diff options
Diffstat (limited to 'servers/physics/joints/slider_joint_sw.cpp')
-rw-r--r-- | servers/physics/joints/slider_joint_sw.cpp | 443 |
1 files changed, 0 insertions, 443 deletions
diff --git a/servers/physics/joints/slider_joint_sw.cpp b/servers/physics/joints/slider_joint_sw.cpp deleted file mode 100644 index 9963c7ae89..0000000000 --- a/servers/physics/joints/slider_joint_sw.cpp +++ /dev/null @@ -1,443 +0,0 @@ -/*************************************************************************/ -/* slider_joint_sw.cpp */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ - -/* -Adapted to Godot from the Bullet library. -*/ - -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -/* -Added by Roman Ponomarev (rponom@gmail.com) -April 04, 2008 - -*/ - -#include "slider_joint_sw.h" - -//----------------------------------------------------------------------------- - -static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) { - real_t coeff_1 = Math_PI / 4.0f; - real_t coeff_2 = 3.0f * coeff_1; - real_t abs_y = Math::abs(y); - real_t angle; - if (x >= 0.0f) { - real_t r = (x - abs_y) / (x + abs_y); - angle = coeff_1 - coeff_1 * r; - } else { - real_t r = (x + abs_y) / (abs_y - x); - angle = coeff_2 - coeff_1 * r; - } - return (y < 0.0f) ? -angle : angle; -} - -void SliderJointSW::initParams() { - m_lowerLinLimit = real_t(1.0); - m_upperLinLimit = real_t(-1.0); - m_lowerAngLimit = real_t(0.); - m_upperAngLimit = real_t(0.); - m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; - m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; - m_dampingDirLin = real_t(0.); - m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; - m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; - m_dampingDirAng = real_t(0.); - m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; - m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; - m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; - m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; - m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; - m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; - m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; - m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; - m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; - m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; - m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; - m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; - - m_poweredLinMotor = false; - m_targetLinMotorVelocity = real_t(0.); - m_maxLinMotorForce = real_t(0.); - m_accumulatedLinMotorImpulse = real_t(0.0); - - m_poweredAngMotor = false; - m_targetAngMotorVelocity = real_t(0.); - m_maxAngMotorForce = real_t(0.); - m_accumulatedAngMotorImpulse = real_t(0.0); - -} // SliderJointSW::initParams() - -//----------------------------------------------------------------------------- - -//----------------------------------------------------------------------------- - -SliderJointSW::SliderJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameInA, const Transform &frameInB) : - JointSW(_arr, 2), - m_frameInA(frameInA), - m_frameInB(frameInB) { - - A = rbA; - B = rbB; - - A->add_constraint(this, 0); - B->add_constraint(this, 1); - - initParams(); -} // SliderJointSW::SliderJointSW() - -//----------------------------------------------------------------------------- - -bool SliderJointSW::setup(real_t p_step) { - - //calculate transforms - m_calculatedTransformA = A->get_transform() * m_frameInA; - m_calculatedTransformB = B->get_transform() * m_frameInB; - m_realPivotAInW = m_calculatedTransformA.origin; - m_realPivotBInW = m_calculatedTransformB.origin; - m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X - m_delta = m_realPivotBInW - m_realPivotAInW; - m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; - m_relPosA = m_projPivotInW - A->get_transform().origin; - m_relPosB = m_realPivotBInW - B->get_transform().origin; - Vector3 normalWorld; - int i; - //linear part - for (i = 0; i < 3; i++) { - normalWorld = m_calculatedTransformA.basis.get_axis(i); - memnew_placement(&m_jacLin[i], JacobianEntrySW( - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - m_relPosA - A->get_center_of_mass(), - m_relPosB - B->get_center_of_mass(), - normalWorld, - A->get_inv_inertia(), - A->get_inv_mass(), - B->get_inv_inertia(), - B->get_inv_mass())); - m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal(); - m_depth[i] = m_delta.dot(normalWorld); - } - testLinLimits(); - // angular part - for (i = 0; i < 3; i++) { - normalWorld = m_calculatedTransformA.basis.get_axis(i); - memnew_placement(&m_jacAng[i], JacobianEntrySW( - normalWorld, - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - A->get_inv_inertia(), - B->get_inv_inertia())); - } - testAngLimits(); - Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); - m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); - // clear accumulator for motors - m_accumulatedLinMotorImpulse = real_t(0.0); - m_accumulatedAngMotorImpulse = real_t(0.0); - - return true; -} // SliderJointSW::buildJacobianInt() - -//----------------------------------------------------------------------------- - -void SliderJointSW::solve(real_t p_step) { - - int i; - // linear - Vector3 velA = A->get_velocity_in_local_point(m_relPosA); - Vector3 velB = B->get_velocity_in_local_point(m_relPosB); - Vector3 vel = velA - velB; - for (i = 0; i < 3; i++) { - const Vector3 &normal = m_jacLin[i].m_linearJointAxis; - real_t rel_vel = normal.dot(vel); - // calculate positional error - real_t depth = m_depth[i]; - // get parameters - real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); - real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); - real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); - // calcutate and apply impulse - real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i]; - Vector3 impulse_vector = normal * normalImpulse; - A->apply_impulse(m_relPosA, impulse_vector); - B->apply_impulse(m_relPosB, -impulse_vector); - if (m_poweredLinMotor && (!i)) { // apply linear motor - if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) { - real_t desiredMotorVel = m_targetLinMotorVelocity; - real_t motor_relvel = desiredMotorVel + rel_vel; - normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; - // clamp accumulated impulse - real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse); - if (new_acc > m_maxLinMotorForce) { - new_acc = m_maxLinMotorForce; - } - real_t del = new_acc - m_accumulatedLinMotorImpulse; - if (normalImpulse < real_t(0.0)) { - normalImpulse = -del; - } else { - normalImpulse = del; - } - m_accumulatedLinMotorImpulse = new_acc; - // apply clamped impulse - impulse_vector = normal * normalImpulse; - A->apply_impulse(m_relPosA, impulse_vector); - B->apply_impulse(m_relPosB, -impulse_vector); - } - } - } - // angular - // get axes in world space - Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); - Vector3 axisB = m_calculatedTransformB.basis.get_axis(0); - - const Vector3 &angVelA = A->get_angular_velocity(); - const Vector3 &angVelB = B->get_angular_velocity(); - - Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); - Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); - - Vector3 angAorthog = angVelA - angVelAroundAxisA; - Vector3 angBorthog = angVelB - angVelAroundAxisB; - Vector3 velrelOrthog = angAorthog - angBorthog; - //solve orthogonal angular velocity correction - real_t len = velrelOrthog.length(); - if (len > real_t(0.00001)) { - Vector3 normal = velrelOrthog.normalized(); - real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); - velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng; - } - //solve angular positional correction - Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step); - real_t len2 = angularError.length(); - if (len2 > real_t(0.00001)) { - Vector3 normal2 = angularError.normalized(); - real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); - angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; - } - // apply impulse - A->apply_torque_impulse(-velrelOrthog + angularError); - B->apply_torque_impulse(velrelOrthog - angularError); - real_t impulseMag; - //solve angular limits - if (m_solveAngLim) { - impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step; - impulseMag *= m_kAngle * m_softnessLimAng; - } else { - impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step; - impulseMag *= m_kAngle * m_softnessDirAng; - } - Vector3 impulse = axisA * impulseMag; - A->apply_torque_impulse(impulse); - B->apply_torque_impulse(-impulse); - //apply angular motor - if (m_poweredAngMotor) { - if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) { - Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB; - real_t projRelVel = velrel.dot(axisA); - - real_t desiredMotorVel = m_targetAngMotorVelocity; - real_t motor_relvel = desiredMotorVel - projRelVel; - - real_t angImpulse = m_kAngle * motor_relvel; - // clamp accumulated impulse - real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse); - if (new_acc > m_maxAngMotorForce) { - new_acc = m_maxAngMotorForce; - } - real_t del = new_acc - m_accumulatedAngMotorImpulse; - if (angImpulse < real_t(0.0)) { - angImpulse = -del; - } else { - angImpulse = del; - } - m_accumulatedAngMotorImpulse = new_acc; - // apply clamped impulse - Vector3 motorImp = angImpulse * axisA; - A->apply_torque_impulse(motorImp); - B->apply_torque_impulse(-motorImp); - } - } -} // SliderJointSW::solveConstraint() - -//----------------------------------------------------------------------------- - -//----------------------------------------------------------------------------- - -void SliderJointSW::calculateTransforms(void) { - m_calculatedTransformA = A->get_transform() * m_frameInA; - m_calculatedTransformB = B->get_transform() * m_frameInB; - m_realPivotAInW = m_calculatedTransformA.origin; - m_realPivotBInW = m_calculatedTransformB.origin; - m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X - m_delta = m_realPivotBInW - m_realPivotAInW; - m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; - Vector3 normalWorld; - int i; - //linear part - for (i = 0; i < 3; i++) { - normalWorld = m_calculatedTransformA.basis.get_axis(i); - m_depth[i] = m_delta.dot(normalWorld); - } -} // SliderJointSW::calculateTransforms() - -//----------------------------------------------------------------------------- - -void SliderJointSW::testLinLimits(void) { - m_solveLinLim = false; - m_linPos = m_depth[0]; - if (m_lowerLinLimit <= m_upperLinLimit) { - if (m_depth[0] > m_upperLinLimit) { - m_depth[0] -= m_upperLinLimit; - m_solveLinLim = true; - } else if (m_depth[0] < m_lowerLinLimit) { - m_depth[0] -= m_lowerLinLimit; - m_solveLinLim = true; - } else { - m_depth[0] = real_t(0.); - } - } else { - m_depth[0] = real_t(0.); - } -} // SliderJointSW::testLinLimits() - -//----------------------------------------------------------------------------- - -void SliderJointSW::testAngLimits(void) { - m_angDepth = real_t(0.); - m_solveAngLim = false; - if (m_lowerAngLimit <= m_upperAngLimit) { - const Vector3 axisA0 = m_calculatedTransformA.basis.get_axis(1); - const Vector3 axisA1 = m_calculatedTransformA.basis.get_axis(2); - const Vector3 axisB0 = m_calculatedTransformB.basis.get_axis(1); - real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); - if (rot < m_lowerAngLimit) { - m_angDepth = rot - m_lowerAngLimit; - m_solveAngLim = true; - } else if (rot > m_upperAngLimit) { - m_angDepth = rot - m_upperAngLimit; - m_solveAngLim = true; - } - } -} // SliderJointSW::testAngLimits() - -//----------------------------------------------------------------------------- - -Vector3 SliderJointSW::getAncorInA(void) { - Vector3 ancorInA; - ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis; - ancorInA = A->get_transform().inverse().xform(ancorInA); - return ancorInA; -} // SliderJointSW::getAncorInA() - -//----------------------------------------------------------------------------- - -Vector3 SliderJointSW::getAncorInB(void) { - Vector3 ancorInB; - ancorInB = m_frameInB.origin; - return ancorInB; -} // SliderJointSW::getAncorInB(); - -void SliderJointSW::set_param(PhysicsServer::SliderJointParam p_param, real_t p_value) { - - switch (p_param) { - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin = p_value; break; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin = p_value; break; - - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng = p_value; break; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng = p_value; break; - - case PhysicsServer::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning - } -} - -real_t SliderJointSW::get_param(PhysicsServer::SliderJointParam p_param) const { - - switch (p_param) { - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER: return m_upperLinLimit; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER: return m_lowerLinLimit; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: return m_softnessLimLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: return m_restitutionLimLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: return m_dampingLimLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: return m_softnessDirLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: return m_restitutionDirLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_MOTION_DAMPING: return m_dampingDirLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoLin; - case PhysicsServer::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: return m_dampingOrthoLin; - - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: return m_upperAngLimit; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: return m_lowerAngLimit; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: return m_softnessLimAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: return m_restitutionLimAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: return m_dampingLimAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: return m_softnessDirAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: return m_restitutionDirAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: return m_dampingDirAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoAng; - case PhysicsServer::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: return m_dampingOrthoAng; - - case PhysicsServer::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning - } - - return 0; -} |