diff options
Diffstat (limited to 'servers/physics/joints/hinge_joint_sw.cpp')
-rw-r--r-- | servers/physics/joints/hinge_joint_sw.cpp | 299 |
1 files changed, 133 insertions, 166 deletions
diff --git a/servers/physics/joints/hinge_joint_sw.cpp b/servers/physics/joints/hinge_joint_sw.cpp index 9617eb8794..eaa57af873 100644 --- a/servers/physics/joints/hinge_joint_sw.cpp +++ b/servers/physics/joints/hinge_joint_sw.cpp @@ -34,65 +34,63 @@ See corresponding header file for licensing info. #include "hinge_joint_sw.h" -static void plane_space(const Vector3& n, Vector3& p, Vector3& q) { - - if (Math::abs(n.z) > 0.707106781186547524400844362) { - // choose p in y-z plane - real_t a = n[1]*n[1] + n[2]*n[2]; - real_t k = 1.0/Math::sqrt(a); - p=Vector3(0,-n[2]*k,n[1]*k); - // set q = n x p - q=Vector3(a*k,-n[0]*p[2],n[0]*p[1]); - } - else { - // choose p in x-y plane - real_t a = n.x*n.x + n.y*n.y; - real_t k = 1.0/Math::sqrt(a); - p=Vector3(-n.y*k,n.x*k,0); - // set q = n x p - q=Vector3(-n.z*p.y,n.z*p.x,a*k); - } +static void plane_space(const Vector3 &n, Vector3 &p, Vector3 &q) { + + if (Math::abs(n.z) > 0.707106781186547524400844362) { + // choose p in y-z plane + real_t a = n[1] * n[1] + n[2] * n[2]; + real_t k = 1.0 / Math::sqrt(a); + p = Vector3(0, -n[2] * k, n[1] * k); + // set q = n x p + q = Vector3(a * k, -n[0] * p[2], n[0] * p[1]); + } else { + // choose p in x-y plane + real_t a = n.x * n.x + n.y * n.y; + real_t k = 1.0 / Math::sqrt(a); + p = Vector3(-n.y * k, n.x * k, 0); + // set q = n x p + q = Vector3(-n.z * p.y, n.z * p.x, a * k); + } } -HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Transform& frameA, const Transform& frameB) : JointSW(_arr,2) { +HingeJointSW::HingeJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameA, const Transform &frameB) + : JointSW(_arr, 2) { - A=rbA; - B=rbB; + A = rbA; + B = rbB; - m_rbAFrame=frameA; - m_rbBFrame=frameB; + m_rbAFrame = frameA; + m_rbBFrame = frameB; // flip axis m_rbBFrame.basis[0][2] *= real_t(-1.); m_rbBFrame.basis[1][2] *= real_t(-1.); m_rbBFrame.basis[2][2] *= real_t(-1.); - //start with free m_lowerLimit = Math_PI; m_upperLimit = -Math_PI; - m_useLimit = false; m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_limitSoftness = 0.9f; m_solveLimit = false; - tau=0.3; - - m_angularOnly=false; - m_enableAngularMotor=false; + tau = 0.3; - A->add_constraint(this,0); - B->add_constraint(this,1); + m_angularOnly = false; + m_enableAngularMotor = false; + A->add_constraint(this, 0); + B->add_constraint(this, 1); } -HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,const Vector3& pivotInB, - const Vector3& axisInA,const Vector3& axisInB) : JointSW(_arr,2) { +HingeJointSW::HingeJointSW(BodySW *rbA, BodySW *rbB, const Vector3 &pivotInA, const Vector3 &pivotInB, + const Vector3 &axisInA, const Vector3 &axisInB) + : JointSW(_arr, 2) { - A=rbA; - B=rbB; + A = rbA; + B = rbB; m_rbAFrame.origin = pivotInA; @@ -112,76 +110,67 @@ HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,cons rbAxisA1 = rbAxisA2.cross(axisInA); } - m_rbAFrame.basis=Basis( rbAxisA1.x,rbAxisA2.x,axisInA.x, - rbAxisA1.y,rbAxisA2.y,axisInA.y, - rbAxisA1.z,rbAxisA2.z,axisInA.z ); + m_rbAFrame.basis = Basis(rbAxisA1.x, rbAxisA2.x, axisInA.x, + rbAxisA1.y, rbAxisA2.y, axisInA.y, + rbAxisA1.z, rbAxisA2.z, axisInA.z); - Quat rotationArc = Quat(axisInA,axisInB); - Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1); - Vector3 rbAxisB2 = axisInB.cross(rbAxisB1); + Quat rotationArc = Quat(axisInA, axisInB); + Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1); + Vector3 rbAxisB2 = axisInB.cross(rbAxisB1); m_rbBFrame.origin = pivotInB; - m_rbBFrame.basis=Basis( rbAxisB1.x,rbAxisB2.x,-axisInB.x, - rbAxisB1.y,rbAxisB2.y,-axisInB.y, - rbAxisB1.z,rbAxisB2.z,-axisInB.z ); + m_rbBFrame.basis = Basis(rbAxisB1.x, rbAxisB2.x, -axisInB.x, + rbAxisB1.y, rbAxisB2.y, -axisInB.y, + rbAxisB1.z, rbAxisB2.z, -axisInB.z); //start with free m_lowerLimit = Math_PI; m_upperLimit = -Math_PI; - m_useLimit = false; m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_limitSoftness = 0.9f; m_solveLimit = false; - tau=0.3; - - m_angularOnly=false; - m_enableAngularMotor=false; + tau = 0.3; - A->add_constraint(this,0); - B->add_constraint(this,1); + m_angularOnly = false; + m_enableAngularMotor = false; + A->add_constraint(this, 0); + B->add_constraint(this, 1); } - - bool HingeJointSW::setup(real_t p_step) { m_appliedImpulse = real_t(0.); - if (!m_angularOnly) - { + if (!m_angularOnly) { Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin); Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin); Vector3 relPos = pivotBInW - pivotAInW; Vector3 normal[3]; - if (relPos.length_squared() > CMP_EPSILON) - { + if (relPos.length_squared() > CMP_EPSILON) { normal[0] = relPos.normalized(); - } - else - { - normal[0]=Vector3(real_t(1.0),0,0); + } else { + normal[0] = Vector3(real_t(1.0), 0, 0); } plane_space(normal[0], normal[1], normal[2]); - for (int i=0;i<3;i++) - { + for (int i = 0; i < 3; i++) { memnew_placement(&m_jac[i], JacobianEntrySW( - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - pivotAInW - A->get_transform().origin - A->get_center_of_mass(), - pivotBInW - B->get_transform().origin - B->get_center_of_mass(), - normal[i], - A->get_inv_inertia(), - A->get_inv_mass(), - B->get_inv_inertia(), - B->get_inv_mass()) ); + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + pivotAInW - A->get_transform().origin - A->get_center_of_mass(), + pivotBInW - B->get_transform().origin - B->get_center_of_mass(), + normal[i], + A->get_inv_inertia(), + A->get_inv_mass(), + B->get_inv_inertia(), + B->get_inv_mass())); } } @@ -192,31 +181,30 @@ bool HingeJointSW::setup(real_t p_step) { Vector3 jointAxis0local; Vector3 jointAxis1local; - plane_space(m_rbAFrame.basis.get_axis(2),jointAxis0local,jointAxis1local); - - A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); - Vector3 jointAxis0 = A->get_transform().basis.xform( jointAxis0local ); - Vector3 jointAxis1 = A->get_transform().basis.xform( jointAxis1local ); - Vector3 hingeAxisWorld = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); + plane_space(m_rbAFrame.basis.get_axis(2), jointAxis0local, jointAxis1local); - memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0, - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - A->get_inv_inertia(), - B->get_inv_inertia())); + A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2)); + Vector3 jointAxis0 = A->get_transform().basis.xform(jointAxis0local); + Vector3 jointAxis1 = A->get_transform().basis.xform(jointAxis1local); + Vector3 hingeAxisWorld = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2)); - memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1, - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - A->get_inv_inertia(), - B->get_inv_inertia())); + memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0, + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + A->get_inv_inertia(), + B->get_inv_inertia())); - memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld, - A->get_principal_inertia_axes().transposed(), - B->get_principal_inertia_axes().transposed(), - A->get_inv_inertia(), - B->get_inv_inertia())); + memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1, + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + A->get_inv_inertia(), + B->get_inv_inertia())); + memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld, + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + A->get_inv_inertia(), + B->get_inv_inertia())); // Compute limit information real_t hingeAngle = get_hinge_angle(); @@ -228,26 +216,21 @@ bool HingeJointSW::setup(real_t p_step) { m_solveLimit = false; m_accLimitImpulse = real_t(0.); - - /*if (m_useLimit) { print_line("low: "+rtos(m_lowerLimit)); print_line("hi: "+rtos(m_upperLimit)); }*/ //if (m_lowerLimit < m_upperLimit) - if (m_useLimit && m_lowerLimit <= m_upperLimit) - { + if (m_useLimit && m_lowerLimit <= m_upperLimit) { //if (hingeAngle <= m_lowerLimit*m_limitSoftness) - if (hingeAngle <= m_lowerLimit) - { + if (hingeAngle <= m_lowerLimit) { m_correction = (m_lowerLimit - hingeAngle); m_limitSign = 1.0f; m_solveLimit = true; } //else if (hingeAngle >= m_upperLimit*m_limitSoftness) - else if (hingeAngle >= m_upperLimit) - { + else if (hingeAngle >= m_upperLimit) { m_correction = m_upperLimit - hingeAngle; m_limitSign = -1.0f; m_solveLimit = true; @@ -255,9 +238,9 @@ bool HingeJointSW::setup(real_t p_step) { } //Compute K = J*W*J' for hinge axis - Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); - m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) + - B->compute_angular_impulse_denominator(axisA)); + Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2)); + m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) + + B->compute_angular_impulse_denominator(axisA)); return true; } @@ -270,8 +253,7 @@ void HingeJointSW::solve(real_t p_step) { //real_t tau = real_t(0.3); //linear part - if (!m_angularOnly) - { + if (!m_angularOnly) { Vector3 rel_pos1 = pivotAInW - A->get_transform().origin; Vector3 rel_pos2 = pivotBInW - B->get_transform().origin; @@ -279,80 +261,74 @@ void HingeJointSW::solve(real_t p_step) { Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2); Vector3 vel = vel1 - vel2; - for (int i=0;i<3;i++) - { - const Vector3& normal = m_jac[i].m_linearJointAxis; + for (int i = 0; i < 3; i++) { + const Vector3 &normal = m_jac[i].m_linearJointAxis; real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal(); real_t rel_vel; rel_vel = normal.dot(vel); //positional error (zeroth order error) real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal - real_t impulse = depth*tau/p_step * jacDiagABInv - rel_vel * jacDiagABInv; + real_t impulse = depth * tau / p_step * jacDiagABInv - rel_vel * jacDiagABInv; m_appliedImpulse += impulse; Vector3 impulse_vector = normal * impulse; - A->apply_impulse(pivotAInW - A->get_transform().origin,impulse_vector); - B->apply_impulse(pivotBInW - B->get_transform().origin,-impulse_vector); + A->apply_impulse(pivotAInW - A->get_transform().origin, impulse_vector); + B->apply_impulse(pivotBInW - B->get_transform().origin, -impulse_vector); } } - { ///solve angular part // get axes in world space - Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); - Vector3 axisB = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(2) ); + Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2)); + Vector3 axisB = B->get_transform().basis.xform(m_rbBFrame.basis.get_axis(2)); - const Vector3& angVelA = A->get_angular_velocity(); - const Vector3& angVelB = B->get_angular_velocity(); + const Vector3 &angVelA = A->get_angular_velocity(); + const Vector3 &angVelB = B->get_angular_velocity(); Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); Vector3 angAorthog = angVelA - angVelAroundHingeAxisA; Vector3 angBorthog = angVelB - angVelAroundHingeAxisB; - Vector3 velrelOrthog = angAorthog-angBorthog; + Vector3 velrelOrthog = angAorthog - angBorthog; { //solve orthogonal angular velocity correction real_t relaxation = real_t(1.); real_t len = velrelOrthog.length(); - if (len > real_t(0.00001)) - { + if (len > real_t(0.00001)) { Vector3 normal = velrelOrthog.normalized(); real_t denom = A->compute_angular_impulse_denominator(normal) + - B->compute_angular_impulse_denominator(normal); + B->compute_angular_impulse_denominator(normal); // scale for mass and relaxation - velrelOrthog *= (real_t(1.)/denom) * m_relaxationFactor; + velrelOrthog *= (real_t(1.) / denom) * m_relaxationFactor; } //solve angular positional correction - Vector3 angularError = -axisA.cross(axisB) *(real_t(1.)/p_step); + Vector3 angularError = -axisA.cross(axisB) * (real_t(1.) / p_step); real_t len2 = angularError.length(); - if (len2>real_t(0.00001)) - { + if (len2 > real_t(0.00001)) { Vector3 normal2 = angularError.normalized(); real_t denom2 = A->compute_angular_impulse_denominator(normal2) + - B->compute_angular_impulse_denominator(normal2); - angularError *= (real_t(1.)/denom2) * relaxation; + B->compute_angular_impulse_denominator(normal2); + angularError *= (real_t(1.) / denom2) * relaxation; } - A->apply_torque_impulse(-velrelOrthog+angularError); - B->apply_torque_impulse(velrelOrthog-angularError); + A->apply_torque_impulse(-velrelOrthog + angularError); + B->apply_torque_impulse(velrelOrthog - angularError); // solve limit - if (m_solveLimit) - { - real_t amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (real_t(1.)/p_step)*m_biasFactor ) * m_limitSign; + if (m_solveLimit) { + real_t amplitude = ((angVelB - angVelA).dot(axisA) * m_relaxationFactor + m_correction * (real_t(1.) / p_step) * m_biasFactor) * m_limitSign; real_t impulseMag = amplitude * m_kHinge; // Clamp the accumulated impulse real_t temp = m_accLimitImpulse; - m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0) ); + m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0)); impulseMag = m_accLimitImpulse - temp; - Vector3 impulse = axisA * impulseMag * m_limitSign; A->apply_torque_impulse(impulse); B->apply_torque_impulse(-impulse); @@ -360,10 +336,9 @@ void HingeJointSW::solve(real_t p_step) { } //apply motor - if (m_enableAngularMotor) - { + if (m_enableAngularMotor) { //todo: add limits too - Vector3 angularLimit(0,0,0); + Vector3 angularLimit(0, 0, 0); Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; real_t projRelVel = velrel.dot(axisA); @@ -377,12 +352,10 @@ void HingeJointSW::solve(real_t p_step) { clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; Vector3 motorImp = clippedMotorImpulse * axisA; - A->apply_torque_impulse(motorImp+angularLimit); - B->apply_torque_impulse(-motorImp-angularLimit); - + A->apply_torque_impulse(motorImp + angularLimit); + B->apply_torque_impulse(-motorImp - angularLimit); } } - } /* void HingeJointSW::updateRHS(real_t timeStep) @@ -392,8 +365,7 @@ void HingeJointSW::updateRHS(real_t timeStep) } */ -static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) -{ +static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) { real_t coeff_1 = Math_PI / 4.0f; real_t coeff_2 = 3.0f * coeff_1; real_t abs_y = Math::abs(y); @@ -408,33 +380,30 @@ static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) return (y < 0.0f) ? -angle : angle; } - real_t HingeJointSW::get_hinge_angle() { - const Vector3 refAxis0 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(0) ); - const Vector3 refAxis1 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(1) ); - const Vector3 swingAxis = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(1) ); + const Vector3 refAxis0 = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(0)); + const Vector3 refAxis1 = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(1)); + const Vector3 swingAxis = B->get_transform().basis.xform(m_rbBFrame.basis.get_axis(1)); - return atan2fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) ); + return atan2fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); } - void HingeJointSW::set_param(PhysicsServer::HingeJointParam p_param, real_t p_value) { switch (p_param) { - case PhysicsServer::HINGE_JOINT_BIAS: tau=p_value; break; - case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit=p_value; break; - case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit=p_value; break; - case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor=p_value; break; - case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness=p_value; break; - case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor=p_value; break; - case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity=p_value; break; - case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse=p_value; break; - + case PhysicsServer::HINGE_JOINT_BIAS: tau = p_value; break; + case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit = p_value; break; + case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit = p_value; break; + case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor = p_value; break; + case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness = p_value; break; + case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor = p_value; break; + case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity = p_value; break; + case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse = p_value; break; } } -real_t HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{ +real_t HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const { switch (p_param) { @@ -446,25 +415,23 @@ real_t HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{ case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: return m_relaxationFactor; case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: return m_motorTargetVelocity; case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: return m_maxMotorImpulse; - } return 0; } -void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value){ +void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value) { switch (p_flag) { - case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit=p_value; break; - case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor=p_value; break; + case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit = p_value; break; + case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor = p_value; break; } - } -bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const{ +bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const { switch (p_flag) { case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: return m_useLimit; - case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR:return m_enableAngularMotor; + case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: return m_enableAngularMotor; } return false; |