AABB _aabb;
+
+ for (int i = 0; i < mesh.vertices.size(); i++) {
+ if (i == 0) {
+ _aabb.position = mesh.vertices[i];
+ } else {
+ _aabb.expand_to(mesh.vertices[i]);
+ }
+ }
+
+ configure(_aabb);
+}
+
+void GodotConvexPolygonShape3D::set_data(const Variant &p_data) {
+ _setup(p_data);
+}
+
+Variant GodotConvexPolygonShape3D::get_data() const {
+ return mesh.vertices;
+}
+
+GodotConvexPolygonShape3D::GodotConvexPolygonShape3D() {
+}
+
+/********** FACE POLYGON *************/
+
+void GodotFaceShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ for (int i = 0; i < 3; i++) {
+ Vector3 v = p_transform.xform(vertex[i]);
+ real_t d = p_normal.dot(v);
+
+ if (i == 0 || d > r_max) {
+ r_max = d;
+ }
+
+ if (i == 0 || d < r_min) {
+ r_min = d;
+ }
+ }
+}
+
+Vector3 GodotFaceShape3D::get_support(const Vector3 &p_normal) const {
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ for (int i = 0; i < 3; i++) {
+ real_t d = p_normal.dot(vertex[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ return vertex[vert_support_idx];
+}
+
+void GodotFaceShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
+ Vector3 n = p_normal;
+
+ /** TEST FACE AS SUPPORT **/
+ if (Math::abs(normal.dot(n)) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
+ r_amount = 3;
+ r_type = FEATURE_FACE;
+ for (int i = 0; i < 3; i++) {
+ r_supports[i] = vertex[i];
+ }
+ return;
+ }
+
+ /** FIND SUPPORT VERTEX **/
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ for (int i = 0; i < 3; i++) {
+ real_t d = n.dot(vertex[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ /** TEST EDGES AS SUPPORT **/
+
+ for (int i = 0; i < 3; i++) {
+ int nx = (i + 1) % 3;
+ if (i != vert_support_idx && nx != vert_support_idx) {
+ continue;
+ }
+
+ // check if edge is valid as a support
+ real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n);
+ dot = ABS(dot);
+ if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
+ r_amount = 2;
+ r_type = FEATURE_EDGE;
+ r_supports[0] = vertex[i];
+ r_supports[1] = vertex[nx];
+ return;
+ }
+ }
+
+ r_amount = 1;
+ r_type = FEATURE_POINT;
+ r_supports[0] = vertex[vert_support_idx];
+}
+
+bool GodotFaceShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ bool c = Geometry3D::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result);
+ if (c) {
+ r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal;
+ if (r_normal.dot(p_end - p_begin) > 0) {
+ if (backface_collision && p_hit_back_faces) {
+ r_normal = -r_normal;
+ } else {
+ c = false;
+ }
+ }
+ }
+
+ return c;
+}
+
+bool GodotFaceShape3D::intersect_point(const Vector3 &p_point) const {
+ return false; //face is flat
+}
+
+Vector3 GodotFaceShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point);
+}
+
+Vector3 GodotFaceShape3D::get_moment_of_inertia(real_t p_mass) const {
+ return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
+}
+
+GodotFaceShape3D::GodotFaceShape3D() {
+ configure(AABB());
+}
+
+Vector<Vector3> GodotConcavePolygonShape3D::get_faces() const {
+ Vector<Vector3> rfaces;
+ rfaces.resize(faces.size() * 3);
+
+ for (int i = 0; i < faces.size(); i++) {
+ Face f = faces.get(i);
+
+ for (int j = 0; j < 3; j++) {
+ rfaces.set(i * 3 + j, vertices.get(f.indices[j]));
+ }
+ }
+
+ return rfaces;
+}
+
+void GodotConcavePolygonShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ int count = vertices.size();
+ if (count == 0) {
+ r_min = 0;
+ r_max = 0;
+ return;
+ }
+ const Vector3 *vptr = vertices.ptr();
+
+ for (int i = 0; i < count; i++) {
+ real_t d = p_normal.dot(p_transform.xform(vptr[i]));
+
+ if (i == 0 || d > r_max) {
+ r_max = d;
+ }
+ if (i == 0 || d < r_min) {
+ r_min = d;
+ }
+ }
+}
+
+Vector3 GodotConcavePolygonShape3D::get_support(const Vector3 &p_normal) const {
+ int count = vertices.size();
+ if (count == 0) {
+ return Vector3();
+ }
+
+ const Vector3 *vptr = vertices.ptr();
+
+ Vector3 n = p_normal;
+
+ int vert_support_idx = -1;
+ real_t support_max = 0;
+
+ for (int i = 0; i < count; i++) {
+ real_t d = n.dot(vptr[i]);
+
+ if (i == 0 || d > support_max) {
+ support_max = d;
+ vert_support_idx = i;
+ }
+ }
+
+ return vptr[vert_support_idx];
+}
+
+void GodotConcavePolygonShape3D::_cull_segment(int p_idx, _SegmentCullParams *p_params) const {
+ const BVH *bvh = &p_params->bvh[p_idx];
+
+ /*
+ if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
+ return; //test against whole AABB, which isn't very costly
+ */
+
+ //printf("addr: %p\n",bvh);
+ if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) {
+ return;
+ }
+
+ if (bvh->face_index >= 0) {
+ const Face *f = &p_params->faces[bvh->face_index];
+ GodotFaceShape3D *face = p_params->face;
+ face->normal = f->normal;
+ face->vertex[0] = p_params->vertices[f->indices[0]];
+ face->vertex[1] = p_params->vertices[f->indices[1]];
+ face->vertex[2] = p_params->vertices[f->indices[2]];
+
+ Vector3 res;
+ Vector3 normal;
+ if (face->intersect_segment(p_params->from, p_params->to, res, normal, true)) {
+ real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
+ if ((d > 0) && (d < p_params->min_d)) {
+ p_params->min_d = d;
+ p_params->result = res;
+ p_params->normal = normal;
+ p_params->collisions++;
+ }
+ }
+ } else {
+ if (bvh->left >= 0) {
+ _cull_segment(bvh->left, p_params);
+ }
+ if (bvh->right >= 0) {
+ _cull_segment(bvh->right, p_params);
+ }
+ }
+}
+
+bool GodotConcavePolygonShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, bool p_hit_back_faces) const {
+ if (faces.size() == 0) {
+ return false;
+ }
+
+ // unlock data
+ const Face *fr = faces.ptr();
+ const Vector3 *vr = vertices.ptr();
+ const BVH *br = bvh.ptr();
+
+ GodotFaceShape3D face;
+ face.backface_collision = backface_collision && p_hit_back_faces;
+
+ _SegmentCullParams params;
+ params.from = p_begin;
+ params.to = p_end;
+ params.dir = (p_end - p_begin).normalized();
+
+ params.faces = fr;
+ params.vertices = vr;
+ params.bvh = br;
+
+ params.face = &face;
+
+ // cull
+ _cull_segment(0, &params);
+
+ if (params.collisions > 0) {
+ r_result = params.result;
+ r_normal = params.normal;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+bool GodotConcavePolygonShape3D::intersect_point(const Vector3 &p_point) const {
+ return false; //face is flat
+}
+
+Vector3 GodotConcavePolygonShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ return Vector3();
+}
+
+bool GodotConcavePolygonShape3D::_cull(int p_idx, _CullParams *p_params) const {
+ const BVH *bvh = &p_params->bvh[p_idx];
+
+ if (!p_params->aabb.intersects(bvh->aabb)) {
+ return false;
+ }
+
+ if (bvh->face_index >= 0) {
+ const Face *f = &p_params->faces[bvh->face_index];
+ GodotFaceShape3D *face = p_params->face;
+ face->normal = f->normal;
+ face->vertex[0] = p_params->vertices[f->indices[0]];
+ face->vertex[1] = p_params->vertices[f->indices[1]];
+ face->vertex[2] = p_params->vertices[f->indices[2]];
+ if (p_params->callback(p_params->userdata, face)) {
+ return true;
+ }
+ } else {
+ if (bvh->left >= 0) {
+ if (_cull(bvh->left, p_params)) {
+ return true;
+ }
+ }
+
+ if (bvh->right >= 0) {
+ if (_cull(bvh->right, p_params)) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+void GodotConcavePolygonShape3D::cull(const AABB &p_local_aabb, QueryCallback p_callback, void *p_userdata, bool p_invert_backface_collision) const {
+ // make matrix local to concave
+ if (faces.size() == 0) {
+ return;
+ }
+
+ AABB local_aabb = p_local_aabb;
+
+ // unlock data
+ const Face *fr = faces.ptr();
+ const Vector3 *vr = vertices.ptr();
+ const BVH *br = bvh.ptr();
+
+ GodotFaceShape3D face; // use this to send in the callback
+ face.backface_collision = backface_collision;
+ face.invert_backface_collision = p_invert_backface_collision;
+
+ _CullParams params;
+ params.aabb = local_aabb;
+ params.face = &face;
+ params.faces = fr;
+ params.vertices = vr;
+ params.bvh = br;
+ params.callback = p_callback;
+ params.userdata = p_userdata;
+
+ // cull
+ _cull(0, &params);
+}
+
+Vector3 GodotConcavePolygonShape3D::get_moment_of_inertia(real_t p_mass) const {
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
+}
+
+struct _Volume_BVH_Element {
+ AABB aabb;
+ Vector3 center;
+ int face_index;
+};
+
+struct _Volume_BVH_CompareX {
+ _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const {
+ return a.center.x < b.center.x;
+ }
+};
+
+struct _Volume_BVH_CompareY {
+ _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const {
+ return a.center.y < b.center.y;
+ }
+};
+
+struct _Volume_BVH_CompareZ {
+ _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const {
+ return a.center.z < b.center.z;
+ }
+};
+
+struct _Volume_BVH {
+ AABB aabb;
+ _Volume_BVH *left;
+ _Volume_BVH *right;
+
+ int face_index;
+};
+
+_Volume_BVH *_volume_build_bvh(_Volume_BVH_Element *p_elements, int p_size, int &count) {
+ _Volume_BVH *bvh = memnew(_Volume_BVH);
+
+ if (p_size == 1) {
+ //leaf
+ bvh->aabb = p_elements[0].aabb;
+ bvh->left = nullptr;
+ bvh->right = nullptr;
+ bvh->face_index = p_elements->face_index;
+ count++;
+ return bvh;
+ } else {
+ bvh->face_index = -1;
+ }
+
+ AABB aabb;
+ for (int i = 0; i < p_size; i++) {
+ if (i == 0) {
+ aabb = p_elements[i].aabb;
+ } else {
+ aabb.merge_with(p_elements[i].aabb);
+ }
+ }
+ bvh->aabb = aabb;
+ switch (aabb.get_longest_axis_index()) {
+ case 0: {
+ SortArray<_Volume_BVH_Element, _Volume_BVH_CompareX> sort_x;
+ sort_x.sort(p_elements, p_size);
+
+ } break;
+ case 1: {
+ SortArray<_Volume_BVH_Element, _Volume_BVH_CompareY> sort_y;
+ sort_y.sort(p_elements, p_size);
+ } break;
+ case 2: {
+ SortArray<_Volume_BVH_Element, _Volume_BVH_CompareZ> sort_z;
+ sort_z.sort(p_elements, p_size);
+ } break;
+ }
+
+ int split = p_size / 2;
+ bvh->left = _volume_build_bvh(p_elements, split, count);
+ bvh->right = _volume_build_bvh(&p_elements[split], p_size - split, count);
+
+ //printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
+ count++;
+ return bvh;
+}
+
+void GodotConcavePolygonShape3D::_fill_bvh(_Volume_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) {
+ int idx = p_idx;
+
+ p_bvh_array[idx].aabb = p_bvh_tree->aabb;
+ p_bvh_array[idx].face_index = p_bvh_tree->face_index;
+ //printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
+
+ if (p_bvh_tree->left) {
+ p_bvh_array[idx].left = ++p_idx;
+ _fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx);
+
+ } else {
+ p_bvh_array[p_idx].left = -1;
+ }
+
+ if (p_bvh_tree->right) {
+ p_bvh_array[idx].right = ++p_idx;
+ _fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx);
+
+ } else {
+ p_bvh_array[p_idx].right = -1;
+ }
+
+ memdelete(p_bvh_tree);
+}
+
+void GodotConcavePolygonShape3D::_setup(const Vector<Vector3> &p_faces, bool p_backface_collision) {
+ int src_face_count = p_faces.size();
+ if (src_face_count == 0) {
+ configure(AABB());
+ return;
+ }
+ ERR_FAIL_COND(src_face_count % 3);
+ src_face_count /= 3;
+
+ const Vector3 *facesr = p_faces.ptr();
+
+ Vector<_Volume_BVH_Element> bvh_array;
+ bvh_array.resize(src_face_count);
+
+ _Volume_BVH_Element *bvh_arrayw = bvh_array.ptrw();
+
+ faces.resize(src_face_count);
+ Face *facesw = faces.ptrw();
+
+ vertices.resize(src_face_count * 3);
+
+ Vector3 *verticesw = vertices.ptrw();
+
+ AABB _aabb;
+
+ for (int i = 0; i < src_face_count; i++) {
+ Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]);
+
+ bvh_arrayw[i].aabb = face.get_aabb();
+ bvh_arrayw[i].center = bvh_arrayw[i].aabb.get_center();
+ bvh_arrayw[i].face_index = i;
+ facesw[i].indices[0] = i * 3 + 0;
+ facesw[i].indices[1] = i * 3 + 1;
+ facesw[i].indices[2] = i * 3 + 2;
+ facesw[i].normal = face.get_plane().normal;
+ verticesw[i * 3 + 0] = face.vertex[0];
+ verticesw[i * 3 + 1] = face.vertex[1];
+ verticesw[i * 3 + 2] = face.vertex[2];
+ if (i == 0) {
+ _aabb = bvh_arrayw[i].aabb;
+ } else {
+ _aabb.merge_with(bvh_arrayw[i].aabb);
+ }
+ }
+
+ int count = 0;
+ _Volume_BVH *bvh_tree = _volume_build_bvh(bvh_arrayw, src_face_count, count);
+
+ bvh.resize(count + 1);
+
+ BVH *bvh_arrayw2 = bvh.ptrw();
+
+ int idx = 0;
+ _fill_bvh(bvh_tree, bvh_arrayw2, idx);
+
+ backface_collision = p_backface_collision;
+
+ configure(_aabb); // this type of shape has no margin
+}
+
+void GodotConcavePolygonShape3D::set_data(const Variant &p_data) {
+ Dictionary d = p_data;
+ ERR_FAIL_COND(!d.has("faces"));
+
+ _setup(d["faces"], d["backface_collision"]);
+}
+
+Variant GodotConcavePolygonShape3D::get_data() const {
+ Dictionary d;
+ d["faces"] = get_faces();
+ d["backface_collision"] = backface_collision;
+
+ return d;
+}
+
+GodotConcavePolygonShape3D::GodotConcavePolygonShape3D() {
+}
+
+/* HEIGHT MAP SHAPE */
+
+Vector<real_t> GodotHeightMapShape3D::get_heights() const {
+ return heights;
+}
+
+int GodotHeightMapShape3D::get_width() const {
+ return width;
+}
+
+int GodotHeightMapShape3D::get_depth() const {
+ return depth;
+}
+
+void GodotHeightMapShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const {
+ //not very useful, but not very used either
+ p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal), r_min, r_max);
+}
+
+Vector3 GodotHeightMapShape3D::get_support(const Vector3 &p_normal) const {
+ //not very useful, but not very used either
+ return get_aabb().get_support(p_normal);
+}
+
+struct _HeightmapSegmentCullParams {
+ Vector3 from;
+ Vector3 to;
+ Vector3 dir;
+
+ Vector3 result;
+ Vector3 normal;
+
+ const GodotHeightMapShape3D *heightmap = nullptr;
+ GodotFaceShape3D *face = nullptr;
+};
+
+struct _HeightmapGridCullState {
+ real_t length = 0.0;
+ real_t length_flat = 0.0;
+
+ real_t dist = 0.0;
+ real_t prev_dist = 0.0;
+
+ int x = 0;
+ int z = 0;
+};
+
+_FORCE_INLINE_ bool _heightmap_face_cull_segment(_HeightmapSegmentCullParams &p_params) {
+ Vector3 res;
+ Vector3 normal;
+ if (p_params.face->intersect_segment(p_params.from, p_params.to, res, normal, true)) {
+ p_params.result = res;
+ p_params.normal = normal;
+ return true;
+ }
+
+ return false;
+}
+
+_FORCE_INLINE_ bool _heightmap_cell_cull_segment(_HeightmapSegmentCullParams &p_params, const _HeightmapGridCullState &p_state) {
+ // First triangle.
+ p_params.heightmap->_get_point(p_state.x, p_state.z, p_params.face->vertex[0]);
+ p_params.heightmap->_get_point(p_state.x + 1, p_state.z, p_params.face->vertex[1]);
+ p_params.heightmap->_get_point(p_state.x, p_state.z + 1, p_params.face->vertex[2]);
+ p_params.face->normal = Plane(p_params.face->vertex[0], p_params.face->vertex[1], p_params.face->vertex[2]).normal;
+ if (_heightmap_face_cull_segment(p_params)) {
+ return true;
+ }
+
+ // Second triangle.
+ p_params.face->vertex[0] = p_params.face->vertex[1];
+ p_params.heightmap->_get_point(p_state.x + 1, p_state.z + 1, p_params.face->vertex[1]);
+ p_params.face->normal = Plane(p_params.face->vertex[0], p_params.face->vertex[1], p_params.face->vertex[2]).normal;
+ if (_heightmap_face_cull_segment(p_params)) {
+ return true;
+ }
+
+ return false;
+}
+
+_FORCE_INLINE_ bool _heightmap_chunk_cull_segment(_HeightmapSegmentCullParams &p_params, const _HeightmapGridCullState &p_state) {
+ const GodotHeightMapShape3D::Range &chunk = p_params.heightmap->_get_bounds_chunk(p_state.x, p_state.z);
+
+ Vector3 enter_pos;
+ Vector3 exit_pos;
+
+ if (p_state.length_flat > CMP_EPSILON) {
+ real_t flat_to_3d = p_state.length / p_state.length_flat;
+ real_t enter_param = p_state.prev_dist * flat_to_3d;
+ real_t exit_param = p_state.dist * flat_to_3d;
+ enter_pos = p_params.from + p_params.dir * enter_param;
+ exit_pos = p_params.from + p_params.dir * exit_param;
+ } else {
+ // Consider the ray vertical.
+ // (though we shouldn't reach this often because there is an early check up-front)
+ enter_pos = p_params.from;
+ exit_pos = p_params.to;
+ }
+
+ // Transform positions to heightmap space.
+ enter_pos *= GodotHeightMapShape3D::BOUNDS_CHUNK_SIZE;
+ exit_pos *= GodotHeightMapShape3D::BOUNDS_CHUNK_SIZE;
+
+ // We did enter the flat projection of the AABB,
+ // but we have to check if we intersect it on the vertical axis.
+ if ((enter_pos.y > chunk.max) && (exit_pos.y > chunk.max)) {
+ return false;
+ }
+ if ((enter_pos.y < chunk.min) && (exit_pos.y < chunk.min)) {
+ return false;
+ }
+
+ return p_params.heightmap->_intersect_grid_segment(_heightmap_cell_cull_segment, enter_pos, exit_pos, p_params.heightmap->width, p_params.heightmap->depth, p_params.heightmap->local_origin, p_params.result, p_params.normal);
+}
+
+template <typename ProcessFunction>
+bool GodotHeightMapShape3D::_intersect_grid_segment(ProcessFunction &p_process, const Vector3 &p_begin, const Vector3 &p_end, int p_width, int p_depth, const Vector3 &offset, Vector3 &r_point, Vector3 &r_normal) const {
+ Vector3 delta = (p_end - p_begin);
+ real_t length = delta.length();
+
+ if (length < CMP_EPSILON) {
+ return false;
+ }
+
+ Vector3 local_begin = p_begin + offset;
+
+ GodotFaceShape3D face;
+ face.backface_collision = false;
+
+ _HeightmapSegmentCullParams params;
+ params.from = p_begin;
+ params.to = p_end;
+ params.dir = delta / length;
+ params.heightmap = this;
+ params.face = &face;
+
+ _HeightmapGridCullState state;
+
+ // Perform grid query from projected ray.
+ Vector2 ray_dir_flat(delta.x, delta.z);
+ state.length = length;
+ state.length_flat = ray_dir_flat.length();
+
+ if (state.length_flat < CMP_EPSILON) {
+ ray_dir_flat = Vector2();
+ } else {
+ ray_dir_flat /= state.length_flat;
+ }
+
+ const int x_step = (ray_dir_flat.x > CMP_EPSILON) ? 1 : ((ray_dir_flat.x < -CMP_EPSILON) ? -1 : 0);
+ const int z_step = (ray_dir_flat.y > CMP_EPSILON) ? 1 : ((ray_dir_flat.y < -CMP_EPSILON) ? -1 : 0);
+
+ const real_t infinite = 1e20;
+ const real_t delta_x = (x_step != 0) ? 1.f / Math::abs(ray_dir_flat.x) : infinite;
+ const real_t delta_z = (z_step != 0) ? 1.f / Math::abs(ray_dir_flat.y) : infinite;
+
+ real_t cross_x; // At which value of `param` we will cross a x-axis lane?
+ real_t cross_z; // At which value of `param` we will cross a z-axis lane?
+
+ // X initialization.
+ if (x_step != 0) {
+ if (x_step == 1) {
+ cross_x = (Math::ceil(local_begin.x) - local_begin.x) * delta_x;
+ } else {
+ cross_x = (local_begin.x - Math::floor(local_begin.x)) * delta_x;
+ }
+ } else {
+ cross_x = infinite; // Will never cross on X.
+ }
+
+ // Z initialization.
+ if (z_step != 0) {
+ if (z_step == 1) {
+ cross_z = (Math::ceil(local_begin.z) - local_begin.z) * delta_z;
+ } else {
+ cross_z = (local_begin.z - Math::floor(local_begin.z)) * delta_z;
+ }
+ } else {
+ cross_z = infinite; // Will never cross on Z.
+ }
+
+ int x = Math::floor(local_begin.x);
+ int z = Math::floor(local_begin.z);
+
+ // Workaround cases where the ray starts at an integer position.
+ if (Math::is_zero_approx(cross_x)) {
+ cross_x += delta_x;
+ // If going backwards, we should ignore the position we would get by the above flooring,
+ // because the ray is not heading in that direction.
+ if (x_step == -1) {
+ x -= 1;
+ }
+ }
+
+ if (Math::is_zero_approx(cross_z)) {
+ cross_z += delta_z;
+ if (z_step == -1) {
+ z -= 1;
+ }
+ }
+
+ // Start inside the grid.
+ int x_start = MAX(MIN(x, p_width - 2), 0);
+ int z_start = MAX(MIN(z, p_depth - 2), 0);
+
+ // Adjust initial cross values.
+ cross_x += delta_x * x_step * (x_start - x);
+ cross_z += delta_z * z_step * (z_start - z);
+
+ x = x_start;
+ z = z_start;
+
+ while (true) {
+ state.prev_dist = state.dist;
+ state.x = x;
+ state.z = z;
+
+ if (cross_x < cross_z) {
+ // X lane.
+ x += x_step;
+ // Assign before advancing the param,
+ // to be in sync with the initialization step.
+ state.dist = cross_x;
+ cross_x += delta_x;
+ } else {
+ // Z lane.
+ z += z_step;
+ state.dist = cross_z;
+ cross_z += delta_z;
+ }
+
+ if (state.dist > state.length_flat) {
+ state.dist = state.length_flat;
+ if (p_process(params, state)) {
+ r_point = params.result;
+ r_normal = params.normal;
+ return true;
+ }
+ break;
+ }
+
+ if (p_process(params, state)) {
+ r_point = params.result;
+ r_normal = params.normal;
+ return true;
+ }
+
+ // Stop when outside the grid.
+ if ((x < 0) || (z < 0) || (x >= p_width - 1) || (z >= p_depth - 1)) {
+ break;
+ }
+ }
+
+ return false;
+}
+
+bool GodotHeightMapShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal, bool p_hit_back_faces) const {
+ if (heights.is_empty()) {
+ return false;
+ }
+
+ Vector3 local_begin = p_begin + local_origin;
+ Vector3 local_end = p_end + local_origin;
+
+ // Quantize the ray begin/end.
+ int begin_x = Math::floor(local_begin.x);
+ int begin_z = Math::floor(local_begin.z);
+ int end_x = Math::floor(local_end.x);
+ int end_z = Math::floor(local_end.z);
+
+ if ((begin_x == end_x) && (begin_z == end_z)) {
+ // Simple case for rays that don't traverse the grid horizontally.
+ // Just perform a test on the given cell.
+ GodotFaceShape3D face;
+ face.backface_collision = p_hit_back_faces;
+
+ _HeightmapSegmentCullParams params;
+ params.from = p_begin;
+ params.to = p_end;
+ params.dir = (p_end - p_begin).normalized();
+
+ params.heightmap = this;
+ params.face = &face;
+
+ _HeightmapGridCullState state;
+ state.x = MAX(MIN(begin_x, width - 2), 0);
+ state.z = MAX(MIN(begin_z, depth - 2), 0);
+ if (_heightmap_cell_cull_segment(params, state)) {
+ r_point = params.result;
+ r_normal = params.normal;
+ return true;
+ }
+ } else if (bounds_grid.is_empty()) {
+ // Process all cells intersecting the flat projection of the ray.
+ return _intersect_grid_segment(_heightmap_cell_cull_segment, p_begin, p_end, width, depth, local_origin, r_point, r_normal);
+ } else {
+ Vector3 ray_diff = (p_end - p_begin);
+ real_t length_flat_sqr = ray_diff.x * ray_diff.x + ray_diff.z * ray_diff.z;
+ if (length_flat_sqr < BOUNDS_CHUNK_SIZE * BOUNDS_CHUNK_SIZE) {
+ // Don't use chunks, the ray is too short in the plane.
+ return _intersect_grid_segment(_heightmap_cell_cull_segment, p_begin, p_end, width, depth, local_origin, r_point, r_normal);
+ } else {
+ // The ray is long, run raycast on a higher-level grid.
+ Vector3 bounds_from = p_begin / BOUNDS_CHUNK_SIZE;
+ Vector3 bounds_to = p_end / BOUNDS_CHUNK_SIZE;
+ Vector3 bounds_offset = local_origin / BOUNDS_CHUNK_SIZE;
+ return _intersect_grid_segment(_heightmap_chunk_cull_segment, bounds_from, bounds_to, bounds_grid_width, bounds_grid_depth, bounds_offset, r_point, r_normal);
+ }
+ }
+
+ return false;
+}
+
+bool GodotHeightMapShape3D::intersect_point(const Vector3 &p_point) const {
+ return false;
+}
+
+Vector3 GodotHeightMapShape3D::get_closest_point_to(const Vector3 &p_point) const {
+ return Vector3();
+}
+
+void GodotHeightMapShape3D::_get_cell(const Vector3 &p_point, int &r_x, int &r_y, int &r_z) const {
+ const AABB &aabb = get_aabb();
+
+ Vector3 pos_local = aabb.position + local_origin;
+
+ Vector3 clamped_point(p_point);
+ clamped_point.x = CLAMP(p_point.x, pos_local.x, pos_local.x + aabb.size.x);
+ clamped_point.y = CLAMP(p_point.y, pos_local.y, pos_local.y + aabb.size.y);
+ clamped_point.z = CLAMP(p_point.z, pos_local.z, pos_local.x + aabb.size.z);
+
+ r_x = (clamped_point.x < 0.0) ? (clamped_point.x - 0.5) : (clamped_point.x + 0.5);
+ r_y = (clamped_point.y < 0.0) ? (clamped_point.y - 0.5) : (clamped_point.y + 0.5);
+ r_z = (clamped_point.z < 0.0) ? (clamped_point.z - 0.5) : (clamped_point.z + 0.5);
+}
+
+void GodotHeightMapShape3D::cull(const AABB &p_local_aabb, QueryCallback p_callback, void *p_userdata, bool p_invert_backface_collision) const {
+ if (heights.is_empty()) {
+ return;
+ }
+
+ AABB local_aabb = p_local_aabb;
+ local_aabb.position += local_origin;
+
+ // Quantize the aabb, and adjust the start/end ranges.
+ int aabb_min[3];
+ int aabb_max[3];
+ _get_cell(local_aabb.position, aabb_min[0], aabb_min[1], aabb_min[2]);
+ _get_cell(local_aabb.position + local_aabb.size, aabb_max[0], aabb_max[1], aabb_max[2]);
+
+ // Expand the min/max quantized values.
+ // This is to catch the case where the input aabb falls between grid points.
+ for (int i = 0; i < 3; ++i) {
+ aabb_min[i]--;
+ aabb_max[i]++;
+ }
+
+ int start_x = MAX(0, aabb_min[0]);
+ int end_x = MIN(width - 1, aabb_max[0]);
+ int start_z = MAX(0, aabb_min[2]);
+ int end_z = MIN(depth - 1, aabb_max[2]);
+
+ GodotFaceShape3D face;
+ face.backface_collision = !p_invert_backface_collision;
+ face.invert_backface_collision = p_invert_backface_collision;
+
+ for (int z = start_z; z < end_z; z++) {
+ for (int x = start_x; x < end_x; x++) {
+ // First triangle.
+ _get_point(x, z, face.vertex[0]);
+ _get_point(x + 1, z, face.vertex[1]);
+ _get_point(x, z + 1, face.vertex[2]);
+ face.normal = Plane(face.vertex[0], face.vertex[1], face.vertex[2]).normal;
+ if (p_callback(p_userdata, &face)) {
+ return;
+ }
+
+ // Second triangle.
+ face.vertex[0] = face.vertex[1];
+ _get_point(x + 1, z + 1, face.vertex[1]);
+ face.normal = Plane(face.vertex[0], face.vertex[1], face.vertex[2]).normal;
+ if (p_callback(p_userdata, &face)) {
+ return;
+ }
+ }
+ }
+}
+
+Vector3 GodotHeightMapShape3D::get_moment_of_inertia(real_t p_mass) const {
+ // use bad AABB approximation
+ Vector3 extents = get_aabb().size * 0.5;
+
+ return Vector3(
+ (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
+ (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
+}
+
+void GodotHeightMapShape3D::_build_accelerator() {
+ bounds_grid.clear();
+
+ bounds_grid_width = width / BOUNDS_CHUNK_SIZE;
+ bounds_grid_depth = depth / BOUNDS_CHUNK_SIZE;
+
+ if (width % BOUNDS_CHUNK_SIZE > 0) {
+ ++bounds_grid_width; // In case terrain size isn't dividable by chunk size.
+ }
+
+ if (depth % BOUNDS_CHUNK_SIZE > 0) {
+ ++bounds_grid_depth;
+ }
+
+ uint32_t bound_grid_size = (uint32_t)(bounds_grid_width * bounds_grid_depth);
+
+ if (bound_grid_size < 2) {
+ // Grid is empty or just one chunk.
+ return;
+ }
+
+ bounds_grid.resize(bound_grid_size);
+
+ // Compute min and max height for all chunks.
+ for (int cz = 0; cz < bounds_grid_depth; ++cz) {
+ int z0 = cz * BOUNDS_CHUNK_SIZE;
+
+ for (int cx = 0; cx < bounds_grid_width; ++cx) {
+ int x0 = cx * BOUNDS_CHUNK_SIZE;
+
+ Range r;
+
+ r.min = _get_height(x0, z0);
+ r.max = r.min;
+
+ // Compute min and max height for this chunk.
+ // We have to include one extra cell to account for neighbors.
+ // Here is why:
+ // Say we have a flat terrain, and a plateau that fits a chunk perfectly.
+ //
+ // Left Right
+ // 0---0---0---1---1---1
+ // | | | | | |
+ // 0---0---0---1---1---1
+ // | | | | | |
+ // 0---0---0---1---1---1
+ // x
+ //
+ // If the AABB for the Left chunk did not share vertices with the Right,
+ // then we would fail collision tests at x due to a gap.
+ //
+ int z_max = MIN(z0 + BOUNDS_CHUNK_SIZE + 1, depth);
+ int x_max = MIN(x0 + BOUNDS_CHUNK_SIZE + 1, width);
+ for (int z = z0; z < z_max; ++z) {
+ for (int x = x0; x < x_max; ++x) {
+ real_t height = _get_height(x, z);
+ if (height < r.min) {
+ r.min = height;
+ } else if (height > r.max) {
+ r.max = height;
+ }
+ }
+ }
+
+ bounds_grid[cx + cz * bounds_grid_width] = r;
+ }
+ }
+}
+
+void GodotHeightMapShape3D::_setup(const Vector<real_t> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) {
+ heights = p_heights;
+ width = p_width;
+ depth = p_depth;
+
+ // Initialize aabb.
+ AABB aabb;
+ aabb.position = Vector3(0.0, p_min_height, 0.0);
+ aabb.size = Vector3(p_width - 1, p_max_height - p_min_height, p_depth - 1);
+
+ // Initialize origin as the aabb center.
+ local_origin = aabb.position + 0.5 * aabb.size;
+ local_origin.y = 0.0;
+
+ aabb.position -= local_origin;
+
+ _build_accelerator();
+
+ configure(aabb);
+}
+
+void GodotHeightMapShape3D::set_data(const Variant &p_data) {
+ ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
+
+ Dictionary d = p_data;
+ ERR_FAIL_COND(!d.has("width"));
+ ERR_FAIL_COND(!d.has("depth"));
+ ERR_FAIL_COND(!d.has("heights"));
+
+ int width = d["width"];
+ int depth = d["depth"];
+
+ ERR_FAIL_COND(width <= 0.0);
+ ERR_FAIL_COND(depth <= 0.0);
+
+ Variant heights_variant = d["heights"];
+ Vector<real_t> heights_buffer;
+#ifdef REAL_T_IS_DOUBLE
+ if (heights_variant.get_type() == Variant::PACKED_FLOAT64_ARRAY) {
+#else
+ if (heights_variant.get_type() == Variant::PACKED_FLOAT32_ARRAY) {
+#endif
+ // Ready-to-use heights can be passed.
+ heights_buffer = heights_variant;
+ } else if (heights_variant.get_type() == Variant::OBJECT) {
+ // If an image is passed, we have to convert it.
+ // This would be expensive to do with a script, so it's nice to have it here.
+ Ref<Image> image = heights_variant;
+ ERR_FAIL_COND(image.is_null());
+ ERR_FAIL_COND(image->get_format() != Image::FORMAT_RF);
+
+ PackedByteArray im_data = image->get_data();
+ heights_buffer.resize(image->get_width() * image->get_height());
+
+ real_t *w = heights_buffer.ptrw();
+ real_t *rp = (real_t *)im_data.ptr();
+ for (int i = 0; i < heights_buffer.size(); ++i) {
+ w[i] = rp[i];
+ }
+ } else {
+#ifdef REAL_T_IS_DOUBLE
+ ERR_FAIL_MSG("Expected PackedFloat64Array or float Image.");
+#else
+ ERR_FAIL_MSG("Expected PackedFloat32Array or float Image.");
+#endif
+ }
+
+ // Compute min and max heights or use precomputed values.
+ real_t min_height = 0.0;
+ real_t max_height = 0.0;
+ if (d.has("min_height") && d.has("max_height")) {
+ min_height = d["min_height"];
+ max_height = d["max_height"];
+ } else {
+ int heights_size = heights.size();
+ for (int i = 0; i < heights_size; ++i) {
+ real_t h = heights[i];
+ if (h < min_height) {
+ min_height = h;
+ } else if (h > max_height) {
+ max_height = h;
+ }
+ }
+ }
+
+ ERR_FAIL_COND(min_height > max_height);
+
+ ERR_FAIL_COND(heights_buffer.size() != (width * depth));
+
+ // If specified, min and max height will be used as precomputed values.
+ _setup(heights_buffer, width, depth, min_height, max_height);
+}
+
+Variant GodotHeightMapShape3D::get_data() const {
+ Dictionary d;
+ d["width"] = width;
+ d["depth"] = depth;
+
+ const AABB &aabb = get_aabb();
+ d["min_height"] = aabb.position.y;
+ d["max_height"] = aabb.position.y + aabb.size.y;
+
+ d["heights"] = heights;
+
+ return d;
+}
+
+GodotHeightMapShape3D::GodotHeightMapShape3D() {
+}