summaryrefslogtreecommitdiff
path: root/servers/physics/joints/hinge_joint_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics/joints/hinge_joint_sw.cpp')
-rw-r--r--servers/physics/joints/hinge_joint_sw.cpp438
1 files changed, 438 insertions, 0 deletions
diff --git a/servers/physics/joints/hinge_joint_sw.cpp b/servers/physics/joints/hinge_joint_sw.cpp
new file mode 100644
index 0000000000..feaf00290d
--- /dev/null
+++ b/servers/physics/joints/hinge_joint_sw.cpp
@@ -0,0 +1,438 @@
+#include "hinge_joint_sw.h"
+
+static void plane_space(const Vector3& n, Vector3& p, Vector3& q) {
+
+ if (Math::abs(n.z) > 0.707106781186547524400844362) {
+ // choose p in y-z plane
+ real_t a = n[1]*n[1] + n[2]*n[2];
+ real_t k = 1.0/Math::sqrt(a);
+ p=Vector3(0,-n[2]*k,n[1]*k);
+ // set q = n x p
+ q=Vector3(a*k,-n[0]*p[2],n[0]*p[1]);
+ }
+ else {
+ // choose p in x-y plane
+ real_t a = n.x*n.x + n.y*n.y;
+ real_t k = 1.0/Math::sqrt(a);
+ p=Vector3(-n.y*k,n.x*k,0);
+ // set q = n x p
+ q=Vector3(-n.z*p.y,n.z*p.x,a*k);
+ }
+}
+
+HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Transform& frameA, const Transform& frameB) : JointSW(_arr,2) {
+
+ A=rbA;
+ B=rbB;
+
+ m_rbAFrame=frameA;
+ m_rbBFrame=frameB;
+ // flip axis
+ m_rbBFrame.basis[0][2] *= real_t(-1.);
+ m_rbBFrame.basis[1][2] *= real_t(-1.);
+ m_rbBFrame.basis[2][2] *= real_t(-1.);
+
+
+ //start with free
+ m_lowerLimit = Math_PI;
+ m_upperLimit = -Math_PI;
+
+
+ m_useLimit = false;
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+
+ tau=0.3;
+
+ m_angularOnly=false;
+ m_enableAngularMotor=false;
+
+ A->add_constraint(this,0);
+ B->add_constraint(this,1);
+
+}
+
+HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,const Vector3& pivotInB,
+ const Vector3& axisInA,const Vector3& axisInB) : JointSW(_arr,2) {
+
+ A=rbA;
+ B=rbB;
+
+ m_rbAFrame.origin = pivotInA;
+
+ // since no frame is given, assume this to be zero angle and just pick rb transform axis
+ Vector3 rbAxisA1 = rbA->get_transform().basis.get_axis(0);
+
+ Vector3 rbAxisA2;
+ real_t projection = axisInA.dot(rbAxisA1);
+ if (projection >= 1.0f - CMP_EPSILON) {
+ rbAxisA1 = -rbA->get_transform().basis.get_axis(2);
+ rbAxisA2 = rbA->get_transform().basis.get_axis(1);
+ } else if (projection <= -1.0f + CMP_EPSILON) {
+ rbAxisA1 = rbA->get_transform().basis.get_axis(2);
+ rbAxisA2 = rbA->get_transform().basis.get_axis(1);
+ } else {
+ rbAxisA2 = axisInA.cross(rbAxisA1);
+ rbAxisA1 = rbAxisA2.cross(axisInA);
+ }
+
+ m_rbAFrame.basis=Matrix3( rbAxisA1.x,rbAxisA2.x,axisInA.x,
+ rbAxisA1.y,rbAxisA2.y,axisInA.y,
+ rbAxisA1.z,rbAxisA2.z,axisInA.z );
+
+ Quat rotationArc = Quat(axisInA,axisInB);
+ Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1);
+ Vector3 rbAxisB2 = axisInB.cross(rbAxisB1);
+
+ m_rbBFrame.origin = pivotInB;
+ m_rbBFrame.basis=Matrix3( rbAxisB1.x,rbAxisB2.x,-axisInB.x,
+ rbAxisB1.y,rbAxisB2.y,-axisInB.y,
+ rbAxisB1.z,rbAxisB2.z,-axisInB.z );
+
+ //start with free
+ m_lowerLimit = Math_PI;
+ m_upperLimit = -Math_PI;
+
+
+ m_useLimit = false;
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+
+ tau=0.3;
+
+ m_angularOnly=false;
+ m_enableAngularMotor=false;
+
+ A->add_constraint(this,0);
+ B->add_constraint(this,1);
+
+}
+
+
+
+bool HingeJointSW::setup(float p_step) {
+
+ m_appliedImpulse = real_t(0.);
+
+ if (!m_angularOnly)
+ {
+ Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
+ Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
+ Vector3 relPos = pivotBInW - pivotAInW;
+
+ Vector3 normal[3];
+ if (relPos.length_squared() > CMP_EPSILON)
+ {
+ normal[0] = relPos.normalized();
+ }
+ else
+ {
+ normal[0]=Vector3(real_t(1.0),0,0);
+ }
+
+ plane_space(normal[0], normal[1], normal[2]);
+
+ for (int i=0;i<3;i++)
+ {
+ memnew_placement(&m_jac[i], JacobianEntrySW(
+ A->get_transform().basis.transposed(),
+ B->get_transform().basis.transposed(),
+ pivotAInW - A->get_transform().origin,
+ pivotBInW - B->get_transform().origin,
+ normal[i],
+ A->get_inv_inertia(),
+ A->get_inv_mass(),
+ B->get_inv_inertia(),
+ B->get_inv_mass()) );
+ }
+ }
+
+ //calculate two perpendicular jointAxis, orthogonal to hingeAxis
+ //these two jointAxis require equal angular velocities for both bodies
+
+ //this is unused for now, it's a todo
+ Vector3 jointAxis0local;
+ Vector3 jointAxis1local;
+
+ plane_space(m_rbAFrame.basis.get_axis(2),jointAxis0local,jointAxis1local);
+
+ A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
+ Vector3 jointAxis0 = A->get_transform().basis.xform( jointAxis0local );
+ Vector3 jointAxis1 = A->get_transform().basis.xform( jointAxis1local );
+ Vector3 hingeAxisWorld = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
+
+ memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0,
+ A->get_transform().basis.transposed(),
+ B->get_transform().basis.transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+
+ memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1,
+ A->get_transform().basis.transposed(),
+ B->get_transform().basis.transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+
+ memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld,
+ A->get_transform().basis.transposed(),
+ B->get_transform().basis.transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+
+
+ // Compute limit information
+ real_t hingeAngle = get_hinge_angle();
+
+// print_line("angle: "+rtos(hingeAngle));
+ //set bias, sign, clear accumulator
+ m_correction = real_t(0.);
+ m_limitSign = real_t(0.);
+ m_solveLimit = false;
+ m_accLimitImpulse = real_t(0.);
+
+
+
+ /*if (m_useLimit) {
+ print_line("low: "+rtos(m_lowerLimit));
+ print_line("hi: "+rtos(m_upperLimit));
+ }*/
+
+// if (m_lowerLimit < m_upperLimit)
+ if (m_useLimit && m_lowerLimit <= m_upperLimit)
+ {
+// if (hingeAngle <= m_lowerLimit*m_limitSoftness)
+ if (hingeAngle <= m_lowerLimit)
+ {
+ m_correction = (m_lowerLimit - hingeAngle);
+ m_limitSign = 1.0f;
+ m_solveLimit = true;
+ }
+// else if (hingeAngle >= m_upperLimit*m_limitSoftness)
+ else if (hingeAngle >= m_upperLimit)
+ {
+ m_correction = m_upperLimit - hingeAngle;
+ m_limitSign = -1.0f;
+ m_solveLimit = true;
+ }
+ }
+
+ //Compute K = J*W*J' for hinge axis
+ Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
+ m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) +
+ B->compute_angular_impulse_denominator(axisA));
+
+ return true;
+}
+
+void HingeJointSW::solve(float p_step) {
+
+ Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
+ Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
+
+ //real_t tau = real_t(0.3);
+
+ //linear part
+ if (!m_angularOnly)
+ {
+ Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
+ Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
+
+ Vector3 vel1 = A->get_velocity_in_local_point(rel_pos1);
+ Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2);
+ Vector3 vel = vel1 - vel2;
+
+ for (int i=0;i<3;i++)
+ {
+ const Vector3& normal = m_jac[i].m_linearJointAxis;
+ real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal();
+
+ real_t rel_vel;
+ rel_vel = normal.dot(vel);
+ //positional error (zeroth order error)
+ real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
+ real_t impulse = depth*tau/p_step * jacDiagABInv - rel_vel * jacDiagABInv;
+ m_appliedImpulse += impulse;
+ Vector3 impulse_vector = normal * impulse;
+ A->apply_impulse(pivotAInW - A->get_transform().origin,impulse_vector);
+ B->apply_impulse(pivotBInW - B->get_transform().origin,-impulse_vector);
+ }
+ }
+
+
+ {
+ ///solve angular part
+
+ // get axes in world space
+ Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
+ Vector3 axisB = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(2) );
+
+ const Vector3& angVelA = A->get_angular_velocity();
+ const Vector3& angVelB = B->get_angular_velocity();
+
+ Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
+ Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
+
+ Vector3 angAorthog = angVelA - angVelAroundHingeAxisA;
+ Vector3 angBorthog = angVelB - angVelAroundHingeAxisB;
+ Vector3 velrelOrthog = angAorthog-angBorthog;
+ {
+ //solve orthogonal angular velocity correction
+ real_t relaxation = real_t(1.);
+ real_t len = velrelOrthog.length();
+ if (len > real_t(0.00001))
+ {
+ Vector3 normal = velrelOrthog.normalized();
+ real_t denom = A->compute_angular_impulse_denominator(normal) +
+ B->compute_angular_impulse_denominator(normal);
+ // scale for mass and relaxation
+ velrelOrthog *= (real_t(1.)/denom) * m_relaxationFactor;
+ }
+
+ //solve angular positional correction
+ Vector3 angularError = -axisA.cross(axisB) *(real_t(1.)/p_step);
+ real_t len2 = angularError.length();
+ if (len2>real_t(0.00001))
+ {
+ Vector3 normal2 = angularError.normalized();
+ real_t denom2 = A->compute_angular_impulse_denominator(normal2) +
+ B->compute_angular_impulse_denominator(normal2);
+ angularError *= (real_t(1.)/denom2) * relaxation;
+ }
+
+ A->apply_torque_impulse(-velrelOrthog+angularError);
+ B->apply_torque_impulse(velrelOrthog-angularError);
+
+ // solve limit
+ if (m_solveLimit)
+ {
+ real_t amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (real_t(1.)/p_step)*m_biasFactor ) * m_limitSign;
+
+ real_t impulseMag = amplitude * m_kHinge;
+
+ // Clamp the accumulated impulse
+ real_t temp = m_accLimitImpulse;
+ m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0) );
+ impulseMag = m_accLimitImpulse - temp;
+
+
+ Vector3 impulse = axisA * impulseMag * m_limitSign;
+ A->apply_torque_impulse(impulse);
+ B->apply_torque_impulse(-impulse);
+ }
+ }
+
+ //apply motor
+ if (m_enableAngularMotor)
+ {
+ //todo: add limits too
+ Vector3 angularLimit(0,0,0);
+
+ Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
+ real_t projRelVel = velrel.dot(axisA);
+
+ real_t desiredMotorVel = m_motorTargetVelocity;
+ real_t motor_relvel = desiredMotorVel - projRelVel;
+
+ real_t unclippedMotorImpulse = m_kHinge * motor_relvel;;
+ //todo: should clip against accumulated impulse
+ real_t clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
+ clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
+ Vector3 motorImp = clippedMotorImpulse * axisA;
+
+ A->apply_torque_impulse(motorImp+angularLimit);
+ B->apply_torque_impulse(-motorImp-angularLimit);
+
+ }
+ }
+
+}
+/*
+void HingeJointSW::updateRHS(real_t timeStep)
+{
+ (void)timeStep;
+
+}
+*/
+
+static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x)
+{
+ real_t coeff_1 = Math_PI / 4.0f;
+ real_t coeff_2 = 3.0f * coeff_1;
+ real_t abs_y = Math::abs(y);
+ real_t angle;
+ if (x >= 0.0f) {
+ real_t r = (x - abs_y) / (x + abs_y);
+ angle = coeff_1 - coeff_1 * r;
+ } else {
+ real_t r = (x + abs_y) / (abs_y - x);
+ angle = coeff_2 - coeff_1 * r;
+ }
+ return (y < 0.0f) ? -angle : angle;
+}
+
+
+real_t HingeJointSW::get_hinge_angle() {
+ const Vector3 refAxis0 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(0) );
+ const Vector3 refAxis1 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(1) );
+ const Vector3 swingAxis = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(1) );
+
+ return atan2fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) );
+}
+
+
+void HingeJointSW::set_param(PhysicsServer::HingeJointParam p_param, float p_value) {
+
+ switch (p_param) {
+
+ case PhysicsServer::HINGE_JOINT_BIAS: tau=p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit=p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit=p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor=p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness=p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor=p_value; break;
+ case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity=p_value; break;
+ case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse=p_value; break;
+
+ }
+}
+
+float HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{
+
+ switch (p_param) {
+
+ case PhysicsServer::HINGE_JOINT_BIAS: return tau;
+ case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: return m_upperLimit;
+ case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: return m_lowerLimit;
+ case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: return m_biasFactor;
+ case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: return m_limitSoftness;
+ case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: return m_relaxationFactor;
+ case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: return m_motorTargetVelocity;
+ case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: return m_maxMotorImpulse;
+
+ }
+
+ return 0;
+}
+
+void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value){
+
+ print_line(p_flag+": "+itos(p_value));
+ switch (p_flag) {
+ case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit=p_value; break;
+ case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor=p_value; break;
+ }
+
+}
+bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const{
+
+ switch (p_flag) {
+ case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: return m_useLimit;
+ case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR:return m_enableAngularMotor;
+ }
+
+ return false;
+}