diff options
Diffstat (limited to 'servers/physics/joints/slider_joint_sw.cpp')
-rw-r--r-- | servers/physics/joints/slider_joint_sw.cpp | 303 |
1 files changed, 123 insertions, 180 deletions
diff --git a/servers/physics/joints/slider_joint_sw.cpp b/servers/physics/joints/slider_joint_sw.cpp index fc728ed0ba..b8a6c1ecaf 100644 --- a/servers/physics/joints/slider_joint_sw.cpp +++ b/servers/physics/joints/slider_joint_sw.cpp @@ -36,8 +36,7 @@ See corresponding header file for licensing info. //----------------------------------------------------------------------------- -static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) -{ +static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) { real_t coeff_1 = Math_PI / 4.0f; real_t coeff_2 = 3.0f * coeff_1; real_t abs_y = Math::abs(y); @@ -52,13 +51,11 @@ static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) return (y < 0.0f) ? -angle : angle; } - -void SliderJointSW::initParams() -{ - m_lowerLinLimit = real_t(1.0); - m_upperLinLimit = real_t(-1.0); - m_lowerAngLimit = real_t(0.); - m_upperAngLimit = real_t(0.); +void SliderJointSW::initParams() { + m_lowerLinLimit = real_t(1.0); + m_upperLinLimit = real_t(-1.0); + m_lowerAngLimit = real_t(0.); + m_upperAngLimit = real_t(0.); m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; m_dampingDirLin = real_t(0.); @@ -84,40 +81,35 @@ void SliderJointSW::initParams() m_accumulatedLinMotorImpulse = real_t(0.0); m_poweredAngMotor = false; - m_targetAngMotorVelocity = real_t(0.); - m_maxAngMotorForce = real_t(0.); + m_targetAngMotorVelocity = real_t(0.); + m_maxAngMotorForce = real_t(0.); m_accumulatedAngMotorImpulse = real_t(0.0); } // SliderJointSW::initParams() //----------------------------------------------------------------------------- - //----------------------------------------------------------------------------- -SliderJointSW::SliderJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB) - : JointSW(_arr,2) - , m_frameInA(frameInA) - , m_frameInB(frameInB) -{ +SliderJointSW::SliderJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameInA, const Transform &frameInB) + : JointSW(_arr, 2), m_frameInA(frameInA), m_frameInB(frameInB) { - A=rbA; - B=rbB; + A = rbA; + B = rbB; - A->add_constraint(this,0); - B->add_constraint(this,1); + A->add_constraint(this, 0); + B->add_constraint(this, 1); initParams(); } // SliderJointSW::SliderJointSW() //----------------------------------------------------------------------------- -bool SliderJointSW::setup(real_t p_step) -{ +bool SliderJointSW::setup(real_t p_step) { //calculate transforms - m_calculatedTransformA = A->get_transform() * m_frameInA; - m_calculatedTransformB = B->get_transform() * m_frameInB; + m_calculatedTransformA = A->get_transform() * m_frameInA; + m_calculatedTransformB = B->get_transform() * m_frameInB; m_realPivotAInW = m_calculatedTransformA.origin; m_realPivotBInW = m_calculatedTransformB.origin; m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X @@ -125,42 +117,38 @@ bool SliderJointSW::setup(real_t p_step) m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; m_relPosA = m_projPivotInW - A->get_transform().origin; m_relPosB = m_realPivotBInW - B->get_transform().origin; - Vector3 normalWorld; - int i; - //linear part - for(i = 0; i < 3; i++) - { + Vector3 normalWorld; + int i; + //linear part + for (i = 0; i < 3; i++) { normalWorld = m_calculatedTransformA.basis.get_axis(i); memnew_placement(&m_jacLin[i], JacobianEntrySW( - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - m_relPosA - A->get_center_of_mass(), - m_relPosB - B->get_center_of_mass(), - normalWorld, - A->get_inv_inertia(), - A->get_inv_mass(), - B->get_inv_inertia(), - B->get_inv_mass() - )); + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + m_relPosA - A->get_center_of_mass(), + m_relPosB - B->get_center_of_mass(), + normalWorld, + A->get_inv_inertia(), + A->get_inv_mass(), + B->get_inv_inertia(), + B->get_inv_mass())); m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal(); m_depth[i] = m_delta.dot(normalWorld); - } + } testLinLimits(); - // angular part - for(i = 0; i < 3; i++) - { + // angular part + for (i = 0; i < 3; i++) { normalWorld = m_calculatedTransformA.basis.get_axis(i); - memnew_placement(&m_jacAng[i], JacobianEntrySW( - normalWorld, - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - A->get_inv_inertia(), - B->get_inv_inertia() - )); + memnew_placement(&m_jacAng[i], JacobianEntrySW( + normalWorld, + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + A->get_inv_inertia(), + B->get_inv_inertia())); } testAngLimits(); Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); - m_kAngle = real_t(1.0 )/ (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); + m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); // clear accumulator for motors m_accumulatedLinMotorImpulse = real_t(0.0); m_accumulatedAngMotorImpulse = real_t(0.0); @@ -172,14 +160,13 @@ bool SliderJointSW::setup(real_t p_step) void SliderJointSW::solve(real_t p_step) { - int i; - // linear - Vector3 velA = A->get_velocity_in_local_point(m_relPosA); - Vector3 velB = B->get_velocity_in_local_point(m_relPosB); - Vector3 vel = velA - velB; - for(i = 0; i < 3; i++) - { - const Vector3& normal = m_jacLin[i].m_linearJointAxis; + int i; + // linear + Vector3 velA = A->get_velocity_in_local_point(m_relPosA); + Vector3 velB = B->get_velocity_in_local_point(m_relPosB); + Vector3 vel = velA - velB; + for (i = 0; i < 3; i++) { + const Vector3 &normal = m_jacLin[i].m_linearJointAxis; real_t rel_vel = normal.dot(vel); // calculate positional error real_t depth = m_depth[i]; @@ -190,81 +177,70 @@ void SliderJointSW::solve(real_t p_step) { // calcutate and apply impulse real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i]; Vector3 impulse_vector = normal * normalImpulse; - A->apply_impulse( m_relPosA, impulse_vector); - B->apply_impulse(m_relPosB,-impulse_vector); - if(m_poweredLinMotor && (!i)) - { // apply linear motor - if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce) - { + A->apply_impulse(m_relPosA, impulse_vector); + B->apply_impulse(m_relPosB, -impulse_vector); + if (m_poweredLinMotor && (!i)) { // apply linear motor + if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) { real_t desiredMotorVel = m_targetLinMotorVelocity; real_t motor_relvel = desiredMotorVel + rel_vel; normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; // clamp accumulated impulse real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse); - if(new_acc > m_maxLinMotorForce) - { + if (new_acc > m_maxLinMotorForce) { new_acc = m_maxLinMotorForce; } - real_t del = new_acc - m_accumulatedLinMotorImpulse; - if(normalImpulse < real_t(0.0)) - { + real_t del = new_acc - m_accumulatedLinMotorImpulse; + if (normalImpulse < real_t(0.0)) { normalImpulse = -del; - } - else - { + } else { normalImpulse = del; } m_accumulatedLinMotorImpulse = new_acc; // apply clamped impulse impulse_vector = normal * normalImpulse; - A->apply_impulse( m_relPosA, impulse_vector); - B->apply_impulse( m_relPosB,-impulse_vector); + A->apply_impulse(m_relPosA, impulse_vector); + B->apply_impulse(m_relPosB, -impulse_vector); } } - } + } // angular // get axes in world space - Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); - Vector3 axisB = m_calculatedTransformB.basis.get_axis(0); + Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); + Vector3 axisB = m_calculatedTransformB.basis.get_axis(0); - const Vector3& angVelA = A->get_angular_velocity(); - const Vector3& angVelB = B->get_angular_velocity(); + const Vector3 &angVelA = A->get_angular_velocity(); + const Vector3 &angVelB = B->get_angular_velocity(); Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); Vector3 angAorthog = angVelA - angVelAroundAxisA; Vector3 angBorthog = angVelB - angVelAroundAxisB; - Vector3 velrelOrthog = angAorthog-angBorthog; + Vector3 velrelOrthog = angAorthog - angBorthog; //solve orthogonal angular velocity correction real_t len = velrelOrthog.length(); - if (len > real_t(0.00001)) - { + if (len > real_t(0.00001)) { Vector3 normal = velrelOrthog.normalized(); real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); - velrelOrthog *= (real_t(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng; + velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng; } //solve angular positional correction - Vector3 angularError = axisA.cross(axisB) *(real_t(1.)/p_step); + Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step); real_t len2 = angularError.length(); - if (len2>real_t(0.00001)) - { + if (len2 > real_t(0.00001)) { Vector3 normal2 = angularError.normalized(); real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); - angularError *= (real_t(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; + angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; } // apply impulse - A->apply_torque_impulse(-velrelOrthog+angularError); - B->apply_torque_impulse(velrelOrthog-angularError); + A->apply_torque_impulse(-velrelOrthog + angularError); + B->apply_torque_impulse(velrelOrthog - angularError); real_t impulseMag; //solve angular limits - if(m_solveAngLim) - { + if (m_solveAngLim) { impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step; impulseMag *= m_kAngle * m_softnessLimAng; - } - else - { + } else { impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step; impulseMag *= m_kAngle * m_softnessDirAng; } @@ -272,10 +248,8 @@ void SliderJointSW::solve(real_t p_step) { A->apply_torque_impulse(impulse); B->apply_torque_impulse(-impulse); //apply angular motor - if(m_poweredAngMotor) - { - if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce) - { + if (m_poweredAngMotor) { + if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) { Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB; real_t projRelVel = velrel.dot(axisA); @@ -285,17 +259,13 @@ void SliderJointSW::solve(real_t p_step) { real_t angImpulse = m_kAngle * motor_relvel; // clamp accumulated impulse real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse); - if(new_acc > m_maxAngMotorForce) - { + if (new_acc > m_maxAngMotorForce) { new_acc = m_maxAngMotorForce; } - real_t del = new_acc - m_accumulatedAngMotorImpulse; - if(angImpulse < real_t(0.0)) - { + real_t del = new_acc - m_accumulatedAngMotorImpulse; + if (angImpulse < real_t(0.0)) { angImpulse = -del; - } - else - { + } else { angImpulse = del; } m_accumulatedAngMotorImpulse = new_acc; @@ -311,96 +281,75 @@ void SliderJointSW::solve(real_t p_step) { //----------------------------------------------------------------------------- -void SliderJointSW::calculateTransforms(void){ - m_calculatedTransformA = A->get_transform() * m_frameInA ; +void SliderJointSW::calculateTransforms(void) { + m_calculatedTransformA = A->get_transform() * m_frameInA; m_calculatedTransformB = B->get_transform() * m_frameInB; m_realPivotAInW = m_calculatedTransformA.origin; m_realPivotBInW = m_calculatedTransformB.origin; m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X m_delta = m_realPivotBInW - m_realPivotAInW; m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; - Vector3 normalWorld; - int i; - //linear part - for(i = 0; i < 3; i++) - { + Vector3 normalWorld; + int i; + //linear part + for (i = 0; i < 3; i++) { normalWorld = m_calculatedTransformA.basis.get_axis(i); m_depth[i] = m_delta.dot(normalWorld); - } + } } // SliderJointSW::calculateTransforms() //----------------------------------------------------------------------------- -void SliderJointSW::testLinLimits(void) -{ +void SliderJointSW::testLinLimits(void) { m_solveLinLim = false; m_linPos = m_depth[0]; - if(m_lowerLinLimit <= m_upperLinLimit) - { - if(m_depth[0] > m_upperLinLimit) - { + if (m_lowerLinLimit <= m_upperLinLimit) { + if (m_depth[0] > m_upperLinLimit) { m_depth[0] -= m_upperLinLimit; m_solveLinLim = true; - } - else if(m_depth[0] < m_lowerLinLimit) - { + } else if (m_depth[0] < m_lowerLinLimit) { m_depth[0] -= m_lowerLinLimit; m_solveLinLim = true; - } - else - { + } else { m_depth[0] = real_t(0.); } - } - else - { + } else { m_depth[0] = real_t(0.); } } // SliderJointSW::testLinLimits() //----------------------------------------------------------------------------- - -void SliderJointSW::testAngLimits(void) -{ +void SliderJointSW::testAngLimits(void) { m_angDepth = real_t(0.); m_solveAngLim = false; - if(m_lowerAngLimit <= m_upperAngLimit) - { + if (m_lowerAngLimit <= m_upperAngLimit) { const Vector3 axisA0 = m_calculatedTransformA.basis.get_axis(1); const Vector3 axisA1 = m_calculatedTransformA.basis.get_axis(2); const Vector3 axisB0 = m_calculatedTransformB.basis.get_axis(1); real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); - if(rot < m_lowerAngLimit) - { + if (rot < m_lowerAngLimit) { m_angDepth = rot - m_lowerAngLimit; m_solveAngLim = true; - } - else if(rot > m_upperAngLimit) - { + } else if (rot > m_upperAngLimit) { m_angDepth = rot - m_upperAngLimit; m_solveAngLim = true; } } } // SliderJointSW::testAngLimits() - //----------------------------------------------------------------------------- - - -Vector3 SliderJointSW::getAncorInA(void) -{ +Vector3 SliderJointSW::getAncorInA(void) { Vector3 ancorInA; ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis; - ancorInA = A->get_transform().inverse().xform( ancorInA ); + ancorInA = A->get_transform().inverse().xform(ancorInA); return ancorInA; } // SliderJointSW::getAncorInA() //----------------------------------------------------------------------------- -Vector3 SliderJointSW::getAncorInB(void) -{ +Vector3 SliderJointSW::getAncorInB(void) { Vector3 ancorInB; ancorInB = m_frameInB.origin; return ancorInB; @@ -408,38 +357,36 @@ Vector3 SliderJointSW::getAncorInB(void) void SliderJointSW::set_param(PhysicsServer::SliderJointParam p_param, real_t p_value) { - switch(p_param) { - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin=p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin=p_value; break; - - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng=p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng=p_value; break; - + switch (p_param) { + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin = p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin = p_value; break; + + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng = p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng = p_value; break; } - } real_t SliderJointSW::get_param(PhysicsServer::SliderJointParam p_param) const { - switch(p_param) { + switch (p_param) { case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: return m_upperLinLimit; case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: return m_lowerLinLimit; case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: return m_softnessLimLin; @@ -463,11 +410,7 @@ real_t SliderJointSW::get_param(PhysicsServer::SliderJointParam p_param) const { case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoAng; case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoAng; case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: return m_dampingOrthoAng; - } return 0; - } - - |