summaryrefslogtreecommitdiff
path: root/servers/physics/joints/hinge_joint_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics/joints/hinge_joint_sw.cpp')
-rw-r--r--servers/physics/joints/hinge_joint_sw.cpp299
1 files changed, 133 insertions, 166 deletions
diff --git a/servers/physics/joints/hinge_joint_sw.cpp b/servers/physics/joints/hinge_joint_sw.cpp
index 9617eb8794..eaa57af873 100644
--- a/servers/physics/joints/hinge_joint_sw.cpp
+++ b/servers/physics/joints/hinge_joint_sw.cpp
@@ -34,65 +34,63 @@ See corresponding header file for licensing info.
#include "hinge_joint_sw.h"
-static void plane_space(const Vector3& n, Vector3& p, Vector3& q) {
-
- if (Math::abs(n.z) > 0.707106781186547524400844362) {
- // choose p in y-z plane
- real_t a = n[1]*n[1] + n[2]*n[2];
- real_t k = 1.0/Math::sqrt(a);
- p=Vector3(0,-n[2]*k,n[1]*k);
- // set q = n x p
- q=Vector3(a*k,-n[0]*p[2],n[0]*p[1]);
- }
- else {
- // choose p in x-y plane
- real_t a = n.x*n.x + n.y*n.y;
- real_t k = 1.0/Math::sqrt(a);
- p=Vector3(-n.y*k,n.x*k,0);
- // set q = n x p
- q=Vector3(-n.z*p.y,n.z*p.x,a*k);
- }
+static void plane_space(const Vector3 &n, Vector3 &p, Vector3 &q) {
+
+ if (Math::abs(n.z) > 0.707106781186547524400844362) {
+ // choose p in y-z plane
+ real_t a = n[1] * n[1] + n[2] * n[2];
+ real_t k = 1.0 / Math::sqrt(a);
+ p = Vector3(0, -n[2] * k, n[1] * k);
+ // set q = n x p
+ q = Vector3(a * k, -n[0] * p[2], n[0] * p[1]);
+ } else {
+ // choose p in x-y plane
+ real_t a = n.x * n.x + n.y * n.y;
+ real_t k = 1.0 / Math::sqrt(a);
+ p = Vector3(-n.y * k, n.x * k, 0);
+ // set q = n x p
+ q = Vector3(-n.z * p.y, n.z * p.x, a * k);
+ }
}
-HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Transform& frameA, const Transform& frameB) : JointSW(_arr,2) {
+HingeJointSW::HingeJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameA, const Transform &frameB)
+ : JointSW(_arr, 2) {
- A=rbA;
- B=rbB;
+ A = rbA;
+ B = rbB;
- m_rbAFrame=frameA;
- m_rbBFrame=frameB;
+ m_rbAFrame = frameA;
+ m_rbBFrame = frameB;
// flip axis
m_rbBFrame.basis[0][2] *= real_t(-1.);
m_rbBFrame.basis[1][2] *= real_t(-1.);
m_rbBFrame.basis[2][2] *= real_t(-1.);
-
//start with free
m_lowerLimit = Math_PI;
m_upperLimit = -Math_PI;
-
m_useLimit = false;
m_biasFactor = 0.3f;
m_relaxationFactor = 1.0f;
m_limitSoftness = 0.9f;
m_solveLimit = false;
- tau=0.3;
-
- m_angularOnly=false;
- m_enableAngularMotor=false;
+ tau = 0.3;
- A->add_constraint(this,0);
- B->add_constraint(this,1);
+ m_angularOnly = false;
+ m_enableAngularMotor = false;
+ A->add_constraint(this, 0);
+ B->add_constraint(this, 1);
}
-HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,const Vector3& pivotInB,
- const Vector3& axisInA,const Vector3& axisInB) : JointSW(_arr,2) {
+HingeJointSW::HingeJointSW(BodySW *rbA, BodySW *rbB, const Vector3 &pivotInA, const Vector3 &pivotInB,
+ const Vector3 &axisInA, const Vector3 &axisInB)
+ : JointSW(_arr, 2) {
- A=rbA;
- B=rbB;
+ A = rbA;
+ B = rbB;
m_rbAFrame.origin = pivotInA;
@@ -112,76 +110,67 @@ HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,cons
rbAxisA1 = rbAxisA2.cross(axisInA);
}
- m_rbAFrame.basis=Basis( rbAxisA1.x,rbAxisA2.x,axisInA.x,
- rbAxisA1.y,rbAxisA2.y,axisInA.y,
- rbAxisA1.z,rbAxisA2.z,axisInA.z );
+ m_rbAFrame.basis = Basis(rbAxisA1.x, rbAxisA2.x, axisInA.x,
+ rbAxisA1.y, rbAxisA2.y, axisInA.y,
+ rbAxisA1.z, rbAxisA2.z, axisInA.z);
- Quat rotationArc = Quat(axisInA,axisInB);
- Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1);
- Vector3 rbAxisB2 = axisInB.cross(rbAxisB1);
+ Quat rotationArc = Quat(axisInA, axisInB);
+ Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1);
+ Vector3 rbAxisB2 = axisInB.cross(rbAxisB1);
m_rbBFrame.origin = pivotInB;
- m_rbBFrame.basis=Basis( rbAxisB1.x,rbAxisB2.x,-axisInB.x,
- rbAxisB1.y,rbAxisB2.y,-axisInB.y,
- rbAxisB1.z,rbAxisB2.z,-axisInB.z );
+ m_rbBFrame.basis = Basis(rbAxisB1.x, rbAxisB2.x, -axisInB.x,
+ rbAxisB1.y, rbAxisB2.y, -axisInB.y,
+ rbAxisB1.z, rbAxisB2.z, -axisInB.z);
//start with free
m_lowerLimit = Math_PI;
m_upperLimit = -Math_PI;
-
m_useLimit = false;
m_biasFactor = 0.3f;
m_relaxationFactor = 1.0f;
m_limitSoftness = 0.9f;
m_solveLimit = false;
- tau=0.3;
-
- m_angularOnly=false;
- m_enableAngularMotor=false;
+ tau = 0.3;
- A->add_constraint(this,0);
- B->add_constraint(this,1);
+ m_angularOnly = false;
+ m_enableAngularMotor = false;
+ A->add_constraint(this, 0);
+ B->add_constraint(this, 1);
}
-
-
bool HingeJointSW::setup(real_t p_step) {
m_appliedImpulse = real_t(0.);
- if (!m_angularOnly)
- {
+ if (!m_angularOnly) {
Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
Vector3 relPos = pivotBInW - pivotAInW;
Vector3 normal[3];
- if (relPos.length_squared() > CMP_EPSILON)
- {
+ if (relPos.length_squared() > CMP_EPSILON) {
normal[0] = relPos.normalized();
- }
- else
- {
- normal[0]=Vector3(real_t(1.0),0,0);
+ } else {
+ normal[0] = Vector3(real_t(1.0), 0, 0);
}
plane_space(normal[0], normal[1], normal[2]);
- for (int i=0;i<3;i++)
- {
+ for (int i = 0; i < 3; i++) {
memnew_placement(&m_jac[i], JacobianEntrySW(
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
- pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
- normal[i],
- A->get_inv_inertia(),
- A->get_inv_mass(),
- B->get_inv_inertia(),
- B->get_inv_mass()) );
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
+ pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
+ normal[i],
+ A->get_inv_inertia(),
+ A->get_inv_mass(),
+ B->get_inv_inertia(),
+ B->get_inv_mass()));
}
}
@@ -192,31 +181,30 @@ bool HingeJointSW::setup(real_t p_step) {
Vector3 jointAxis0local;
Vector3 jointAxis1local;
- plane_space(m_rbAFrame.basis.get_axis(2),jointAxis0local,jointAxis1local);
-
- A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
- Vector3 jointAxis0 = A->get_transform().basis.xform( jointAxis0local );
- Vector3 jointAxis1 = A->get_transform().basis.xform( jointAxis1local );
- Vector3 hingeAxisWorld = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
+ plane_space(m_rbAFrame.basis.get_axis(2), jointAxis0local, jointAxis1local);
- memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
+ A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
+ Vector3 jointAxis0 = A->get_transform().basis.xform(jointAxis0local);
+ Vector3 jointAxis1 = A->get_transform().basis.xform(jointAxis1local);
+ Vector3 hingeAxisWorld = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
- memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
+ memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
- memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
+ memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+ memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
// Compute limit information
real_t hingeAngle = get_hinge_angle();
@@ -228,26 +216,21 @@ bool HingeJointSW::setup(real_t p_step) {
m_solveLimit = false;
m_accLimitImpulse = real_t(0.);
-
-
/*if (m_useLimit) {
print_line("low: "+rtos(m_lowerLimit));
print_line("hi: "+rtos(m_upperLimit));
}*/
//if (m_lowerLimit < m_upperLimit)
- if (m_useLimit && m_lowerLimit <= m_upperLimit)
- {
+ if (m_useLimit && m_lowerLimit <= m_upperLimit) {
//if (hingeAngle <= m_lowerLimit*m_limitSoftness)
- if (hingeAngle <= m_lowerLimit)
- {
+ if (hingeAngle <= m_lowerLimit) {
m_correction = (m_lowerLimit - hingeAngle);
m_limitSign = 1.0f;
m_solveLimit = true;
}
//else if (hingeAngle >= m_upperLimit*m_limitSoftness)
- else if (hingeAngle >= m_upperLimit)
- {
+ else if (hingeAngle >= m_upperLimit) {
m_correction = m_upperLimit - hingeAngle;
m_limitSign = -1.0f;
m_solveLimit = true;
@@ -255,9 +238,9 @@ bool HingeJointSW::setup(real_t p_step) {
}
//Compute K = J*W*J' for hinge axis
- Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
- m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) +
- B->compute_angular_impulse_denominator(axisA));
+ Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
+ m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) +
+ B->compute_angular_impulse_denominator(axisA));
return true;
}
@@ -270,8 +253,7 @@ void HingeJointSW::solve(real_t p_step) {
//real_t tau = real_t(0.3);
//linear part
- if (!m_angularOnly)
- {
+ if (!m_angularOnly) {
Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
@@ -279,80 +261,74 @@ void HingeJointSW::solve(real_t p_step) {
Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2);
Vector3 vel = vel1 - vel2;
- for (int i=0;i<3;i++)
- {
- const Vector3& normal = m_jac[i].m_linearJointAxis;
+ for (int i = 0; i < 3; i++) {
+ const Vector3 &normal = m_jac[i].m_linearJointAxis;
real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal();
real_t rel_vel;
rel_vel = normal.dot(vel);
//positional error (zeroth order error)
real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
- real_t impulse = depth*tau/p_step * jacDiagABInv - rel_vel * jacDiagABInv;
+ real_t impulse = depth * tau / p_step * jacDiagABInv - rel_vel * jacDiagABInv;
m_appliedImpulse += impulse;
Vector3 impulse_vector = normal * impulse;
- A->apply_impulse(pivotAInW - A->get_transform().origin,impulse_vector);
- B->apply_impulse(pivotBInW - B->get_transform().origin,-impulse_vector);
+ A->apply_impulse(pivotAInW - A->get_transform().origin, impulse_vector);
+ B->apply_impulse(pivotBInW - B->get_transform().origin, -impulse_vector);
}
}
-
{
///solve angular part
// get axes in world space
- Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
- Vector3 axisB = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(2) );
+ Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(2));
+ Vector3 axisB = B->get_transform().basis.xform(m_rbBFrame.basis.get_axis(2));
- const Vector3& angVelA = A->get_angular_velocity();
- const Vector3& angVelB = B->get_angular_velocity();
+ const Vector3 &angVelA = A->get_angular_velocity();
+ const Vector3 &angVelB = B->get_angular_velocity();
Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
Vector3 angAorthog = angVelA - angVelAroundHingeAxisA;
Vector3 angBorthog = angVelB - angVelAroundHingeAxisB;
- Vector3 velrelOrthog = angAorthog-angBorthog;
+ Vector3 velrelOrthog = angAorthog - angBorthog;
{
//solve orthogonal angular velocity correction
real_t relaxation = real_t(1.);
real_t len = velrelOrthog.length();
- if (len > real_t(0.00001))
- {
+ if (len > real_t(0.00001)) {
Vector3 normal = velrelOrthog.normalized();
real_t denom = A->compute_angular_impulse_denominator(normal) +
- B->compute_angular_impulse_denominator(normal);
+ B->compute_angular_impulse_denominator(normal);
// scale for mass and relaxation
- velrelOrthog *= (real_t(1.)/denom) * m_relaxationFactor;
+ velrelOrthog *= (real_t(1.) / denom) * m_relaxationFactor;
}
//solve angular positional correction
- Vector3 angularError = -axisA.cross(axisB) *(real_t(1.)/p_step);
+ Vector3 angularError = -axisA.cross(axisB) * (real_t(1.) / p_step);
real_t len2 = angularError.length();
- if (len2>real_t(0.00001))
- {
+ if (len2 > real_t(0.00001)) {
Vector3 normal2 = angularError.normalized();
real_t denom2 = A->compute_angular_impulse_denominator(normal2) +
- B->compute_angular_impulse_denominator(normal2);
- angularError *= (real_t(1.)/denom2) * relaxation;
+ B->compute_angular_impulse_denominator(normal2);
+ angularError *= (real_t(1.) / denom2) * relaxation;
}
- A->apply_torque_impulse(-velrelOrthog+angularError);
- B->apply_torque_impulse(velrelOrthog-angularError);
+ A->apply_torque_impulse(-velrelOrthog + angularError);
+ B->apply_torque_impulse(velrelOrthog - angularError);
// solve limit
- if (m_solveLimit)
- {
- real_t amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (real_t(1.)/p_step)*m_biasFactor ) * m_limitSign;
+ if (m_solveLimit) {
+ real_t amplitude = ((angVelB - angVelA).dot(axisA) * m_relaxationFactor + m_correction * (real_t(1.) / p_step) * m_biasFactor) * m_limitSign;
real_t impulseMag = amplitude * m_kHinge;
// Clamp the accumulated impulse
real_t temp = m_accLimitImpulse;
- m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0) );
+ m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0));
impulseMag = m_accLimitImpulse - temp;
-
Vector3 impulse = axisA * impulseMag * m_limitSign;
A->apply_torque_impulse(impulse);
B->apply_torque_impulse(-impulse);
@@ -360,10 +336,9 @@ void HingeJointSW::solve(real_t p_step) {
}
//apply motor
- if (m_enableAngularMotor)
- {
+ if (m_enableAngularMotor) {
//todo: add limits too
- Vector3 angularLimit(0,0,0);
+ Vector3 angularLimit(0, 0, 0);
Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
real_t projRelVel = velrel.dot(axisA);
@@ -377,12 +352,10 @@ void HingeJointSW::solve(real_t p_step) {
clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
Vector3 motorImp = clippedMotorImpulse * axisA;
- A->apply_torque_impulse(motorImp+angularLimit);
- B->apply_torque_impulse(-motorImp-angularLimit);
-
+ A->apply_torque_impulse(motorImp + angularLimit);
+ B->apply_torque_impulse(-motorImp - angularLimit);
}
}
-
}
/*
void HingeJointSW::updateRHS(real_t timeStep)
@@ -392,8 +365,7 @@ void HingeJointSW::updateRHS(real_t timeStep)
}
*/
-static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x)
-{
+static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) {
real_t coeff_1 = Math_PI / 4.0f;
real_t coeff_2 = 3.0f * coeff_1;
real_t abs_y = Math::abs(y);
@@ -408,33 +380,30 @@ static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x)
return (y < 0.0f) ? -angle : angle;
}
-
real_t HingeJointSW::get_hinge_angle() {
- const Vector3 refAxis0 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(0) );
- const Vector3 refAxis1 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(1) );
- const Vector3 swingAxis = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(1) );
+ const Vector3 refAxis0 = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(0));
+ const Vector3 refAxis1 = A->get_transform().basis.xform(m_rbAFrame.basis.get_axis(1));
+ const Vector3 swingAxis = B->get_transform().basis.xform(m_rbBFrame.basis.get_axis(1));
- return atan2fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) );
+ return atan2fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
}
-
void HingeJointSW::set_param(PhysicsServer::HingeJointParam p_param, real_t p_value) {
switch (p_param) {
- case PhysicsServer::HINGE_JOINT_BIAS: tau=p_value; break;
- case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit=p_value; break;
- case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit=p_value; break;
- case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor=p_value; break;
- case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness=p_value; break;
- case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor=p_value; break;
- case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity=p_value; break;
- case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse=p_value; break;
-
+ case PhysicsServer::HINGE_JOINT_BIAS: tau = p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit = p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit = p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor = p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness = p_value; break;
+ case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor = p_value; break;
+ case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity = p_value; break;
+ case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse = p_value; break;
}
}
-real_t HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{
+real_t HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const {
switch (p_param) {
@@ -446,25 +415,23 @@ real_t HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{
case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: return m_relaxationFactor;
case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: return m_motorTargetVelocity;
case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: return m_maxMotorImpulse;
-
}
return 0;
}
-void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value){
+void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value) {
switch (p_flag) {
- case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit=p_value; break;
- case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor=p_value; break;
+ case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit = p_value; break;
+ case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor = p_value; break;
}
-
}
-bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const{
+bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const {
switch (p_flag) {
case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: return m_useLimit;
- case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR:return m_enableAngularMotor;
+ case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: return m_enableAngularMotor;
}
return false;