summaryrefslogtreecommitdiff
path: root/servers/physics/joints/slider_joint_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics/joints/slider_joint_sw.cpp')
-rw-r--r--servers/physics/joints/slider_joint_sw.cpp443
1 files changed, 0 insertions, 443 deletions
diff --git a/servers/physics/joints/slider_joint_sw.cpp b/servers/physics/joints/slider_joint_sw.cpp
deleted file mode 100644
index 9963c7ae89..0000000000
--- a/servers/physics/joints/slider_joint_sw.cpp
+++ /dev/null
@@ -1,443 +0,0 @@
-/*************************************************************************/
-/* slider_joint_sw.cpp */
-/*************************************************************************/
-/* This file is part of: */
-/* GODOT ENGINE */
-/* https://godotengine.org */
-/*************************************************************************/
-/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
-/* */
-/* Permission is hereby granted, free of charge, to any person obtaining */
-/* a copy of this software and associated documentation files (the */
-/* "Software"), to deal in the Software without restriction, including */
-/* without limitation the rights to use, copy, modify, merge, publish, */
-/* distribute, sublicense, and/or sell copies of the Software, and to */
-/* permit persons to whom the Software is furnished to do so, subject to */
-/* the following conditions: */
-/* */
-/* The above copyright notice and this permission notice shall be */
-/* included in all copies or substantial portions of the Software. */
-/* */
-/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
-/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
-/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
-/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
-/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
-/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
-/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
-/*************************************************************************/
-
-/*
-Adapted to Godot from the Bullet library.
-*/
-
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-/*
-Added by Roman Ponomarev (rponom@gmail.com)
-April 04, 2008
-
-*/
-
-#include "slider_joint_sw.h"
-
-//-----------------------------------------------------------------------------
-
-static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) {
- real_t coeff_1 = Math_PI / 4.0f;
- real_t coeff_2 = 3.0f * coeff_1;
- real_t abs_y = Math::abs(y);
- real_t angle;
- if (x >= 0.0f) {
- real_t r = (x - abs_y) / (x + abs_y);
- angle = coeff_1 - coeff_1 * r;
- } else {
- real_t r = (x + abs_y) / (abs_y - x);
- angle = coeff_2 - coeff_1 * r;
- }
- return (y < 0.0f) ? -angle : angle;
-}
-
-void SliderJointSW::initParams() {
- m_lowerLinLimit = real_t(1.0);
- m_upperLinLimit = real_t(-1.0);
- m_lowerAngLimit = real_t(0.);
- m_upperAngLimit = real_t(0.);
- m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
- m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
- m_dampingDirLin = real_t(0.);
- m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
- m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
- m_dampingDirAng = real_t(0.);
- m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
- m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
- m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
- m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
- m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
- m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
- m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
- m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
- m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
- m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
- m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
- m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;
-
- m_poweredLinMotor = false;
- m_targetLinMotorVelocity = real_t(0.);
- m_maxLinMotorForce = real_t(0.);
- m_accumulatedLinMotorImpulse = real_t(0.0);
-
- m_poweredAngMotor = false;
- m_targetAngMotorVelocity = real_t(0.);
- m_maxAngMotorForce = real_t(0.);
- m_accumulatedAngMotorImpulse = real_t(0.0);
-
-} // SliderJointSW::initParams()
-
-//-----------------------------------------------------------------------------
-
-//-----------------------------------------------------------------------------
-
-SliderJointSW::SliderJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameInA, const Transform &frameInB) :
- JointSW(_arr, 2),
- m_frameInA(frameInA),
- m_frameInB(frameInB) {
-
- A = rbA;
- B = rbB;
-
- A->add_constraint(this, 0);
- B->add_constraint(this, 1);
-
- initParams();
-} // SliderJointSW::SliderJointSW()
-
-//-----------------------------------------------------------------------------
-
-bool SliderJointSW::setup(real_t p_step) {
-
- //calculate transforms
- m_calculatedTransformA = A->get_transform() * m_frameInA;
- m_calculatedTransformB = B->get_transform() * m_frameInB;
- m_realPivotAInW = m_calculatedTransformA.origin;
- m_realPivotBInW = m_calculatedTransformB.origin;
- m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X
- m_delta = m_realPivotBInW - m_realPivotAInW;
- m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
- m_relPosA = m_projPivotInW - A->get_transform().origin;
- m_relPosB = m_realPivotBInW - B->get_transform().origin;
- Vector3 normalWorld;
- int i;
- //linear part
- for (i = 0; i < 3; i++) {
- normalWorld = m_calculatedTransformA.basis.get_axis(i);
- memnew_placement(&m_jacLin[i], JacobianEntrySW(
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- m_relPosA - A->get_center_of_mass(),
- m_relPosB - B->get_center_of_mass(),
- normalWorld,
- A->get_inv_inertia(),
- A->get_inv_mass(),
- B->get_inv_inertia(),
- B->get_inv_mass()));
- m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal();
- m_depth[i] = m_delta.dot(normalWorld);
- }
- testLinLimits();
- // angular part
- for (i = 0; i < 3; i++) {
- normalWorld = m_calculatedTransformA.basis.get_axis(i);
- memnew_placement(&m_jacAng[i], JacobianEntrySW(
- normalWorld,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
- }
- testAngLimits();
- Vector3 axisA = m_calculatedTransformA.basis.get_axis(0);
- m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA));
- // clear accumulator for motors
- m_accumulatedLinMotorImpulse = real_t(0.0);
- m_accumulatedAngMotorImpulse = real_t(0.0);
-
- return true;
-} // SliderJointSW::buildJacobianInt()
-
-//-----------------------------------------------------------------------------
-
-void SliderJointSW::solve(real_t p_step) {
-
- int i;
- // linear
- Vector3 velA = A->get_velocity_in_local_point(m_relPosA);
- Vector3 velB = B->get_velocity_in_local_point(m_relPosB);
- Vector3 vel = velA - velB;
- for (i = 0; i < 3; i++) {
- const Vector3 &normal = m_jacLin[i].m_linearJointAxis;
- real_t rel_vel = normal.dot(vel);
- // calculate positional error
- real_t depth = m_depth[i];
- // get parameters
- real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin);
- real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin);
- real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin);
- // calcutate and apply impulse
- real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i];
- Vector3 impulse_vector = normal * normalImpulse;
- A->apply_impulse(m_relPosA, impulse_vector);
- B->apply_impulse(m_relPosB, -impulse_vector);
- if (m_poweredLinMotor && (!i)) { // apply linear motor
- if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) {
- real_t desiredMotorVel = m_targetLinMotorVelocity;
- real_t motor_relvel = desiredMotorVel + rel_vel;
- normalImpulse = -motor_relvel * m_jacLinDiagABInv[i];
- // clamp accumulated impulse
- real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse);
- if (new_acc > m_maxLinMotorForce) {
- new_acc = m_maxLinMotorForce;
- }
- real_t del = new_acc - m_accumulatedLinMotorImpulse;
- if (normalImpulse < real_t(0.0)) {
- normalImpulse = -del;
- } else {
- normalImpulse = del;
- }
- m_accumulatedLinMotorImpulse = new_acc;
- // apply clamped impulse
- impulse_vector = normal * normalImpulse;
- A->apply_impulse(m_relPosA, impulse_vector);
- B->apply_impulse(m_relPosB, -impulse_vector);
- }
- }
- }
- // angular
- // get axes in world space
- Vector3 axisA = m_calculatedTransformA.basis.get_axis(0);
- Vector3 axisB = m_calculatedTransformB.basis.get_axis(0);
-
- const Vector3 &angVelA = A->get_angular_velocity();
- const Vector3 &angVelB = B->get_angular_velocity();
-
- Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
- Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);
-
- Vector3 angAorthog = angVelA - angVelAroundAxisA;
- Vector3 angBorthog = angVelB - angVelAroundAxisB;
- Vector3 velrelOrthog = angAorthog - angBorthog;
- //solve orthogonal angular velocity correction
- real_t len = velrelOrthog.length();
- if (len > real_t(0.00001)) {
- Vector3 normal = velrelOrthog.normalized();
- real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal);
- velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng;
- }
- //solve angular positional correction
- Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step);
- real_t len2 = angularError.length();
- if (len2 > real_t(0.00001)) {
- Vector3 normal2 = angularError.normalized();
- real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2);
- angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
- }
- // apply impulse
- A->apply_torque_impulse(-velrelOrthog + angularError);
- B->apply_torque_impulse(velrelOrthog - angularError);
- real_t impulseMag;
- //solve angular limits
- if (m_solveAngLim) {
- impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step;
- impulseMag *= m_kAngle * m_softnessLimAng;
- } else {
- impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step;
- impulseMag *= m_kAngle * m_softnessDirAng;
- }
- Vector3 impulse = axisA * impulseMag;
- A->apply_torque_impulse(impulse);
- B->apply_torque_impulse(-impulse);
- //apply angular motor
- if (m_poweredAngMotor) {
- if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) {
- Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB;
- real_t projRelVel = velrel.dot(axisA);
-
- real_t desiredMotorVel = m_targetAngMotorVelocity;
- real_t motor_relvel = desiredMotorVel - projRelVel;
-
- real_t angImpulse = m_kAngle * motor_relvel;
- // clamp accumulated impulse
- real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse);
- if (new_acc > m_maxAngMotorForce) {
- new_acc = m_maxAngMotorForce;
- }
- real_t del = new_acc - m_accumulatedAngMotorImpulse;
- if (angImpulse < real_t(0.0)) {
- angImpulse = -del;
- } else {
- angImpulse = del;
- }
- m_accumulatedAngMotorImpulse = new_acc;
- // apply clamped impulse
- Vector3 motorImp = angImpulse * axisA;
- A->apply_torque_impulse(motorImp);
- B->apply_torque_impulse(-motorImp);
- }
- }
-} // SliderJointSW::solveConstraint()
-
-//-----------------------------------------------------------------------------
-
-//-----------------------------------------------------------------------------
-
-void SliderJointSW::calculateTransforms(void) {
- m_calculatedTransformA = A->get_transform() * m_frameInA;
- m_calculatedTransformB = B->get_transform() * m_frameInB;
- m_realPivotAInW = m_calculatedTransformA.origin;
- m_realPivotBInW = m_calculatedTransformB.origin;
- m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X
- m_delta = m_realPivotBInW - m_realPivotAInW;
- m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
- Vector3 normalWorld;
- int i;
- //linear part
- for (i = 0; i < 3; i++) {
- normalWorld = m_calculatedTransformA.basis.get_axis(i);
- m_depth[i] = m_delta.dot(normalWorld);
- }
-} // SliderJointSW::calculateTransforms()
-
-//-----------------------------------------------------------------------------
-
-void SliderJointSW::testLinLimits(void) {
- m_solveLinLim = false;
- m_linPos = m_depth[0];
- if (m_lowerLinLimit <= m_upperLinLimit) {
- if (m_depth[0] > m_upperLinLimit) {
- m_depth[0] -= m_upperLinLimit;
- m_solveLinLim = true;
- } else if (m_depth[0] < m_lowerLinLimit) {
- m_depth[0] -= m_lowerLinLimit;
- m_solveLinLim = true;
- } else {
- m_depth[0] = real_t(0.);
- }
- } else {
- m_depth[0] = real_t(0.);
- }
-} // SliderJointSW::testLinLimits()
-
-//-----------------------------------------------------------------------------
-
-void SliderJointSW::testAngLimits(void) {
- m_angDepth = real_t(0.);
- m_solveAngLim = false;
- if (m_lowerAngLimit <= m_upperAngLimit) {
- const Vector3 axisA0 = m_calculatedTransformA.basis.get_axis(1);
- const Vector3 axisA1 = m_calculatedTransformA.basis.get_axis(2);
- const Vector3 axisB0 = m_calculatedTransformB.basis.get_axis(1);
- real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0));
- if (rot < m_lowerAngLimit) {
- m_angDepth = rot - m_lowerAngLimit;
- m_solveAngLim = true;
- } else if (rot > m_upperAngLimit) {
- m_angDepth = rot - m_upperAngLimit;
- m_solveAngLim = true;
- }
- }
-} // SliderJointSW::testAngLimits()
-
-//-----------------------------------------------------------------------------
-
-Vector3 SliderJointSW::getAncorInA(void) {
- Vector3 ancorInA;
- ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis;
- ancorInA = A->get_transform().inverse().xform(ancorInA);
- return ancorInA;
-} // SliderJointSW::getAncorInA()
-
-//-----------------------------------------------------------------------------
-
-Vector3 SliderJointSW::getAncorInB(void) {
- Vector3 ancorInB;
- ancorInB = m_frameInB.origin;
- return ancorInB;
-} // SliderJointSW::getAncorInB();
-
-void SliderJointSW::set_param(PhysicsServer::SliderJointParam p_param, real_t p_value) {
-
- switch (p_param) {
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin = p_value; break;
- case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin = p_value; break;
-
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng = p_value; break;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng = p_value; break;
-
- case PhysicsServer::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning
- }
-}
-
-real_t SliderJointSW::get_param(PhysicsServer::SliderJointParam p_param) const {
-
- switch (p_param) {
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: return m_upperLinLimit;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: return m_lowerLinLimit;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: return m_softnessLimLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: return m_restitutionLimLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: return m_dampingLimLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: return m_softnessDirLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: return m_restitutionDirLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: return m_dampingDirLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoLin;
- case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: return m_dampingOrthoLin;
-
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: return m_upperAngLimit;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: return m_lowerAngLimit;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: return m_softnessLimAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: return m_restitutionLimAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: return m_dampingLimAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: return m_softnessDirAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: return m_restitutionDirAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: return m_dampingDirAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoAng;
- case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: return m_dampingOrthoAng;
-
- case PhysicsServer::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning
- }
-
- return 0;
-}