diff options
Diffstat (limited to 'servers/physics/joints/slider_joint_sw.cpp')
-rw-r--r-- | servers/physics/joints/slider_joint_sw.cpp | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/servers/physics/joints/slider_joint_sw.cpp b/servers/physics/joints/slider_joint_sw.cpp new file mode 100644 index 0000000000..faa6875378 --- /dev/null +++ b/servers/physics/joints/slider_joint_sw.cpp @@ -0,0 +1,439 @@ +#include "slider_joint_sw.h" + +//----------------------------------------------------------------------------- + +static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) +{ + real_t coeff_1 = Math_PI / 4.0f; + real_t coeff_2 = 3.0f * coeff_1; + real_t abs_y = Math::abs(y); + real_t angle; + if (x >= 0.0f) { + real_t r = (x - abs_y) / (x + abs_y); + angle = coeff_1 - coeff_1 * r; + } else { + real_t r = (x + abs_y) / (abs_y - x); + angle = coeff_2 - coeff_1 * r; + } + return (y < 0.0f) ? -angle : angle; +} + + +void SliderJointSW::initParams() +{ + m_lowerLinLimit = real_t(1.0); + m_upperLinLimit = real_t(-1.0); + m_lowerAngLimit = real_t(0.); + m_upperAngLimit = real_t(0.); + m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingDirLin = real_t(0.); + m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingDirAng = real_t(0.); + m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; + m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; + m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; + m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; + + m_poweredLinMotor = false; + m_targetLinMotorVelocity = real_t(0.); + m_maxLinMotorForce = real_t(0.); + m_accumulatedLinMotorImpulse = real_t(0.0); + + m_poweredAngMotor = false; + m_targetAngMotorVelocity = real_t(0.); + m_maxAngMotorForce = real_t(0.); + m_accumulatedAngMotorImpulse = real_t(0.0); + +} // SliderJointSW::initParams() + +//----------------------------------------------------------------------------- + + +//----------------------------------------------------------------------------- + +SliderJointSW::SliderJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB) + : JointSW(_arr,2) + , m_frameInA(frameInA) + , m_frameInB(frameInB) +{ + + A=rbA; + B=rbB; + + A->add_constraint(this,0); + B->add_constraint(this,1); + + initParams(); +} // SliderJointSW::SliderJointSW() + +//----------------------------------------------------------------------------- + +bool SliderJointSW::setup(float p_step) +{ + + //calculate transforms + m_calculatedTransformA = A->get_transform() * m_frameInA; + m_calculatedTransformB = B->get_transform() * m_frameInB; + m_realPivotAInW = m_calculatedTransformA.origin; + m_realPivotBInW = m_calculatedTransformB.origin; + m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X + m_delta = m_realPivotBInW - m_realPivotAInW; + m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; + m_relPosA = m_projPivotInW - A->get_transform().origin; + m_relPosB = m_realPivotBInW - B->get_transform().origin; + Vector3 normalWorld; + int i; + //linear part + for(i = 0; i < 3; i++) + { + normalWorld = m_calculatedTransformA.basis.get_axis(i); + memnew_placement(&m_jacLin[i], JacobianEntrySW( + A->get_transform().basis.transposed(), + B->get_transform().basis.transposed(), + m_relPosA, + m_relPosB, + normalWorld, + A->get_inv_inertia(), + A->get_inv_mass(), + B->get_inv_inertia(), + B->get_inv_mass() + )); + m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal(); + m_depth[i] = m_delta.dot(normalWorld); + } + testLinLimits(); + // angular part + for(i = 0; i < 3; i++) + { + normalWorld = m_calculatedTransformA.basis.get_axis(i); + memnew_placement(&m_jacAng[i], JacobianEntrySW( + normalWorld, + A->get_transform().basis.transposed(), + B->get_transform().basis.transposed(), + A->get_inv_inertia(), + B->get_inv_inertia() + )); + } + testAngLimits(); + Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); + m_kAngle = real_t(1.0 )/ (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); + // clear accumulator for motors + m_accumulatedLinMotorImpulse = real_t(0.0); + m_accumulatedAngMotorImpulse = real_t(0.0); + + return true; +} // SliderJointSW::buildJacobianInt() + +//----------------------------------------------------------------------------- + +void SliderJointSW::solve(real_t p_step) { + + int i; + // linear + Vector3 velA = A->get_velocity_in_local_point(m_relPosA); + Vector3 velB = B->get_velocity_in_local_point(m_relPosB); + Vector3 vel = velA - velB; + for(i = 0; i < 3; i++) + { + const Vector3& normal = m_jacLin[i].m_linearJointAxis; + real_t rel_vel = normal.dot(vel); + // calculate positional error + real_t depth = m_depth[i]; + // get parameters + real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); + real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); + real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); + // calcutate and apply impulse + real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i]; + Vector3 impulse_vector = normal * normalImpulse; + A->apply_impulse( m_relPosA, impulse_vector); + B->apply_impulse(m_relPosB,-impulse_vector); + if(m_poweredLinMotor && (!i)) + { // apply linear motor + if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce) + { + real_t desiredMotorVel = m_targetLinMotorVelocity; + real_t motor_relvel = desiredMotorVel + rel_vel; + normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; + // clamp accumulated impulse + real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse); + if(new_acc > m_maxLinMotorForce) + { + new_acc = m_maxLinMotorForce; + } + real_t del = new_acc - m_accumulatedLinMotorImpulse; + if(normalImpulse < real_t(0.0)) + { + normalImpulse = -del; + } + else + { + normalImpulse = del; + } + m_accumulatedLinMotorImpulse = new_acc; + // apply clamped impulse + impulse_vector = normal * normalImpulse; + A->apply_impulse( m_relPosA, impulse_vector); + B->apply_impulse( m_relPosB,-impulse_vector); + } + } + } + // angular + // get axes in world space + Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); + Vector3 axisB = m_calculatedTransformB.basis.get_axis(0); + + const Vector3& angVelA = A->get_angular_velocity(); + const Vector3& angVelB = B->get_angular_velocity(); + + Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); + Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); + + Vector3 angAorthog = angVelA - angVelAroundAxisA; + Vector3 angBorthog = angVelB - angVelAroundAxisB; + Vector3 velrelOrthog = angAorthog-angBorthog; + //solve orthogonal angular velocity correction + real_t len = velrelOrthog.length(); + if (len > real_t(0.00001)) + { + Vector3 normal = velrelOrthog.normalized(); + real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); + velrelOrthog *= (real_t(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng; + } + //solve angular positional correction + Vector3 angularError = axisA.cross(axisB) *(real_t(1.)/p_step); + real_t len2 = angularError.length(); + if (len2>real_t(0.00001)) + { + Vector3 normal2 = angularError.normalized(); + real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); + angularError *= (real_t(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; + } + // apply impulse + A->apply_torque_impulse(-velrelOrthog+angularError); + B->apply_torque_impulse(velrelOrthog-angularError); + real_t impulseMag; + //solve angular limits + if(m_solveAngLim) + { + impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step; + impulseMag *= m_kAngle * m_softnessLimAng; + } + else + { + impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step; + impulseMag *= m_kAngle * m_softnessDirAng; + } + Vector3 impulse = axisA * impulseMag; + A->apply_torque_impulse(impulse); + B->apply_torque_impulse(-impulse); + //apply angular motor + if(m_poweredAngMotor) + { + if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce) + { + Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB; + real_t projRelVel = velrel.dot(axisA); + + real_t desiredMotorVel = m_targetAngMotorVelocity; + real_t motor_relvel = desiredMotorVel - projRelVel; + + real_t angImpulse = m_kAngle * motor_relvel; + // clamp accumulated impulse + real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse); + if(new_acc > m_maxAngMotorForce) + { + new_acc = m_maxAngMotorForce; + } + real_t del = new_acc - m_accumulatedAngMotorImpulse; + if(angImpulse < real_t(0.0)) + { + angImpulse = -del; + } + else + { + angImpulse = del; + } + m_accumulatedAngMotorImpulse = new_acc; + // apply clamped impulse + Vector3 motorImp = angImpulse * axisA; + A->apply_torque_impulse(motorImp); + B->apply_torque_impulse(-motorImp); + } + } +} // SliderJointSW::solveConstraint() + +//----------------------------------------------------------------------------- + +//----------------------------------------------------------------------------- + +void SliderJointSW::calculateTransforms(void){ + m_calculatedTransformA = A->get_transform() * m_frameInA ; + m_calculatedTransformB = B->get_transform() * m_frameInB; + m_realPivotAInW = m_calculatedTransformA.origin; + m_realPivotBInW = m_calculatedTransformB.origin; + m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X + m_delta = m_realPivotBInW - m_realPivotAInW; + m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; + Vector3 normalWorld; + int i; + //linear part + for(i = 0; i < 3; i++) + { + normalWorld = m_calculatedTransformA.basis.get_axis(i); + m_depth[i] = m_delta.dot(normalWorld); + } +} // SliderJointSW::calculateTransforms() + +//----------------------------------------------------------------------------- + +void SliderJointSW::testLinLimits(void) +{ + m_solveLinLim = false; + m_linPos = m_depth[0]; + if(m_lowerLinLimit <= m_upperLinLimit) + { + if(m_depth[0] > m_upperLinLimit) + { + m_depth[0] -= m_upperLinLimit; + m_solveLinLim = true; + } + else if(m_depth[0] < m_lowerLinLimit) + { + m_depth[0] -= m_lowerLinLimit; + m_solveLinLim = true; + } + else + { + m_depth[0] = real_t(0.); + } + } + else + { + m_depth[0] = real_t(0.); + } +} // SliderJointSW::testLinLimits() + +//----------------------------------------------------------------------------- + + +void SliderJointSW::testAngLimits(void) +{ + m_angDepth = real_t(0.); + m_solveAngLim = false; + if(m_lowerAngLimit <= m_upperAngLimit) + { + const Vector3 axisA0 = m_calculatedTransformA.basis.get_axis(1); + const Vector3 axisA1 = m_calculatedTransformA.basis.get_axis(2); + const Vector3 axisB0 = m_calculatedTransformB.basis.get_axis(1); + real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); + if(rot < m_lowerAngLimit) + { + m_angDepth = rot - m_lowerAngLimit; + m_solveAngLim = true; + } + else if(rot > m_upperAngLimit) + { + m_angDepth = rot - m_upperAngLimit; + m_solveAngLim = true; + } + } +} // SliderJointSW::testAngLimits() + + +//----------------------------------------------------------------------------- + + + +Vector3 SliderJointSW::getAncorInA(void) +{ + Vector3 ancorInA; + ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis; + ancorInA = A->get_transform().inverse().xform( ancorInA ); + return ancorInA; +} // SliderJointSW::getAncorInA() + +//----------------------------------------------------------------------------- + +Vector3 SliderJointSW::getAncorInB(void) +{ + Vector3 ancorInB; + ancorInB = m_frameInB.origin; + return ancorInB; +} // SliderJointSW::getAncorInB(); + +void SliderJointSW::set_param(PhysicsServer::SliderJointParam p_param, float p_value) { + + switch(p_param) { + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin=p_value; break; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin=p_value; break; + + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng=p_value; break; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng=p_value; break; + + } + +} + +float SliderJointSW::get_param(PhysicsServer::SliderJointParam p_param) const { + + switch(p_param) { + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: return m_upperLinLimit; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: return m_lowerLinLimit; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: return m_softnessLimLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: return m_restitutionLimLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: return m_dampingLimLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: return m_softnessDirLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: return m_restitutionDirLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: return m_dampingDirLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoLin; + case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: return m_dampingOrthoLin; + + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: return m_upperAngLimit; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: return m_lowerAngLimit; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: return m_softnessLimAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: return m_restitutionLimAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: return m_dampingLimAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: return m_softnessDirAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: return m_restitutionDirAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: return m_dampingDirAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoAng; + case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: return m_dampingOrthoAng; + + } + + return 0; + +} + + |