summaryrefslogtreecommitdiff
path: root/servers/physics_3d/collision_solver_3d_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics_3d/collision_solver_3d_sw.cpp')
-rw-r--r--servers/physics_3d/collision_solver_3d_sw.cpp372
1 files changed, 372 insertions, 0 deletions
diff --git a/servers/physics_3d/collision_solver_3d_sw.cpp b/servers/physics_3d/collision_solver_3d_sw.cpp
new file mode 100644
index 0000000000..34ea836cd0
--- /dev/null
+++ b/servers/physics_3d/collision_solver_3d_sw.cpp
@@ -0,0 +1,372 @@
+/*************************************************************************/
+/* collision_solver_sw.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "collision_solver_3d_sw.h"
+#include "collision_solver_3d_sat.h"
+
+#include "gjk_epa.h"
+
+#define collision_solver sat_calculate_penetration
+//#define collision_solver gjk_epa_calculate_penetration
+
+bool CollisionSolver3DSW::solve_static_plane(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
+
+ const PlaneShape3DSW *plane = static_cast<const PlaneShape3DSW *>(p_shape_A);
+ if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_PLANE)
+ return false;
+ Plane p = p_transform_A.xform(plane->get_plane());
+
+ static const int max_supports = 16;
+ Vector3 supports[max_supports];
+ int support_count;
+
+ p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count);
+
+ bool found = false;
+
+ for (int i = 0; i < support_count; i++) {
+
+ supports[i] = p_transform_B.xform(supports[i]);
+ if (p.distance_to(supports[i]) >= 0)
+ continue;
+ found = true;
+
+ Vector3 support_A = p.project(supports[i]);
+
+ if (p_result_callback) {
+ if (p_swap_result)
+ p_result_callback(supports[i], support_A, p_userdata);
+ else
+ p_result_callback(support_A, supports[i], p_userdata);
+ }
+ }
+
+ return found;
+}
+
+bool CollisionSolver3DSW::solve_ray(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
+
+ const RayShape3DSW *ray = static_cast<const RayShape3DSW *>(p_shape_A);
+
+ Vector3 from = p_transform_A.origin;
+ Vector3 to = from + p_transform_A.basis.get_axis(2) * ray->get_length();
+ Vector3 support_A = to;
+
+ Transform ai = p_transform_B.affine_inverse();
+
+ from = ai.xform(from);
+ to = ai.xform(to);
+
+ Vector3 p, n;
+ if (!p_shape_B->intersect_segment(from, to, p, n))
+ return false;
+
+ Vector3 support_B = p_transform_B.xform(p);
+ if (ray->get_slips_on_slope()) {
+ Vector3 global_n = ai.basis.xform_inv(n).normalized();
+ support_B = support_A + (support_B - support_A).length() * global_n;
+ }
+
+ if (p_result_callback) {
+ if (p_swap_result)
+ p_result_callback(support_B, support_A, p_userdata);
+ else
+ p_result_callback(support_A, support_B, p_userdata);
+ }
+ return true;
+}
+
+struct _ConcaveCollisionInfo {
+
+ const Transform *transform_A;
+ const Shape3DSW *shape_A;
+ const Transform *transform_B;
+ CollisionSolver3DSW::CallbackResult result_callback;
+ void *userdata;
+ bool swap_result;
+ bool collided;
+ int aabb_tests;
+ int collisions;
+ bool tested;
+ real_t margin_A;
+ real_t margin_B;
+ Vector3 close_A, close_B;
+};
+
+void CollisionSolver3DSW::concave_callback(void *p_userdata, Shape3DSW *p_convex) {
+
+ _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
+ cinfo.aabb_tests++;
+
+ bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, NULL, cinfo.margin_A, cinfo.margin_B);
+ if (!collided)
+ return;
+
+ cinfo.collided = true;
+ cinfo.collisions++;
+}
+
+bool CollisionSolver3DSW::solve_concave(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
+
+ const ConcaveShape3DSW *concave_B = static_cast<const ConcaveShape3DSW *>(p_shape_B);
+
+ _ConcaveCollisionInfo cinfo;
+ cinfo.transform_A = &p_transform_A;
+ cinfo.shape_A = p_shape_A;
+ cinfo.transform_B = &p_transform_B;
+ cinfo.result_callback = p_result_callback;
+ cinfo.userdata = p_userdata;
+ cinfo.swap_result = p_swap_result;
+ cinfo.collided = false;
+ cinfo.collisions = 0;
+ cinfo.margin_A = p_margin_A;
+ cinfo.margin_B = p_margin_B;
+
+ cinfo.aabb_tests = 0;
+
+ Transform rel_transform = p_transform_A;
+ rel_transform.origin -= p_transform_B.origin;
+
+ //quickly compute a local AABB
+
+ AABB local_aabb;
+ for (int i = 0; i < 3; i++) {
+
+ Vector3 axis(p_transform_B.basis.get_axis(i));
+ real_t axis_scale = 1.0 / axis.length();
+ axis *= axis_scale;
+
+ real_t smin, smax;
+ p_shape_A->project_range(axis, rel_transform, smin, smax);
+ smin -= p_margin_A;
+ smax += p_margin_A;
+ smin *= axis_scale;
+ smax *= axis_scale;
+
+ local_aabb.position[i] = smin;
+ local_aabb.size[i] = smax - smin;
+ }
+
+ concave_B->cull(local_aabb, concave_callback, &cinfo);
+
+ return cinfo.collided;
+}
+
+bool CollisionSolver3DSW::solve_static(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
+
+ PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
+ PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
+ bool concave_A = p_shape_A->is_concave();
+ bool concave_B = p_shape_B->is_concave();
+
+ bool swap = false;
+
+ if (type_A > type_B) {
+ SWAP(type_A, type_B);
+ SWAP(concave_A, concave_B);
+ swap = true;
+ }
+
+ if (type_A == PhysicsServer3D::SHAPE_PLANE) {
+
+ if (type_B == PhysicsServer3D::SHAPE_PLANE)
+ return false;
+ if (type_B == PhysicsServer3D::SHAPE_RAY) {
+ return false;
+ }
+
+ if (swap) {
+ return solve_static_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
+ } else {
+ return solve_static_plane(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
+ }
+
+ } else if (type_A == PhysicsServer3D::SHAPE_RAY) {
+
+ if (type_B == PhysicsServer3D::SHAPE_RAY)
+ return false;
+
+ if (swap) {
+ return solve_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
+ } else {
+ return solve_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
+ }
+
+ } else if (concave_B) {
+
+ if (concave_A)
+ return false;
+
+ if (!swap)
+ return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
+ else
+ return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
+
+ } else {
+
+ return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
+ }
+}
+
+void CollisionSolver3DSW::concave_distance_callback(void *p_userdata, Shape3DSW *p_convex) {
+
+ _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
+ cinfo.aabb_tests++;
+ if (cinfo.collided)
+ return;
+
+ Vector3 close_A, close_B;
+ cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
+
+ if (cinfo.collided)
+ return;
+ if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
+
+ cinfo.close_A = close_A;
+ cinfo.close_B = close_B;
+ cinfo.tested = true;
+ }
+
+ cinfo.collisions++;
+}
+
+bool CollisionSolver3DSW::solve_distance_plane(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
+
+ const PlaneShape3DSW *plane = static_cast<const PlaneShape3DSW *>(p_shape_A);
+ if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_PLANE)
+ return false;
+ Plane p = p_transform_A.xform(plane->get_plane());
+
+ static const int max_supports = 16;
+ Vector3 supports[max_supports];
+ int support_count;
+
+ p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count);
+
+ bool collided = false;
+ Vector3 closest;
+ real_t closest_d = 0;
+
+ for (int i = 0; i < support_count; i++) {
+
+ supports[i] = p_transform_B.xform(supports[i]);
+ real_t d = p.distance_to(supports[i]);
+ if (i == 0 || d < closest_d) {
+ closest = supports[i];
+ closest_d = d;
+ if (d <= 0)
+ collided = true;
+ }
+ }
+
+ r_point_A = p.project(closest);
+ r_point_B = closest;
+
+ return collided;
+}
+
+bool CollisionSolver3DSW::solve_distance(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
+
+ if (p_shape_A->is_concave())
+ return false;
+
+ if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_PLANE) {
+
+ Vector3 a, b;
+ bool col = solve_distance_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
+ r_point_A = b;
+ r_point_B = a;
+ return !col;
+
+ } else if (p_shape_B->is_concave()) {
+
+ if (p_shape_A->is_concave())
+ return false;
+
+ const ConcaveShape3DSW *concave_B = static_cast<const ConcaveShape3DSW *>(p_shape_B);
+
+ _ConcaveCollisionInfo cinfo;
+ cinfo.transform_A = &p_transform_A;
+ cinfo.shape_A = p_shape_A;
+ cinfo.transform_B = &p_transform_B;
+ cinfo.result_callback = NULL;
+ cinfo.userdata = NULL;
+ cinfo.swap_result = false;
+ cinfo.collided = false;
+ cinfo.collisions = 0;
+ cinfo.aabb_tests = 0;
+ cinfo.tested = false;
+
+ Transform rel_transform = p_transform_A;
+ rel_transform.origin -= p_transform_B.origin;
+
+ //quickly compute a local AABB
+
+ bool use_cc_hint = p_concave_hint != AABB();
+ AABB cc_hint_aabb;
+ if (use_cc_hint) {
+ cc_hint_aabb = p_concave_hint;
+ cc_hint_aabb.position -= p_transform_B.origin;
+ }
+
+ AABB local_aabb;
+ for (int i = 0; i < 3; i++) {
+
+ Vector3 axis(p_transform_B.basis.get_axis(i));
+ real_t axis_scale = ((real_t)1.0) / axis.length();
+ axis *= axis_scale;
+
+ real_t smin, smax;
+
+ if (use_cc_hint) {
+ cc_hint_aabb.project_range_in_plane(Plane(axis, 0), smin, smax);
+ } else {
+ p_shape_A->project_range(axis, rel_transform, smin, smax);
+ }
+
+ smin *= axis_scale;
+ smax *= axis_scale;
+
+ local_aabb.position[i] = smin;
+ local_aabb.size[i] = smax - smin;
+ }
+
+ concave_B->cull(local_aabb, concave_distance_callback, &cinfo);
+ if (!cinfo.collided) {
+ r_point_A = cinfo.close_A;
+ r_point_B = cinfo.close_B;
+ }
+
+ return !cinfo.collided;
+ } else {
+
+ return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
+ }
+}