diff options
Diffstat (limited to 'servers/physics_3d/collision_solver_3d_sw.cpp')
-rw-r--r-- | servers/physics_3d/collision_solver_3d_sw.cpp | 372 |
1 files changed, 372 insertions, 0 deletions
diff --git a/servers/physics_3d/collision_solver_3d_sw.cpp b/servers/physics_3d/collision_solver_3d_sw.cpp new file mode 100644 index 0000000000..34ea836cd0 --- /dev/null +++ b/servers/physics_3d/collision_solver_3d_sw.cpp @@ -0,0 +1,372 @@ +/*************************************************************************/ +/* collision_solver_sw.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "collision_solver_3d_sw.h" +#include "collision_solver_3d_sat.h" + +#include "gjk_epa.h" + +#define collision_solver sat_calculate_penetration +//#define collision_solver gjk_epa_calculate_penetration + +bool CollisionSolver3DSW::solve_static_plane(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { + + const PlaneShape3DSW *plane = static_cast<const PlaneShape3DSW *>(p_shape_A); + if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_PLANE) + return false; + Plane p = p_transform_A.xform(plane->get_plane()); + + static const int max_supports = 16; + Vector3 supports[max_supports]; + int support_count; + + p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count); + + bool found = false; + + for (int i = 0; i < support_count; i++) { + + supports[i] = p_transform_B.xform(supports[i]); + if (p.distance_to(supports[i]) >= 0) + continue; + found = true; + + Vector3 support_A = p.project(supports[i]); + + if (p_result_callback) { + if (p_swap_result) + p_result_callback(supports[i], support_A, p_userdata); + else + p_result_callback(support_A, supports[i], p_userdata); + } + } + + return found; +} + +bool CollisionSolver3DSW::solve_ray(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { + + const RayShape3DSW *ray = static_cast<const RayShape3DSW *>(p_shape_A); + + Vector3 from = p_transform_A.origin; + Vector3 to = from + p_transform_A.basis.get_axis(2) * ray->get_length(); + Vector3 support_A = to; + + Transform ai = p_transform_B.affine_inverse(); + + from = ai.xform(from); + to = ai.xform(to); + + Vector3 p, n; + if (!p_shape_B->intersect_segment(from, to, p, n)) + return false; + + Vector3 support_B = p_transform_B.xform(p); + if (ray->get_slips_on_slope()) { + Vector3 global_n = ai.basis.xform_inv(n).normalized(); + support_B = support_A + (support_B - support_A).length() * global_n; + } + + if (p_result_callback) { + if (p_swap_result) + p_result_callback(support_B, support_A, p_userdata); + else + p_result_callback(support_A, support_B, p_userdata); + } + return true; +} + +struct _ConcaveCollisionInfo { + + const Transform *transform_A; + const Shape3DSW *shape_A; + const Transform *transform_B; + CollisionSolver3DSW::CallbackResult result_callback; + void *userdata; + bool swap_result; + bool collided; + int aabb_tests; + int collisions; + bool tested; + real_t margin_A; + real_t margin_B; + Vector3 close_A, close_B; +}; + +void CollisionSolver3DSW::concave_callback(void *p_userdata, Shape3DSW *p_convex) { + + _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata); + cinfo.aabb_tests++; + + bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, NULL, cinfo.margin_A, cinfo.margin_B); + if (!collided) + return; + + cinfo.collided = true; + cinfo.collisions++; +} + +bool CollisionSolver3DSW::solve_concave(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) { + + const ConcaveShape3DSW *concave_B = static_cast<const ConcaveShape3DSW *>(p_shape_B); + + _ConcaveCollisionInfo cinfo; + cinfo.transform_A = &p_transform_A; + cinfo.shape_A = p_shape_A; + cinfo.transform_B = &p_transform_B; + cinfo.result_callback = p_result_callback; + cinfo.userdata = p_userdata; + cinfo.swap_result = p_swap_result; + cinfo.collided = false; + cinfo.collisions = 0; + cinfo.margin_A = p_margin_A; + cinfo.margin_B = p_margin_B; + + cinfo.aabb_tests = 0; + + Transform rel_transform = p_transform_A; + rel_transform.origin -= p_transform_B.origin; + + //quickly compute a local AABB + + AABB local_aabb; + for (int i = 0; i < 3; i++) { + + Vector3 axis(p_transform_B.basis.get_axis(i)); + real_t axis_scale = 1.0 / axis.length(); + axis *= axis_scale; + + real_t smin, smax; + p_shape_A->project_range(axis, rel_transform, smin, smax); + smin -= p_margin_A; + smax += p_margin_A; + smin *= axis_scale; + smax *= axis_scale; + + local_aabb.position[i] = smin; + local_aabb.size[i] = smax - smin; + } + + concave_B->cull(local_aabb, concave_callback, &cinfo); + + return cinfo.collided; +} + +bool CollisionSolver3DSW::solve_static(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { + + PhysicsServer3D::ShapeType type_A = p_shape_A->get_type(); + PhysicsServer3D::ShapeType type_B = p_shape_B->get_type(); + bool concave_A = p_shape_A->is_concave(); + bool concave_B = p_shape_B->is_concave(); + + bool swap = false; + + if (type_A > type_B) { + SWAP(type_A, type_B); + SWAP(concave_A, concave_B); + swap = true; + } + + if (type_A == PhysicsServer3D::SHAPE_PLANE) { + + if (type_B == PhysicsServer3D::SHAPE_PLANE) + return false; + if (type_B == PhysicsServer3D::SHAPE_RAY) { + return false; + } + + if (swap) { + return solve_static_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); + } else { + return solve_static_plane(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); + } + + } else if (type_A == PhysicsServer3D::SHAPE_RAY) { + + if (type_B == PhysicsServer3D::SHAPE_RAY) + return false; + + if (swap) { + return solve_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); + } else { + return solve_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); + } + + } else if (concave_B) { + + if (concave_A) + return false; + + if (!swap) + return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B); + else + return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B); + + } else { + + return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B); + } +} + +void CollisionSolver3DSW::concave_distance_callback(void *p_userdata, Shape3DSW *p_convex) { + + _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata); + cinfo.aabb_tests++; + if (cinfo.collided) + return; + + Vector3 close_A, close_B; + cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B); + + if (cinfo.collided) + return; + if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) { + + cinfo.close_A = close_A; + cinfo.close_B = close_B; + cinfo.tested = true; + } + + cinfo.collisions++; +} + +bool CollisionSolver3DSW::solve_distance_plane(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) { + + const PlaneShape3DSW *plane = static_cast<const PlaneShape3DSW *>(p_shape_A); + if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_PLANE) + return false; + Plane p = p_transform_A.xform(plane->get_plane()); + + static const int max_supports = 16; + Vector3 supports[max_supports]; + int support_count; + + p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count); + + bool collided = false; + Vector3 closest; + real_t closest_d = 0; + + for (int i = 0; i < support_count; i++) { + + supports[i] = p_transform_B.xform(supports[i]); + real_t d = p.distance_to(supports[i]); + if (i == 0 || d < closest_d) { + closest = supports[i]; + closest_d = d; + if (d <= 0) + collided = true; + } + } + + r_point_A = p.project(closest); + r_point_B = closest; + + return collided; +} + +bool CollisionSolver3DSW::solve_distance(const Shape3DSW *p_shape_A, const Transform &p_transform_A, const Shape3DSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) { + + if (p_shape_A->is_concave()) + return false; + + if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_PLANE) { + + Vector3 a, b; + bool col = solve_distance_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b); + r_point_A = b; + r_point_B = a; + return !col; + + } else if (p_shape_B->is_concave()) { + + if (p_shape_A->is_concave()) + return false; + + const ConcaveShape3DSW *concave_B = static_cast<const ConcaveShape3DSW *>(p_shape_B); + + _ConcaveCollisionInfo cinfo; + cinfo.transform_A = &p_transform_A; + cinfo.shape_A = p_shape_A; + cinfo.transform_B = &p_transform_B; + cinfo.result_callback = NULL; + cinfo.userdata = NULL; + cinfo.swap_result = false; + cinfo.collided = false; + cinfo.collisions = 0; + cinfo.aabb_tests = 0; + cinfo.tested = false; + + Transform rel_transform = p_transform_A; + rel_transform.origin -= p_transform_B.origin; + + //quickly compute a local AABB + + bool use_cc_hint = p_concave_hint != AABB(); + AABB cc_hint_aabb; + if (use_cc_hint) { + cc_hint_aabb = p_concave_hint; + cc_hint_aabb.position -= p_transform_B.origin; + } + + AABB local_aabb; + for (int i = 0; i < 3; i++) { + + Vector3 axis(p_transform_B.basis.get_axis(i)); + real_t axis_scale = ((real_t)1.0) / axis.length(); + axis *= axis_scale; + + real_t smin, smax; + + if (use_cc_hint) { + cc_hint_aabb.project_range_in_plane(Plane(axis, 0), smin, smax); + } else { + p_shape_A->project_range(axis, rel_transform, smin, smax); + } + + smin *= axis_scale; + smax *= axis_scale; + + local_aabb.position[i] = smin; + local_aabb.size[i] = smax - smin; + } + + concave_B->cull(local_aabb, concave_distance_callback, &cinfo); + if (!cinfo.collided) { + r_point_A = cinfo.close_A; + r_point_B = cinfo.close_B; + } + + return !cinfo.collided; + } else { + + return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis.. + } +} |