diff options
Diffstat (limited to 'servers/physics/joints/generic_6dof_joint_sw.h')
-rw-r--r-- | servers/physics/joints/generic_6dof_joint_sw.h | 507 |
1 files changed, 224 insertions, 283 deletions
diff --git a/servers/physics/joints/generic_6dof_joint_sw.h b/servers/physics/joints/generic_6dof_joint_sw.h index 207ae85a45..87245c6ffe 100644 --- a/servers/physics/joints/generic_6dof_joint_sw.h +++ b/servers/physics/joints/generic_6dof_joint_sw.h @@ -34,9 +34,8 @@ Adapted to Godot from the Bullet library. #ifndef GENERIC_6DOF_JOINT_SW_H #define GENERIC_6DOF_JOINT_SW_H -#include "servers/physics/joints_sw.h" #include "servers/physics/joints/jacobian_entry_sw.h" - +#include "servers/physics/joints_sw.h" /* Bullet Continuous Collision Detection and Physics Library @@ -53,7 +52,6 @@ subject to the following restrictions: 3. This notice may not be removed or altered from any source distribution. */ - /* 2007-09-09 Generic6DOFJointSW Refactored by Francisco Le?n @@ -61,80 +59,73 @@ email: projectileman@yahoo.com http://gimpact.sf.net */ - //! Rotation Limit structure for generic joints class G6DOFRotationalLimitMotorSW { public: - //! limit_parameters - //!@{ - real_t m_loLimit;//!< joint limit - real_t m_hiLimit;//!< joint limit - real_t m_targetVelocity;//!< target motor velocity - real_t m_maxMotorForce;//!< max force on motor - real_t m_maxLimitForce;//!< max force on limit - real_t m_damping;//!< Damping. - real_t m_limitSoftness;//! Relaxation factor - real_t m_ERP;//!< Error tolerance factor when joint is at limit - real_t m_bounce;//!< restitution factor - bool m_enableMotor; - bool m_enableLimit; - - //!@} - - //! temp_variables - //!@{ - real_t m_currentLimitError;//! How much is violated this limit - int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit - real_t m_accumulatedImpulse; - //!@} - - G6DOFRotationalLimitMotorSW() - { - m_accumulatedImpulse = 0.f; - m_targetVelocity = 0; - m_maxMotorForce = 0.1f; - m_maxLimitForce = 300.0f; - m_loLimit = -1e30; - m_hiLimit = 1e30; - m_ERP = 0.5f; - m_bounce = 0.0f; - m_damping = 1.0f; - m_limitSoftness = 0.5f; - m_currentLimit = 0; - m_currentLimitError = 0; - m_enableMotor = false; - m_enableLimit=false; - } - - G6DOFRotationalLimitMotorSW(const G6DOFRotationalLimitMotorSW & limot) - { - m_targetVelocity = limot.m_targetVelocity; - m_maxMotorForce = limot.m_maxMotorForce; - m_limitSoftness = limot.m_limitSoftness; - m_loLimit = limot.m_loLimit; - m_hiLimit = limot.m_hiLimit; - m_ERP = limot.m_ERP; - m_bounce = limot.m_bounce; - m_currentLimit = limot.m_currentLimit; - m_currentLimitError = limot.m_currentLimitError; - m_enableMotor = limot.m_enableMotor; - } + //! limit_parameters + //!@{ + real_t m_loLimit; //!< joint limit + real_t m_hiLimit; //!< joint limit + real_t m_targetVelocity; //!< target motor velocity + real_t m_maxMotorForce; //!< max force on motor + real_t m_maxLimitForce; //!< max force on limit + real_t m_damping; //!< Damping. + real_t m_limitSoftness; //! Relaxation factor + real_t m_ERP; //!< Error tolerance factor when joint is at limit + real_t m_bounce; //!< restitution factor + bool m_enableMotor; + bool m_enableLimit; + + //!@} + + //! temp_variables + //!@{ + real_t m_currentLimitError; //! How much is violated this limit + int m_currentLimit; //!< 0=free, 1=at lo limit, 2=at hi limit + real_t m_accumulatedImpulse; + //!@} + G6DOFRotationalLimitMotorSW() { + m_accumulatedImpulse = 0.f; + m_targetVelocity = 0; + m_maxMotorForce = 0.1f; + m_maxLimitForce = 300.0f; + m_loLimit = -1e30; + m_hiLimit = 1e30; + m_ERP = 0.5f; + m_bounce = 0.0f; + m_damping = 1.0f; + m_limitSoftness = 0.5f; + m_currentLimit = 0; + m_currentLimitError = 0; + m_enableMotor = false; + m_enableLimit = false; + } + G6DOFRotationalLimitMotorSW(const G6DOFRotationalLimitMotorSW &limot) { + m_targetVelocity = limot.m_targetVelocity; + m_maxMotorForce = limot.m_maxMotorForce; + m_limitSoftness = limot.m_limitSoftness; + m_loLimit = limot.m_loLimit; + m_hiLimit = limot.m_hiLimit; + m_ERP = limot.m_ERP; + m_bounce = limot.m_bounce; + m_currentLimit = limot.m_currentLimit; + m_currentLimitError = limot.m_currentLimitError; + m_enableMotor = limot.m_enableMotor; + } //! Is limited - bool isLimited() - { - if(m_loLimit>=m_hiLimit) return false; - return true; - } + bool isLimited() { + if (m_loLimit >= m_hiLimit) return false; + return true; + } //! Need apply correction - bool needApplyTorques() - { - if(m_currentLimit == 0 && m_enableMotor == false) return false; - return true; - } + bool needApplyTorques() { + if (m_currentLimit == 0 && m_enableMotor == false) return false; + return true; + } //! calculates error /*! @@ -143,84 +134,69 @@ public: int testLimitValue(real_t test_value); //! apply the correction impulses for two bodies - real_t solveAngularLimits(real_t timeStep,Vector3& axis, real_t jacDiagABInv,BodySW * body0, BodySW * body1); + real_t solveAngularLimits(real_t timeStep, Vector3 &axis, real_t jacDiagABInv, BodySW *body0, BodySW *body1); +}; +class G6DOFTranslationalLimitMotorSW { +public: + Vector3 m_lowerLimit; //!< the constraint lower limits + Vector3 m_upperLimit; //!< the constraint upper limits + Vector3 m_accumulatedImpulse; + //! Linear_Limit_parameters + //!@{ + Vector3 m_limitSoftness; //!< Softness for linear limit + Vector3 m_damping; //!< Damping for linear limit + Vector3 m_restitution; //! Bounce parameter for linear limit + //!@} + bool enable_limit[3]; -}; + G6DOFTranslationalLimitMotorSW() { + m_lowerLimit = Vector3(0.f, 0.f, 0.f); + m_upperLimit = Vector3(0.f, 0.f, 0.f); + m_accumulatedImpulse = Vector3(0.f, 0.f, 0.f); + m_limitSoftness = Vector3(1, 1, 1) * 0.7f; + m_damping = Vector3(1, 1, 1) * real_t(1.0f); + m_restitution = Vector3(1, 1, 1) * real_t(0.5f); + enable_limit[0] = true; + enable_limit[1] = true; + enable_limit[2] = true; + } -class G6DOFTranslationalLimitMotorSW -{ -public: - Vector3 m_lowerLimit;//!< the constraint lower limits - Vector3 m_upperLimit;//!< the constraint upper limits - Vector3 m_accumulatedImpulse; - //! Linear_Limit_parameters - //!@{ - Vector3 m_limitSoftness;//!< Softness for linear limit - Vector3 m_damping;//!< Damping for linear limit - Vector3 m_restitution;//! Bounce parameter for linear limit - //!@} - bool enable_limit[3]; - - G6DOFTranslationalLimitMotorSW() - { - m_lowerLimit=Vector3(0.f,0.f,0.f); - m_upperLimit=Vector3(0.f,0.f,0.f); - m_accumulatedImpulse=Vector3(0.f,0.f,0.f); - - m_limitSoftness = Vector3(1,1,1)*0.7f; - m_damping = Vector3(1,1,1)*real_t(1.0f); - m_restitution = Vector3(1,1,1)*real_t(0.5f); - - enable_limit[0]=true; - enable_limit[1]=true; - enable_limit[2]=true; - } - - G6DOFTranslationalLimitMotorSW(const G6DOFTranslationalLimitMotorSW & other ) - { - m_lowerLimit = other.m_lowerLimit; - m_upperLimit = other.m_upperLimit; - m_accumulatedImpulse = other.m_accumulatedImpulse; - - m_limitSoftness = other.m_limitSoftness ; - m_damping = other.m_damping; - m_restitution = other.m_restitution; - } - - //! Test limit + G6DOFTranslationalLimitMotorSW(const G6DOFTranslationalLimitMotorSW &other) { + m_lowerLimit = other.m_lowerLimit; + m_upperLimit = other.m_upperLimit; + m_accumulatedImpulse = other.m_accumulatedImpulse; + + m_limitSoftness = other.m_limitSoftness; + m_damping = other.m_damping; + m_restitution = other.m_restitution; + } + + //! Test limit /*! - free means upper < lower, - locked means upper == lower - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ - inline bool isLimited(int limitIndex) - { - return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); - } - - - real_t solveLinearAxis( - real_t timeStep, - real_t jacDiagABInv, - BodySW* body1,const Vector3 &pointInA, - BodySW* body2,const Vector3 &pointInB, - int limit_index, - const Vector3 & axis_normal_on_a, - const Vector3 & anchorPos); - + inline bool isLimited(int limitIndex) { + return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); + } + real_t solveLinearAxis( + real_t timeStep, + real_t jacDiagABInv, + BodySW *body1, const Vector3 &pointInA, + BodySW *body2, const Vector3 &pointInB, + int limit_index, + const Vector3 &axis_normal_on_a, + const Vector3 &anchorPos); }; - -class Generic6DOFJointSW : public JointSW -{ +class Generic6DOFJointSW : public JointSW { protected: - - union { struct { BodySW *A; @@ -231,195 +207,167 @@ protected: }; //! relative_frames - //!@{ - Transform m_frameInA;//!< the constraint space w.r.t body A - Transform m_frameInB;//!< the constraint space w.r.t body B - //!@} + //!@{ + Transform m_frameInA; //!< the constraint space w.r.t body A + Transform m_frameInB; //!< the constraint space w.r.t body B + //!@} - //! Jacobians - //!@{ - JacobianEntrySW m_jacLinear[3];//!< 3 orthogonal linear constraints - JacobianEntrySW m_jacAng[3];//!< 3 orthogonal angular constraints - //!@} + //! Jacobians + //!@{ + JacobianEntrySW m_jacLinear[3]; //!< 3 orthogonal linear constraints + JacobianEntrySW m_jacAng[3]; //!< 3 orthogonal angular constraints + //!@} //! Linear_Limit_parameters - //!@{ - G6DOFTranslationalLimitMotorSW m_linearLimits; - //!@} - - - //! hinge_parameters - //!@{ - G6DOFRotationalLimitMotorSW m_angularLimits[3]; + //!@{ + G6DOFTranslationalLimitMotorSW m_linearLimits; //!@} + //! hinge_parameters + //!@{ + G6DOFRotationalLimitMotorSW m_angularLimits[3]; + //!@} protected: - //! temporal variables - //!@{ - real_t m_timeStep; - Transform m_calculatedTransformA; - Transform m_calculatedTransformB; - Vector3 m_calculatedAxisAngleDiff; - Vector3 m_calculatedAxis[3]; + //! temporal variables + //!@{ + real_t m_timeStep; + Transform m_calculatedTransformA; + Transform m_calculatedTransformB; + Vector3 m_calculatedAxisAngleDiff; + Vector3 m_calculatedAxis[3]; Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes - bool m_useLinearReferenceFrameA; - - //!@} - - Generic6DOFJointSW& operator=(Generic6DOFJointSW& other) - { - ERR_PRINT("pito"); - (void) other; - return *this; - } - + bool m_useLinearReferenceFrameA; + //!@} - void buildLinearJacobian( - JacobianEntrySW & jacLinear,const Vector3 & normalWorld, - const Vector3 & pivotAInW,const Vector3 & pivotBInW); + Generic6DOFJointSW &operator=(Generic6DOFJointSW &other) { + ERR_PRINT("pito"); + (void)other; + return *this; + } - void buildAngularJacobian(JacobianEntrySW & jacAngular,const Vector3 & jointAxisW); + void buildLinearJacobian( + JacobianEntrySW &jacLinear, const Vector3 &normalWorld, + const Vector3 &pivotAInW, const Vector3 &pivotBInW); + void buildAngularJacobian(JacobianEntrySW &jacAngular, const Vector3 &jointAxisW); //! calcs the euler angles between the two bodies. - void calculateAngleInfo(); - - + void calculateAngleInfo(); public: - Generic6DOFJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB ,bool useLinearReferenceFrameA); + Generic6DOFJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameInA, const Transform &frameInB, bool useLinearReferenceFrameA); - virtual PhysicsServer::JointType get_type() const { return PhysicsServer::JOINT_6DOF; } - - virtual bool setup(real_t p_step); - virtual void solve(real_t p_step); + virtual PhysicsServer::JointType get_type() const { return PhysicsServer::JOINT_6DOF; } + virtual bool setup(real_t p_step); + virtual void solve(real_t p_step); //! Calcs global transform of the offsets /*! Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. \sa Generic6DOFJointSW.getCalculatedTransformA , Generic6DOFJointSW.getCalculatedTransformB, Generic6DOFJointSW.calculateAngleInfo */ - void calculateTransforms(); + void calculateTransforms(); //! Gets the global transform of the offset for body A - /*! + /*! \sa Generic6DOFJointSW.getFrameOffsetA, Generic6DOFJointSW.getFrameOffsetB, Generic6DOFJointSW.calculateAngleInfo. */ - const Transform & getCalculatedTransformA() const - { - return m_calculatedTransformA; - } + const Transform &getCalculatedTransformA() const { + return m_calculatedTransformA; + } - //! Gets the global transform of the offset for body B - /*! + //! Gets the global transform of the offset for body B + /*! \sa Generic6DOFJointSW.getFrameOffsetA, Generic6DOFJointSW.getFrameOffsetB, Generic6DOFJointSW.calculateAngleInfo. */ - const Transform & getCalculatedTransformB() const - { - return m_calculatedTransformB; - } - - const Transform & getFrameOffsetA() const - { - return m_frameInA; - } - - const Transform & getFrameOffsetB() const - { - return m_frameInB; - } + const Transform &getCalculatedTransformB() const { + return m_calculatedTransformB; + } + const Transform &getFrameOffsetA() const { + return m_frameInA; + } - Transform & getFrameOffsetA() - { - return m_frameInA; - } + const Transform &getFrameOffsetB() const { + return m_frameInB; + } - Transform & getFrameOffsetB() - { - return m_frameInB; - } + Transform &getFrameOffsetA() { + return m_frameInA; + } + Transform &getFrameOffsetB() { + return m_frameInB; + } //! performs Jacobian calculation, and also calculates angle differences and axis - - void updateRHS(real_t timeStep); + void updateRHS(real_t timeStep); //! Get the rotation axis in global coordinates /*! \pre Generic6DOFJointSW.buildJacobian must be called previously. */ - Vector3 getAxis(int axis_index) const; + Vector3 getAxis(int axis_index) const; - //! Get the relative Euler angle - /*! + //! Get the relative Euler angle + /*! \pre Generic6DOFJointSW.buildJacobian must be called previously. */ - real_t getAngle(int axis_index) const; + real_t getAngle(int axis_index) const; //! Test angular limit. /*! Calculates angular correction and returns true if limit needs to be corrected. \pre Generic6DOFJointSW.buildJacobian must be called previously. */ - bool testAngularLimitMotor(int axis_index); - - void setLinearLowerLimit(const Vector3& linearLower) - { - m_linearLimits.m_lowerLimit = linearLower; - } - - void setLinearUpperLimit(const Vector3& linearUpper) - { - m_linearLimits.m_upperLimit = linearUpper; - } - - void setAngularLowerLimit(const Vector3& angularLower) - { - m_angularLimits[0].m_loLimit = angularLower.x; - m_angularLimits[1].m_loLimit = angularLower.y; - m_angularLimits[2].m_loLimit = angularLower.z; - } - - void setAngularUpperLimit(const Vector3& angularUpper) - { - m_angularLimits[0].m_hiLimit = angularUpper.x; - m_angularLimits[1].m_hiLimit = angularUpper.y; - m_angularLimits[2].m_hiLimit = angularUpper.z; - } + bool testAngularLimitMotor(int axis_index); + + void setLinearLowerLimit(const Vector3 &linearLower) { + m_linearLimits.m_lowerLimit = linearLower; + } + + void setLinearUpperLimit(const Vector3 &linearUpper) { + m_linearLimits.m_upperLimit = linearUpper; + } + + void setAngularLowerLimit(const Vector3 &angularLower) { + m_angularLimits[0].m_loLimit = angularLower.x; + m_angularLimits[1].m_loLimit = angularLower.y; + m_angularLimits[2].m_loLimit = angularLower.z; + } + + void setAngularUpperLimit(const Vector3 &angularUpper) { + m_angularLimits[0].m_hiLimit = angularUpper.x; + m_angularLimits[1].m_hiLimit = angularUpper.y; + m_angularLimits[2].m_hiLimit = angularUpper.z; + } //! Retrieves the angular limit informacion - G6DOFRotationalLimitMotorSW * getRotationalLimitMotor(int index) - { - return &m_angularLimits[index]; - } - - //! Retrieves the limit informacion - G6DOFTranslationalLimitMotorSW * getTranslationalLimitMotor() - { - return &m_linearLimits; - } - - //first 3 are linear, next 3 are angular - void setLimit(int axis, real_t lo, real_t hi) - { - if(axis<3) - { - m_linearLimits.m_lowerLimit[axis] = lo; - m_linearLimits.m_upperLimit[axis] = hi; + G6DOFRotationalLimitMotorSW *getRotationalLimitMotor(int index) { + return &m_angularLimits[index]; + } + + //! Retrieves the limit informacion + G6DOFTranslationalLimitMotorSW *getTranslationalLimitMotor() { + return &m_linearLimits; } - else - { - m_angularLimits[axis-3].m_loLimit = lo; - m_angularLimits[axis-3].m_hiLimit = hi; + + //first 3 are linear, next 3 are angular + void setLimit(int axis, real_t lo, real_t hi) { + if (axis < 3) { + m_linearLimits.m_lowerLimit[axis] = lo; + m_linearLimits.m_upperLimit[axis] = hi; + } else { + m_angularLimits[axis - 3].m_loLimit = lo; + m_angularLimits[axis - 3].m_hiLimit = hi; + } } - } //! Test limit /*! @@ -428,34 +376,27 @@ public: - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ - bool isLimited(int limitIndex) - { - if(limitIndex<3) - { + bool isLimited(int limitIndex) { + if (limitIndex < 3) { return m_linearLimits.isLimited(limitIndex); + } + return m_angularLimits[limitIndex - 3].isLimited(); + } + const BodySW *getRigidBodyA() const { + return A; + } + const BodySW *getRigidBodyB() const { + return B; } - return m_angularLimits[limitIndex-3].isLimited(); - } - - const BodySW* getRigidBodyA() const - { - return A; - } - const BodySW* getRigidBodyB() const - { - return B; - } virtual void calcAnchorPos(void); // overridable - void set_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param, real_t p_value); - real_t get_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param) const; - - void set_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value); - bool get_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag) const; + void set_param(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisParam p_param, real_t p_value); + real_t get_param(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisParam p_param) const; + void set_flag(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value); + bool get_flag(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisFlag p_flag) const; }; - #endif // GENERIC_6DOF_JOINT_SW_H |