summaryrefslogtreecommitdiff
path: root/scene
diff options
context:
space:
mode:
Diffstat (limited to 'scene')
-rw-r--r--scene/3d/baked_lightmap.cpp10
-rw-r--r--scene/3d/baked_lightmap.h2
-rw-r--r--scene/3d/gi_probe.cpp343
-rw-r--r--scene/3d/gi_probe.h78
-rw-r--r--scene/3d/voxel_light_baker.cpp2486
-rw-r--r--scene/3d/voxelizer.cpp1108
-rw-r--r--scene/3d/voxelizer.h (renamed from scene/3d/voxel_light_baker.h)116
-rw-r--r--scene/main/viewport.h6
-rw-r--r--scene/register_scene_types.cpp4
-rw-r--r--scene/resources/mesh.cpp25
-rw-r--r--scene/resources/resource_format_text.cpp2
11 files changed, 1340 insertions, 2840 deletions
diff --git a/scene/3d/baked_lightmap.cpp b/scene/3d/baked_lightmap.cpp
index d199e53db5..31a80bc2db 100644
--- a/scene/3d/baked_lightmap.cpp
+++ b/scene/3d/baked_lightmap.cpp
@@ -28,6 +28,7 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
+#if 0
#include "baked_lightmap.h"
#include "core/io/config_file.h"
#include "core/io/resource_saver.h"
@@ -368,7 +369,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi
Ref<BakedLightmapData> new_light_data;
new_light_data.instance();
- VoxelLightBaker baker;
+ Voxelizer baker;
int bake_subdiv;
int capture_subdiv;
@@ -413,7 +414,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi
}
pmc = 0;
- baker.begin_bake_light(VoxelLightBaker::BakeQuality(bake_quality), VoxelLightBaker::BakeMode(bake_mode), propagation, energy);
+ baker.begin_bake_light(Voxelizer::BakeQuality(bake_quality), Voxelizer::BakeMode(bake_mode), propagation, energy);
for (List<PlotLight>::Element *E = light_list.front(); E; E = E->next()) {
@@ -465,7 +466,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi
used_mesh_names.insert(mesh_name);
pmc++;
- VoxelLightBaker::LightMapData lm;
+ Voxelizer::LightMapData lm;
Error err;
if (bake_step_function) {
@@ -626,7 +627,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi
if (p_create_visual_debug) {
MultiMeshInstance *mmi = memnew(MultiMeshInstance);
- mmi->set_multimesh(baker.create_debug_multimesh(VoxelLightBaker::DEBUG_LIGHT));
+ mmi->set_multimesh(baker.create_debug_multimesh(Voxelizer::DEBUG_LIGHT));
add_child(mmi);
#ifdef TOOLS_ENABLED
if (get_tree()->get_edited_scene_root() == this) {
@@ -860,3 +861,4 @@ BakedLightmap::BakedLightmap() {
image_path = ".";
set_disable_scale(true);
}
+#endif
diff --git a/scene/3d/baked_lightmap.h b/scene/3d/baked_lightmap.h
index 895a52aad8..0633ffa641 100644
--- a/scene/3d/baked_lightmap.h
+++ b/scene/3d/baked_lightmap.h
@@ -28,6 +28,7 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
+#if 0
#ifndef BAKED_INDIRECT_LIGHT_H
#define BAKED_INDIRECT_LIGHT_H
@@ -211,4 +212,5 @@ VARIANT_ENUM_CAST(BakedLightmap::BakeQuality);
VARIANT_ENUM_CAST(BakedLightmap::BakeMode);
VARIANT_ENUM_CAST(BakedLightmap::BakeError);
+#endif
#endif // BAKED_INDIRECT_LIGHT_H
diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp
index 99bc78f5d2..32afcc7935 100644
--- a/scene/3d/gi_probe.cpp
+++ b/scene/3d/gi_probe.cpp
@@ -32,116 +32,135 @@
#include "core/os/os.h"
+#include "core/method_bind_ext.gen.inc"
#include "mesh_instance.h"
-#include "voxel_light_baker.h"
+#include "voxelizer.h"
-void GIProbeData::set_bounds(const AABB &p_bounds) {
+void GIProbeData::_set_data(const Dictionary &p_data) {
+ ERR_FAIL_COND(!p_data.has("bounds"));
+ ERR_FAIL_COND(!p_data.has("octree_size"));
+ ERR_FAIL_COND(!p_data.has("octree_cells"));
+ ERR_FAIL_COND(!p_data.has("octree_data"));
+ ERR_FAIL_COND(!p_data.has("level_counts"));
+ ERR_FAIL_COND(!p_data.has("to_cell_xform"));
- VS::get_singleton()->gi_probe_set_bounds(probe, p_bounds);
-}
-
-AABB GIProbeData::get_bounds() const {
+ AABB bounds = p_data["bounds"];
+ Vector3 octree_size = p_data["octree_size"];
+ PoolVector<uint8_t> octree_cells = p_data["octree_cells"];
+ PoolVector<uint8_t> octree_data = p_data["octree_data"];
+ PoolVector<int> octree_levels = p_data["level_counts"];
+ Transform to_cell_xform = p_data["to_cell_xform"];
- return VS::get_singleton()->gi_probe_get_bounds(probe);
+ allocate(to_cell_xform, bounds, octree_size, octree_cells, octree_data, octree_levels);
}
-void GIProbeData::set_cell_size(float p_size) {
-
- VS::get_singleton()->gi_probe_set_cell_size(probe, p_size);
+Dictionary GIProbeData::_get_data() const {
+ Dictionary d;
+ d["bounds"] = get_bounds();
+ d["octree_size"] = get_octree_size();
+ d["octree_cells"] = get_octree_cells();
+ d["octree_data"] = get_data_cells();
+ d["level_counts"] = get_level_counts();
+ d["to_cell_xform"] = get_to_cell_xform();
+ return d;
}
-float GIProbeData::get_cell_size() const {
-
- return VS::get_singleton()->gi_probe_get_cell_size(probe);
+void GIProbeData::allocate(const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3 &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts) {
+ VS::get_singleton()->gi_probe_allocate(probe, p_to_cell_xform, p_aabb, p_octree_size, p_octree_cells, p_data_cells, p_level_counts);
+ bounds = p_aabb;
+ to_cell_xform = p_to_cell_xform;
+ octree_size = p_octree_size;
}
-void GIProbeData::set_to_cell_xform(const Transform &p_xform) {
-
- VS::get_singleton()->gi_probe_set_to_cell_xform(probe, p_xform);
+AABB GIProbeData::get_bounds() const {
+ return bounds;
+}
+Vector3 GIProbeData::get_octree_size() const {
+ return octree_size;
+}
+PoolVector<uint8_t> GIProbeData::get_octree_cells() const {
+ return VS::get_singleton()->gi_probe_get_octree_cells(probe);
+}
+PoolVector<uint8_t> GIProbeData::get_data_cells() const {
+ return VS::get_singleton()->gi_probe_get_data_cells(probe);
+}
+PoolVector<int> GIProbeData::get_level_counts() const {
+ return VS::get_singleton()->gi_probe_get_level_counts(probe);
}
-
Transform GIProbeData::get_to_cell_xform() const {
-
- return VS::get_singleton()->gi_probe_get_to_cell_xform(probe);
+ return to_cell_xform;
}
-void GIProbeData::set_dynamic_data(const PoolVector<int> &p_data) {
+void GIProbeData::set_dynamic_range(float p_range) {
+ VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range);
+ dynamic_range = p_range;
+}
- VS::get_singleton()->gi_probe_set_dynamic_data(probe, p_data);
+float GIProbeData::get_dynamic_range() const {
+ return dynamic_range;
}
-PoolVector<int> GIProbeData::get_dynamic_data() const {
- return VS::get_singleton()->gi_probe_get_dynamic_data(probe);
+void GIProbeData::set_propagation(float p_propagation) {
+ VS::get_singleton()->gi_probe_set_propagation(probe, p_propagation);
+ propagation = p_propagation;
}
-void GIProbeData::set_dynamic_range(int p_range) {
+float GIProbeData::get_propagation() const {
+ return propagation;
+}
- VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range);
+void GIProbeData::set_anisotropy_strength(float p_anisotropy_strength) {
+ VS::get_singleton()->gi_probe_set_anisotropy_strength(probe, p_anisotropy_strength);
+ anisotropy_strength = p_anisotropy_strength;
}
-void GIProbeData::set_energy(float p_range) {
+float GIProbeData::get_anisotropy_strength() const {
+ return anisotropy_strength;
+}
- VS::get_singleton()->gi_probe_set_energy(probe, p_range);
+void GIProbeData::set_energy(float p_energy) {
+ VS::get_singleton()->gi_probe_set_energy(probe, p_energy);
+ energy = p_energy;
}
float GIProbeData::get_energy() const {
-
- return VS::get_singleton()->gi_probe_get_energy(probe);
+ return energy;
}
-void GIProbeData::set_bias(float p_range) {
-
- VS::get_singleton()->gi_probe_set_bias(probe, p_range);
+void GIProbeData::set_bias(float p_bias) {
+ VS::get_singleton()->gi_probe_set_bias(probe, p_bias);
+ bias = p_bias;
}
float GIProbeData::get_bias() const {
-
- return VS::get_singleton()->gi_probe_get_bias(probe);
+ return bias;
}
-void GIProbeData::set_normal_bias(float p_range) {
-
- VS::get_singleton()->gi_probe_set_normal_bias(probe, p_range);
+void GIProbeData::set_normal_bias(float p_normal_bias) {
+ VS::get_singleton()->gi_probe_set_normal_bias(probe, p_normal_bias);
+ normal_bias = p_normal_bias;
}
float GIProbeData::get_normal_bias() const {
-
- return VS::get_singleton()->gi_probe_get_normal_bias(probe);
-}
-
-void GIProbeData::set_propagation(float p_range) {
-
- VS::get_singleton()->gi_probe_set_propagation(probe, p_range);
-}
-
-float GIProbeData::get_propagation() const {
-
- return VS::get_singleton()->gi_probe_get_propagation(probe);
+ return normal_bias;
}
void GIProbeData::set_interior(bool p_enable) {
-
VS::get_singleton()->gi_probe_set_interior(probe, p_enable);
+ interior = p_enable;
}
bool GIProbeData::is_interior() const {
-
- return VS::get_singleton()->gi_probe_is_interior(probe);
-}
-
-bool GIProbeData::is_compressed() const {
-
- return VS::get_singleton()->gi_probe_is_compressed(probe);
+ return interior;
}
-void GIProbeData::set_compress(bool p_enable) {
-
- VS::get_singleton()->gi_probe_set_compress(probe, p_enable);
+void GIProbeData::set_use_two_bounces(bool p_enable) {
+ VS::get_singleton()->gi_probe_set_use_two_bounces(probe, p_enable);
+ use_two_bounces = p_enable;
}
-int GIProbeData::get_dynamic_range() const {
-
- return VS::get_singleton()->gi_probe_get_dynamic_range(probe);
+bool GIProbeData::is_using_two_bounces() const {
+ return use_two_bounces;
}
RID GIProbeData::get_rid() const {
@@ -149,19 +168,25 @@ RID GIProbeData::get_rid() const {
return probe;
}
-void GIProbeData::_bind_methods() {
+void GIProbeData::_validate_property(PropertyInfo &property) const {
+ if (property.name == "anisotropy_strength") {
+ bool anisotropy_enabled = ProjectSettings::get_singleton()->get("rendering/quality/gi_probes/anisotropic");
+ if (!anisotropy_enabled) {
+ property.usage = PROPERTY_USAGE_NOEDITOR;
+ }
+ }
+}
- ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &GIProbeData::set_bounds);
- ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds);
+void GIProbeData::_bind_methods() {
- ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &GIProbeData::set_cell_size);
- ClassDB::bind_method(D_METHOD("get_cell_size"), &GIProbeData::get_cell_size);
+ ClassDB::bind_method(D_METHOD("allocate", "to_cell_xform", "aabb", "octree_size", "octree_cells", "octree_data", "octree_level_count"), &GIProbeData::allocate);
- ClassDB::bind_method(D_METHOD("set_to_cell_xform", "to_cell_xform"), &GIProbeData::set_to_cell_xform);
+ ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds);
+ ClassDB::bind_method(D_METHOD("get_octree_size"), &GIProbeData::get_octree_size);
ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform);
-
- ClassDB::bind_method(D_METHOD("set_dynamic_data", "dynamic_data"), &GIProbeData::set_dynamic_data);
- ClassDB::bind_method(D_METHOD("get_dynamic_data"), &GIProbeData::get_dynamic_data);
+ ClassDB::bind_method(D_METHOD("get_octree_cells"), &GIProbeData::get_octree_cells);
+ ClassDB::bind_method(D_METHOD("get_data_cells"), &GIProbeData::get_data_cells);
+ ClassDB::bind_method(D_METHOD("get_level_counts"), &GIProbeData::get_level_counts);
ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range);
ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range);
@@ -178,28 +203,40 @@ void GIProbeData::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation);
ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation);
+ ClassDB::bind_method(D_METHOD("set_anisotropy_strength", "strength"), &GIProbeData::set_anisotropy_strength);
+ ClassDB::bind_method(D_METHOD("get_anisotropy_strength"), &GIProbeData::get_anisotropy_strength);
+
ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior);
ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior);
- ClassDB::bind_method(D_METHOD("set_compress", "compress"), &GIProbeData::set_compress);
- ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbeData::is_compressed);
+ ClassDB::bind_method(D_METHOD("set_use_two_bounces", "enable"), &GIProbeData::set_use_two_bounces);
+ ClassDB::bind_method(D_METHOD("is_using_two_bounces"), &GIProbeData::is_using_two_bounces);
+
+ ClassDB::bind_method(D_METHOD("_set_data", "data"), &GIProbeData::_set_data);
+ ClassDB::bind_method(D_METHOD("_get_data"), &GIProbeData::_get_data);
- ADD_PROPERTY(PropertyInfo(Variant::AABB, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "cell_size", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_size", "get_cell_size");
- ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "to_cell_xform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_to_cell_xform", "get_to_cell_xform");
+ ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_data", "_get_data");
- ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY, "dynamic_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_data", "get_dynamic_data");
- ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_range", "get_dynamic_range");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_energy", "get_energy");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bias", "get_bias");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_normal_bias", "get_normal_bias");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_propagation", "get_propagation");
- ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_interior", "is_interior");
- ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_compress", "is_compressed");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_dynamic_range", "get_dynamic_range");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_energy", "get_energy");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_bias", "get_bias");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_normal_bias", "get_normal_bias");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "anisotropy_strength", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_anisotropy_strength", "get_anisotropy_strength");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_two_bounces"), "set_use_two_bounces", "is_using_two_bounces");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
}
GIProbeData::GIProbeData() {
+ dynamic_range = 4;
+ energy = 1.0;
+ bias = 1.5;
+ normal_bias = 0.0;
+ propagation = 0.7;
+ anisotropy_strength = 0.5;
+ interior = false;
+
probe = VS::get_singleton()->gi_probe_create();
}
@@ -251,89 +288,6 @@ Vector3 GIProbe::get_extents() const {
return extents;
}
-void GIProbe::set_dynamic_range(int p_dynamic_range) {
-
- dynamic_range = p_dynamic_range;
-}
-int GIProbe::get_dynamic_range() const {
-
- return dynamic_range;
-}
-
-void GIProbe::set_energy(float p_energy) {
-
- energy = p_energy;
- if (probe_data.is_valid()) {
- probe_data->set_energy(energy);
- }
-}
-float GIProbe::get_energy() const {
-
- return energy;
-}
-
-void GIProbe::set_bias(float p_bias) {
-
- bias = p_bias;
- if (probe_data.is_valid()) {
- probe_data->set_bias(bias);
- }
-}
-float GIProbe::get_bias() const {
-
- return bias;
-}
-
-void GIProbe::set_normal_bias(float p_normal_bias) {
-
- normal_bias = p_normal_bias;
- if (probe_data.is_valid()) {
- probe_data->set_normal_bias(normal_bias);
- }
-}
-float GIProbe::get_normal_bias() const {
-
- return normal_bias;
-}
-
-void GIProbe::set_propagation(float p_propagation) {
-
- propagation = p_propagation;
- if (probe_data.is_valid()) {
- probe_data->set_propagation(propagation);
- }
-}
-float GIProbe::get_propagation() const {
-
- return propagation;
-}
-
-void GIProbe::set_interior(bool p_enable) {
-
- interior = p_enable;
- if (probe_data.is_valid()) {
- probe_data->set_interior(p_enable);
- }
-}
-
-bool GIProbe::is_interior() const {
-
- return interior;
-}
-
-void GIProbe::set_compress(bool p_enable) {
-
- compress = p_enable;
- if (probe_data.is_valid()) {
- probe_data->set_compress(p_enable);
- }
-}
-
-bool GIProbe::is_compressed() const {
-
- return compress;
-}
-
void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node);
@@ -397,9 +351,9 @@ GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL;
void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
- static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 };
+ static const int subdiv_value[SUBDIV_MAX] = { 6, 7, 8, 9 };
- VoxelLightBaker baker;
+ Voxelizer baker;
baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0));
@@ -431,8 +385,6 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
//create the data for visual server
- PoolVector<int> data = baker.create_gi_probe_data();
-
if (p_create_visual_debug) {
MultiMeshInstance *mmi = memnew(MultiMeshInstance);
mmi->set_multimesh(baker.create_debug_multimesh());
@@ -454,17 +406,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
if (probe_data.is_null())
probe_data.instance();
- probe_data->set_bounds(AABB(-extents, extents * 2.0));
- probe_data->set_cell_size(baker.get_cell_size());
- probe_data->set_dynamic_data(data);
- probe_data->set_dynamic_range(dynamic_range);
- probe_data->set_energy(energy);
- probe_data->set_bias(bias);
- probe_data->set_normal_bias(normal_bias);
- probe_data->set_propagation(propagation);
- probe_data->set_interior(interior);
- probe_data->set_compress(compress);
- probe_data->set_to_cell_xform(baker.get_to_cell_space_xform());
+ probe_data->allocate(baker.get_to_cell_space_xform(), AABB(-extents, extents * 2.0), baker.get_giprobe_octree_size(), baker.get_giprobe_octree_cells(), baker.get_giprobe_data_cells(), baker.get_giprobe_level_cell_count());
set_probe_data(probe_data);
}
@@ -508,40 +450,12 @@ void GIProbe::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents);
ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents);
- ClassDB::bind_method(D_METHOD("set_dynamic_range", "max"), &GIProbe::set_dynamic_range);
- ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbe::get_dynamic_range);
-
- ClassDB::bind_method(D_METHOD("set_energy", "max"), &GIProbe::set_energy);
- ClassDB::bind_method(D_METHOD("get_energy"), &GIProbe::get_energy);
-
- ClassDB::bind_method(D_METHOD("set_bias", "max"), &GIProbe::set_bias);
- ClassDB::bind_method(D_METHOD("get_bias"), &GIProbe::get_bias);
-
- ClassDB::bind_method(D_METHOD("set_normal_bias", "max"), &GIProbe::set_normal_bias);
- ClassDB::bind_method(D_METHOD("get_normal_bias"), &GIProbe::get_normal_bias);
-
- ClassDB::bind_method(D_METHOD("set_propagation", "max"), &GIProbe::set_propagation);
- ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbe::get_propagation);
-
- ClassDB::bind_method(D_METHOD("set_interior", "enable"), &GIProbe::set_interior);
- ClassDB::bind_method(D_METHOD("is_interior"), &GIProbe::is_interior);
-
- ClassDB::bind_method(D_METHOD("set_compress", "enable"), &GIProbe::set_compress);
- ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbe::is_compressed);
-
ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false));
ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake);
ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents");
- ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "1,16,1"), "set_dynamic_range", "get_dynamic_range");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01,or_greater"), "set_energy", "get_energy");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_bias", "get_bias");
- ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_normal_bias", "get_normal_bias");
- ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
- ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress"), "set_compress", "is_compressed");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_DO_NOT_SHARE_ON_DUPLICATE), "set_probe_data", "get_probe_data");
BIND_ENUM_CONSTANT(SUBDIV_64);
@@ -554,14 +468,7 @@ void GIProbe::_bind_methods() {
GIProbe::GIProbe() {
subdiv = SUBDIV_128;
- dynamic_range = 4;
- energy = 1.0;
- bias = 1.5;
- normal_bias = 0.0;
- propagation = 0.7;
extents = Vector3(10, 10, 10);
- interior = false;
- compress = false;
gi_probe = VS::get_singleton()->gi_probe_create();
set_disable_scale(true);
diff --git a/scene/3d/gi_probe.h b/scene/3d/gi_probe.h
index 7c58f862e4..7cb4b435c5 100644
--- a/scene/3d/gi_probe.h
+++ b/scene/3d/gi_probe.h
@@ -40,42 +40,58 @@ class GIProbeData : public Resource {
RID probe;
+ void _set_data(const Dictionary &p_data);
+ Dictionary _get_data() const;
+
+ Transform to_cell_xform;
+ AABB bounds;
+ Vector3 octree_size;
+
+ float dynamic_range;
+ float energy;
+ float bias;
+ float normal_bias;
+ float propagation;
+ float anisotropy_strength;
+ bool interior;
+ bool use_two_bounces;
+
protected:
static void _bind_methods();
+ void _validate_property(PropertyInfo &property) const;
public:
- void set_bounds(const AABB &p_bounds);
+ void allocate(const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3 &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts);
AABB get_bounds() const;
-
- void set_cell_size(float p_size);
- float get_cell_size() const;
-
- void set_to_cell_xform(const Transform &p_xform);
+ Vector3 get_octree_size() const;
+ PoolVector<uint8_t> get_octree_cells() const;
+ PoolVector<uint8_t> get_data_cells() const;
+ PoolVector<int> get_level_counts() const;
Transform get_to_cell_xform() const;
- void set_dynamic_data(const PoolVector<int> &p_data);
- PoolVector<int> get_dynamic_data() const;
+ void set_dynamic_range(float p_range);
+ float get_dynamic_range() const;
- void set_dynamic_range(int p_range);
- int get_dynamic_range() const;
-
- void set_propagation(float p_range);
+ void set_propagation(float p_propagation);
float get_propagation() const;
- void set_energy(float p_range);
+ void set_anisotropy_strength(float p_anisotropy_strength);
+ float get_anisotropy_strength() const;
+
+ void set_energy(float p_energy);
float get_energy() const;
- void set_bias(float p_range);
+ void set_bias(float p_bias);
float get_bias() const;
- void set_normal_bias(float p_range);
+ void set_normal_bias(float p_normal_bias);
float get_normal_bias() const;
void set_interior(bool p_enable);
bool is_interior() const;
- void set_compress(bool p_enable);
- bool is_compressed() const;
+ void set_use_two_bounces(bool p_enable);
+ bool is_using_two_bounces() const;
virtual RID get_rid() const;
@@ -107,13 +123,6 @@ private:
Subdiv subdiv;
Vector3 extents;
- int dynamic_range;
- float energy;
- float bias;
- float normal_bias;
- float propagation;
- bool interior;
- bool compress;
struct PlotMesh {
Ref<Material> override_material;
@@ -142,27 +151,6 @@ public:
void set_extents(const Vector3 &p_extents);
Vector3 get_extents() const;
- void set_dynamic_range(int p_dynamic_range);
- int get_dynamic_range() const;
-
- void set_energy(float p_energy);
- float get_energy() const;
-
- void set_bias(float p_bias);
- float get_bias() const;
-
- void set_normal_bias(float p_normal_bias);
- float get_normal_bias() const;
-
- void set_propagation(float p_propagation);
- float get_propagation() const;
-
- void set_interior(bool p_enable);
- bool is_interior() const;
-
- void set_compress(bool p_enable);
- bool is_compressed() const;
-
void bake(Node *p_from_node = NULL, bool p_create_visual_debug = false);
virtual AABB get_aabb() const;
diff --git a/scene/3d/voxel_light_baker.cpp b/scene/3d/voxel_light_baker.cpp
deleted file mode 100644
index 412c53e36b..0000000000
--- a/scene/3d/voxel_light_baker.cpp
+++ /dev/null
@@ -1,2486 +0,0 @@
-/*************************************************************************/
-/* voxel_light_baker.cpp */
-/*************************************************************************/
-/* This file is part of: */
-/* GODOT ENGINE */
-/* https://godotengine.org */
-/*************************************************************************/
-/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
-/* */
-/* Permission is hereby granted, free of charge, to any person obtaining */
-/* a copy of this software and associated documentation files (the */
-/* "Software"), to deal in the Software without restriction, including */
-/* without limitation the rights to use, copy, modify, merge, publish, */
-/* distribute, sublicense, and/or sell copies of the Software, and to */
-/* permit persons to whom the Software is furnished to do so, subject to */
-/* the following conditions: */
-/* */
-/* The above copyright notice and this permission notice shall be */
-/* included in all copies or substantial portions of the Software. */
-/* */
-/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
-/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
-/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
-/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
-/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
-/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
-/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
-/*************************************************************************/
-
-#include "voxel_light_baker.h"
-
-#include "core/os/os.h"
-#include "core/os/threaded_array_processor.h"
-
-#include <stdlib.h>
-
-#define FINDMINMAX(x0, x1, x2, min, max) \
- min = max = x0; \
- if (x1 < min) min = x1; \
- if (x1 > max) max = x1; \
- if (x2 < min) min = x2; \
- if (x2 > max) max = x2;
-
-static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
- int q;
- Vector3 vmin, vmax;
- for (q = 0; q <= 2; q++) {
- if (normal[q] > 0.0f) {
- vmin[q] = -maxbox[q];
- vmax[q] = maxbox[q];
- } else {
- vmin[q] = maxbox[q];
- vmax[q] = -maxbox[q];
- }
- }
- if (normal.dot(vmin) + d > 0.0f) return false;
- if (normal.dot(vmax) + d >= 0.0f) return true;
-
- return false;
-}
-
-/*======================== X-tests ========================*/
-#define AXISTEST_X01(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p2 = a * v2.y - b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-#define AXISTEST_X2(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p1 = a * v1.y - b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-/*======================== Y-tests ========================*/
-#define AXISTEST_Y02(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p2 = -a * v2.x + b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-#define AXISTEST_Y1(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p1 = -a * v1.x + b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-/*======================== Z-tests ========================*/
-
-#define AXISTEST_Z12(a, b, fa, fb) \
- p1 = a * v1.x - b * v1.y; \
- p2 = a * v2.x - b * v2.y; \
- if (p2 < p1) { \
- min = p2; \
- max = p1; \
- } else { \
- min = p1; \
- max = p2; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) return false;
-
-#define AXISTEST_Z0(a, b, fa, fb) \
- p0 = a * v0.x - b * v0.y; \
- p1 = a * v1.x - b * v1.y; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) return false;
-
-static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
-
- /* use separating axis theorem to test overlap between triangle and box */
- /* need to test for overlap in these directions: */
- /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
- /* we do not even need to test these) */
- /* 2) normal of the triangle */
- /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
- /* this gives 3x3=9 more tests */
- Vector3 v0, v1, v2;
- float min, max, d, p0, p1, p2, rad, fex, fey, fez;
- Vector3 normal, e0, e1, e2;
-
- /* This is the fastest branch on Sun */
- /* move everything so that the boxcenter is in (0,0,0) */
-
- v0 = triverts[0] - boxcenter;
- v1 = triverts[1] - boxcenter;
- v2 = triverts[2] - boxcenter;
-
- /* compute triangle edges */
- e0 = v1 - v0; /* tri edge 0 */
- e1 = v2 - v1; /* tri edge 1 */
- e2 = v0 - v2; /* tri edge 2 */
-
- /* Bullet 3: */
- /* test the 9 tests first (this was faster) */
- fex = Math::abs(e0.x);
- fey = Math::abs(e0.y);
- fez = Math::abs(e0.z);
- AXISTEST_X01(e0.z, e0.y, fez, fey);
- AXISTEST_Y02(e0.z, e0.x, fez, fex);
- AXISTEST_Z12(e0.y, e0.x, fey, fex);
-
- fex = Math::abs(e1.x);
- fey = Math::abs(e1.y);
- fez = Math::abs(e1.z);
- AXISTEST_X01(e1.z, e1.y, fez, fey);
- AXISTEST_Y02(e1.z, e1.x, fez, fex);
- AXISTEST_Z0(e1.y, e1.x, fey, fex);
-
- fex = Math::abs(e2.x);
- fey = Math::abs(e2.y);
- fez = Math::abs(e2.z);
- AXISTEST_X2(e2.z, e2.y, fez, fey);
- AXISTEST_Y1(e2.z, e2.x, fez, fex);
- AXISTEST_Z12(e2.y, e2.x, fey, fex);
-
- /* Bullet 1: */
- /* first test overlap in the {x,y,z}-directions */
- /* find min, max of the triangle each direction, and test for overlap in */
- /* that direction -- this is equivalent to testing a minimal AABB around */
- /* the triangle against the AABB */
-
- /* test in X-direction */
- FINDMINMAX(v0.x, v1.x, v2.x, min, max);
- if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
-
- /* test in Y-direction */
- FINDMINMAX(v0.y, v1.y, v2.y, min, max);
- if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
-
- /* test in Z-direction */
- FINDMINMAX(v0.z, v1.z, v2.z, min, max);
- if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
-
- /* Bullet 2: */
- /* test if the box intersects the plane of the triangle */
- /* compute plane equation of triangle: normal*x+d=0 */
- normal = e0.cross(e1);
- d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
- return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */
-}
-
-static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
-
- if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) {
- r_uv = p_uv[0];
- r_normal = p_normal[0];
- return;
- }
- if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) {
- r_uv = p_uv[1];
- r_normal = p_normal[1];
- return;
- }
- if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) {
- r_uv = p_uv[2];
- r_normal = p_normal[2];
- return;
- }
-
- Vector3 v0 = p_vtx[1] - p_vtx[0];
- Vector3 v1 = p_vtx[2] - p_vtx[0];
- Vector3 v2 = p_pos - p_vtx[0];
-
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- if (denom == 0) {
- r_uv = p_uv[0];
- r_normal = p_normal[0];
- return;
- }
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
-
- r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
- r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
-}
-
-void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
-
- if (p_level == cell_subdiv - 1) {
- //plot the face by guessing its albedo and emission value
-
- //find best axis to map to, for scanning values
- int closest_axis = 0;
- float closest_dot = 0;
-
- Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 normal = plane.normal;
-
- for (int i = 0; i < 3; i++) {
-
- Vector3 axis;
- axis[i] = 1.0;
- float dot = ABS(normal.dot(axis));
- if (i == 0 || dot > closest_dot) {
- closest_axis = i;
- closest_dot = dot;
- }
- }
-
- Vector3 axis;
- axis[closest_axis] = 1.0;
- Vector3 t1;
- t1[(closest_axis + 1) % 3] = 1.0;
- Vector3 t2;
- t2[(closest_axis + 2) % 3] = 1.0;
-
- t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
- t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
-
- Color albedo_accum;
- Color emission_accum;
- Vector3 normal_accum;
-
- float alpha = 0.0;
-
- //map to a grid average in the best axis for this face
- for (int i = 0; i < color_scan_cell_width; i++) {
-
- Vector3 ofs_i = float(i) * t1;
-
- for (int j = 0; j < color_scan_cell_width; j++) {
-
- Vector3 ofs_j = float(j) * t2;
-
- Vector3 from = p_aabb.position + ofs_i + ofs_j;
- Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
- Vector3 half = (to - from) * 0.5;
-
- //is in this cell?
- if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
- continue; //face does not span this cell
- }
-
- //go from -size to +size*2 to avoid skipping collisions
- Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
- Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
-
- if (normal.dot(ray_from - ray_to) < 0) {
- SWAP(ray_from, ray_to);
- }
-
- Vector3 intersection;
-
- if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
- if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
- intersection = plane.project(ray_from);
- } else {
-
- intersection = plane.project(ray_to);
- }
- }
-
- intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
-
- Vector2 uv;
- Vector3 lnormal;
- get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
- if (lnormal == Vector3()) //just in case normal as nor provided
- lnormal = normal;
-
- int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
- int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
-
- int ofs = uv_y * bake_texture_size + uv_x;
- albedo_accum.r += p_material.albedo[ofs].r;
- albedo_accum.g += p_material.albedo[ofs].g;
- albedo_accum.b += p_material.albedo[ofs].b;
- albedo_accum.a += p_material.albedo[ofs].a;
-
- emission_accum.r += p_material.emission[ofs].r;
- emission_accum.g += p_material.emission[ofs].g;
- emission_accum.b += p_material.emission[ofs].b;
-
- normal_accum += lnormal;
-
- alpha += 1.0;
- }
- }
-
- if (alpha == 0) {
- //could not in any way get texture information.. so use closest point to center
-
- Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
-
- Vector3 lnormal;
- Vector2 uv;
- get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
- if (lnormal == Vector3()) //just in case normal as nor provided
- lnormal = normal;
-
- int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
-
- int ofs = uv_y * bake_texture_size + uv_x;
-
- alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
-
- albedo_accum.r = p_material.albedo[ofs].r * alpha;
- albedo_accum.g = p_material.albedo[ofs].g * alpha;
- albedo_accum.b = p_material.albedo[ofs].b * alpha;
- albedo_accum.a = p_material.albedo[ofs].a * alpha;
-
- emission_accum.r = p_material.emission[ofs].r * alpha;
- emission_accum.g = p_material.emission[ofs].g * alpha;
- emission_accum.b = p_material.emission[ofs].b * alpha;
-
- normal_accum = lnormal * alpha;
-
- } else {
-
- float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- alpha *= accdiv;
-
- albedo_accum.r *= accdiv;
- albedo_accum.g *= accdiv;
- albedo_accum.b *= accdiv;
- albedo_accum.a *= accdiv;
-
- emission_accum.r *= accdiv;
- emission_accum.g *= accdiv;
- emission_accum.b *= accdiv;
-
- normal_accum *= accdiv;
- }
-
- //put this temporarily here, corrected in a later step
- bake_cells.write[p_idx].albedo[0] += albedo_accum.r;
- bake_cells.write[p_idx].albedo[1] += albedo_accum.g;
- bake_cells.write[p_idx].albedo[2] += albedo_accum.b;
- bake_cells.write[p_idx].emission[0] += emission_accum.r;
- bake_cells.write[p_idx].emission[1] += emission_accum.g;
- bake_cells.write[p_idx].emission[2] += emission_accum.b;
- bake_cells.write[p_idx].normal[0] += normal_accum.x;
- bake_cells.write[p_idx].normal[1] += normal_accum.y;
- bake_cells.write[p_idx].normal[2] += normal_accum.z;
- bake_cells.write[p_idx].alpha += alpha;
-
- } else {
- //go down
-
- int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
-
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
-
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
-
- if (i & 1) {
- aabb.position.x += aabb.size.x;
- nx += half;
- }
- if (i & 2) {
- aabb.position.y += aabb.size.y;
- ny += half;
- }
- if (i & 4) {
- aabb.position.z += aabb.size.z;
- nz += half;
- }
- //make sure to not plot beyond limits
- if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2])
- continue;
-
- {
- AABB test_aabb = aabb;
- //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
- Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
-
- if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
- //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
- //does not fit in child, go on
- continue;
- }
- }
-
- if (bake_cells[p_idx].children[i] == CHILD_EMPTY) {
- //sub cell must be created
-
- uint32_t child_idx = bake_cells.size();
- bake_cells.write[p_idx].children[i] = child_idx;
- bake_cells.resize(bake_cells.size() + 1);
- bake_cells.write[child_idx].level = p_level + 1;
- }
-
- _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb);
- }
- }
-}
-
-Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
-
- Vector<Color> ret;
-
- if (p_image.is_null() || p_image->empty()) {
-
- ret.resize(bake_texture_size * bake_texture_size);
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- ret.write[i] = p_color_add;
- }
-
- return ret;
- }
- p_image = p_image->duplicate();
-
- if (p_image->is_compressed()) {
- p_image->decompress();
- }
- p_image->convert(Image::FORMAT_RGBA8);
- p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
-
- PoolVector<uint8_t>::Read r = p_image->get_data().read();
- ret.resize(bake_texture_size * bake_texture_size);
-
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- Color c;
- c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
- c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
- c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
-
- c.a = r[i * 4 + 3] / 255.0;
-
- ret.write[i] = c;
- }
-
- return ret;
-}
-
-VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) {
-
- //this way of obtaining materials is inaccurate and also does not support some compressed formats very well
- Ref<StandardMaterial3D> mat = p_material;
-
- Ref<Material> material = mat; //hack for now
-
- if (material_cache.has(material)) {
- return material_cache[material];
- }
-
- MaterialCache mc;
-
- if (mat.is_valid()) {
-
- Ref<Texture2D> albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO);
-
- Ref<Image> img_albedo;
- if (albedo_tex.is_valid()) {
-
- img_albedo = albedo_tex->get_data();
- mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
- } else {
- mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
- }
-
- Ref<Texture2D> emission_tex = mat->get_texture(StandardMaterial3D::TEXTURE_EMISSION);
-
- Color emission_col = mat->get_emission();
- float emission_energy = mat->get_emission_energy();
-
- Ref<Image> img_emission;
-
- if (emission_tex.is_valid()) {
-
- img_emission = emission_tex->get_data();
- }
-
- if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) {
- mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
- } else {
- mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
- }
-
- } else {
- Ref<Image> empty;
-
- mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
- mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
- }
-
- material_cache[p_material] = mc;
- return mc;
-}
-
-void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
-
- for (int i = 0; i < p_mesh->get_surface_count(); i++) {
-
- if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
- continue; //only triangles
-
- Ref<Material> src_material;
-
- if (p_override_material.is_valid()) {
- src_material = p_override_material;
- } else if (i < p_materials.size() && p_materials[i].is_valid()) {
- src_material = p_materials[i];
- } else {
- src_material = p_mesh->surface_get_material(i);
- }
- MaterialCache material = _get_material_cache(src_material);
-
- Array a = p_mesh->surface_get_arrays(i);
-
- PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
- PoolVector<Vector3>::Read vr = vertices.read();
- PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
- PoolVector<Vector2>::Read uvr;
- PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
- PoolVector<Vector3>::Read nr;
- PoolVector<int> index = a[Mesh::ARRAY_INDEX];
-
- bool read_uv = false;
- bool read_normals = false;
-
- if (uv.size()) {
-
- uvr = uv.read();
- read_uv = true;
- }
-
- if (normals.size()) {
- read_normals = true;
- nr = normals.read();
- }
-
- if (index.size()) {
-
- int facecount = index.size() / 3;
- PoolVector<int>::Read ir = index.read();
-
- for (int j = 0; j < facecount; j++) {
-
- Vector3 vtxs[3];
- Vector2 uvs[3];
- Vector3 normal[3];
-
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
- }
-
- if (read_uv) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[ir[j * 3 + k]];
- }
- }
-
- if (read_normals) {
- for (int k = 0; k < 3; k++) {
- normal[k] = nr[ir[j * 3 + k]];
- }
- }
-
- //test against original bounds
- if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
- continue;
- //plot
- _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
- }
-
- } else {
-
- int facecount = vertices.size() / 3;
-
- for (int j = 0; j < facecount; j++) {
-
- Vector3 vtxs[3];
- Vector2 uvs[3];
- Vector3 normal[3];
-
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[j * 3 + k]);
- }
-
- if (read_uv) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[j * 3 + k];
- }
- }
-
- if (read_normals) {
- for (int k = 0; k < 3; k++) {
- normal[k] = nr[j * 3 + k];
- }
- }
-
- //test against original bounds
- if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
- continue;
- //plot face
- _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
- }
- }
- }
-
- max_original_cells = bake_cells.size();
-}
-
-void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) {
-
- bake_light.write[p_idx].x = p_x;
- bake_light.write[p_idx].y = p_y;
- bake_light.write[p_idx].z = p_z;
-
- if (p_level == cell_subdiv - 1) {
-
- bake_light.write[p_idx].next_leaf = first_leaf;
- first_leaf = p_idx;
- } else {
-
- //go down
- int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
-
- uint32_t child = bake_cells[p_idx].children[i];
-
- if (child == CHILD_EMPTY)
- continue;
-
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
-
- if (i & 1)
- nx += half;
- if (i & 2)
- ny += half;
- if (i & 4)
- nz += half;
-
- _init_light_plot(child, p_level + 1, nx, ny, nz, p_idx);
- }
- }
-}
-
-void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) {
- _check_init_light();
- propagation = p_propagation;
- bake_quality = p_quality;
- bake_mode = p_bake_mode;
- energy = p_energy;
-}
-
-void VoxelLightBaker::_check_init_light() {
- if (bake_light.size() == 0) {
-
- direct_lights_baked = false;
- leaf_voxel_count = 0;
- _fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting.
- bake_light.resize(bake_cells.size());
- print_line("bake light size: " + itos(bake_light.size()));
- //zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light));
- first_leaf = -1;
- _init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY);
- }
-}
-
-static float _get_normal_advance(const Vector3 &p_normal) {
-
- Vector3 normal = p_normal;
- Vector3 unorm = normal.abs();
-
- if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
- // x code
- unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0);
- } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
- // y code
- unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0);
- } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
- // z code
- unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0);
- } else {
- // oh-no we messed up code
- // has to be
- unorm = Vector3(1.0, 0.0, 0.0);
- }
-
- return 1.0 / normal.dot(unorm);
-}
-
-static const Vector3 aniso_normal[6] = {
- Vector3(-1, 0, 0),
- Vector3(1, 0, 0),
- Vector3(0, -1, 0),
- Vector3(0, 1, 0),
- Vector3(0, 0, -1),
- Vector3(0, 0, 1)
-};
-
-uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) {
-
- uint32_t cell = 0;
-
- int ofs_x = 0;
- int ofs_y = 0;
- int ofs_z = 0;
- int size = 1 << (cell_subdiv - 1);
- int half = size / 2;
-
- if (x < 0 || x >= size)
- return -1;
- if (y < 0 || y >= size)
- return -1;
- if (z < 0 || z >= size)
- return -1;
-
- for (int i = 0; i < cell_subdiv - 1; i++) {
-
- const Cell *bc = &cells[cell];
-
- int child = 0;
- if (x >= ofs_x + half) {
- child |= 1;
- ofs_x += half;
- }
- if (y >= ofs_y + half) {
- child |= 2;
- ofs_y += half;
- }
- if (z >= ofs_z + half) {
- child |= 4;
- ofs_z += half;
- }
-
- cell = bc->children[child];
- if (cell == CHILD_EMPTY)
- return CHILD_EMPTY;
-
- half >>= 1;
- }
-
- return cell;
-}
-void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) {
-
- _check_init_light();
-
- float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1;
-
- if (p_direct)
- direct_lights_baked = true;
-
- Vector3 light_axis = p_direction;
- Plane clip[3];
- int clip_planes = 0;
-
- Light *light_data = bake_light.ptrw();
- const Cell *cells = bake_cells.ptr();
-
- for (int i = 0; i < 3; i++) {
-
- if (Math::is_zero_approx(light_axis[i]))
- continue;
- clip[clip_planes].normal[i] = 1.0;
-
- if (light_axis[i] < 0) {
-
- clip[clip_planes].d = axis_cell_size[i] + 1;
- } else {
- clip[clip_planes].d -= 1.0;
- }
-
- clip_planes++;
- }
-
- float distance_adv = _get_normal_advance(light_axis);
-
- int success_count = 0;
-
- Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
-
- int idx = first_leaf;
- while (idx >= 0) {
-
- Light *light = &light_data[idx];
-
- Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
- to += -light_axis.sign() * 0.47; //make it more likely to receive a ray
-
- Vector3 from = to - max_len * light_axis;
-
- for (int j = 0; j < clip_planes; j++) {
-
- clip[j].intersects_segment(from, to, &from);
- }
-
- float distance = (to - from).length();
- distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always
- from = to - light_axis * distance;
-
- uint32_t result = 0xFFFFFFFF;
-
- while (distance > -distance_adv) { //use this to avoid precision errors
-
- result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
- if (result != 0xFFFFFFFF) {
- break;
- }
-
- from += light_axis * distance_adv;
- distance -= distance_adv;
- }
-
- if (result == (uint32_t)idx) {
- //cell hit itself! hooray!
-
- Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
- if (normal == Vector3()) {
- for (int i = 0; i < 6; i++) {
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0];
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1];
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2];
- }
-
- } else {
-
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-normal));
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s;
- }
- }
-
- if (p_direct) {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
- light->direct_accum[i][0] += light_energy.x * s;
- light->direct_accum[i][1] += light_energy.y * s;
- light->direct_accum[i][2] += light_energy.z * s;
- }
- }
- success_count++;
- }
-
- idx = light_data[idx].next_leaf;
- }
-}
-
-void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) {
-
- _check_init_light();
-
- if (p_direct)
- direct_lights_baked = true;
-
- Plane clip[3];
- int clip_planes = 0;
-
- // uint64_t us = OS::get_singleton()->get_ticks_usec();
-
- Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
- //Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized();
-
- float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
-
- Light *light_data = bake_light.ptrw();
- const Cell *cells = bake_cells.ptr();
- Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
-
- int idx = first_leaf;
- while (idx >= 0) {
-
- Light *light = &light_data[idx];
-
- Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
- to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
-
- Vector3 light_axis = (to - light_pos).normalized();
- float distance_adv = _get_normal_advance(light_axis);
-
- Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
-
- if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
- idx = light_data[idx].next_leaf;
- continue;
- }
-
- float att = 1.0;
- {
- float d = light_pos.distance_to(to);
- if (d + distance_adv > local_radius) {
- idx = light_data[idx].next_leaf;
- continue; // too far away
- }
-
- float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
- att *= powf(1.0 - dt, p_attenutation);
- }
-
- clip_planes = 0;
-
- for (int c = 0; c < 3; c++) {
-
- if (Math::is_zero_approx(light_axis[c]))
- continue;
- clip[clip_planes].normal[c] = 1.0;
-
- if (light_axis[c] < 0) {
-
- clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
- } else {
- clip[clip_planes].d -= 1.0;
- }
-
- clip_planes++;
- }
-
- Vector3 from = light_pos;
-
- for (int j = 0; j < clip_planes; j++) {
-
- clip[j].intersects_segment(from, to, &from);
- }
-
- float distance = (to - from).length();
-
- distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
- from = to - light_axis * distance;
- to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
-
- uint32_t result = 0xFFFFFFFF;
-
- while (distance > -distance_adv) { //use this to avoid precision errors
-
- result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
- if (result != 0xFFFFFFFF) {
- break;
- }
-
- from += light_axis * distance_adv;
- distance -= distance_adv;
- }
-
- if (result == (uint32_t)idx) {
- //cell hit itself! hooray!
-
- if (normal == Vector3()) {
- for (int i = 0; i < 6; i++) {
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
- }
-
- } else {
-
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-normal));
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
- }
- }
-
- if (p_direct) {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
- light->direct_accum[i][0] += light_energy.x * s * att;
- light->direct_accum[i][1] += light_energy.y * s * att;
- light->direct_accum[i][2] += light_energy.z * s * att;
- }
- }
- }
-
- idx = light_data[idx].next_leaf;
- }
-}
-
-void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) {
-
- _check_init_light();
-
- if (p_direct)
- direct_lights_baked = true;
-
- Plane clip[3];
- int clip_planes = 0;
-
- // uint64_t us = OS::get_singleton()->get_ticks_usec();
-
- Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
- Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized();
-
- float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
-
- Light *light_data = bake_light.ptrw();
- const Cell *cells = bake_cells.ptr();
- Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
-
- int idx = first_leaf;
- while (idx >= 0) {
-
- Light *light = &light_data[idx];
-
- Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
-
- Vector3 light_axis = (to - light_pos).normalized();
- float distance_adv = _get_normal_advance(light_axis);
-
- Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
-
- if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
- idx = light_data[idx].next_leaf;
- continue;
- }
-
- float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis)));
- if (angle > p_spot_angle) {
- idx = light_data[idx].next_leaf;
- continue; // too far away
- }
-
- float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation);
-
- {
- float d = light_pos.distance_to(to);
- if (d + distance_adv > local_radius) {
- idx = light_data[idx].next_leaf;
- continue; // too far away
- }
-
- float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
- att *= powf(1.0 - dt, p_attenutation);
- }
-
- clip_planes = 0;
-
- for (int c = 0; c < 3; c++) {
-
- if (Math::is_zero_approx(light_axis[c]))
- continue;
- clip[clip_planes].normal[c] = 1.0;
-
- if (light_axis[c] < 0) {
-
- clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
- } else {
- clip[clip_planes].d -= 1.0;
- }
-
- clip_planes++;
- }
-
- Vector3 from = light_pos;
-
- for (int j = 0; j < clip_planes; j++) {
-
- clip[j].intersects_segment(from, to, &from);
- }
-
- float distance = (to - from).length();
-
- distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
- from = to - light_axis * distance;
-
- uint32_t result = 0xFFFFFFFF;
-
- while (distance > -distance_adv) { //use this to avoid precision errors
-
- result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
- if (result != 0xFFFFFFFF) {
- break;
- }
-
- from += light_axis * distance_adv;
- distance -= distance_adv;
- }
-
- if (result == (uint32_t)idx) {
- //cell hit itself! hooray!
-
- if (normal == Vector3()) {
- for (int i = 0; i < 6; i++) {
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
- }
-
- } else {
-
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-normal));
- light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
- light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
- light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
- }
- }
-
- if (p_direct) {
- for (int i = 0; i < 6; i++) {
- float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
- light->direct_accum[i][0] += light_energy.x * s * att;
- light->direct_accum[i][1] += light_energy.y * s * att;
- light->direct_accum[i][2] += light_energy.z * s * att;
- }
- }
- }
-
- idx = light_data[idx].next_leaf;
- }
-}
-
-void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) {
-
- if (p_level == cell_subdiv - 1) {
-
- leaf_voxel_count++;
- float alpha = bake_cells[p_idx].alpha;
-
- bake_cells.write[p_idx].albedo[0] /= alpha;
- bake_cells.write[p_idx].albedo[1] /= alpha;
- bake_cells.write[p_idx].albedo[2] /= alpha;
-
- //transfer emission to light
- bake_cells.write[p_idx].emission[0] /= alpha;
- bake_cells.write[p_idx].emission[1] /= alpha;
- bake_cells.write[p_idx].emission[2] /= alpha;
-
- bake_cells.write[p_idx].normal[0] /= alpha;
- bake_cells.write[p_idx].normal[1] /= alpha;
- bake_cells.write[p_idx].normal[2] /= alpha;
-
- Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
- if (n.length() < 0.01) {
- //too much fight over normal, zero it
- bake_cells.write[p_idx].normal[0] = 0;
- bake_cells.write[p_idx].normal[1] = 0;
- bake_cells.write[p_idx].normal[2] = 0;
- } else {
- n.normalize();
- bake_cells.write[p_idx].normal[0] = n.x;
- bake_cells.write[p_idx].normal[1] = n.y;
- bake_cells.write[p_idx].normal[2] = n.z;
- }
-
- bake_cells.write[p_idx].alpha = 1.0;
-
- /*if (bake_light.size()) {
- for(int i=0;i<6;i++) {
-
- }
- }*/
-
- } else {
-
- //go down
-
- bake_cells.write[p_idx].emission[0] = 0;
- bake_cells.write[p_idx].emission[1] = 0;
- bake_cells.write[p_idx].emission[2] = 0;
- bake_cells.write[p_idx].normal[0] = 0;
- bake_cells.write[p_idx].normal[1] = 0;
- bake_cells.write[p_idx].normal[2] = 0;
- bake_cells.write[p_idx].albedo[0] = 0;
- bake_cells.write[p_idx].albedo[1] = 0;
- bake_cells.write[p_idx].albedo[2] = 0;
- if (bake_light.size()) {
- for (int j = 0; j < 6; j++) {
- bake_light.write[p_idx].accum[j][0] = 0;
- bake_light.write[p_idx].accum[j][1] = 0;
- bake_light.write[p_idx].accum[j][2] = 0;
- }
- }
-
- float alpha_average = 0;
- int children_found = 0;
-
- for (int i = 0; i < 8; i++) {
-
- uint32_t child = bake_cells[p_idx].children[i];
-
- if (child == CHILD_EMPTY)
- continue;
-
- _fixup_plot(child, p_level + 1);
- alpha_average += bake_cells[child].alpha;
-
- if (bake_light.size() > 0) {
- for (int j = 0; j < 6; j++) {
- bake_light.write[p_idx].accum[j][0] += bake_light[child].accum[j][0];
- bake_light.write[p_idx].accum[j][1] += bake_light[child].accum[j][1];
- bake_light.write[p_idx].accum[j][2] += bake_light[child].accum[j][2];
- }
- bake_cells.write[p_idx].emission[0] += bake_cells[child].emission[0];
- bake_cells.write[p_idx].emission[1] += bake_cells[child].emission[1];
- bake_cells.write[p_idx].emission[2] += bake_cells[child].emission[2];
- }
-
- children_found++;
- }
-
- bake_cells.write[p_idx].alpha = alpha_average / 8.0;
- if (bake_light.size() && children_found) {
- float divisor = Math::lerp(8, children_found, propagation);
- for (int j = 0; j < 6; j++) {
- bake_light.write[p_idx].accum[j][0] /= divisor;
- bake_light.write[p_idx].accum[j][1] /= divisor;
- bake_light.write[p_idx].accum[j][2] /= divisor;
- }
- bake_cells.write[p_idx].emission[0] /= divisor;
- bake_cells.write[p_idx].emission[1] /= divisor;
- bake_cells.write[p_idx].emission[2] /= divisor;
- }
- }
-}
-
-//make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into
-
-void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) {
-
- int x[3];
- int y[3];
-
- for (int j = 0; j < 3; j++) {
-
- x[j] = vertices[j].x * width;
- y[j] = vertices[j].y * height;
- //x[j] = CLAMP(x[j], 0, bt.width - 1);
- //y[j] = CLAMP(y[j], 0, bt.height - 1);
- }
-
- // sort the points vertically
- if (y[1] > y[2]) {
- SWAP(x[1], x[2]);
- SWAP(y[1], y[2]);
- SWAP(positions[1], positions[2]);
- SWAP(normals[1], normals[2]);
- }
- if (y[0] > y[1]) {
- SWAP(x[0], x[1]);
- SWAP(y[0], y[1]);
- SWAP(positions[0], positions[1]);
- SWAP(normals[0], normals[1]);
- }
- if (y[1] > y[2]) {
- SWAP(x[1], x[2]);
- SWAP(y[1], y[2]);
- SWAP(positions[1], positions[2]);
- SWAP(normals[1], normals[2]);
- }
-
- double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1);
- double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1);
- double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1);
- double xf = x[0];
- double xt = x[0] + dx_upper; // if y[0] == y[1], special case
- for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) {
- if (yi >= 0) {
- for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) {
- //pixels[int(x + y * width)] = color;
-
- Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]);
- Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]);
- //vertices[2] - vertices[0];
- Vector2 v2 = Vector2(xi - x[0], yi - y[0]);
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- Vector3 pos;
- Vector3 normal;
- if (denom == 0) {
- pos = positions[0];
- normal = normals[0];
- } else {
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
- pos = positions[0] * u + positions[1] * v + positions[2] * w;
- normal = normals[0] * u + normals[1] * v + normals[2] * w;
- }
-
- int ofs = yi * width + xi;
- pixels[ofs].normal = normal;
- pixels[ofs].pos = pos;
- }
-
- for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) {
- //pixels[int(x + y * width)] = color;
- Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]);
- Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]);
- //vertices[2] - vertices[0];
- Vector2 v2 = Vector2(xi - x[0], yi - y[0]);
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- Vector3 pos;
- Vector3 normal;
- if (denom == 0) {
- pos = positions[0];
- normal = normals[0];
- } else {
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
- pos = positions[0] * u + positions[1] * v + positions[2] * w;
- normal = normals[0] * u + normals[1] * v + normals[2] * w;
- }
-
- int ofs = yi * width + xi;
- pixels[ofs].normal = normal;
- pixels[ofs].pos = pos;
- }
- }
- xf += dx_far;
- if (yi < y[1])
- xt += dx_upper;
- else
- xt += dx_low;
- }
-}
-
-void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) {
-
- int size = 1 << (cell_subdiv - 1);
-
- int clamp_v = size - 1;
- //first of all, clamp
- Vector3 pos;
- pos.x = CLAMP(p_posf.x, 0, clamp_v);
- pos.y = CLAMP(p_posf.y, 0, clamp_v);
- pos.z = CLAMP(p_posf.z, 0, clamp_v);
-
- float level = (cell_subdiv - 1) - p_level;
-
- int target_level;
- float level_filter;
- if (level <= 0.0) {
- level_filter = 0;
- target_level = 0;
- } else {
- target_level = Math::ceil(level);
- level_filter = target_level - level;
- }
-
- const Cell *cells = bake_cells.ptr();
- const Light *light = bake_light.ptr();
-
- Vector3 color[2][8];
- float alpha[2][8];
- zeromem(alpha, sizeof(float) * 2 * 8);
-
- //find cell at given level first
-
- for (int c = 0; c < 2; c++) {
-
- int current_level = MAX(0, target_level - c);
- int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level;
-
- for (int n = 0; n < 8; n++) {
-
- int x = int(pos.x);
- int y = int(pos.y);
- int z = int(pos.z);
-
- if (n & 1)
- x += level_cell_size;
- if (n & 2)
- y += level_cell_size;
- if (n & 4)
- z += level_cell_size;
-
- int ofs_x = 0;
- int ofs_y = 0;
- int ofs_z = 0;
-
- x = CLAMP(x, 0, clamp_v);
- y = CLAMP(y, 0, clamp_v);
- z = CLAMP(z, 0, clamp_v);
-
- int half = size / 2;
- uint32_t cell = 0;
- for (int i = 0; i < current_level; i++) {
-
- const Cell *bc = &cells[cell];
-
- int child = 0;
- if (x >= ofs_x + half) {
- child |= 1;
- ofs_x += half;
- }
- if (y >= ofs_y + half) {
- child |= 2;
- ofs_y += half;
- }
- if (z >= ofs_z + half) {
- child |= 4;
- ofs_z += half;
- }
-
- cell = bc->children[child];
- if (cell == CHILD_EMPTY)
- break;
-
- half >>= 1;
- }
-
- if (cell == CHILD_EMPTY) {
- alpha[c][n] = 0;
- } else {
- alpha[c][n] = cells[cell].alpha;
-
- for (int i = 0; i < 6; i++) {
- //anisotropic read light
- float amount = p_direction.dot(aniso_normal[i]);
- if (amount < 0)
- amount = 0;
- color[c][n].x += light[cell].accum[i][0] * amount;
- color[c][n].y += light[cell].accum[i][1] * amount;
- color[c][n].z += light[cell].accum[i][2] * amount;
- }
-
- color[c][n].x += cells[cell].emission[0];
- color[c][n].y += cells[cell].emission[1];
- color[c][n].z += cells[cell].emission[2];
- }
- }
- }
-
- float target_level_size = size >> target_level;
- Vector3 pos_fract[2];
-
- pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size;
- pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size;
- pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size;
-
- target_level_size = size >> MAX(0, target_level - 1);
-
- pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size;
- pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size;
- pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size;
-
- float alpha_interp[2];
- Vector3 color_interp[2];
-
- for (int i = 0; i < 2; i++) {
-
- Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x);
- Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x);
- Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y);
-
- Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x);
- Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x);
- Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y);
-
- color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z);
-
- float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x);
- float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x);
- float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y);
-
- float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x);
- float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x);
- float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y);
-
- alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z);
- }
-
- r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter);
- r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter);
-}
-
-Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) {
-
- float bias = 2.5;
- float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length();
-
- float dist = bias;
- float alpha = 0.0;
- Vector3 color;
-
- Vector3 scolor;
- float salpha;
-
- while (dist < max_distance && alpha < 0.95) {
- float diameter = MAX(1.0, 2.0 * p_aperture * dist);
- _sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha);
- float a = (1.0 - alpha);
- color += scolor * a;
- alpha += a * salpha;
- dist += diameter * 0.5;
- }
-
- /*if (blend_ambient) {
- color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
- }*/
-
- return color;
-}
-
-Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) {
-
- //find arbitrary tangent and bitangent, then build a matrix
- Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0);
- Vector3 tangent = v0.cross(p_normal).normalized();
- Vector3 bitangent = tangent.cross(p_normal).normalized();
- Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed();
-
- const Vector3 *cone_dirs = NULL;
- const float *cone_weights = NULL;
- int cone_dir_count = 0;
- float cone_aperture = 0;
-
- switch (bake_quality) {
- case BAKE_QUALITY_LOW: {
- //default quality
- static const Vector3 dirs[4] = {
- Vector3(Math_SQRT12, 0, Math_SQRT12),
- Vector3(0, Math_SQRT12, Math_SQRT12),
- Vector3(-Math_SQRT12, 0, Math_SQRT12),
- Vector3(0, -Math_SQRT12, Math_SQRT12)
- };
-
- static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 };
-
- cone_dirs = dirs;
- cone_dir_count = 4;
- cone_aperture = 1.0; // tan(angle) 90 degrees
- cone_weights = weights;
- } break;
- case BAKE_QUALITY_MEDIUM: {
- //default quality
- static const Vector3 dirs[6] = {
- Vector3(0, 0, 1),
- Vector3(0.866025, 0, 0.5),
- Vector3(0.267617, 0.823639, 0.5),
- Vector3(-0.700629, 0.509037, 0.5),
- Vector3(-0.700629, -0.509037, 0.5),
- Vector3(0.267617, -0.823639, 0.5)
- };
- static const float weights[6] = { 0.25f, 0.15f, 0.15f, 0.15f, 0.15f, 0.15f };
- //
- cone_dirs = dirs;
- cone_dir_count = 6;
- cone_aperture = 0.577; // tan(angle) 60 degrees
- cone_weights = weights;
- } break;
- case BAKE_QUALITY_HIGH: {
-
- //high qualily
- static const Vector3 dirs[10] = {
- Vector3(0.8781648411741658, 0.0, 0.478358141694643),
- Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606),
- Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645),
- Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604),
- Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604),
- Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645),
- Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606),
- Vector3(-0.4451656858129485, 0.0, 0.8954482185892644),
- Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214),
- Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214),
- };
- static const float weights[10] = { 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.133333f, 0.133333f, 0.13333f };
- cone_dirs = dirs;
- cone_dir_count = 10;
- cone_aperture = 0.404; // tan(angle) 45 degrees
- cone_weights = weights;
- } break;
- }
-
- Vector3 accum;
-
- for (int i = 0; i < cone_dir_count; i++) {
- Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell
- accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i];
- }
-
- return accum;
-}
-
-_ALWAYS_INLINE_ uint32_t xorshift32(uint32_t *state) {
- /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */
- uint32_t x = *state;
- x ^= x << 13;
- x ^= x >> 17;
- x ^= x << 5;
- *state = x;
- return x;
-}
-
-Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) {
-
- int samples_per_quality[3] = { 48, 128, 512 };
-
- int samples = samples_per_quality[bake_quality];
-
- //create a basis in Z
- Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0);
- Vector3 tangent = v0.cross(p_normal).normalized();
- Vector3 bitangent = tangent.cross(p_normal).normalized();
- Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed();
-
- float bias = 1.5;
- int max_level = cell_subdiv - 1;
- int size = 1 << max_level;
-
- Vector3 accum;
- float spread = Math::deg2rad(80.0);
-
- const Light *light = bake_light.ptr();
- const Cell *cells = bake_cells.ptr();
-
- uint32_t local_rng_state = rand(); //needs to be fixed again
-
- for (int i = 0; i < samples; i++) {
-
- float random_angle1 = (((xorshift32(&local_rng_state) % 65535) / 65535.0) * 2.0 - 1.0) * spread;
- Vector3 axis(0, sin(random_angle1), cos(random_angle1));
- float random_angle2 = ((xorshift32(&local_rng_state) % 65535) / 65535.0) * Math_PI * 2.0;
- Basis rot(Vector3(0, 0, 1), random_angle2);
- axis = rot.xform(axis);
-
- Vector3 direction = normal_xform.xform(axis).normalized();
-
- Vector3 advance = direction * _get_normal_advance(direction);
-
- Vector3 pos = p_pos /*+ Vector3(0.5, 0.5, 0.5)*/ + advance * bias;
-
- uint32_t cell = CHILD_EMPTY;
-
- while (cell == CHILD_EMPTY) {
-
- int x = int(pos.x);
- int y = int(pos.y);
- int z = int(pos.z);
-
- int ofs_x = 0;
- int ofs_y = 0;
- int ofs_z = 0;
- int half = size / 2;
-
- if (x < 0 || x >= size)
- break;
- if (y < 0 || y >= size)
- break;
- if (z < 0 || z >= size)
- break;
-
- //int level_limit = max_level;
-
- cell = 0; //start from root
- for (int j = 0; j < max_level; j++) {
-
- const Cell *bc = &cells[cell];
-
- int child = 0;
- if (x >= ofs_x + half) {
- child |= 1;
- ofs_x += half;
- }
- if (y >= ofs_y + half) {
- child |= 2;
- ofs_y += half;
- }
- if (z >= ofs_z + half) {
- child |= 4;
- ofs_z += half;
- }
-
- cell = bc->children[child];
- if (unlikely(cell == CHILD_EMPTY))
- break;
-
- half >>= 1;
- }
-
- pos += advance;
- }
-
- if (unlikely(cell != CHILD_EMPTY)) {
- for (int j = 0; j < 6; j++) {
- //anisotropic read light
- float amount = direction.dot(aniso_normal[j]);
- if (amount <= 0)
- continue;
- accum.x += light[cell].accum[j][0] * amount;
- accum.y += light[cell].accum[j][1] * amount;
- accum.z += light[cell].accum[j][2] * amount;
- }
- accum.x += cells[cell].emission[0];
- accum.y += cells[cell].emission[1];
- accum.z += cells[cell].emission[2];
- }
- }
-
- // Make sure we don't reset this thread's RNG state
-
- return accum / samples;
-}
-
-void VoxelLightBaker::_lightmap_bake_point(uint32_t p_x, LightMap *p_line) {
-
- LightMap *pixel = &p_line[p_x];
- if (pixel->pos == Vector3())
- return;
- switch (bake_mode) {
- case BAKE_MODE_CONE_TRACE: {
- pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy;
- } break;
- case BAKE_MODE_RAY_TRACE: {
- pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy;
- } break;
- }
-}
-
-Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, float default_texels_per_unit, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) {
-
- //transfer light information to a lightmap
- Ref<Mesh> mesh = p_mesh;
-
- //step 1 - create lightmap
- int width;
- int height;
- Vector<LightMap> lightmap;
- Transform xform = to_cell_space * p_xform;
- if (mesh->get_lightmap_size_hint() == Size2()) {
- double area = 0;
- double uv_area = 0;
- for (int i = 0; i < mesh->get_surface_count(); i++) {
- Array arrays = mesh->surface_get_arrays(i);
- PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX];
- PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2];
- PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX];
-
- ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER);
- ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER);
-
- int vc = vertices.size();
- PoolVector<Vector3>::Read vr = vertices.read();
- PoolVector<Vector2>::Read u2r = uv2.read();
- PoolVector<int>::Read ir;
- int ic = 0;
-
- if (indices.size()) {
- ic = indices.size();
- ir = indices.read();
- }
-
- int faces = ic ? ic / 3 : vc / 3;
- for (int j = 0; j < faces; j++) {
- Vector3 vertex[3];
- Vector2 uv[3];
-
- for (int k = 0; k < 3; k++) {
- int idx = ic ? ir[j * 3 + k] : j * 3 + k;
- vertex[k] = xform.xform(vr[idx]);
- uv[k] = u2r[idx];
- }
-
- Vector3 p1 = vertex[0];
- Vector3 p2 = vertex[1];
- Vector3 p3 = vertex[2];
- double a = p1.distance_to(p2);
- double b = p2.distance_to(p3);
- double c = p3.distance_to(p1);
- double halfPerimeter = (a + b + c) / 2.0;
- area += sqrt(halfPerimeter * (halfPerimeter - a) * (halfPerimeter - b) * (halfPerimeter - c));
-
- Vector2 uv_p1 = uv[0];
- Vector2 uv_p2 = uv[1];
- Vector2 uv_p3 = uv[2];
- double uv_a = uv_p1.distance_to(uv_p2);
- double uv_b = uv_p2.distance_to(uv_p3);
- double uv_c = uv_p3.distance_to(uv_p1);
- double uv_halfPerimeter = (uv_a + uv_b + uv_c) / 2.0;
- uv_area += sqrt(uv_halfPerimeter * (uv_halfPerimeter - uv_a) * (uv_halfPerimeter - uv_b) * (uv_halfPerimeter - uv_c));
- }
- }
-
- if (uv_area < 0.0001f) {
- uv_area = 1.0;
- }
-
- int pixels = (ceil((1.0 / sqrt(uv_area)) * sqrt(area * default_texels_per_unit)));
- width = height = CLAMP(pixels, 2, 4096);
- } else {
- width = mesh->get_lightmap_size_hint().x;
- height = mesh->get_lightmap_size_hint().y;
- }
-
- lightmap.resize(width * height);
-
- //step 2 plot faces to lightmap
- for (int i = 0; i < mesh->get_surface_count(); i++) {
- Array arrays = mesh->surface_get_arrays(i);
- PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX];
- PoolVector<Vector3> normals = arrays[Mesh::ARRAY_NORMAL];
- PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2];
- PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX];
-
- ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER);
- ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER);
- ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER);
-
- int vc = vertices.size();
- PoolVector<Vector3>::Read vr = vertices.read();
- PoolVector<Vector3>::Read nr = normals.read();
- PoolVector<Vector2>::Read u2r = uv2.read();
- PoolVector<int>::Read ir;
- int ic = 0;
-
- if (indices.size()) {
- ic = indices.size();
- ir = indices.read();
- }
-
- int faces = ic ? ic / 3 : vc / 3;
- for (int j = 0; j < faces; j++) {
- Vector3 vertex[3];
- Vector3 normal[3];
- Vector2 uv[3];
-
- for (int k = 0; k < 3; k++) {
- int idx = ic ? ir[j * 3 + k] : j * 3 + k;
- vertex[k] = xform.xform(vr[idx]);
- normal[k] = xform.basis.xform(nr[idx]).normalized();
- uv[k] = u2r[idx];
- }
-
- _plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height);
- }
- }
-
- //step 3 perform voxel cone trace on lightmap pixels
- {
- LightMap *lightmap_ptr = lightmap.ptrw();
- uint64_t begin_time = OS::get_singleton()->get_ticks_usec();
- volatile int lines = 0;
-
- // make sure our OS-level rng is seeded
-
- for (int i = 0; i < height; i++) {
-
- thread_process_array(width, this, &VoxelLightBaker::_lightmap_bake_point, &lightmap_ptr[i * width]);
-
- lines = MAX(lines, i); //for multithread
- if (p_bake_time_func) {
- uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time;
- float elapsed_sec = double(elapsed) / 1000000.0;
- float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1);
- if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) {
- return ERR_SKIP;
- }
- }
- }
-
- if (bake_mode == BAKE_MODE_RAY_TRACE) {
- //blur
- //gauss kernel, 7 step sigma 2
- static const float gauss_kernel[4] = { 0.214607f, 0.189879f, 0.131514f, 0.071303f };
- //horizontal pass
- for (int i = 0; i < height; i++) {
- for (int j = 0; j < width; j++) {
- if (lightmap_ptr[i * width + j].normal == Vector3()) {
- continue; //empty
- }
- float gauss_sum = gauss_kernel[0];
- Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0];
- for (int k = 1; k < 4; k++) {
- int new_x = j + k;
- if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k];
- }
- for (int k = 1; k < 4; k++) {
- int new_x = j - k;
- if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k];
- }
-
- lightmap_ptr[i * width + j].pos = accum /= gauss_sum;
- }
- }
- //vertical pass
- for (int i = 0; i < height; i++) {
- for (int j = 0; j < width; j++) {
- if (lightmap_ptr[i * width + j].normal == Vector3())
- continue; //empty, don't write over it anyway
- float gauss_sum = gauss_kernel[0];
- Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0];
- for (int k = 1; k < 4; k++) {
- int new_y = i + k;
- if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k];
- }
- for (int k = 1; k < 4; k++) {
- int new_y = i - k;
- if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3())
- break;
- gauss_sum += gauss_kernel[k];
- accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k];
- }
-
- lightmap_ptr[i * width + j].light = accum /= gauss_sum;
- }
- }
- }
-
- //add directional light (do this after blur)
- {
- const Cell *cells = bake_cells.ptr();
- const Light *light = bake_light.ptr();
-#ifdef _OPENMP
-#pragma omp parallel
-#endif
- for (int i = 0; i < height; i++) {
-#ifdef _OPENMP
-#pragma omp parallel for schedule(dynamic, 1)
-#endif
- for (int j = 0; j < width; j++) {
-
- //if (i == 125 && j == 280) {
-
- LightMap *pixel = &lightmap_ptr[i * width + j];
- if (pixel->pos == Vector3())
- continue; //unused, skipe
-
- int x = int(pixel->pos.x) - 1;
- int y = int(pixel->pos.y) - 1;
- int z = int(pixel->pos.z) - 1;
- Color accum;
- int size = 1 << (cell_subdiv - 1);
-
- int found = 0;
-
- for (int k = 0; k < 8; k++) {
-
- int ofs_x = x;
- int ofs_y = y;
- int ofs_z = z;
-
- if (k & 1)
- ofs_x++;
- if (k & 2)
- ofs_y++;
- if (k & 4)
- ofs_z++;
-
- if (x < 0 || x >= size)
- continue;
- if (y < 0 || y >= size)
- continue;
- if (z < 0 || z >= size)
- continue;
-
- uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z);
-
- if (cell == CHILD_EMPTY)
- continue;
- for (int l = 0; l < 6; l++) {
- float s = pixel->normal.dot(aniso_normal[l]);
- if (s < 0)
- s = 0;
- accum.r += light[cell].direct_accum[l][0] * s;
- accum.g += light[cell].direct_accum[l][1] * s;
- accum.b += light[cell].direct_accum[l][2] * s;
- }
- found++;
- }
- if (found) {
- accum /= found;
- pixel->light.x += accum.r;
- pixel->light.y += accum.g;
- pixel->light.z += accum.b;
- }
- }
- }
- }
-
- {
- //fill gaps with neighbour vertices to avoid filter fades to black on edges
-
- for (int i = 0; i < height; i++) {
- for (int j = 0; j < width; j++) {
- if (lightmap_ptr[i * width + j].normal != Vector3()) {
- continue; //filled, skip
- }
-
- //this can't be made separatable..
-
- int closest_i = -1, closest_j = 1;
- float closest_dist = 1e20;
-
- const int margin = 3;
- for (int y = i - margin; y <= i + margin; y++) {
- for (int x = j - margin; x <= j + margin; x++) {
-
- if (x == j && y == i)
- continue;
- if (x < 0 || x >= width)
- continue;
- if (y < 0 || y >= height)
- continue;
- if (lightmap_ptr[y * width + x].normal == Vector3())
- continue; //also ensures that blitted stuff is not reused
-
- float dist = Vector2(i - y, j - x).length();
- if (dist > closest_dist)
- continue;
-
- closest_dist = dist;
- closest_i = y;
- closest_j = x;
- }
- }
-
- if (closest_i != -1) {
- lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light;
- }
- }
- }
- }
-
- {
- //fill the lightmap data
- r_lightmap.width = width;
- r_lightmap.height = height;
- r_lightmap.light.resize(lightmap.size() * 3);
- PoolVector<float>::Write w = r_lightmap.light.write();
- for (int i = 0; i < lightmap.size(); i++) {
- w[i * 3 + 0] = lightmap[i].light.x;
- w[i * 3 + 1] = lightmap[i].light.y;
- w[i * 3 + 2] = lightmap[i].light.z;
- }
- }
-
-#if 0 // Enable for debugging.
- {
- PoolVector<uint8_t> img;
- int ls = lightmap.size();
- img.resize(ls * 3);
- {
- PoolVector<uint8_t>::Write w = img.write();
- for (int i = 0; i < ls; i++) {
- w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255);
- w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255);
- w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255);
- //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255);
- //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255);
- //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255);
- //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255);
- //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255);
- //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255);
- }
- }
-
- Ref<Image> image;
- image.instance();
- image->create(width, height, false, Image::FORMAT_RGB8, img);
-
- String name = p_mesh->get_name();
- if (name == "") {
- name = "Mesh" + itos(p_mesh->get_instance_id());
- }
- image->save_png(name + ".png");
- }
-#endif
- }
-
- return OK;
-}
-
-void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) {
-
- original_bounds = p_bounds;
- cell_subdiv = p_subdiv;
- bake_cells.resize(1);
- material_cache.clear();
-
- //find out the actual real bounds, power of 2, which gets the highest subdivision
- po2_bounds = p_bounds;
- int longest_axis = po2_bounds.get_longest_axis_index();
- axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1));
- leaf_voxel_count = 0;
-
- for (int i = 0; i < 3; i++) {
-
- if (i == longest_axis)
- continue;
-
- axis_cell_size[i] = axis_cell_size[longest_axis];
- float axis_size = po2_bounds.size[longest_axis];
-
- //shrink until fit subdiv
- while (axis_size / 2.0 >= po2_bounds.size[i]) {
- axis_size /= 2.0;
- axis_cell_size[i] >>= 1;
- }
-
- po2_bounds.size[i] = po2_bounds.size[longest_axis];
- }
-
- Transform to_bounds;
- to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
- to_bounds.origin = po2_bounds.position;
-
- Transform to_grid;
- to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
-
- to_cell_space = to_grid * to_bounds.affine_inverse();
-
- cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
-}
-
-void VoxelLightBaker::end_bake() {
- _fixup_plot(0, 0);
-}
-
-//create the data for visual server
-
-PoolVector<int> VoxelLightBaker::create_gi_probe_data() {
-
- PoolVector<int> data;
-
- data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest.
-
- {
- PoolVector<int>::Write w = data.write();
-
- uint32_t *w32 = (uint32_t *)w.ptr();
-
- w32[0] = 0; //version
- w32[1] = cell_subdiv; //subdiv
- w32[2] = axis_cell_size[0];
- w32[3] = axis_cell_size[1];
- w32[4] = axis_cell_size[2];
- w32[5] = bake_cells.size();
- w32[6] = leaf_voxel_count;
-
- int ofs = 16;
-
- for (int i = 0; i < bake_cells.size(); i++) {
-
- for (int j = 0; j < 8; j++) {
- w32[ofs++] = bake_cells[i].children[j];
- }
-
- { //albedo
- uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
- rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
- rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
-
- w32[ofs++] = rgba;
- }
- { //emission
-
- Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]);
- float l = e.length();
- if (l > 0) {
- e.normalize();
- l = CLAMP(l / 8.0, 0, 1.0);
- }
-
- uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
- em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
- em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
- em |= uint32_t(CLAMP(l * 255, 0, 255));
-
- w32[ofs++] = em;
- }
-
- //w32[ofs++]=bake_cells[i].used_sides;
- { //normal
-
- Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
- n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
- uint32_t norm = 0;
-
- norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
- norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
- norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
-
- w32[ofs++] = norm;
- }
-
- {
- uint16_t alpha = MIN(uint32_t(bake_cells[i].alpha * 65535.0), 65535);
- uint16_t level = bake_cells[i].level;
-
- w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
- }
- }
- }
-
- return data;
-}
-
-void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) {
-
- if (p_level == cell_subdiv - 1) {
-
- Vector3 center = p_aabb.position + p_aabb.size * 0.5;
- Transform xform;
- xform.origin = center;
- xform.basis.scale(p_aabb.size * 0.5);
- p_multimesh->set_instance_transform(idx, xform);
- Color col;
- if (p_mode == DEBUG_ALBEDO) {
- col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
- } else if (p_mode == DEBUG_LIGHT) {
- for (int i = 0; i < 6; i++) {
- col.r += bake_light[p_idx].accum[i][0];
- col.g += bake_light[p_idx].accum[i][1];
- col.b += bake_light[p_idx].accum[i][2];
- col.r += bake_light[p_idx].direct_accum[i][0];
- col.g += bake_light[p_idx].direct_accum[i][1];
- col.b += bake_light[p_idx].direct_accum[i][2];
- }
- }
- //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
- p_multimesh->set_instance_color(idx, col);
-
- idx++;
-
- } else {
-
- for (int i = 0; i < 8; i++) {
-
- uint32_t child = bake_cells[p_idx].children[i];
-
- if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells)
- continue;
-
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
-
- if (i & 1)
- aabb.position.x += aabb.size.x;
- if (i & 2)
- aabb.position.y += aabb.size.y;
- if (i & 4)
- aabb.position.z += aabb.size.z;
-
- _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx, p_mode);
- }
- }
-}
-
-Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) {
-
- Ref<MultiMesh> mm;
-
- ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm);
- mm.instance();
-
- mm->set_transform_format(MultiMesh::TRANSFORM_3D);
- mm->set_use_colors(true);
- mm->set_instance_count(leaf_voxel_count);
-
- Ref<ArrayMesh> mesh;
- mesh.instance();
-
- {
- Array arr;
- arr.resize(Mesh::ARRAY_MAX);
-
- PoolVector<Vector3> vertices;
- PoolVector<Color> colors;
-#define ADD_VTX(m_idx) \
- ; \
- vertices.push_back(face_points[m_idx]); \
- colors.push_back(Color(1, 1, 1, 1));
-
- for (int i = 0; i < 6; i++) {
-
- Vector3 face_points[4];
-
- for (int j = 0; j < 4; j++) {
-
- float v[3];
- v[0] = 1.0;
- v[1] = 1 - 2 * ((j >> 1) & 1);
- v[2] = v[1] * (1 - 2 * (j & 1));
-
- for (int k = 0; k < 3; k++) {
-
- if (i < 3)
- face_points[j][(i + k) % 3] = v[k];
- else
- face_points[3 - j][(i + k) % 3] = -v[k];
- }
- }
-
- //tri 1
- ADD_VTX(0);
- ADD_VTX(1);
- ADD_VTX(2);
- //tri 2
- ADD_VTX(2);
- ADD_VTX(3);
- ADD_VTX(0);
- }
-
- arr[Mesh::ARRAY_VERTEX] = vertices;
- arr[Mesh::ARRAY_COLOR] = colors;
- mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
- }
-
- {
- Ref<StandardMaterial3D> fsm;
- fsm.instance();
- fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
- fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
- fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
- fsm->set_albedo(Color(1, 1, 1, 1));
-
- mesh->surface_set_material(0, fsm);
- }
-
- mm->set_mesh(mesh);
-
- int idx = 0;
- _debug_mesh(0, 0, po2_bounds, mm, idx, p_mode);
-
- return mm;
-}
-
-struct VoxelLightBakerOctree {
-
- enum {
- CHILD_EMPTY = 0xFFFFFFFF
- };
-
- uint16_t light[6][3]; //anisotropic light
- float alpha;
- uint32_t children[8];
-};
-
-PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) {
-
- p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one
-
- Vector<uint32_t> remap;
- int bc = bake_cells.size();
- remap.resize(bc);
- Vector<uint32_t> demap;
-
- int new_size = 0;
- for (int i = 0; i < bc; i++) {
- uint32_t c = CHILD_EMPTY;
- if (bake_cells[i].level < p_subdiv) {
- c = new_size;
- new_size++;
- demap.push_back(i);
- }
- remap.write[i] = c;
- }
-
- Vector<VoxelLightBakerOctree> octree;
- octree.resize(new_size);
-
- for (int i = 0; i < new_size; i++) {
- octree.write[i].alpha = bake_cells[demap[i]].alpha;
- for (int j = 0; j < 6; j++) {
- for (int k = 0; k < 3; k++) {
- float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light
- l += bake_cells[demap[i]].emission[k]; //add emission
- octree.write[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree
- }
- }
-
- for (int j = 0; j < 8; j++) {
- uint32_t child = bake_cells[demap[i]].children[j];
- octree.write[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child];
- }
- }
-
- PoolVector<uint8_t> ret;
- int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree);
- ret.resize(ret_bytes);
- {
- PoolVector<uint8_t>::Write w = ret.write();
- copymem(w.ptr(), octree.ptr(), ret_bytes);
- }
-
- return ret;
-}
-
-float VoxelLightBaker::get_cell_size() const {
- return cell_size;
-}
-
-Transform VoxelLightBaker::get_to_cell_space_xform() const {
- return to_cell_space;
-}
-VoxelLightBaker::VoxelLightBaker() {
- color_scan_cell_width = 4;
- bake_texture_size = 128;
- propagation = 0.85;
- energy = 1.0;
-}
diff --git a/scene/3d/voxelizer.cpp b/scene/3d/voxelizer.cpp
new file mode 100644
index 0000000000..2aa2f79f43
--- /dev/null
+++ b/scene/3d/voxelizer.cpp
@@ -0,0 +1,1108 @@
+/*************************************************************************/
+/* voxelizer.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "voxelizer.h"
+#include "core/os/os.h"
+#include "core/os/threaded_array_processor.h"
+
+#include <stdlib.h>
+
+#define FINDMINMAX(x0, x1, x2, min, max) \
+ min = max = x0; \
+ if (x1 < min) min = x1; \
+ if (x1 > max) max = x1; \
+ if (x2 < min) min = x2; \
+ if (x2 > max) max = x2;
+
+static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
+ int q;
+ Vector3 vmin, vmax;
+ for (q = 0; q <= 2; q++) {
+ if (normal[q] > 0.0f) {
+ vmin[q] = -maxbox[q];
+ vmax[q] = maxbox[q];
+ } else {
+ vmin[q] = maxbox[q];
+ vmax[q] = -maxbox[q];
+ }
+ }
+ if (normal.dot(vmin) + d > 0.0f) return false;
+ if (normal.dot(vmax) + d >= 0.0f) return true;
+
+ return false;
+}
+
+/*======================== X-tests ========================*/
+#define AXISTEST_X01(a, b, fa, fb) \
+ p0 = a * v0.y - b * v0.z; \
+ p2 = a * v2.y - b * v2.z; \
+ if (p0 < p2) { \
+ min = p0; \
+ max = p2; \
+ } else { \
+ min = p2; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
+
+#define AXISTEST_X2(a, b, fa, fb) \
+ p0 = a * v0.y - b * v0.z; \
+ p1 = a * v1.y - b * v1.z; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
+
+/*======================== Y-tests ========================*/
+#define AXISTEST_Y02(a, b, fa, fb) \
+ p0 = -a * v0.x + b * v0.z; \
+ p2 = -a * v2.x + b * v2.z; \
+ if (p0 < p2) { \
+ min = p0; \
+ max = p2; \
+ } else { \
+ min = p2; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
+
+#define AXISTEST_Y1(a, b, fa, fb) \
+ p0 = -a * v0.x + b * v0.z; \
+ p1 = -a * v1.x + b * v1.z; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
+
+/*======================== Z-tests ========================*/
+
+#define AXISTEST_Z12(a, b, fa, fb) \
+ p1 = a * v1.x - b * v1.y; \
+ p2 = a * v2.x - b * v2.y; \
+ if (p2 < p1) { \
+ min = p2; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p2; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if (min > rad || max < -rad) return false;
+
+#define AXISTEST_Z0(a, b, fa, fb) \
+ p0 = a * v0.x - b * v0.y; \
+ p1 = a * v1.x - b * v1.y; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if (min > rad || max < -rad) return false;
+
+static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
+
+ /* use separating axis theorem to test overlap between triangle and box */
+ /* need to test for overlap in these directions: */
+ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
+ /* we do not even need to test these) */
+ /* 2) normal of the triangle */
+ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
+ /* this gives 3x3=9 more tests */
+ Vector3 v0, v1, v2;
+ float min, max, d, p0, p1, p2, rad, fex, fey, fez;
+ Vector3 normal, e0, e1, e2;
+
+ /* This is the fastest branch on Sun */
+ /* move everything so that the boxcenter is in (0,0,0) */
+
+ v0 = triverts[0] - boxcenter;
+ v1 = triverts[1] - boxcenter;
+ v2 = triverts[2] - boxcenter;
+
+ /* compute triangle edges */
+ e0 = v1 - v0; /* tri edge 0 */
+ e1 = v2 - v1; /* tri edge 1 */
+ e2 = v0 - v2; /* tri edge 2 */
+
+ /* Bullet 3: */
+ /* test the 9 tests first (this was faster) */
+ fex = Math::abs(e0.x);
+ fey = Math::abs(e0.y);
+ fez = Math::abs(e0.z);
+ AXISTEST_X01(e0.z, e0.y, fez, fey);
+ AXISTEST_Y02(e0.z, e0.x, fez, fex);
+ AXISTEST_Z12(e0.y, e0.x, fey, fex);
+
+ fex = Math::abs(e1.x);
+ fey = Math::abs(e1.y);
+ fez = Math::abs(e1.z);
+ AXISTEST_X01(e1.z, e1.y, fez, fey);
+ AXISTEST_Y02(e1.z, e1.x, fez, fex);
+ AXISTEST_Z0(e1.y, e1.x, fey, fex);
+
+ fex = Math::abs(e2.x);
+ fey = Math::abs(e2.y);
+ fez = Math::abs(e2.z);
+ AXISTEST_X2(e2.z, e2.y, fez, fey);
+ AXISTEST_Y1(e2.z, e2.x, fez, fex);
+ AXISTEST_Z12(e2.y, e2.x, fey, fex);
+
+ /* Bullet 1: */
+ /* first test overlap in the {x,y,z}-directions */
+ /* find min, max of the triangle each direction, and test for overlap in */
+ /* that direction -- this is equivalent to testing a minimal AABB around */
+ /* the triangle against the AABB */
+
+ /* test in X-direction */
+ FINDMINMAX(v0.x, v1.x, v2.x, min, max);
+ if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
+
+ /* test in Y-direction */
+ FINDMINMAX(v0.y, v1.y, v2.y, min, max);
+ if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
+
+ /* test in Z-direction */
+ FINDMINMAX(v0.z, v1.z, v2.z, min, max);
+ if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
+
+ /* Bullet 2: */
+ /* test if the box intersects the plane of the triangle */
+ /* compute plane equation of triangle: normal*x+d=0 */
+ normal = e0.cross(e1);
+ d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
+ return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */
+}
+
+static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
+
+ if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) {
+ r_uv = p_uv[0];
+ r_normal = p_normal[0];
+ return;
+ }
+ if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) {
+ r_uv = p_uv[1];
+ r_normal = p_normal[1];
+ return;
+ }
+ if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) {
+ r_uv = p_uv[2];
+ r_normal = p_normal[2];
+ return;
+ }
+
+ Vector3 v0 = p_vtx[1] - p_vtx[0];
+ Vector3 v1 = p_vtx[2] - p_vtx[0];
+ Vector3 v2 = p_pos - p_vtx[0];
+
+ float d00 = v0.dot(v0);
+ float d01 = v0.dot(v1);
+ float d11 = v1.dot(v1);
+ float d20 = v2.dot(v0);
+ float d21 = v2.dot(v1);
+ float denom = (d00 * d11 - d01 * d01);
+ if (denom == 0) {
+ r_uv = p_uv[0];
+ r_normal = p_normal[0];
+ return;
+ }
+ float v = (d11 * d20 - d01 * d21) / denom;
+ float w = (d00 * d21 - d01 * d20) / denom;
+ float u = 1.0f - v - w;
+
+ r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
+ r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
+}
+
+void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
+
+ if (p_level == cell_subdiv) {
+ //plot the face by guessing its albedo and emission value
+
+ //find best axis to map to, for scanning values
+ int closest_axis = 0;
+ float closest_dot = 0;
+
+ Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
+ Vector3 normal = plane.normal;
+
+ for (int i = 0; i < 3; i++) {
+
+ Vector3 axis;
+ axis[i] = 1.0;
+ float dot = ABS(normal.dot(axis));
+ if (i == 0 || dot > closest_dot) {
+ closest_axis = i;
+ closest_dot = dot;
+ }
+ }
+
+ Vector3 axis;
+ axis[closest_axis] = 1.0;
+ Vector3 t1;
+ t1[(closest_axis + 1) % 3] = 1.0;
+ Vector3 t2;
+ t2[(closest_axis + 2) % 3] = 1.0;
+
+ t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
+ t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
+
+ Color albedo_accum;
+ Color emission_accum;
+ Vector3 normal_accum;
+
+ float alpha = 0.0;
+
+ //map to a grid average in the best axis for this face
+ for (int i = 0; i < color_scan_cell_width; i++) {
+
+ Vector3 ofs_i = float(i) * t1;
+
+ for (int j = 0; j < color_scan_cell_width; j++) {
+
+ Vector3 ofs_j = float(j) * t2;
+
+ Vector3 from = p_aabb.position + ofs_i + ofs_j;
+ Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
+ Vector3 half = (to - from) * 0.5;
+
+ //is in this cell?
+ if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
+ continue; //face does not span this cell
+ }
+
+ //go from -size to +size*2 to avoid skipping collisions
+ Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
+ Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
+
+ if (normal.dot(ray_from - ray_to) < 0) {
+ SWAP(ray_from, ray_to);
+ }
+
+ Vector3 intersection;
+
+ if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
+ if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
+ intersection = plane.project(ray_from);
+ } else {
+
+ intersection = plane.project(ray_to);
+ }
+ }
+
+ intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
+
+ Vector2 uv;
+ Vector3 lnormal;
+ get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
+ if (lnormal == Vector3()) //just in case normal as nor provided
+ lnormal = normal;
+
+ int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
+ int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
+
+ int ofs = uv_y * bake_texture_size + uv_x;
+ albedo_accum.r += p_material.albedo[ofs].r;
+ albedo_accum.g += p_material.albedo[ofs].g;
+ albedo_accum.b += p_material.albedo[ofs].b;
+ albedo_accum.a += p_material.albedo[ofs].a;
+
+ emission_accum.r += p_material.emission[ofs].r;
+ emission_accum.g += p_material.emission[ofs].g;
+ emission_accum.b += p_material.emission[ofs].b;
+
+ normal_accum += lnormal;
+
+ alpha += 1.0;
+ }
+ }
+
+ if (alpha == 0) {
+ //could not in any way get texture information.. so use closest point to center
+
+ Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
+ Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
+
+ Vector3 lnormal;
+ Vector2 uv;
+ get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
+ if (lnormal == Vector3()) //just in case normal as nor provided
+ lnormal = normal;
+
+ int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+ int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+
+ int ofs = uv_y * bake_texture_size + uv_x;
+
+ alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
+
+ albedo_accum.r = p_material.albedo[ofs].r * alpha;
+ albedo_accum.g = p_material.albedo[ofs].g * alpha;
+ albedo_accum.b = p_material.albedo[ofs].b * alpha;
+ albedo_accum.a = p_material.albedo[ofs].a * alpha;
+
+ emission_accum.r = p_material.emission[ofs].r * alpha;
+ emission_accum.g = p_material.emission[ofs].g * alpha;
+ emission_accum.b = p_material.emission[ofs].b * alpha;
+
+ normal_accum = lnormal * alpha;
+
+ } else {
+
+ float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
+ alpha *= accdiv;
+
+ albedo_accum.r *= accdiv;
+ albedo_accum.g *= accdiv;
+ albedo_accum.b *= accdiv;
+ albedo_accum.a *= accdiv;
+
+ emission_accum.r *= accdiv;
+ emission_accum.g *= accdiv;
+ emission_accum.b *= accdiv;
+
+ normal_accum *= accdiv;
+ }
+
+ //put this temporarily here, corrected in a later step
+ bake_cells.write[p_idx].albedo[0] += albedo_accum.r;
+ bake_cells.write[p_idx].albedo[1] += albedo_accum.g;
+ bake_cells.write[p_idx].albedo[2] += albedo_accum.b;
+ bake_cells.write[p_idx].emission[0] += emission_accum.r;
+ bake_cells.write[p_idx].emission[1] += emission_accum.g;
+ bake_cells.write[p_idx].emission[2] += emission_accum.b;
+ bake_cells.write[p_idx].normal[0] += normal_accum.x;
+ bake_cells.write[p_idx].normal[1] += normal_accum.y;
+ bake_cells.write[p_idx].normal[2] += normal_accum.z;
+ bake_cells.write[p_idx].alpha += alpha;
+
+ } else {
+ //go down
+
+ int half = (1 << cell_subdiv) >> (p_level + 1);
+ for (int i = 0; i < 8; i++) {
+
+ AABB aabb = p_aabb;
+ aabb.size *= 0.5;
+
+ int nx = p_x;
+ int ny = p_y;
+ int nz = p_z;
+
+ if (i & 1) {
+ aabb.position.x += aabb.size.x;
+ nx += half;
+ }
+ if (i & 2) {
+ aabb.position.y += aabb.size.y;
+ ny += half;
+ }
+ if (i & 4) {
+ aabb.position.z += aabb.size.z;
+ nz += half;
+ }
+ //make sure to not plot beyond limits
+ if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2])
+ continue;
+
+ {
+ AABB test_aabb = aabb;
+ //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
+ Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
+
+ if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
+ //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
+ //does not fit in child, go on
+ continue;
+ }
+ }
+
+ if (bake_cells[p_idx].children[i] == CHILD_EMPTY) {
+ //sub cell must be created
+
+ uint32_t child_idx = bake_cells.size();
+ bake_cells.write[p_idx].children[i] = child_idx;
+ bake_cells.resize(bake_cells.size() + 1);
+ bake_cells.write[child_idx].level = p_level + 1;
+ bake_cells.write[child_idx].x = nx / half;
+ bake_cells.write[child_idx].y = ny / half;
+ bake_cells.write[child_idx].z = nz / half;
+ }
+
+ _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb);
+ }
+ }
+}
+
+Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
+
+ Vector<Color> ret;
+
+ if (p_image.is_null() || p_image->empty()) {
+
+ ret.resize(bake_texture_size * bake_texture_size);
+ for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
+ ret.write[i] = p_color_add;
+ }
+
+ return ret;
+ }
+ p_image = p_image->duplicate();
+
+ if (p_image->is_compressed()) {
+ p_image->decompress();
+ }
+ p_image->convert(Image::FORMAT_RGBA8);
+ p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
+
+ PoolVector<uint8_t>::Read r = p_image->get_data().read();
+ ret.resize(bake_texture_size * bake_texture_size);
+
+ for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
+ Color c;
+ c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
+ c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
+ c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
+
+ c.a = r[i * 4 + 3] / 255.0;
+
+ ret.write[i] = c;
+ }
+
+ return ret;
+}
+
+Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) {
+
+ //this way of obtaining materials is inaccurate and also does not support some compressed formats very well
+ Ref<StandardMaterial3D> mat = p_material;
+
+ Ref<Material> material = mat; //hack for now
+
+ if (material_cache.has(material)) {
+ return material_cache[material];
+ }
+
+ MaterialCache mc;
+
+ if (mat.is_valid()) {
+
+ Ref<Texture2D> albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO);
+
+ Ref<Image> img_albedo;
+ if (albedo_tex.is_valid()) {
+
+ img_albedo = albedo_tex->get_data();
+ mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
+ } else {
+ mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
+ }
+
+ Ref<Texture2D> emission_tex = mat->get_texture(StandardMaterial3D::TEXTURE_EMISSION);
+
+ Color emission_col = mat->get_emission();
+ float emission_energy = mat->get_emission_energy();
+
+ Ref<Image> img_emission;
+
+ if (emission_tex.is_valid()) {
+
+ img_emission = emission_tex->get_data();
+ }
+
+ if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) {
+ mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
+ } else {
+ mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
+ }
+
+ } else {
+ Ref<Image> empty;
+
+ mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
+ mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
+ }
+
+ material_cache[p_material] = mc;
+ return mc;
+}
+
+void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
+
+ for (int i = 0; i < p_mesh->get_surface_count(); i++) {
+
+ if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
+ continue; //only triangles
+
+ Ref<Material> src_material;
+
+ if (p_override_material.is_valid()) {
+ src_material = p_override_material;
+ } else if (i < p_materials.size() && p_materials[i].is_valid()) {
+ src_material = p_materials[i];
+ } else {
+ src_material = p_mesh->surface_get_material(i);
+ }
+ MaterialCache material = _get_material_cache(src_material);
+
+ Array a = p_mesh->surface_get_arrays(i);
+
+ PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
+ PoolVector<Vector3>::Read vr = vertices.read();
+ PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
+ PoolVector<Vector2>::Read uvr;
+ PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
+ PoolVector<Vector3>::Read nr;
+ PoolVector<int> index = a[Mesh::ARRAY_INDEX];
+
+ bool read_uv = false;
+ bool read_normals = false;
+
+ if (uv.size()) {
+
+ uvr = uv.read();
+ read_uv = true;
+ }
+
+ if (normals.size()) {
+ read_normals = true;
+ nr = normals.read();
+ }
+
+ if (index.size()) {
+
+ int facecount = index.size() / 3;
+ PoolVector<int>::Read ir = index.read();
+
+ for (int j = 0; j < facecount; j++) {
+
+ Vector3 vtxs[3];
+ Vector2 uvs[3];
+ Vector3 normal[3];
+
+ for (int k = 0; k < 3; k++) {
+ vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
+ }
+
+ if (read_uv) {
+ for (int k = 0; k < 3; k++) {
+ uvs[k] = uvr[ir[j * 3 + k]];
+ }
+ }
+
+ if (read_normals) {
+ for (int k = 0; k < 3; k++) {
+ normal[k] = nr[ir[j * 3 + k]];
+ }
+ }
+
+ //test against original bounds
+ if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
+ continue;
+ //plot
+ _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
+ }
+
+ } else {
+
+ int facecount = vertices.size() / 3;
+
+ for (int j = 0; j < facecount; j++) {
+
+ Vector3 vtxs[3];
+ Vector2 uvs[3];
+ Vector3 normal[3];
+
+ for (int k = 0; k < 3; k++) {
+ vtxs[k] = p_xform.xform(vr[j * 3 + k]);
+ }
+
+ if (read_uv) {
+ for (int k = 0; k < 3; k++) {
+ uvs[k] = uvr[j * 3 + k];
+ }
+ }
+
+ if (read_normals) {
+ for (int k = 0; k < 3; k++) {
+ normal[k] = nr[j * 3 + k];
+ }
+ }
+
+ //test against original bounds
+ if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
+ continue;
+ //plot face
+ _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
+ }
+ }
+ }
+
+ max_original_cells = bake_cells.size();
+}
+
+void Voxelizer::_sort() {
+
+ // cells need to be sorted by level and coordinates
+ // it is important that level has more priority (for compute), and that Z has the least,
+ // given it may aid older implementations plot using GPU
+
+ Vector<CellSort> sorted_cells;
+ uint32_t cell_count = bake_cells.size();
+ sorted_cells.resize(cell_count);
+ {
+
+ CellSort *sort_cellsp = sorted_cells.ptrw();
+ const Cell *bake_cellsp = bake_cells.ptr();
+
+ for (uint32_t i = 0; i < cell_count; i++) {
+ sort_cellsp[i].x = bake_cellsp[i].x;
+ sort_cellsp[i].y = bake_cellsp[i].y;
+ sort_cellsp[i].z = bake_cellsp[i].z;
+ sort_cellsp[i].level = bake_cellsp[i].level;
+ sort_cellsp[i].index = i;
+ }
+ }
+
+ sorted_cells.sort();
+
+ //verify just in case, index 0 must be level 0
+ ERR_FAIL_COND(sorted_cells[0].level != 0);
+
+ Vector<Cell> new_bake_cells;
+ new_bake_cells.resize(cell_count);
+ Vector<uint32_t> reverse_map;
+
+ {
+ reverse_map.resize(cell_count);
+ const CellSort *sort_cellsp = sorted_cells.ptr();
+ uint32_t *reverse_mapp = reverse_map.ptrw();
+
+ for (uint32_t i = 0; i < cell_count; i++) {
+ reverse_mapp[sort_cellsp[i].index] = i;
+ }
+ }
+
+ {
+
+ const CellSort *sort_cellsp = sorted_cells.ptr();
+ const Cell *bake_cellsp = bake_cells.ptr();
+ const uint32_t *reverse_mapp = reverse_map.ptr();
+ Cell *new_bake_cellsp = new_bake_cells.ptrw();
+
+ for (uint32_t i = 0; i < cell_count; i++) {
+ //copy to new cell
+ new_bake_cellsp[i] = bake_cellsp[sort_cellsp[i].index];
+ //remap children
+ for (uint32_t j = 0; j < 8; j++) {
+ if (new_bake_cellsp[i].children[j] != CHILD_EMPTY) {
+ new_bake_cellsp[i].children[j] = reverse_mapp[new_bake_cellsp[i].children[j]];
+ }
+ }
+ }
+ }
+
+ bake_cells = new_bake_cells;
+ sorted = true;
+}
+
+void Voxelizer::_fixup_plot(int p_idx, int p_level) {
+
+ if (p_level == cell_subdiv) {
+
+ leaf_voxel_count++;
+ float alpha = bake_cells[p_idx].alpha;
+
+ bake_cells.write[p_idx].albedo[0] /= alpha;
+ bake_cells.write[p_idx].albedo[1] /= alpha;
+ bake_cells.write[p_idx].albedo[2] /= alpha;
+
+ //transfer emission to light
+ bake_cells.write[p_idx].emission[0] /= alpha;
+ bake_cells.write[p_idx].emission[1] /= alpha;
+ bake_cells.write[p_idx].emission[2] /= alpha;
+
+ bake_cells.write[p_idx].normal[0] /= alpha;
+ bake_cells.write[p_idx].normal[1] /= alpha;
+ bake_cells.write[p_idx].normal[2] /= alpha;
+
+ Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
+ if (n.length() < 0.01) {
+ //too much fight over normal, zero it
+ bake_cells.write[p_idx].normal[0] = 0;
+ bake_cells.write[p_idx].normal[1] = 0;
+ bake_cells.write[p_idx].normal[2] = 0;
+ } else {
+ n.normalize();
+ bake_cells.write[p_idx].normal[0] = n.x;
+ bake_cells.write[p_idx].normal[1] = n.y;
+ bake_cells.write[p_idx].normal[2] = n.z;
+ }
+
+ bake_cells.write[p_idx].alpha = 1.0;
+
+ /*if (bake_light.size()) {
+ for(int i=0;i<6;i++) {
+
+ }
+ }*/
+
+ } else {
+
+ //go down
+
+ bake_cells.write[p_idx].emission[0] = 0;
+ bake_cells.write[p_idx].emission[1] = 0;
+ bake_cells.write[p_idx].emission[2] = 0;
+ bake_cells.write[p_idx].normal[0] = 0;
+ bake_cells.write[p_idx].normal[1] = 0;
+ bake_cells.write[p_idx].normal[2] = 0;
+ bake_cells.write[p_idx].albedo[0] = 0;
+ bake_cells.write[p_idx].albedo[1] = 0;
+ bake_cells.write[p_idx].albedo[2] = 0;
+
+ float alpha_average = 0;
+ int children_found = 0;
+
+ for (int i = 0; i < 8; i++) {
+
+ uint32_t child = bake_cells[p_idx].children[i];
+
+ if (child == CHILD_EMPTY)
+ continue;
+
+ _fixup_plot(child, p_level + 1);
+ alpha_average += bake_cells[child].alpha;
+
+ children_found++;
+ }
+
+ bake_cells.write[p_idx].alpha = alpha_average / 8.0;
+ }
+}
+
+void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) {
+
+ sorted = false;
+ original_bounds = p_bounds;
+ cell_subdiv = p_subdiv;
+ bake_cells.resize(1);
+ material_cache.clear();
+
+ print_line("subdiv: " + itos(p_subdiv));
+ //find out the actual real bounds, power of 2, which gets the highest subdivision
+ po2_bounds = p_bounds;
+ int longest_axis = po2_bounds.get_longest_axis_index();
+ axis_cell_size[longest_axis] = 1 << cell_subdiv;
+ leaf_voxel_count = 0;
+
+ for (int i = 0; i < 3; i++) {
+
+ if (i == longest_axis)
+ continue;
+
+ axis_cell_size[i] = axis_cell_size[longest_axis];
+ float axis_size = po2_bounds.size[longest_axis];
+
+ //shrink until fit subdiv
+ while (axis_size / 2.0 >= po2_bounds.size[i]) {
+ axis_size /= 2.0;
+ axis_cell_size[i] >>= 1;
+ }
+
+ po2_bounds.size[i] = po2_bounds.size[longest_axis];
+ }
+
+ Transform to_bounds;
+ to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
+ to_bounds.origin = po2_bounds.position;
+
+ Transform to_grid;
+ to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
+
+ to_cell_space = to_grid * to_bounds.affine_inverse();
+
+ cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
+}
+
+void Voxelizer::end_bake() {
+ if (!sorted) {
+ _sort();
+ }
+ _fixup_plot(0, 0);
+}
+
+//create the data for visual server
+
+int Voxelizer::get_gi_probe_octree_depth() const {
+ return cell_subdiv;
+}
+Vector3i Voxelizer::get_giprobe_octree_size() const {
+ return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]);
+}
+int Voxelizer::get_giprobe_cell_count() const {
+ return bake_cells.size();
+}
+
+PoolVector<uint8_t> Voxelizer::get_giprobe_octree_cells() const {
+ PoolVector<uint8_t> data;
+ data.resize((8 * 4) * bake_cells.size()); //8 uint32t values
+ {
+ PoolVector<uint8_t>::Write w = data.write();
+ uint32_t *children_cells = (uint32_t *)w.ptr();
+ const Cell *cells = bake_cells.ptr();
+
+ uint32_t cell_count = bake_cells.size();
+
+ for (uint32_t i = 0; i < cell_count; i++) {
+
+ for (uint32_t j = 0; j < 8; j++) {
+ children_cells[i * 8 + j] = cells[i].children[j];
+ }
+ }
+ }
+
+ return data;
+}
+PoolVector<uint8_t> Voxelizer::get_giprobe_data_cells() const {
+ PoolVector<uint8_t> data;
+ data.resize((4 * 4) * bake_cells.size()); //8 uint32t values
+ {
+ PoolVector<uint8_t>::Write w = data.write();
+ uint32_t *dataptr = (uint32_t *)w.ptr();
+ const Cell *cells = bake_cells.ptr();
+
+ uint32_t cell_count = bake_cells.size();
+
+ for (uint32_t i = 0; i < cell_count; i++) {
+
+ { //position
+
+ uint32_t x = cells[i].x;
+ uint32_t y = cells[i].y;
+ uint32_t z = cells[i].z;
+
+ uint32_t position = x;
+ position |= y << 11;
+ position |= z << 21;
+
+ dataptr[i * 4 + 0] = position;
+ }
+
+ { //albedo + alpha
+ uint32_t rgba = uint32_t(CLAMP(cells[i].alpha * 255.0, 0, 255)) << 24; //a
+ rgba |= uint32_t(CLAMP(cells[i].albedo[2] * 255.0, 0, 255)) << 16; //b
+ rgba |= uint32_t(CLAMP(cells[i].albedo[1] * 255.0, 0, 255)) << 8; //g
+ rgba |= uint32_t(CLAMP(cells[i].albedo[0] * 255.0, 0, 255)); //r
+
+ dataptr[i * 4 + 1] = rgba;
+ }
+
+ { //emission, as rgbe9995
+ Color emission = Color(cells[i].emission[0], cells[i].emission[1], cells[i].emission[2]);
+ dataptr[i * 4 + 2] = emission.to_rgbe9995();
+ }
+
+ { //normal
+
+ Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
+ n.normalize();
+
+ uint32_t normal = uint32_t(uint8_t(int8_t(CLAMP(n.x * 127.0, -128, 127))));
+ normal |= uint32_t(uint8_t(int8_t(CLAMP(n.y * 127.0, -128, 127)))) << 8;
+ normal |= uint32_t(uint8_t(int8_t(CLAMP(n.z * 127.0, -128, 127)))) << 16;
+
+ dataptr[i * 4 + 3] = normal;
+ }
+ }
+ }
+
+ return data;
+}
+
+PoolVector<int> Voxelizer::get_giprobe_level_cell_count() const {
+ uint32_t cell_count = bake_cells.size();
+ const Cell *cells = bake_cells.ptr();
+ PoolVector<int> level_count;
+ level_count.resize(cell_subdiv + 1); //remember, always x+1 levels for x subdivisions
+ {
+ PoolVector<int>::Write w = level_count.write();
+ for (int i = 0; i < cell_subdiv; i++) {
+ w[i] = 0;
+ }
+
+ for (uint32_t i = 0; i < cell_count; i++) {
+ w[cells[i].level]++;
+ }
+ }
+
+ return level_count;
+}
+
+void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) {
+
+ if (p_level == cell_subdiv - 1) {
+
+ Vector3 center = p_aabb.position + p_aabb.size * 0.5;
+ Transform xform;
+ xform.origin = center;
+ xform.basis.scale(p_aabb.size * 0.5);
+ p_multimesh->set_instance_transform(idx, xform);
+ Color col;
+ col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
+ //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
+ p_multimesh->set_instance_color(idx, col);
+
+ idx++;
+
+ } else {
+
+ for (int i = 0; i < 8; i++) {
+
+ uint32_t child = bake_cells[p_idx].children[i];
+
+ if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells)
+ continue;
+
+ AABB aabb = p_aabb;
+ aabb.size *= 0.5;
+
+ if (i & 1)
+ aabb.position.x += aabb.size.x;
+ if (i & 2)
+ aabb.position.y += aabb.size.y;
+ if (i & 4)
+ aabb.position.z += aabb.size.z;
+
+ _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx);
+ }
+ }
+}
+
+Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
+
+ Ref<MultiMesh> mm;
+
+ mm.instance();
+
+ mm->set_transform_format(MultiMesh::TRANSFORM_3D);
+ mm->set_use_colors(true);
+ mm->set_instance_count(leaf_voxel_count);
+
+ Ref<ArrayMesh> mesh;
+ mesh.instance();
+
+ {
+ Array arr;
+ arr.resize(Mesh::ARRAY_MAX);
+
+ PoolVector<Vector3> vertices;
+ PoolVector<Color> colors;
+#define ADD_VTX(m_idx) \
+ vertices.push_back(face_points[m_idx]); \
+ colors.push_back(Color(1, 1, 1, 1));
+
+ for (int i = 0; i < 6; i++) {
+
+ Vector3 face_points[4];
+
+ for (int j = 0; j < 4; j++) {
+
+ float v[3];
+ v[0] = 1.0;
+ v[1] = 1 - 2 * ((j >> 1) & 1);
+ v[2] = v[1] * (1 - 2 * (j & 1));
+
+ for (int k = 0; k < 3; k++) {
+
+ if (i < 3)
+ face_points[j][(i + k) % 3] = v[k];
+ else
+ face_points[3 - j][(i + k) % 3] = -v[k];
+ }
+ }
+
+ //tri 1
+ ADD_VTX(0);
+ ADD_VTX(1);
+ ADD_VTX(2);
+ //tri 2
+ ADD_VTX(2);
+ ADD_VTX(3);
+ ADD_VTX(0);
+ }
+
+ arr[Mesh::ARRAY_VERTEX] = vertices;
+ arr[Mesh::ARRAY_COLOR] = colors;
+ mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
+ }
+
+ {
+ Ref<StandardMaterial3D> fsm;
+ fsm.instance();
+ fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
+ fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
+ fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
+ fsm->set_albedo(Color(1, 1, 1, 1));
+
+ mesh->surface_set_material(0, fsm);
+ }
+
+ mm->set_mesh(mesh);
+
+ int idx = 0;
+ _debug_mesh(0, 0, po2_bounds, mm, idx);
+
+ return mm;
+}
+
+Transform Voxelizer::get_to_cell_space_xform() const {
+ return to_cell_space;
+}
+Voxelizer::Voxelizer() {
+ sorted = false;
+ color_scan_cell_width = 4;
+ bake_texture_size = 128;
+}
diff --git a/scene/3d/voxel_light_baker.h b/scene/3d/voxelizer.h
index 7e78a19830..37de6b782e 100644
--- a/scene/3d/voxel_light_baker.h
+++ b/scene/3d/voxelizer.h
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* voxel_light_baker.h */
+/* voxelizer.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -31,27 +31,11 @@
#ifndef VOXEL_LIGHT_BAKER_H
#define VOXEL_LIGHT_BAKER_H
+#include "core/math/vector3i.h"
#include "scene/3d/mesh_instance.h"
#include "scene/resources/multimesh.h"
-class VoxelLightBaker {
-public:
- enum DebugMode {
- DEBUG_ALBEDO,
- DEBUG_LIGHT
- };
-
- enum BakeQuality {
- BAKE_QUALITY_LOW,
- BAKE_QUALITY_MEDIUM,
- BAKE_QUALITY_HIGH
- };
-
- enum BakeMode {
- BAKE_MODE_CONE_TRACE,
- BAKE_MODE_RAY_TRACE,
- };
-
+class Voxelizer {
private:
enum {
CHILD_EMPTY = 0xFFFFFFFF
@@ -66,7 +50,10 @@ private:
float normal[3];
uint32_t used_sides;
float alpha; //used for upsampling
- int level;
+ uint16_t x;
+ uint16_t y;
+ uint16_t z;
+ uint16_t level;
Cell() {
for (int i = 0; i < 8; i++) {
@@ -80,6 +67,7 @@ private:
}
alpha = 0;
used_sides = 0;
+ x = y = z = 0;
level = 0;
}
};
@@ -87,27 +75,24 @@ private:
Vector<Cell> bake_cells;
int cell_subdiv;
- struct Light {
- int x, y, z;
- float accum[6][3]; //rgb anisotropic
- float direct_accum[6][3]; //for direct bake
- int next_leaf;
- Light() {
- x = y = z = 0;
- for (int i = 0; i < 6; i++) {
- for (int j = 0; j < 3; j++) {
- accum[i][j] = 0;
- direct_accum[i][j] = 0;
- }
- }
- next_leaf = 0;
+ struct CellSort {
+ union {
+ struct {
+ uint64_t z : 16;
+ uint64_t y : 16;
+ uint64_t x : 16;
+ uint64_t level : 16;
+ };
+ uint64_t key;
+ };
+
+ int32_t index;
+
+ _FORCE_INLINE_ bool operator<(const CellSort &p_cell_sort) const {
+ return key < p_cell_sort.key;
}
};
- int first_leaf;
-
- Vector<Light> bake_light;
-
struct MaterialCache {
//128x128 textures
Vector<Color> albedo;
@@ -115,9 +100,6 @@ private:
};
Map<Ref<Material>, MaterialCache> material_cache;
- int leaf_voxel_count;
- bool direct_lights_baked;
-
AABB original_bounds;
AABB po2_bounds;
int axis_cell_size[3];
@@ -128,64 +110,36 @@ private:
int bake_texture_size;
float cell_size;
float propagation;
- float energy;
-
- BakeQuality bake_quality;
- BakeMode bake_mode;
int max_original_cells;
-
- void _init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent);
+ int leaf_voxel_count;
Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add);
MaterialCache _get_material_cache(Ref<Material> p_material);
void _plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb);
void _fixup_plot(int p_idx, int p_level);
- void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode);
- void _check_init_light();
-
- uint32_t _find_cell_at_pos(const Cell *cells, int x, int y, int z);
+ void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx);
- struct LightMap {
- Vector3 light;
- Vector3 pos;
- Vector3 normal;
- };
-
- void _plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height);
-
- _FORCE_INLINE_ void _sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha);
- _FORCE_INLINE_ Vector3 _voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture);
- _FORCE_INLINE_ Vector3 _compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal);
- _FORCE_INLINE_ Vector3 _compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal);
-
- void _lightmap_bake_point(uint32_t p_x, LightMap *p_line);
+ bool sorted;
+ void _sort();
public:
void begin_bake(int p_subdiv, const AABB &p_bounds);
void plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material);
- void begin_bake_light(BakeQuality p_quality = BAKE_QUALITY_MEDIUM, BakeMode p_bake_mode = BAKE_MODE_CONE_TRACE, float p_propagation = 0.85, float p_energy = 1);
- void plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct);
- void plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct);
- void plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct);
void end_bake();
- struct LightMapData {
- int width;
- int height;
- PoolVector<float> light;
- };
-
- Error make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, float default_texels_per_unit, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float) = NULL, void *p_bake_time_ud = NULL);
+ int get_gi_probe_octree_depth() const;
+ Vector3i get_giprobe_octree_size() const;
+ int get_giprobe_cell_count() const;
+ PoolVector<uint8_t> get_giprobe_octree_cells() const;
+ PoolVector<uint8_t> get_giprobe_data_cells() const;
+ PoolVector<int> get_giprobe_level_cell_count() const;
- PoolVector<int> create_gi_probe_data();
- Ref<MultiMesh> create_debug_multimesh(DebugMode p_mode = DEBUG_ALBEDO);
- PoolVector<uint8_t> create_capture_octree(int p_subdiv);
+ Ref<MultiMesh> create_debug_multimesh();
- float get_cell_size() const;
Transform get_to_cell_space_xform() const;
- VoxelLightBaker();
+ Voxelizer();
};
#endif // VOXEL_LIGHT_BAKER_H
diff --git a/scene/main/viewport.h b/scene/main/viewport.h
index 469665676c..831bb77c0f 100644
--- a/scene/main/viewport.h
+++ b/scene/main/viewport.h
@@ -129,8 +129,14 @@ public:
enum DebugDraw {
DEBUG_DRAW_DISABLED,
DEBUG_DRAW_UNSHADED,
+ DEBUG_DRAW_LIGHTING,
DEBUG_DRAW_OVERDRAW,
DEBUG_DRAW_WIREFRAME,
+ DEBUG_DRAW_GI_PROBE_ALBEDO,
+ DEBUG_DRAW_GI_PROBE_LIGHTING,
+ DEBUG_DRAW_SHADOW_ATLAS,
+ DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS,
+
};
enum ClearMode {
diff --git a/scene/register_scene_types.cpp b/scene/register_scene_types.cpp
index de7600d417..957e41ce9b 100644
--- a/scene/register_scene_types.cpp
+++ b/scene/register_scene_types.cpp
@@ -419,8 +419,8 @@ void register_scene_types() {
ClassDB::register_class<ReflectionProbe>();
ClassDB::register_class<GIProbe>();
ClassDB::register_class<GIProbeData>();
- ClassDB::register_class<BakedLightmap>();
- ClassDB::register_class<BakedLightmapData>();
+ //ClassDB::register_class<BakedLightmap>();
+ //ClassDB::register_class<BakedLightmapData>();
ClassDB::register_class<Particles>();
ClassDB::register_class<CPUParticles>();
ClassDB::register_class<Position3D>();
diff --git a/scene/resources/mesh.cpp b/scene/resources/mesh.cpp
index 6765a15208..571415a045 100644
--- a/scene/resources/mesh.cpp
+++ b/scene/resources/mesh.cpp
@@ -904,6 +904,8 @@ Array ArrayMesh::_get_surfaces() const {
ret.push_back(data);
}
+ print_line("Saving surfaces: " + itos(ret.size()));
+
return ret;
}
@@ -983,7 +985,15 @@ void ArrayMesh::_set_surfaces(const Array &p_surfaces) {
if (d.has("2d")) {
_2d = d["2d"];
}
-
+ /*
+ print_line("format: " + itos(surface.format));
+ print_line("aabb: " + surface.aabb);
+ print_line("array size: " + itos(surface.vertex_data.size()));
+ print_line("vertex count: " + itos(surface.vertex_count));
+ print_line("index size: " + itos(surface.index_data.size()));
+ print_line("index count: " + itos(surface.index_count));
+ print_line("primitive: " + itos(surface.primitive));
+*/
surface_data.push_back(surface);
surface_materials.push_back(material);
surface_names.push_back(name);
@@ -999,6 +1009,7 @@ void ArrayMesh::_set_surfaces(const Array &p_surfaces) {
} else {
// if mesh does not exist (first time this is loaded, most likely),
// we can create it with a single call, which is a lot more efficient and thread friendly
+ print_line("create mesh from surfaces: " + itos(surface_data.size()));
mesh = VS::get_singleton()->mesh_create_from_surfaces(surface_data);
VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)blend_shape_mode);
}
@@ -1144,6 +1155,14 @@ void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &
Error err = VS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags);
ERR_FAIL_COND(err != OK);
+ /* print_line("format: " + itos(surface.format));
+ print_line("aabb: " + surface.aabb);
+ print_line("array size: " + itos(surface.vertex_data.size()));
+ print_line("vertex count: " + itos(surface.vertex_count));
+ print_line("index size: " + itos(surface.index_data.size()));
+ print_line("index count: " + itos(surface.index_count));
+ print_line("primitive: " + itos(surface.primitive));
+*/
add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shapes, surface.bone_aabbs, surface.lods);
}
@@ -1570,8 +1589,8 @@ void ArrayMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces);
ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces);
- ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces");
- ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative", PROPERTY_USAGE_NOEDITOR), "set_blend_shape_mode", "get_blend_shape_mode");
+ ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_surfaces", "_get_surfaces");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode");
ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb");
BIND_CONSTANT(NO_INDEX_ARRAY);
diff --git a/scene/resources/resource_format_text.cpp b/scene/resources/resource_format_text.cpp
index 849fb087ba..9779f9c9ca 100644
--- a/scene/resources/resource_format_text.cpp
+++ b/scene/resources/resource_format_text.cpp
@@ -1281,7 +1281,7 @@ String ResourceFormatLoaderText::get_resource_type(const String &p_path) const {
ria->res_path = ria->local_path;
//ria->set_local_path( ProjectSettings::get_singleton()->localize_path(p_path) );
String r = ria->recognize(f);
- return r;
+ return ClassDB::get_compatibility_remapped_class(r);
}
void ResourceFormatLoaderText::get_dependencies(const String &p_path, List<String> *p_dependencies, bool p_add_types) {