summaryrefslogtreecommitdiff
path: root/scene
diff options
context:
space:
mode:
Diffstat (limited to 'scene')
-rw-r--r--scene/2d/cpu_particles_2d.cpp50
-rw-r--r--scene/2d/cpu_particles_2d.h2
-rw-r--r--scene/3d/cpu_particles.cpp42
-rw-r--r--scene/3d/cpu_particles.h2
-rw-r--r--scene/animation/tween.cpp595
-rw-r--r--scene/animation/tween.h1
6 files changed, 472 insertions, 220 deletions
diff --git a/scene/2d/cpu_particles_2d.cpp b/scene/2d/cpu_particles_2d.cpp
index 2b1009a2d1..536a05dceb 100644
--- a/scene/2d/cpu_particles_2d.cpp
+++ b/scene/2d/cpu_particles_2d.cpp
@@ -29,8 +29,9 @@
/*************************************************************************/
#include "cpu_particles_2d.h"
-#include "particles_2d.h"
+
#include "scene/2d/canvas_item.h"
+#include "scene/2d/particles_2d.h"
#include "scene/resources/particles_material.h"
#include "servers/visual_server.h"
@@ -324,9 +325,9 @@ void CPUParticles2D::set_param_curve(Parameter p_param, const Ref<Curve> &p_curv
case PARAM_ANGULAR_VELOCITY: {
_adjust_curve_range(p_curve, -360, 360);
} break;
- /*case PARAM_ORBIT_VELOCITY: {
+ case PARAM_ORBIT_VELOCITY: {
_adjust_curve_range(p_curve, -500, 500);
- } break;*/
+ } break;
case PARAM_LINEAR_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
@@ -489,12 +490,6 @@ void CPUParticles2D::_validate_property(PropertyInfo &property) const {
if (property.name == "emission_colors" && emission_shape != EMISSION_SHAPE_POINTS && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) {
property.usage = 0;
}
-
- /*
- if (property.name.begins_with("orbit_") && !flags[FLAG_DISABLE_Z]) {
- property.usage = 0;
- }
- */
}
static uint32_t idhash(uint32_t x) {
@@ -695,16 +690,12 @@ void CPUParticles2D::_particles_process(float p_delta) {
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(p.custom[1]);
}
- /*
- float tex_orbit_velocity = 0.0;
- if (flags[FLAG_DISABLE_Z]) {
-
- if (curve_parameters[PARAM_INITIAL_ORBIT_VELOCITY].is_valid()) {
- tex_orbit_velocity = curve_parameters[PARAM_INITIAL_ORBIT_VELOCITY]->interpolate(p.custom[1]);
- }
+ float tex_orbit_velocity = 0.0;
+ if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) {
+ tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->interpolate(p.custom[1]);
}
-*/
+
float tex_angular_velocity = 0.0;
if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->interpolate(p.custom[1]);
@@ -759,18 +750,15 @@ void CPUParticles2D::_particles_process(float p_delta) {
//apply attractor forces
p.velocity += force * local_delta;
//orbit velocity
-#if 0
- if (flags[FLAG_DISABLE_Z]) {
-
- float orbit_amount = (orbit_velocity + tex_orbit_velocity) * mix(1.0, rand_from_seed(alt_seed), orbit_velocity_random);
- if (orbit_amount != 0.0) {
- float ang = orbit_amount * DELTA * pi * 2.0;
- mat2 rot = mat2(vec2(cos(ang), -sin(ang)), vec2(sin(ang), cos(ang)));
- TRANSFORM[3].xy -= diff.xy;
- TRANSFORM[3].xy += rot * diff.xy;
- }
+ float orbit_amount = (parameters[PARAM_ORBIT_VELOCITY] + tex_orbit_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ORBIT_VELOCITY]);
+ if (orbit_amount != 0.0) {
+ float ang = orbit_amount * local_delta * Math_PI * 2.0;
+ // Not sure why the ParticlesMaterial code uses a clockwise rotation matrix,
+ // but we use -ang here to reproduce its behavior.
+ Transform2D rot = Transform2D(-ang, Vector2());
+ p.transform[2] -= diff;
+ p.transform[2] += rot.basis_xform(diff);
}
-#endif
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
p.velocity = p.velocity.normalized() * tex_linear_velocity;
}
@@ -1271,12 +1259,10 @@ void CPUParticles2D::_bind_methods() {
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity", PROPERTY_HINT_RANGE, "-720,720,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY);
- /*
ADD_GROUP("Orbit Velocity", "orbit_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY);
-*/
ADD_GROUP("Linear Accel", "linear_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_LINEAR_ACCEL);
@@ -1332,6 +1318,8 @@ void CPUParticles2D::_bind_methods() {
BIND_ENUM_CONSTANT(PARAM_MAX);
BIND_ENUM_CONSTANT(FLAG_ALIGN_Y_TO_VELOCITY);
+ BIND_ENUM_CONSTANT(FLAG_ROTATE_Y); // Unused, but exposed for consistency with 3D.
+ BIND_ENUM_CONSTANT(FLAG_DISABLE_Z); // Unused, but exposed for consistency with 3D.
BIND_ENUM_CONSTANT(FLAG_MAX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT);
@@ -1370,7 +1358,7 @@ CPUParticles2D::CPUParticles2D() {
set_spread(45);
set_flatness(0);
set_param(PARAM_INITIAL_LINEAR_VELOCITY, 1);
- //set_param(PARAM_ORBIT_VELOCITY, 0);
+ set_param(PARAM_ORBIT_VELOCITY, 0);
set_param(PARAM_LINEAR_ACCEL, 0);
set_param(PARAM_ANGULAR_VELOCITY, 0);
set_param(PARAM_RADIAL_ACCEL, 0);
diff --git a/scene/2d/cpu_particles_2d.h b/scene/2d/cpu_particles_2d.h
index 81343a4604..79444407ee 100644
--- a/scene/2d/cpu_particles_2d.h
+++ b/scene/2d/cpu_particles_2d.h
@@ -68,6 +68,8 @@ public:
enum Flags {
FLAG_ALIGN_Y_TO_VELOCITY,
+ FLAG_ROTATE_Y, // Unused, but exposed for consistency with 3D.
+ FLAG_DISABLE_Z, // Unused, but exposed for consistency with 3D.
FLAG_MAX
};
diff --git a/scene/3d/cpu_particles.cpp b/scene/3d/cpu_particles.cpp
index a81071492b..b42649b35a 100644
--- a/scene/3d/cpu_particles.cpp
+++ b/scene/3d/cpu_particles.cpp
@@ -302,9 +302,9 @@ void CPUParticles::set_param_curve(Parameter p_param, const Ref<Curve> &p_curve)
case PARAM_ANGULAR_VELOCITY: {
_adjust_curve_range(p_curve, -360, 360);
} break;
- /*case PARAM_ORBIT_VELOCITY: {
+ case PARAM_ORBIT_VELOCITY: {
_adjust_curve_range(p_curve, -500, 500);
- } break;*/
+ } break;
case PARAM_LINEAR_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
@@ -461,11 +461,10 @@ void CPUParticles::_validate_property(PropertyInfo &property) const {
if (property.name == "emission_normals" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) {
property.usage = 0;
}
- /*
+
if (property.name.begins_with("orbit_") && !flags[FLAG_DISABLE_Z]) {
property.usage = 0;
}
- */
}
static uint32_t idhash(uint32_t x) {
@@ -698,16 +697,14 @@ void CPUParticles::_particles_process(float p_delta) {
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(p.custom[1]);
}
- /*
- float tex_orbit_velocity = 0.0;
+ float tex_orbit_velocity = 0.0;
if (flags[FLAG_DISABLE_Z]) {
-
- if (curve_parameters[PARAM_INITIAL_ORBIT_VELOCITY].is_valid()) {
- tex_orbit_velocity = curve_parameters[PARAM_INITIAL_ORBIT_VELOCITY]->interpolate(p.custom[1]);
+ if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) {
+ tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->interpolate(p.custom[1]);
}
}
-*/
+
float tex_angular_velocity = 0.0;
if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->interpolate(p.custom[1]);
@@ -772,18 +769,18 @@ void CPUParticles::_particles_process(float p_delta) {
//apply attractor forces
p.velocity += force * local_delta;
//orbit velocity
-#if 0
if (flags[FLAG_DISABLE_Z]) {
-
- float orbit_amount = (orbit_velocity + tex_orbit_velocity) * mix(1.0, rand_from_seed(alt_seed), orbit_velocity_random);
+ float orbit_amount = (parameters[PARAM_ORBIT_VELOCITY] + tex_orbit_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ORBIT_VELOCITY]);
if (orbit_amount != 0.0) {
- float ang = orbit_amount * DELTA * pi * 2.0;
- mat2 rot = mat2(vec2(cos(ang), -sin(ang)), vec2(sin(ang), cos(ang)));
- TRANSFORM[3].xy -= diff.xy;
- TRANSFORM[3].xy += rot * diff.xy;
+ float ang = orbit_amount * local_delta * Math_PI * 2.0;
+ // Not sure why the ParticlesMaterial code uses a clockwise rotation matrix,
+ // but we use -ang here to reproduce its behavior.
+ Transform2D rot = Transform2D(-ang, Vector2());
+ Vector2 rotv = rot.basis_xform(Vector2(diff.x, diff.y));
+ p.transform.origin -= Vector3(diff.x, diff.y, 0);
+ p.transform.origin += Vector3(rotv.x, rotv.y, 0);
}
}
-#endif
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
p.velocity = p.velocity.normalized() * tex_linear_velocity;
}
@@ -1179,7 +1176,7 @@ void CPUParticles::convert_from_particles(Node *p_particles) {
CONVERT_PARAM(PARAM_INITIAL_LINEAR_VELOCITY);
CONVERT_PARAM(PARAM_ANGULAR_VELOCITY);
- // CONVERT_PARAM(PARAM_ORBIT_VELOCITY);
+ CONVERT_PARAM(PARAM_ORBIT_VELOCITY);
CONVERT_PARAM(PARAM_LINEAR_ACCEL);
CONVERT_PARAM(PARAM_RADIAL_ACCEL);
CONVERT_PARAM(PARAM_TANGENTIAL_ACCEL);
@@ -1322,12 +1319,10 @@ void CPUParticles::_bind_methods() {
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity", PROPERTY_HINT_RANGE, "-720,720,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY);
- /*
ADD_GROUP("Orbit Velocity", "orbit_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY);
-*/
ADD_GROUP("Linear Accel", "linear_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_LINEAR_ACCEL);
@@ -1370,7 +1365,7 @@ void CPUParticles::_bind_methods() {
BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY);
- //BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY);
+ BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL);
BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL);
@@ -1384,6 +1379,7 @@ void CPUParticles::_bind_methods() {
BIND_ENUM_CONSTANT(FLAG_ALIGN_Y_TO_VELOCITY);
BIND_ENUM_CONSTANT(FLAG_ROTATE_Y);
+ BIND_ENUM_CONSTANT(FLAG_DISABLE_Z);
BIND_ENUM_CONSTANT(FLAG_MAX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT);
@@ -1422,7 +1418,7 @@ CPUParticles::CPUParticles() {
set_spread(45);
set_flatness(0);
set_param(PARAM_INITIAL_LINEAR_VELOCITY, 1);
- //set_param(PARAM_ORBIT_VELOCITY, 0);
+ set_param(PARAM_ORBIT_VELOCITY, 0);
set_param(PARAM_LINEAR_ACCEL, 0);
set_param(PARAM_RADIAL_ACCEL, 0);
set_param(PARAM_TANGENTIAL_ACCEL, 0);
diff --git a/scene/3d/cpu_particles.h b/scene/3d/cpu_particles.h
index b863a3cb3f..6a989251f1 100644
--- a/scene/3d/cpu_particles.h
+++ b/scene/3d/cpu_particles.h
@@ -53,7 +53,7 @@ public:
PARAM_INITIAL_LINEAR_VELOCITY,
PARAM_ANGULAR_VELOCITY,
- //PARAM_ORBIT_VELOCITY,
+ PARAM_ORBIT_VELOCITY,
PARAM_LINEAR_ACCEL,
PARAM_RADIAL_ACCEL,
PARAM_TANGENTIAL_ACCEL,
diff --git a/scene/animation/tween.cpp b/scene/animation/tween.cpp
index 23998183b8..c70e58564f 100644
--- a/scene/animation/tween.cpp
+++ b/scene/animation/tween.cpp
@@ -34,10 +34,14 @@
void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5, const Variant &p_arg6, const Variant &p_arg7, const Variant &p_arg8, const Variant &p_arg9, const Variant &p_arg10) {
+ // Add a new pending command and reference it
pending_commands.push_back(PendingCommand());
PendingCommand &cmd = pending_commands.back()->get();
+ // Update the command with the target key
cmd.key = p_key;
+
+ // Determine command argument count
int &count = cmd.args;
if (p_arg10.get_type() != Variant::NIL)
count = 10;
@@ -59,6 +63,9 @@ void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const
count = 2;
else if (p_arg1.get_type() != Variant::NIL)
count = 1;
+
+ // Add the specified arguments to the command
+ // TODO: Make this a switch statement?
if (count > 0)
cmd.arg[0] = p_arg1;
if (count > 1)
@@ -83,10 +90,14 @@ void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const
void Tween::_process_pending_commands() {
+ // For each pending command...
for (List<PendingCommand>::Element *E = pending_commands.front(); E; E = E->next()) {
+ // Get the command
PendingCommand &cmd = E->get();
Variant::CallError err;
+
+ // Grab all of the arguments for the command
Variant *arg[10] = {
&cmd.arg[0],
&cmd.arg[1],
@@ -99,16 +110,20 @@ void Tween::_process_pending_commands() {
&cmd.arg[8],
&cmd.arg[9],
};
+
+ // Execute the command (and retrieve any errors)
this->call(cmd.key, (const Variant **)arg, cmd.args, err);
}
+
+ // Clear the pending commands
pending_commands.clear();
}
bool Tween::_set(const StringName &p_name, const Variant &p_value) {
+ // Set the correct attribute based on the given name
String name = p_name;
-
- if (name == "playback/speed" || name == "speed") { //bw compatibility
+ if (name == "playback/speed" || name == "speed") { // Backwards compatibility
set_speed_scale(p_value);
} else if (name == "playback/active") {
@@ -122,69 +137,78 @@ bool Tween::_set(const StringName &p_name, const Variant &p_value) {
bool Tween::_get(const StringName &p_name, Variant &r_ret) const {
+ // Get the correct attribute based on the given name
String name = p_name;
-
- if (name == "playback/speed") { //bw compatibility
-
+ if (name == "playback/speed") { // Backwards compatibility
r_ret = speed_scale;
- } else if (name == "playback/active") {
+ } else if (name == "playback/active") {
r_ret = is_active();
- } else if (name == "playback/repeat") {
+ } else if (name == "playback/repeat") {
r_ret = is_repeat();
}
-
return true;
}
void Tween::_get_property_list(List<PropertyInfo> *p_list) const {
-
+ // Add the property info for the Tween object
p_list->push_back(PropertyInfo(Variant::BOOL, "playback/active", PROPERTY_HINT_NONE, ""));
p_list->push_back(PropertyInfo(Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE, ""));
p_list->push_back(PropertyInfo(Variant::REAL, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01"));
}
void Tween::_notification(int p_what) {
-
+ // What notification did we receive?
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
-
+ // Are we not already active?
if (!is_active()) {
- //make sure that a previous process state was not saved
- //only process if "processing" is set
+ // Make sure that a previous process state was not saved
+ // Only process if "processing" is set
set_physics_process_internal(false);
set_process_internal(false);
}
} break;
- case NOTIFICATION_READY: {
+ case NOTIFICATION_READY: {
+ // Do nothing
} break;
+
case NOTIFICATION_INTERNAL_PROCESS: {
+ // Are we processing during physics time?
if (tween_process_mode == TWEEN_PROCESS_PHYSICS)
+ // Do nothing since we aren't aligned with physics when we should be
break;
+ // Should we update?
if (is_active())
+ // Update the tweens
_tween_process(get_process_delta_time());
} break;
- case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
+ case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
+ // Are we processing during 'regular' time?
if (tween_process_mode == TWEEN_PROCESS_IDLE)
+ // Do nothing since we whould only process during idle time
break;
+ // Should we update?
if (is_active())
+ // Update the tweens
_tween_process(get_physics_process_delta_time());
} break;
- case NOTIFICATION_EXIT_TREE: {
+ case NOTIFICATION_EXIT_TREE: {
+ // We've left the tree. Stop all tweens
stop_all();
} break;
}
}
void Tween::_bind_methods() {
-
+ // Bind getters and setters
ClassDB::bind_method(D_METHOD("is_active"), &Tween::is_active);
ClassDB::bind_method(D_METHOD("set_active", "active"), &Tween::set_active);
@@ -197,6 +221,7 @@ void Tween::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_tween_process_mode", "mode"), &Tween::set_tween_process_mode);
ClassDB::bind_method(D_METHOD("get_tween_process_mode"), &Tween::get_tween_process_mode);
+ // Bind the various Tween control methods
ClassDB::bind_method(D_METHOD("start"), &Tween::start);
ClassDB::bind_method(D_METHOD("reset", "object", "key"), &Tween::reset, DEFVAL(""));
ClassDB::bind_method(D_METHOD("reset_all"), &Tween::reset_all);
@@ -211,6 +236,7 @@ void Tween::_bind_methods() {
ClassDB::bind_method(D_METHOD("tell"), &Tween::tell);
ClassDB::bind_method(D_METHOD("get_runtime"), &Tween::get_runtime);
+ // Bind interpolation and follow methods
ClassDB::bind_method(D_METHOD("interpolate_property", "object", "property", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_property, DEFVAL(0));
ClassDB::bind_method(D_METHOD("interpolate_method", "object", "method", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_method, DEFVAL(0));
ClassDB::bind_method(D_METHOD("interpolate_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
@@ -220,18 +246,22 @@ void Tween::_bind_methods() {
ClassDB::bind_method(D_METHOD("targeting_property", "object", "property", "initial", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_property, DEFVAL(0));
ClassDB::bind_method(D_METHOD("targeting_method", "object", "method", "initial", "initial_method", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_method, DEFVAL(0));
+ // Add the Tween signals
ADD_SIGNAL(MethodInfo("tween_started", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
ADD_SIGNAL(MethodInfo("tween_step", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"), PropertyInfo(Variant::REAL, "elapsed"), PropertyInfo(Variant::OBJECT, "value")));
ADD_SIGNAL(MethodInfo("tween_completed", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
ADD_SIGNAL(MethodInfo("tween_all_completed"));
+ // Add the properties and tie them to the getters and setters
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "repeat"), "set_repeat", "is_repeat");
ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_tween_process_mode", "get_tween_process_mode");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "playback_speed", PROPERTY_HINT_RANGE, "-64,64,0.01"), "set_speed_scale", "get_speed_scale");
+ // Bind Idle vs Physics process
BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
+ // Bind the Transition type constants
BIND_ENUM_CONSTANT(TRANS_LINEAR);
BIND_ENUM_CONSTANT(TRANS_SINE);
BIND_ENUM_CONSTANT(TRANS_QUINT);
@@ -244,6 +274,7 @@ void Tween::_bind_methods() {
BIND_ENUM_CONSTANT(TRANS_BOUNCE);
BIND_ENUM_CONSTANT(TRANS_BACK);
+ // Bind the easing constants
BIND_ENUM_CONSTANT(EASE_IN);
BIND_ENUM_CONSTANT(EASE_OUT);
BIND_ENUM_CONSTANT(EASE_IN_OUT);
@@ -252,27 +283,30 @@ void Tween::_bind_methods() {
Variant &Tween::_get_initial_val(InterpolateData &p_data) {
+ // What type of data are we interpolating?
switch (p_data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
case FOLLOW_PROPERTY:
case FOLLOW_METHOD:
+ // Simply use the given initial value
return p_data.initial_val;
case TARGETING_PROPERTY:
case TARGETING_METHOD: {
-
+ // Get the object that is being targeted
Object *object = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(object == NULL, p_data.initial_val);
+ // Are we targeting a property or a method?
static Variant initial_val;
if (p_data.type == TARGETING_PROPERTY) {
-
+ // Get the property from the target object
bool valid = false;
initial_val = object->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
-
+ // Call the method and get the initial value from it
Variant::CallError error;
initial_val = object->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, p_data.initial_val);
@@ -281,64 +315,75 @@ Variant &Tween::_get_initial_val(InterpolateData &p_data) {
}
case INTER_CALLBACK:
+ // Callback does not have a special initial value
break;
}
+ // If we've made it here, just return the delta value as the initial value
return p_data.delta_val;
}
Variant &Tween::_get_delta_val(InterpolateData &p_data) {
+ // What kind of data are we interpolating?
switch (p_data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
+ // Simply return the given delta value
return p_data.delta_val;
case FOLLOW_PROPERTY:
case FOLLOW_METHOD: {
-
+ // We're following an object, so grab that instance
Object *target = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(target == NULL, p_data.initial_val);
+ // We want to figure out the final value
Variant final_val;
-
if (p_data.type == FOLLOW_PROPERTY) {
-
+ // Read the property as-is
bool valid = false;
final_val = target->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
-
+ // We're looking at a method. Call the method on the target object
Variant::CallError error;
final_val = target->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, p_data.initial_val);
}
- // convert INT to REAL is better for interpolaters
+ // If we're looking at an INT value, instead convert it to a REAL
+ // This is better for interpolation
if (final_val.get_type() == Variant::INT) final_val = final_val.operator real_t();
+
+ // Calculate the delta based on the initial value and the final value
_calc_delta_val(p_data.initial_val, final_val, p_data.delta_val);
return p_data.delta_val;
}
case TARGETING_PROPERTY:
case TARGETING_METHOD: {
-
+ // Grab the initial value from the data to calculate delta
Variant initial_val = _get_initial_val(p_data);
- // convert INT to REAL is better for interpolaters
+
+ // If we're looking at an INT value, instead convert it to a REAL
+ // This is better for interpolation
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
- //_calc_delta_val(p_data.initial_val, p_data.final_val, p_data.delta_val);
+ // Calculate the delta based on the initial value and the final value
_calc_delta_val(initial_val, p_data.final_val, p_data.delta_val);
return p_data.delta_val;
}
case INTER_CALLBACK:
+ // Callbacks have no special delta
break;
}
+ // If we've made it here, use the initial value as the delta
return p_data.initial_val;
}
Variant Tween::_run_equation(InterpolateData &p_data) {
-
+ // Get the initial and delta values from the data
Variant &initial_val = _get_initial_val(p_data);
Variant &delta_val = _get_delta_val(p_data);
Variant result;
@@ -346,48 +391,59 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
#define APPLY_EQUATION(element) \
r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.duration);
+ // What type of data are we interpolating?
switch (initial_val.get_type()) {
case Variant::BOOL:
+ // Run the boolean specific equation (checking if it is at least 0.5)
result = (_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, initial_val, delta_val, p_data.duration)) >= 0.5;
break;
case Variant::INT:
+ // Run the integer specific equation
result = (int)_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int)initial_val, (int)delta_val, p_data.duration);
break;
case Variant::REAL:
+ // Run the REAL specific equation
result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t)initial_val, (real_t)delta_val, p_data.duration);
break;
case Variant::VECTOR2: {
+ // Get vectors for initial and delta values
Vector2 i = initial_val;
Vector2 d = delta_val;
Vector2 r;
+ // Execute the equation and mutate the r vector
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
-
result = r;
} break;
case Variant::VECTOR3: {
+ // Get vectors for initial and delta values
Vector3 i = initial_val;
Vector3 d = delta_val;
Vector3 r;
+ // Execute the equation and mutate the r vector
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
-
result = r;
} break;
case Variant::BASIS: {
+ // Get the basis for initial and delta values
Basis i = initial_val;
Basis d = delta_val;
Basis r;
+ // Execute the equation on all the basis and mutate the r basis
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[0][2]);
@@ -397,55 +453,63 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
APPLY_EQUATION(elements[2][2]);
-
result = r;
} break;
case Variant::TRANSFORM2D: {
+ // Get the transforms for initial and delta values
Transform2D i = initial_val;
Transform2D d = delta_val;
Transform2D r;
+ // Execute the equation on the transforms and mutate the r transform
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
-
result = r;
} break;
case Variant::QUAT: {
+ // Get the quaternian for the initial and delta values
Quat i = initial_val;
Quat d = delta_val;
Quat r;
+ // Execute the equation on the quaternian values and mutate the r quaternian
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
-
result = r;
} break;
case Variant::AABB: {
+ // Get the AABB's for the initial and delta values
AABB i = initial_val;
AABB d = delta_val;
AABB r;
+ // Execute the equation for the position and size of the AABB's and mutate the r AABB
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
-
result = r;
} break;
case Variant::TRANSFORM: {
+ // Get the transforms for the initial and delta values
Transform i = initial_val;
Transform d = delta_val;
Transform r;
+ // Execute the equation for each of the transforms and their origin and mutate the r transform
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(basis.elements[0][0]);
APPLY_EQUATION(basis.elements[0][1]);
APPLY_EQUATION(basis.elements[0][2]);
@@ -458,40 +522,45 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
APPLY_EQUATION(origin.x);
APPLY_EQUATION(origin.y);
APPLY_EQUATION(origin.z);
-
result = r;
} break;
case Variant::COLOR: {
+ // Get the Color for initial and delta value
Color i = initial_val;
Color d = delta_val;
Color r;
+ // Apply the equation on the Color RGBA, and mutate the r color
+ // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(r);
APPLY_EQUATION(g);
APPLY_EQUATION(b);
APPLY_EQUATION(a);
-
result = r;
} break;
default: {
+ // If unknown, just return the initial value
result = initial_val;
} break;
};
#undef APPLY_EQUATION
-
+ // Return the result that was computed
return result;
}
bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) {
+ // Get the object we want to apply the new value to
Object *object = ObjectDB::get_instance(p_data.id);
ERR_FAIL_COND_V(object == NULL, false);
+ // What kind of data are we mutating?
switch (p_data.type) {
case INTER_PROPERTY:
case FOLLOW_PROPERTY:
case TARGETING_PROPERTY: {
+ // Simply set the property on the object
bool valid = false;
object->set_indexed(p_data.key, value, &valid);
return valid;
@@ -500,85 +569,112 @@ bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) {
case INTER_METHOD:
case FOLLOW_METHOD:
case TARGETING_METHOD: {
+ // We want to call the method on the target object
Variant::CallError error;
+
+ // Do we have a non-nil value passed in?
if (value.get_type() != Variant::NIL) {
+ // Pass it as an argument to the function call
Variant *arg[1] = { &value };
object->call(p_data.key[0], (const Variant **)arg, 1, error);
} else {
+ // Don't pass any argument
object->call(p_data.key[0], NULL, 0, error);
}
+ // Did we get an error from the function call?
if (error.error == Variant::CallError::CALL_OK)
return true;
return false;
}
case INTER_CALLBACK:
+ // Nothing to apply for a callback
break;
};
+ // No issues found!
return true;
}
void Tween::_tween_process(float p_delta) {
-
+ // Process all of the pending commands
_process_pending_commands();
+ // If the scale is 0, make no progress on the tweens
if (speed_scale == 0)
return;
- p_delta *= speed_scale;
+ // Update the delta and whether we are pending an update
+ p_delta *= speed_scale;
pending_update++;
- // if repeat and all interpolates was finished then reset all interpolates
- bool all_finished = true;
- if (repeat) {
+ // Are we repeating the interpolations?
+ if (repeat) {
+ // For each interpolation...
+ bool repeats_finished = true;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Get the data from it
InterpolateData &data = E->get();
+ // Is not finished?
if (!data.finish) {
- all_finished = false;
+ // We aren't finished yet, no need to check the rest
+ repeats_finished = false;
break;
}
}
- if (all_finished)
+ // If we are all finished, we can reset all of the tweens
+ if (repeats_finished)
reset_all();
}
- all_finished = true;
+ // Are all of the tweens complete?
+ bool all_finished = true;
+
+ // For each tween we wish to interpolate...
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
+ // Get the data from it
InterpolateData &data = E->get();
+
+ // Track if we hit one that isn't finished yet
all_finished = all_finished && data.finish;
+ // Is the data not active or already finished? No need to go any further
if (!data.active || data.finish)
continue;
+ // Get the target object for this interpolation
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
+ // Are we still delaying this tween?
bool prev_delaying = data.elapsed <= data.delay;
data.elapsed += p_delta;
if (data.elapsed < data.delay)
continue;
else if (prev_delaying) {
-
+ // We can apply the tween's value to the data and emit that the tween has started
_apply_tween_value(data, data.initial_val);
emit_signal("tween_started", object, NodePath(Vector<StringName>(), data.key, false));
}
+ // Are we at the end of the tween?
if (data.elapsed > (data.delay + data.duration)) {
-
+ // Set the elapsed time to the end and mark this one as finished
data.elapsed = data.delay + data.duration;
data.finish = true;
}
+ // Are we interpolating a callback?
if (data.type == INTER_CALLBACK) {
+ // Is the tween completed?
if (data.finish) {
+ // Are we calling this callback deferred or immediately?
if (data.call_deferred) {
-
+ // Run the deferred function callback, applying the correct number of arguments
switch (data.args) {
case 0:
object->call_deferred(data.key[0]);
@@ -600,6 +696,7 @@ void Tween::_tween_process(float p_delta) {
break;
}
} else {
+ // Call the function directly with the arguments
Variant::CallError error;
Variant *arg[5] = {
&data.arg[0],
@@ -612,23 +709,35 @@ void Tween::_tween_process(float p_delta) {
}
}
} else {
+ // We can apply the value directly
Variant result = _run_equation(data);
_apply_tween_value(data, result);
+
+ // Emit that the tween has taken a step
emit_signal("tween_step", object, NodePath(Vector<StringName>(), data.key, false), data.elapsed, result);
}
+ // Is the tween now finished?
if (data.finish) {
+ // Set it to the final value directly
_apply_tween_value(data, data.final_val);
+
+ // Mark the tween as completed and emit the signal
data.elapsed = 0;
emit_signal("tween_completed", object, NodePath(Vector<StringName>(), data.key, false));
- // not repeat mode, remove completed action
+
+ // If we are not repeating the tween, remove it
if (!repeat)
call_deferred("_remove_by_uid", data.uid);
- } else if (!repeat)
+ } else if (!repeat) {
+ // Check whether all tweens are finished
all_finished = all_finished && data.finish;
+ }
}
+ // One less update left to go
pending_update--;
+ // If all tweens are completed, we no longer need to be active
if (all_finished) {
set_active(false);
emit_signal("tween_all_completed");
@@ -636,76 +745,75 @@ void Tween::_tween_process(float p_delta) {
}
void Tween::set_tween_process_mode(TweenProcessMode p_mode) {
-
tween_process_mode = p_mode;
}
Tween::TweenProcessMode Tween::get_tween_process_mode() const {
-
return tween_process_mode;
}
bool Tween::is_active() const {
-
return is_processing_internal() || is_physics_processing_internal();
}
void Tween::set_active(bool p_active) {
-
+ // Do nothing if it's the same active mode that we currently are
if (is_active() == p_active)
return;
+ // Depending on physics or idle, set processing
switch (tween_process_mode) {
-
case TWEEN_PROCESS_IDLE: set_process_internal(p_active); break;
case TWEEN_PROCESS_PHYSICS: set_physics_process_internal(p_active); break;
}
}
bool Tween::is_repeat() const {
-
return repeat;
}
void Tween::set_repeat(bool p_repeat) {
-
repeat = p_repeat;
}
void Tween::set_speed_scale(float p_speed) {
-
speed_scale = p_speed;
}
float Tween::get_speed_scale() const {
-
return speed_scale;
}
bool Tween::start() {
+ // Are there any pending updates?
if (pending_update != 0) {
+ // Start the tweens after deferring
call_deferred("start");
return true;
}
+ // We want to be activated
set_active(true);
return true;
}
bool Tween::reset(Object *p_object, StringName p_key) {
-
+ // Find all interpolations that use the same object and target string
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Get the target object
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
+ // Do we have the correct object and key?
if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
-
+ // Reset the tween to the initial state
data.elapsed = 0;
data.finish = false;
+
+ // Also apply the initial state if there isn't a delay
if (data.delay == 0)
_apply_tween_value(data, data.initial_val);
}
@@ -715,13 +823,15 @@ bool Tween::reset(Object *p_object, StringName p_key) {
}
bool Tween::reset_all() {
-
+ // Go through all interpolations
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Get the target data and set it back to the initial state
InterpolateData &data = E->get();
data.elapsed = 0;
data.finish = false;
+
+ // If there isn't a delay, apply the value to the object
if (data.delay == 0)
_apply_tween_value(data, data.initial_val);
}
@@ -730,15 +840,19 @@ bool Tween::reset_all() {
}
bool Tween::stop(Object *p_object, StringName p_key) {
-
+ // Find the tween that has the given target object and string key
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
+ // Get the object the tween is targeting
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
+
+ // Is this the correct object and does it have the given key?
if (object == p_object && (data.concatenated_key == p_key || p_key == ""))
+ // Disable the tween
data.active = false;
}
pending_update--;
@@ -746,12 +860,13 @@ bool Tween::stop(Object *p_object, StringName p_key) {
}
bool Tween::stop_all() {
-
+ // We no longer need to be active since all tweens have been stopped
set_active(false);
+ // For each interpolation...
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Simply set it inactive
InterpolateData &data = E->get();
data.active = false;
}
@@ -760,16 +875,20 @@ bool Tween::stop_all() {
}
bool Tween::resume(Object *p_object, StringName p_key) {
-
+ // We need to be activated
+ // TODO: What if no tween is found??
set_active(true);
+ // Find the tween that uses the given target object and string key
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Grab the object
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
+
+ // If the object and string key match, activate it
if (object == p_object && (data.concatenated_key == p_key || p_key == ""))
data.active = true;
}
@@ -778,12 +897,14 @@ bool Tween::resume(Object *p_object, StringName p_key) {
}
bool Tween::resume_all() {
-
+ // Set ourselves active so we can process tweens
+ // TODO: What if there are no tweens? We get set to active for no reason!
set_active(true);
+ // For each interpolation...
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Simply grab it and set it to active
InterpolateData &data = E->get();
data.active = true;
}
@@ -792,35 +913,46 @@ bool Tween::resume_all() {
}
bool Tween::remove(Object *p_object, StringName p_key) {
+ // If we are still updating, call this function again later
if (pending_update != 0) {
call_deferred("remove", p_object, p_key);
return true;
}
+
+ // For each interpolation...
List<List<InterpolateData>::Element *> for_removal;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Get the target object
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
+
+ // If the target object and string key match, queue it for removal
if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
for_removal.push_back(E);
}
}
+
+ // For each interpolation we wish to remove...
for (List<List<InterpolateData>::Element *>::Element *E = for_removal.front(); E; E = E->next()) {
+ // Erase it
interpolates.erase(E->get());
}
return true;
}
void Tween::_remove_by_uid(int uid) {
+ // If we are still updating, call this function again later
if (pending_update != 0) {
call_deferred("_remove_by_uid", uid);
return;
}
+ // Find the interpolation that matches the given UID
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
if (uid == E->get().uid) {
+ // It matches, erase it and stop looking
E->erase();
break;
}
@@ -829,49 +961,61 @@ void Tween::_remove_by_uid(int uid) {
void Tween::_push_interpolate_data(InterpolateData &p_data) {
pending_update++;
+
+ // Add the new interpolation
p_data.uid = ++uid;
interpolates.push_back(p_data);
+
pending_update--;
}
bool Tween::remove_all() {
-
+ // If we are still updating, call this function again later
if (pending_update != 0) {
call_deferred("remove_all");
return true;
}
+ // We no longer need to be active
set_active(false);
+
+ // Clear out all interpolations and reset the uid
interpolates.clear();
uid = 0;
+
return true;
}
bool Tween::seek(real_t p_time) {
-
+ // Go through each interpolation...
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Get the target data
InterpolateData &data = E->get();
+ // Update the elapsed data to be set to the target time
data.elapsed = p_time;
- if (data.elapsed < data.delay) {
+ // Are we at the end?
+ if (data.elapsed < data.delay) {
+ // There is still time left to go
data.finish = false;
continue;
} else if (data.elapsed >= (data.delay + data.duration)) {
-
- data.finish = true;
+ // We are past the end of it, set the elapsed time to the end and mark as finished
data.elapsed = (data.delay + data.duration);
+ data.finish = true;
} else {
+ // We are not finished with this interpolation yet
data.finish = false;
}
+ // If we are a callback, do nothing special
if (data.type == INTER_CALLBACK) {
continue;
}
+ // Run the equation on the data and apply the value
Variant result = _run_equation(data);
-
_apply_tween_value(data, result);
}
pending_update--;
@@ -879,13 +1023,16 @@ bool Tween::seek(real_t p_time) {
}
real_t Tween::tell() const {
-
+ // We want to grab the position of the furthest along tween
pending_update++;
real_t pos = 0;
- for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
+ // For each interpolation...
+ for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
+ // Get the data and figure out if it's position is further along than the previous ones
const InterpolateData &data = E->get();
if (data.elapsed > pos)
+ // Save it if so
pos = data.elapsed;
}
pending_update--;
@@ -893,55 +1040,63 @@ real_t Tween::tell() const {
}
real_t Tween::get_runtime() const {
-
+ // If the tween isn't moving, it'll last forever
if (speed_scale == 0) {
return INFINITY;
}
pending_update++;
+
+ // For each interpolation...
real_t runtime = 0;
for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
-
+ // Get the tween data and see if it's runtime is greater than the previous tweens
const InterpolateData &data = E->get();
real_t t = data.delay + data.duration;
if (t > runtime)
+ // This is the longest running tween
runtime = t;
}
pending_update--;
+ // Adjust the runtime for the current speed scale
return runtime / speed_scale;
}
bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val) {
+ // Get the initial, final, and delta values
const Variant &initial_val = p_initial_val;
const Variant &final_val = p_final_val;
Variant &delta_val = p_delta_val;
+ // What kind of data are we interpolating?
switch (initial_val.get_type()) {
case Variant::BOOL:
- //delta_val = p_final_val;
- delta_val = (int)p_final_val - (int)p_initial_val;
- break;
-
+ // We'll treat booleans just like integers
case Variant::INT:
+ // Compute the integer delta
delta_val = (int)final_val - (int)initial_val;
break;
case Variant::REAL:
+ // Convert to REAL and find the delta
delta_val = (real_t)final_val - (real_t)initial_val;
break;
case Variant::VECTOR2:
+ // Convert to Vectors and find the delta
delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
break;
case Variant::VECTOR3:
+ // Convert to Vectors and find the delta
delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
break;
case Variant::BASIS: {
+ // Build a new basis which is the delta between the initial and final values
Basis i = initial_val;
Basis f = final_val;
delta_val = Basis(f.elements[0][0] - i.elements[0][0],
@@ -956,6 +1111,7 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
} break;
case Variant::TRANSFORM2D: {
+ // Build a new transform which is the difference between the initial and final values
Transform2D i = initial_val;
Transform2D f = final_val;
Transform2D d = Transform2D();
@@ -967,15 +1123,21 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
d[2][1] = f.elements[2][1] - i.elements[2][1];
delta_val = d;
} break;
+
case Variant::QUAT:
+ // Convert to quaternianls and find the delta
delta_val = final_val.operator Quat() - initial_val.operator Quat();
break;
+
case Variant::AABB: {
+ // Build a new AABB and use the new position and sizes to make a delta
AABB i = initial_val;
AABB f = final_val;
delta_val = AABB(f.position - i.position, f.size - i.size);
} break;
+
case Variant::TRANSFORM: {
+ // Build a new transform which is the difference between the initial and final values
Transform i = initial_val;
Transform f = final_val;
Transform d;
@@ -994,124 +1156,157 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
delta_val = d;
} break;
+
case Variant::COLOR: {
+ // Make a new color which is the difference between each the color's RGBA attributes
Color i = initial_val;
Color f = final_val;
delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
} break;
default:
+ // TODO: Should move away from a 'magic string'?
ERR_PRINT("Invalid param type, except(int/real/vector2/vector/matrix/matrix32/quat/aabb/transform/color)");
return false;
};
return true;
}
-bool Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- if (pending_update != 0) {
- _add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
- return true;
- }
- p_property = p_property.get_as_property_path();
-
- if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
-
- // convert INT to REAL is better for interpolaters
- if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
- if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
-
- ERR_FAIL_COND_V(p_object == NULL, false);
- ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
- ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false);
- ERR_FAIL_COND_V(p_duration <= 0, false);
- ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
- ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
- ERR_FAIL_COND_V(p_delay < 0, false);
+bool Tween::_build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- bool prop_valid = false;
- p_object->get_indexed(p_property.get_subnames(), &prop_valid);
- ERR_FAIL_COND_V(!prop_valid, false);
+ // TODO: Add initialization+implementation for remaining interpolation types
+ // TODO: Fix this method's organization to take advantage of the type
+ // Make a new interpolation data
InterpolateData data;
data.active = true;
- data.type = INTER_PROPERTY;
+ data.type = p_interpolation_type;
data.finish = false;
data.elapsed = 0;
+ // Validate and apply interpolation data
+
+ // Give it the object
+ ERR_EXPLAIN("Invalid object provided to Tween!");
+ ERR_FAIL_COND_V(p_object == NULL, false); // Is the object real
+ ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false); // Is the object a valid instance?
data.id = p_object->get_instance_id();
- data.key = p_property.get_subnames();
- data.concatenated_key = p_property.get_concatenated_subnames();
+
+ // Validate the initial and final values
+ ERR_EXPLAIN("Initial value type does not match final value type!"); // TODO: Print both types to make debugging easier
+ ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false); // Do the initial and final value types match?
data.initial_val = p_initial_val;
data.final_val = p_final_val;
+
+ // Check the Duration
+ ERR_EXPLAIN("Only non-negative duration values allowed in Tweens!");
+ ERR_FAIL_COND_V(p_duration < 0, false); // Is the tween duration non-negative
data.duration = p_duration;
+
+ // Tween Delay
+ ERR_EXPLAIN("Only non-negative delay values allowed in Tweens!");
+ ERR_FAIL_COND_V(p_delay < 0, false); // Is the delay non-negative?
+ data.delay = p_delay;
+
+ // Transition type
+ ERR_EXPLAIN("Invalid transition type provided to Tween");
+ ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false); // Is the transition type valid
data.trans_type = p_trans_type;
+
+ // Easing type
+ ERR_EXPLAIN("Invalid easing type provided to Tween");
+ ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false); // Is the easing type valid
data.ease_type = p_ease_type;
- data.delay = p_delay;
+ // Is the property defined?
+ if (p_property) {
+ // Check that the object actually contains the given property
+ bool prop_valid = false;
+ p_object->get_indexed(p_property->get_subnames(), &prop_valid);
+ ERR_EXPLAIN("Tween target object has no property named: " + p_property->get_concatenated_subnames());
+ ERR_FAIL_COND_V(!prop_valid, false);
+
+ data.key = p_property->get_subnames();
+ data.concatenated_key = p_property->get_concatenated_subnames();
+ }
+
+ // Is the method defined?
+ if (p_method) {
+ // Does the object even have the requested method?
+ ERR_EXPLAIN("Tween target object has no method named: " + *p_method); // TODO: Fix this error message
+ ERR_FAIL_COND_V(!p_object->has_method(*p_method), false);
+
+ data.key.push_back(*p_method);
+ data.concatenated_key = *p_method;
+ }
+
+ // Is there not a valid delta?
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
+ // Add this interpolation to the total
_push_interpolate_data(data);
return true;
}
-bool Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
+bool Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
+ // If we are busy updating, call this function again later
if (pending_update != 0) {
- _add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
+ _add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
- // convert INT to REAL is better for interpolaters
- if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
- if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
- ERR_FAIL_COND_V(p_object == NULL, false);
- ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
- ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false);
- ERR_FAIL_COND_V(p_duration <= 0, false);
- ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
- ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
- ERR_FAIL_COND_V(p_delay < 0, false);
+ // Get the property from the node path
+ p_property = p_property.get_as_property_path();
- ERR_EXPLAIN("Object has no method named: %s" + p_method);
- ERR_FAIL_COND_V(!p_object->has_method(p_method), false);
+ // If no initial value given, grab the initial value from the object
+ // TODO: Is this documented? This is very useful and removes a lot of clutter from tweens!
+ if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
- InterpolateData data;
- data.active = true;
- data.type = INTER_METHOD;
- data.finish = false;
- data.elapsed = 0;
+ // Convert any integers into REALs as they are better for interpolation
+ if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
+ if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
- data.id = p_object->get_instance_id();
- data.key.push_back(p_method);
- data.concatenated_key = p_method;
- data.initial_val = p_initial_val;
- data.final_val = p_final_val;
- data.duration = p_duration;
- data.trans_type = p_trans_type;
- data.ease_type = p_ease_type;
- data.delay = p_delay;
+ // Build the interpolation data
+ bool result = _build_interpolation(INTER_PROPERTY, p_object, &p_property, NULL, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
+ return result;
+}
- if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
- return false;
+bool Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
+ // If we are busy updating, call this function again later
+ if (pending_update != 0) {
+ _add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
+ return true;
+ }
- _push_interpolate_data(data);
- return true;
+ // Convert any integers into REALs as they are better for interpolation
+ if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
+ if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
+
+ // Build the interpolation data
+ bool result = _build_interpolation(INTER_METHOD, p_object, NULL, &p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
+ return result;
}
bool Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
-
+ // If we are already updating, call this function again later
if (pending_update != 0) {
_add_pending_command("interpolate_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
return true;
}
+ // Check that the target object is valid
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
+
+ // Duration cannot be negative
ERR_FAIL_COND_V(p_duration < 0, false);
+ // Check whether the object even has the callback
ERR_EXPLAIN("Object has no callback named: %s" + p_callback);
ERR_FAIL_COND_V(!p_object->has_method(p_callback), false);
+ // Build a new InterpolationData
InterpolateData data;
data.active = true;
data.type = INTER_CALLBACK;
@@ -1119,12 +1314,14 @@ bool Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_c
data.call_deferred = false;
data.elapsed = 0;
+ // Give the data it's configuration
data.id = p_object->get_instance_id();
data.key.push_back(p_callback);
data.concatenated_key = p_callback;
data.duration = p_duration;
data.delay = 0;
+ // Add arguments to the interpolation
int args = 0;
if (p_arg5.get_type() != Variant::NIL)
args = 5;
@@ -1146,23 +1343,30 @@ bool Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_c
data.arg[3] = p_arg4;
data.arg[4] = p_arg5;
+ // Add the new interpolation
_push_interpolate_data(data);
return true;
}
bool Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
-
+ // If we are already updating, call this function again later
if (pending_update != 0) {
_add_pending_command("interpolate_deferred_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
return true;
}
+
+ // Check that the target object is valid
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
+
+ // No negative durations allowed
ERR_FAIL_COND_V(p_duration < 0, false);
+ // Confirm the callback exists on the object
ERR_EXPLAIN("Object has no callback named: %s" + p_callback);
ERR_FAIL_COND_V(!p_object->has_method(p_callback), false);
+ // Create a new InterpolateData for the callback
InterpolateData data;
data.active = true;
data.type = INTER_CALLBACK;
@@ -1170,12 +1374,14 @@ bool Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, S
data.call_deferred = true;
data.elapsed = 0;
+ // Give the data it's configuration
data.id = p_object->get_instance_id();
data.key.push_back(p_callback);
data.concatenated_key = p_callback;
data.duration = p_duration;
data.delay = 0;
+ // Collect arguments for the callback
int args = 0;
if (p_arg5.get_type() != Variant::NIL)
args = 5;
@@ -1197,32 +1403,46 @@ bool Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, S
data.arg[3] = p_arg4;
data.arg[4] = p_arg5;
+ // Add the new interpolation
_push_interpolate_data(data);
return true;
}
bool Tween::follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
+ // If we are already updating, call this function again later
if (pending_update != 0) {
_add_pending_command("follow_property", p_object, p_property, p_initial_val, p_target, p_target_property, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
+
+ // Get the two properties from their paths
p_property = p_property.get_as_property_path();
p_target_property = p_target_property.get_as_property_path();
+ // If no initial value is given, grab it from the source object
+ // TODO: Is this documented? It's really helpful for decluttering tweens
if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
- // convert INT to REAL is better for interpolaters
+ // Convert initial INT values to REAL as they are better for interpolation
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
+ // Confirm the source and target objects are valid
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_target == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_target), false);
- ERR_FAIL_COND_V(p_duration <= 0, false);
+
+ // No negative durations
+ ERR_FAIL_COND_V(p_duration < 0, false);
+
+ // Ensure transition and easing types are valid
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
+
+ // No negative delays
ERR_FAIL_COND_V(p_delay < 0, false);
+ // Confirm the source and target objects have the desired properties
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND_V(!prop_valid, false);
@@ -1231,16 +1451,20 @@ bool Tween::follow_property(Object *p_object, NodePath p_property, Variant p_ini
Variant target_val = p_target->get_indexed(p_target_property.get_subnames(), &target_prop_valid);
ERR_FAIL_COND_V(!target_prop_valid, false);
- // convert INT to REAL is better for interpolaters
+ // Convert target INT to REAL since it is better for interpolation
if (target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
+
+ // Verify that the target value and initial value are the same type
ERR_FAIL_COND_V(target_val.get_type() != p_initial_val.get_type(), false);
+ // Create a new InterpolateData
InterpolateData data;
data.active = true;
data.type = FOLLOW_PROPERTY;
data.finish = false;
data.elapsed = 0;
+ // Give the InterpolateData it's configuration
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
@@ -1252,46 +1476,59 @@ bool Tween::follow_property(Object *p_object, NodePath p_property, Variant p_ini
data.ease_type = p_ease_type;
data.delay = p_delay;
+ // Add the interpolation
_push_interpolate_data(data);
return true;
}
bool Tween::follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
+ // If we are currently updating, call this function again later
if (pending_update != 0) {
_add_pending_command("follow_method", p_object, p_method, p_initial_val, p_target, p_target_method, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
- // convert INT to REAL is better for interpolaters
+ // Convert initial INT values to REAL as they are better for interpolation
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
+ // Verify the source and target objects are valid
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_target == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_target), false);
- ERR_FAIL_COND_V(p_duration <= 0, false);
+
+ // No negative durations
+ ERR_FAIL_COND_V(p_duration < 0, false);
+
+ // Ensure that the transition and ease types are valid
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
+
+ // No negative delays
ERR_FAIL_COND_V(p_delay < 0, false);
+ // Confirm both objects have the target methods
ERR_EXPLAIN("Object has no method named: %s" + p_method);
ERR_FAIL_COND_V(!p_object->has_method(p_method), false);
ERR_EXPLAIN("Target has no method named: %s" + p_target_method);
ERR_FAIL_COND_V(!p_target->has_method(p_target_method), false);
+ // Call the method to get the target value
Variant::CallError error;
Variant target_val = p_target->call(p_target_method, NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, false);
- // convert INT to REAL is better for interpolaters
+ // Convert target INT values to REAL as they are better for interpolation
if (target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
ERR_FAIL_COND_V(target_val.get_type() != p_initial_val.get_type(), false);
+ // Make the new InterpolateData for the method follow
InterpolateData data;
data.active = true;
data.type = FOLLOW_METHOD;
data.finish = false;
data.elapsed = 0;
+ // Give the data it's configuration
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
@@ -1303,31 +1540,41 @@ bool Tween::follow_method(Object *p_object, StringName p_method, Variant p_initi
data.ease_type = p_ease_type;
data.delay = p_delay;
+ // Add the new interpolation
_push_interpolate_data(data);
return true;
}
bool Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
-
+ // If we are currently updating, call this function again later
if (pending_update != 0) {
_add_pending_command("targeting_property", p_object, p_property, p_initial, p_initial_property, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
+ // Grab the target property and the target property
p_property = p_property.get_as_property_path();
p_initial_property = p_initial_property.get_as_property_path();
- // convert INT to REAL is better for interpolaters
+ // Convert the initial INT values to REAL as they are better for Interpolation
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
+ // Verify both objects are valid
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_initial == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_initial), false);
- ERR_FAIL_COND_V(p_duration <= 0, false);
+
+ // No negative durations
+ ERR_FAIL_COND_V(p_duration < 0, false);
+
+ // Ensure transition and easing types are valid
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
+
+ // No negative delays
ERR_FAIL_COND_V(p_delay < 0, false);
+ // Ensure the initial and target properties exist on their objects
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND_V(!prop_valid, false);
@@ -1336,16 +1583,18 @@ bool Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_
Variant initial_val = p_initial->get_indexed(p_initial_property.get_subnames(), &initial_prop_valid);
ERR_FAIL_COND_V(!initial_prop_valid, false);
- // convert INT to REAL is better for interpolaters
+ // Convert the initial INT value to REAL as it is better for interpolation
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
ERR_FAIL_COND_V(initial_val.get_type() != p_final_val.get_type(), false);
+ // Build the InterpolateData object
InterpolateData data;
data.active = true;
data.type = TARGETING_PROPERTY;
data.finish = false;
data.elapsed = 0;
+ // Give the data it's configuration
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
@@ -1358,49 +1607,64 @@ bool Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_
data.ease_type = p_ease_type;
data.delay = p_delay;
+ // Ensure there is a valid delta
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
+ // Add the interpolation
_push_interpolate_data(data);
return true;
}
bool Tween::targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
+ // If we are currently updating, call this function again later
if (pending_update != 0) {
_add_pending_command("targeting_method", p_object, p_method, p_initial, p_initial_method, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
- // convert INT to REAL is better for interpolaters
+
+ // Convert final INT values to REAL as they are better for interpolation
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
+ // Make sure the given objects are valid
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_initial == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_initial), false);
- ERR_FAIL_COND_V(p_duration <= 0, false);
+
+ // No negative durations
+ ERR_FAIL_COND_V(p_duration < 0, false);
+
+ // Ensure transition and easing types are valid
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
+
+ // No negative delays
ERR_FAIL_COND_V(p_delay < 0, false);
+ // Make sure both objects have the given method
ERR_EXPLAIN("Object has no method named: %s" + p_method);
ERR_FAIL_COND_V(!p_object->has_method(p_method), false);
ERR_EXPLAIN("Initial Object has no method named: %s" + p_initial_method);
ERR_FAIL_COND_V(!p_initial->has_method(p_initial_method), false);
+ // Call the method to get the initial value
Variant::CallError error;
Variant initial_val = p_initial->call(p_initial_method, NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, false);
- // convert INT to REAL is better for interpolaters
+ // Convert initial INT values to REAL as they aer better for interpolation
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
ERR_FAIL_COND_V(initial_val.get_type() != p_final_val.get_type(), false);
+ // Build the new InterpolateData object
InterpolateData data;
data.active = true;
data.type = TARGETING_METHOD;
data.finish = false;
data.elapsed = 0;
+ // Configure the data
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
@@ -1413,16 +1677,17 @@ bool Tween::targeting_method(Object *p_object, StringName p_method, Object *p_in
data.ease_type = p_ease_type;
data.delay = p_delay;
+ // Ensure there is a valid delta
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
+ // Add the interpolation
_push_interpolate_data(data);
return true;
}
Tween::Tween() {
-
- //String autoplay;
+ // Initialize tween attributes
tween_process_mode = TWEEN_PROCESS_IDLE;
repeat = false;
speed_scale = 1;
diff --git a/scene/animation/tween.h b/scene/animation/tween.h
index 6fe3bffdbe..64ce099ecd 100644
--- a/scene/animation/tween.h
+++ b/scene/animation/tween.h
@@ -135,6 +135,7 @@ private:
void _tween_process(float p_delta);
void _remove_by_uid(int uid);
void _push_interpolate_data(InterpolateData &p_data);
+ bool _build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay);
protected:
bool _set(const StringName &p_name, const Variant &p_value);