diff options
Diffstat (limited to 'scene/resources/importer_mesh.cpp')
-rw-r--r-- | scene/resources/importer_mesh.cpp | 1247 |
1 files changed, 1247 insertions, 0 deletions
diff --git a/scene/resources/importer_mesh.cpp b/scene/resources/importer_mesh.cpp new file mode 100644 index 0000000000..b2b90f019e --- /dev/null +++ b/scene/resources/importer_mesh.cpp @@ -0,0 +1,1247 @@ +/*************************************************************************/ +/* importer_mesh.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "importer_mesh.h" + +#include "core/math/random_pcg.h" +#include "core/math/static_raycaster.h" +#include "scene/resources/surface_tool.h" + +#include <cstdint> + +void ImporterMesh::Surface::split_normals(const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) { + _split_normals(arrays, p_indices, p_normals); + + for (BlendShape &blend_shape : blend_shape_data) { + _split_normals(blend_shape.arrays, p_indices, p_normals); + } +} + +void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) { + ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX); + + const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX]; + int current_vertex_count = vertices.size(); + int new_vertex_count = p_indices.size(); + int final_vertex_count = current_vertex_count + new_vertex_count; + const int *indices_ptr = p_indices.ptr(); + + for (int i = 0; i < r_arrays.size(); i++) { + if (i == RS::ARRAY_INDEX) { + continue; + } + + if (r_arrays[i].get_type() == Variant::NIL) { + continue; + } + + switch (r_arrays[i].get_type()) { + case Variant::PACKED_VECTOR3_ARRAY: { + PackedVector3Array data = r_arrays[i]; + data.resize(final_vertex_count); + Vector3 *data_ptr = data.ptrw(); + if (i == RS::ARRAY_NORMAL) { + const Vector3 *normals_ptr = p_normals.ptr(); + memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count); + } else { + for (int j = 0; j < new_vertex_count; j++) { + data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; + } + } + r_arrays[i] = data; + } break; + case Variant::PACKED_VECTOR2_ARRAY: { + PackedVector2Array data = r_arrays[i]; + data.resize(final_vertex_count); + Vector2 *data_ptr = data.ptrw(); + for (int j = 0; j < new_vertex_count; j++) { + data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; + } + r_arrays[i] = data; + } break; + case Variant::PACKED_FLOAT32_ARRAY: { + PackedFloat32Array data = r_arrays[i]; + int elements = data.size() / current_vertex_count; + data.resize(final_vertex_count * elements); + float *data_ptr = data.ptrw(); + for (int j = 0; j < new_vertex_count; j++) { + memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements); + } + r_arrays[i] = data; + } break; + case Variant::PACKED_INT32_ARRAY: { + PackedInt32Array data = r_arrays[i]; + int elements = data.size() / current_vertex_count; + data.resize(final_vertex_count * elements); + int32_t *data_ptr = data.ptrw(); + for (int j = 0; j < new_vertex_count; j++) { + memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements); + } + r_arrays[i] = data; + } break; + case Variant::PACKED_BYTE_ARRAY: { + PackedByteArray data = r_arrays[i]; + int elements = data.size() / current_vertex_count; + data.resize(final_vertex_count * elements); + uint8_t *data_ptr = data.ptrw(); + for (int j = 0; j < new_vertex_count; j++) { + memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements); + } + r_arrays[i] = data; + } break; + case Variant::PACKED_COLOR_ARRAY: { + PackedColorArray data = r_arrays[i]; + data.resize(final_vertex_count); + Color *data_ptr = data.ptrw(); + for (int j = 0; j < new_vertex_count; j++) { + data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; + } + r_arrays[i] = data; + } break; + default: { + ERR_FAIL_MSG("Unhandled array type."); + } break; + } + } +} + +void ImporterMesh::add_blend_shape(const String &p_name) { + ERR_FAIL_COND(surfaces.size() > 0); + blend_shapes.push_back(p_name); +} + +int ImporterMesh::get_blend_shape_count() const { + return blend_shapes.size(); +} + +String ImporterMesh::get_blend_shape_name(int p_blend_shape) const { + ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String()); + return blend_shapes[p_blend_shape]; +} + +void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) { + blend_shape_mode = p_blend_shape_mode; +} + +Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const { + return blend_shape_mode; +} + +void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name, const uint32_t p_flags) { + ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size()); + ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX); + Surface s; + s.primitive = p_primitive; + s.arrays = p_arrays; + s.name = p_name; + s.flags = p_flags; + + Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX]; + int vertex_count = vertex_array.size(); + ERR_FAIL_COND(vertex_count == 0); + + for (int i = 0; i < blend_shapes.size(); i++) { + Array bsdata = p_blend_shapes[i]; + ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX); + Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX]; + ERR_FAIL_COND(vertex_data.size() != vertex_count); + Surface::BlendShape bs; + bs.arrays = bsdata; + s.blend_shape_data.push_back(bs); + } + + List<Variant> lods; + p_lods.get_key_list(&lods); + for (const Variant &E : lods) { + ERR_CONTINUE(!E.is_num()); + Surface::LOD lod; + lod.distance = E; + lod.indices = p_lods[E]; + ERR_CONTINUE(lod.indices.size() == 0); + s.lods.push_back(lod); + } + + s.material = p_material; + + surfaces.push_back(s); + mesh.unref(); +} + +int ImporterMesh::get_surface_count() const { + return surfaces.size(); +} + +Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX); + return surfaces[p_surface].primitive; +} +Array ImporterMesh::get_surface_arrays(int p_surface) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); + return surfaces[p_surface].arrays; +} +String ImporterMesh::get_surface_name(int p_surface) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String()); + return surfaces[p_surface].name; +} +void ImporterMesh::set_surface_name(int p_surface, const String &p_name) { + ERR_FAIL_INDEX(p_surface, surfaces.size()); + surfaces.write[p_surface].name = p_name; + mesh.unref(); +} + +Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); + ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array()); + return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays; +} +int ImporterMesh::get_surface_lod_count(int p_surface) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); + return surfaces[p_surface].lods.size(); +} +Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>()); + ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>()); + + return surfaces[p_surface].lods[p_lod].indices; +} + +float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); + ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0); + return surfaces[p_surface].lods[p_lod].distance; +} + +uint32_t ImporterMesh::get_surface_format(int p_surface) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); + return surfaces[p_surface].flags; +} + +Ref<Material> ImporterMesh::get_surface_material(int p_surface) const { + ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>()); + return surfaces[p_surface].material; +} + +void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) { + ERR_FAIL_INDEX(p_surface, surfaces.size()); + surfaces.write[p_surface].material = p_material; + mesh.unref(); +} + +void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle) { + if (!SurfaceTool::simplify_scale_func) { + return; + } + if (!SurfaceTool::simplify_with_attrib_func) { + return; + } + if (!SurfaceTool::optimize_vertex_cache_func) { + return; + } + + for (int i = 0; i < surfaces.size(); i++) { + if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) { + continue; + } + + surfaces.write[i].lods.clear(); + Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; + PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX]; + Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL]; + Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV]; + + unsigned int index_count = indices.size(); + unsigned int vertex_count = vertices.size(); + + if (index_count == 0) { + continue; //no lods if no indices + } + + const Vector3 *vertices_ptr = vertices.ptr(); + const int *indices_ptr = indices.ptr(); + + if (normals.is_empty()) { + normals.resize(vertices.size()); + Vector3 *n_ptr = normals.ptrw(); + for (unsigned int j = 0; j < index_count; j += 3) { + const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]]; + const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]]; + const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]]; + Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized(); + n_ptr[j + 0] = n; + n_ptr[j + 1] = n; + n_ptr[j + 2] = n; + } + } + + float normal_merge_threshold = Math::cos(Math::deg2rad(p_normal_merge_angle)); + float normal_pre_split_threshold = Math::cos(Math::deg2rad(MIN(180.0f, p_normal_split_angle * 2.0f))); + float normal_split_threshold = Math::cos(Math::deg2rad(p_normal_split_angle)); + const Vector3 *normals_ptr = normals.ptr(); + + Map<Vector3, LocalVector<Pair<int, int>>> unique_vertices; + + LocalVector<int> vertex_remap; + LocalVector<int> vertex_inverse_remap; + LocalVector<Vector3> merged_vertices; + LocalVector<Vector3> merged_normals; + LocalVector<int> merged_normals_counts; + const Vector2 *uvs_ptr = uvs.ptr(); + + for (unsigned int j = 0; j < vertex_count; j++) { + const Vector3 &v = vertices_ptr[j]; + const Vector3 &n = normals_ptr[j]; + + Map<Vector3, LocalVector<Pair<int, int>>>::Element *E = unique_vertices.find(v); + + if (E) { + const LocalVector<Pair<int, int>> &close_verts = E->get(); + + bool found = false; + for (unsigned int k = 0; k < close_verts.size(); k++) { + const Pair<int, int> &idx = close_verts[k]; + + // TODO check more attributes? + if ((!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2) && normals[idx.second].dot(n) > normal_merge_threshold) { + vertex_remap.push_back(idx.first); + merged_normals[idx.first] += normals[idx.second]; + merged_normals_counts[idx.first]++; + found = true; + break; + } + } + + if (!found) { + int vcount = merged_vertices.size(); + unique_vertices[v].push_back(Pair<int, int>(vcount, j)); + vertex_inverse_remap.push_back(j); + merged_vertices.push_back(v); + vertex_remap.push_back(vcount); + merged_normals.push_back(normals_ptr[j]); + merged_normals_counts.push_back(1); + } + } else { + int vcount = merged_vertices.size(); + unique_vertices[v] = LocalVector<Pair<int, int>>(); + unique_vertices[v].push_back(Pair<int, int>(vcount, j)); + vertex_inverse_remap.push_back(j); + merged_vertices.push_back(v); + vertex_remap.push_back(vcount); + merged_normals.push_back(normals_ptr[j]); + merged_normals_counts.push_back(1); + } + } + + LocalVector<int> merged_indices; + merged_indices.resize(index_count); + for (unsigned int j = 0; j < index_count; j++) { + merged_indices[j] = vertex_remap[indices[j]]; + } + + unsigned int merged_vertex_count = merged_vertices.size(); + const Vector3 *merged_vertices_ptr = merged_vertices.ptr(); + const int32_t *merged_indices_ptr = merged_indices.ptr(); + + { + const int *counts_ptr = merged_normals_counts.ptr(); + Vector3 *merged_normals_ptrw = merged_normals.ptr(); + for (unsigned int j = 0; j < merged_vertex_count; j++) { + merged_normals_ptrw[j] /= counts_ptr[j]; + } + } + + LocalVector<float> normal_weights; + normal_weights.resize(merged_vertex_count); + for (unsigned int j = 0; j < merged_vertex_count; j++) { + normal_weights[j] = 2.0; // Give some weight to normal preservation, may be worth exposing as an import setting + } + + const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target + float scale = SurfaceTool::simplify_scale_func((const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3)); + float mesh_error = 0.0f; + + unsigned int index_target = 12; // Start with the smallest target, 4 triangles + unsigned int last_index_count = 0; + + int split_vertex_count = vertex_count; + LocalVector<Vector3> split_vertex_normals; + LocalVector<int> split_vertex_indices; + split_vertex_normals.reserve(index_count / 3); + split_vertex_indices.reserve(index_count / 3); + + RandomPCG pcg; + pcg.seed(123456789); // Keep seed constant across imports + + Ref<StaticRaycaster> raycaster = StaticRaycaster::create(); + if (raycaster.is_valid()) { + raycaster->add_mesh(vertices, indices, 0); + raycaster->commit(); + } + + while (index_target < index_count) { + PackedInt32Array new_indices; + new_indices.resize(index_count); + + size_t new_index_count = SurfaceTool::simplify_with_attrib_func((unsigned int *)new_indices.ptrw(), (const uint32_t *)merged_indices_ptr, index_count, (const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3), index_target, max_mesh_error, &mesh_error, (float *)merged_normals.ptr(), normal_weights.ptr(), 3); + + if (new_index_count < last_index_count * 1.5f) { + index_target = index_target * 1.5f; + continue; + } + + if (new_index_count <= 0 || (new_index_count >= (index_count * 0.75f))) { + break; + } + + new_indices.resize(new_index_count); + + LocalVector<LocalVector<int>> vertex_corners; + vertex_corners.resize(vertex_count); + { + int *ptrw = new_indices.ptrw(); + for (unsigned int j = 0; j < new_index_count; j++) { + const int &remapped = vertex_inverse_remap[ptrw[j]]; + vertex_corners[remapped].push_back(j); + ptrw[j] = remapped; + } + } + + if (raycaster.is_valid()) { + float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15)); + const float ray_bias = 0.05; + float ray_length = ray_bias + mesh_error * scale * 3.0f; + + Vector<StaticRaycaster::Ray> rays; + LocalVector<Vector2> ray_uvs; + + int32_t *new_indices_ptr = new_indices.ptrw(); + + int current_ray_count = 0; + for (unsigned int j = 0; j < new_index_count; j += 3) { + const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]]; + const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]]; + const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]]; + Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1); + float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care + + Vector3 dir = face_normal / face_area; + int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64); + + rays.resize(current_ray_count + ray_count); + StaticRaycaster::Ray *rays_ptr = rays.ptrw(); + + ray_uvs.resize(current_ray_count + ray_count); + Vector2 *ray_uvs_ptr = ray_uvs.ptr(); + + for (int k = 0; k < ray_count; k++) { + float u = pcg.randf(); + float v = pcg.randf(); + + if (u + v >= 1.0f) { + u = 1.0f - u; + v = 1.0f - v; + } + + u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge + v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third; + float w = 1.0f - u - v; + + Vector3 org = v0 * w + v1 * u + v2 * v; + org -= dir * ray_bias; + rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length); + rays_ptr[current_ray_count + k].id = j / 3; + ray_uvs_ptr[current_ray_count + k] = Vector2(u, v); + } + + current_ray_count += ray_count; + } + + raycaster->intersect(rays); + + LocalVector<Vector3> ray_normals; + LocalVector<real_t> ray_normal_weights; + + ray_normals.resize(new_index_count); + ray_normal_weights.resize(new_index_count); + + for (unsigned int j = 0; j < new_index_count; j++) { + ray_normal_weights[j] = 0.0f; + } + + const StaticRaycaster::Ray *rp = rays.ptr(); + for (int j = 0; j < rays.size(); j++) { + if (rp[j].geomID != 0) { // Ray missed + continue; + } + + if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face. + continue; + } + + const float &u = rp[j].u; + const float &v = rp[j].v; + const float w = 1.0f - u - v; + + const unsigned int &hit_tri_id = rp[j].primID; + const unsigned int &orig_tri_id = rp[j].id; + + const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]]; + const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]]; + const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]]; + Vector3 normal = n0 * w + n1 * u + n2 * v; + + Vector2 orig_uv = ray_uvs[j]; + real_t orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y }; + for (int k = 0; k < 3; k++) { + int idx = orig_tri_id * 3 + k; + real_t weight = orig_bary[k]; + ray_normals[idx] += normal * weight; + ray_normal_weights[idx] += weight; + } + } + + for (unsigned int j = 0; j < new_index_count; j++) { + if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess + ray_normals[j] = Vector3(); + } else { + ray_normals[j] /= ray_normal_weights[j]; + } + } + + LocalVector<LocalVector<int>> normal_group_indices; + LocalVector<Vector3> normal_group_averages; + normal_group_indices.reserve(24); + normal_group_averages.reserve(24); + + for (unsigned int j = 0; j < vertex_count; j++) { + const LocalVector<int> &corners = vertex_corners[j]; + const Vector3 &vertex_normal = normals_ptr[j]; + + for (unsigned int k = 0; k < corners.size(); k++) { + const int &corner_idx = corners[k]; + const Vector3 &ray_normal = ray_normals[corner_idx]; + + if (ray_normal.length_squared() < CMP_EPSILON2) { + continue; + } + + bool found = false; + for (unsigned int l = 0; l < normal_group_indices.size(); l++) { + LocalVector<int> &group_indices = normal_group_indices[l]; + Vector3 n = normal_group_averages[l] / group_indices.size(); + if (n.dot(ray_normal) > normal_pre_split_threshold) { + found = true; + group_indices.push_back(corner_idx); + normal_group_averages[l] += ray_normal; + break; + } + } + + if (!found) { + LocalVector<int> new_group; + new_group.push_back(corner_idx); + normal_group_indices.push_back(new_group); + normal_group_averages.push_back(ray_normal); + } + } + + for (unsigned int k = 0; k < normal_group_indices.size(); k++) { + LocalVector<int> &group_indices = normal_group_indices[k]; + Vector3 n = normal_group_averages[k] / group_indices.size(); + + if (vertex_normal.dot(n) < normal_split_threshold) { + split_vertex_indices.push_back(j); + split_vertex_normals.push_back(n); + int new_idx = split_vertex_count++; + for (unsigned int l = 0; l < group_indices.size(); l++) { + new_indices_ptr[group_indices[l]] = new_idx; + } + } + } + + normal_group_indices.clear(); + normal_group_averages.clear(); + } + } + + Surface::LOD lod; + lod.distance = MAX(mesh_error * scale, CMP_EPSILON2); + lod.indices = new_indices; + surfaces.write[i].lods.push_back(lod); + index_target = MAX(new_index_count, index_target) * 2; + last_index_count = new_index_count; + + if (mesh_error == 0.0f) { + break; + } + } + + surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals); + surfaces.write[i].lods.sort_custom<Surface::LODComparator>(); + + for (int j = 0; j < surfaces.write[i].lods.size(); j++) { + Surface::LOD &lod = surfaces.write[i].lods.write[j]; + unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw(); + SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count); + } + } +} + +bool ImporterMesh::has_mesh() const { + return mesh.is_valid(); +} + +Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) { + ERR_FAIL_COND_V(surfaces.size() == 0, Ref<ArrayMesh>()); + + if (mesh.is_null()) { + if (p_base.is_valid()) { + mesh = p_base; + } + if (mesh.is_null()) { + mesh.instantiate(); + } + mesh->set_name(get_name()); + if (has_meta("import_id")) { + mesh->set_meta("import_id", get_meta("import_id")); + } + for (int i = 0; i < blend_shapes.size(); i++) { + mesh->add_blend_shape(blend_shapes[i]); + } + mesh->set_blend_shape_mode(blend_shape_mode); + for (int i = 0; i < surfaces.size(); i++) { + Array bs_data; + if (surfaces[i].blend_shape_data.size()) { + for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { + bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); + } + } + Dictionary lods; + if (surfaces[i].lods.size()) { + for (int j = 0; j < surfaces[i].lods.size(); j++) { + lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; + } + } + + mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags); + if (surfaces[i].material.is_valid()) { + mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material); + } + if (!surfaces[i].name.is_empty()) { + mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name); + } + } + + mesh->set_lightmap_size_hint(lightmap_size_hint); + + if (shadow_mesh.is_valid()) { + Ref<ArrayMesh> shadow = shadow_mesh->get_mesh(); + mesh->set_shadow_mesh(shadow); + } + } + + return mesh; +} + +void ImporterMesh::clear() { + surfaces.clear(); + blend_shapes.clear(); + mesh.unref(); +} + +void ImporterMesh::create_shadow_mesh() { + if (shadow_mesh.is_valid()) { + shadow_mesh.unref(); + } + + //no shadow mesh for blendshapes + if (blend_shapes.size() > 0) { + return; + } + //no shadow mesh for skeletons + for (int i = 0; i < surfaces.size(); i++) { + if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) { + return; + } + if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) { + return; + } + } + + shadow_mesh.instantiate(); + + for (int i = 0; i < surfaces.size(); i++) { + LocalVector<int> vertex_remap; + Vector<Vector3> new_vertices; + Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; + int vertex_count = vertices.size(); + { + Map<Vector3, int> unique_vertices; + const Vector3 *vptr = vertices.ptr(); + for (int j = 0; j < vertex_count; j++) { + const Vector3 &v = vptr[j]; + + Map<Vector3, int>::Element *E = unique_vertices.find(v); + + if (E) { + vertex_remap.push_back(E->get()); + } else { + int vcount = unique_vertices.size(); + unique_vertices[v] = vcount; + vertex_remap.push_back(vcount); + new_vertices.push_back(v); + } + } + } + + Array new_surface; + new_surface.resize(RS::ARRAY_MAX); + Dictionary lods; + + // print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size())); + + new_surface[RS::ARRAY_VERTEX] = new_vertices; + + Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX]; + if (indices.size()) { + int index_count = indices.size(); + const int *index_rptr = indices.ptr(); + Vector<int> new_indices; + new_indices.resize(indices.size()); + int *index_wptr = new_indices.ptrw(); + + for (int j = 0; j < index_count; j++) { + int index = index_rptr[j]; + ERR_FAIL_INDEX(index, vertex_count); + index_wptr[j] = vertex_remap[index]; + } + + new_surface[RS::ARRAY_INDEX] = new_indices; + + // Make sure the same LODs as the full version are used. + // This makes it more coherent between rendered model and its shadows. + for (int j = 0; j < surfaces[i].lods.size(); j++) { + indices = surfaces[i].lods[j].indices; + + index_count = indices.size(); + index_rptr = indices.ptr(); + new_indices.resize(indices.size()); + index_wptr = new_indices.ptrw(); + + for (int k = 0; k < index_count; k++) { + int index = index_rptr[k]; + ERR_FAIL_INDEX(index, vertex_count); + index_wptr[k] = vertex_remap[index]; + } + + lods[surfaces[i].lods[j].distance] = new_indices; + } + } + + shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags); + } +} + +Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const { + return shadow_mesh; +} + +void ImporterMesh::_set_data(const Dictionary &p_data) { + clear(); + if (p_data.has("blend_shape_names")) { + blend_shapes = p_data["blend_shape_names"]; + } + if (p_data.has("surfaces")) { + Array surface_arr = p_data["surfaces"]; + for (int i = 0; i < surface_arr.size(); i++) { + Dictionary s = surface_arr[i]; + ERR_CONTINUE(!s.has("primitive")); + ERR_CONTINUE(!s.has("arrays")); + Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"])); + ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX); + Array arr = s["arrays"]; + Dictionary lods; + String name; + if (s.has("name")) { + name = s["name"]; + } + if (s.has("lods")) { + lods = s["lods"]; + } + Array b_shapes; + if (s.has("b_shapes")) { + b_shapes = s["b_shapes"]; + } + Ref<Material> material; + if (s.has("material")) { + material = s["material"]; + } + uint32_t flags = 0; + if (s.has("flags")) { + flags = s["flags"]; + } + add_surface(prim, arr, b_shapes, lods, material, name, flags); + } + } +} +Dictionary ImporterMesh::_get_data() const { + Dictionary data; + if (blend_shapes.size()) { + data["blend_shape_names"] = blend_shapes; + } + Array surface_arr; + for (int i = 0; i < surfaces.size(); i++) { + Dictionary d; + d["primitive"] = surfaces[i].primitive; + d["arrays"] = surfaces[i].arrays; + if (surfaces[i].blend_shape_data.size()) { + Array bs_data; + for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { + bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); + } + d["blend_shapes"] = bs_data; + } + if (surfaces[i].lods.size()) { + Dictionary lods; + for (int j = 0; j < surfaces[i].lods.size(); j++) { + lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; + } + d["lods"] = lods; + } + + if (surfaces[i].material.is_valid()) { + d["material"] = surfaces[i].material; + } + + if (!surfaces[i].name.is_empty()) { + d["name"] = surfaces[i].name; + } + + if (surfaces[i].flags != 0) { + d["flags"] = surfaces[i].flags; + } + + surface_arr.push_back(d); + } + data["surfaces"] = surface_arr; + return data; +} + +Vector<Face3> ImporterMesh::get_faces() const { + Vector<Face3> faces; + for (int i = 0; i < surfaces.size(); i++) { + if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) { + Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX]; + Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX]; + if (indices.size()) { + for (int j = 0; j < indices.size(); j += 3) { + Face3 f; + f.vertex[0] = vertices[indices[j + 0]]; + f.vertex[1] = vertices[indices[j + 1]]; + f.vertex[2] = vertices[indices[j + 2]]; + faces.push_back(f); + } + } else { + for (int j = 0; j < vertices.size(); j += 3) { + Face3 f; + f.vertex[0] = vertices[j + 0]; + f.vertex[1] = vertices[j + 1]; + f.vertex[2] = vertices[j + 2]; + faces.push_back(f); + } + } + } + } + + return faces; +} + +Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Mesh::ConvexDecompositionSettings &p_settings) const { + ERR_FAIL_COND_V(!Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>()); + + const Vector<Face3> faces = get_faces(); + int face_count = faces.size(); + + Vector<Vector3> vertices; + uint32_t vertex_count = 0; + vertices.resize(face_count * 3); + Vector<uint32_t> indices; + indices.resize(face_count * 3); + { + Map<Vector3, uint32_t> vertex_map; + Vector3 *vertex_w = vertices.ptrw(); + uint32_t *index_w = indices.ptrw(); + for (int i = 0; i < face_count; i++) { + for (int j = 0; j < 3; j++) { + const Vector3 &vertex = faces[i].vertex[j]; + Map<Vector3, uint32_t>::Element *found_vertex = vertex_map.find(vertex); + uint32_t index; + if (found_vertex) { + index = found_vertex->get(); + } else { + index = ++vertex_count; + vertex_map[vertex] = index; + vertex_w[index] = vertex; + } + index_w[i * 3 + j] = index; + } + } + } + vertices.resize(vertex_count); + + Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr); + + Vector<Ref<Shape3D>> ret; + + for (int i = 0; i < decomposed.size(); i++) { + Ref<ConvexPolygonShape3D> shape; + shape.instantiate(); + shape->set_points(decomposed[i]); + ret.push_back(shape); + } + + return ret; +} + +Ref<Shape3D> ImporterMesh::create_trimesh_shape() const { + Vector<Face3> faces = get_faces(); + if (faces.size() == 0) { + return Ref<Shape3D>(); + } + + Vector<Vector3> face_points; + face_points.resize(faces.size() * 3); + + for (int i = 0; i < face_points.size(); i += 3) { + Face3 f = faces.get(i / 3); + face_points.set(i, f.vertex[0]); + face_points.set(i + 1, f.vertex[1]); + face_points.set(i + 2, f.vertex[2]); + } + + Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D); + shape->set_faces(face_points); + return shape; +} + +Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() { + Vector<Face3> faces = get_faces(); + if (faces.size() == 0) { + return Ref<NavigationMesh>(); + } + + Map<Vector3, int> unique_vertices; + LocalVector<int> face_indices; + + for (int i = 0; i < faces.size(); i++) { + for (int j = 0; j < 3; j++) { + Vector3 v = faces[i].vertex[j]; + int idx; + if (unique_vertices.has(v)) { + idx = unique_vertices[v]; + } else { + idx = unique_vertices.size(); + unique_vertices[v] = idx; + } + face_indices.push_back(idx); + } + } + + Vector<Vector3> vertices; + vertices.resize(unique_vertices.size()); + for (const KeyValue<Vector3, int> &E : unique_vertices) { + vertices.write[E.value] = E.key; + } + + Ref<NavigationMesh> nm; + nm.instantiate(); + nm->set_vertices(vertices); + + Vector<int> v3; + v3.resize(3); + for (uint32_t i = 0; i < face_indices.size(); i += 3) { + v3.write[0] = face_indices[i + 0]; + v3.write[1] = face_indices[i + 1]; + v3.write[2] = face_indices[i + 2]; + nm->add_polygon(v3); + } + + return nm; +} + +extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y); + +struct EditorSceneFormatImporterMeshLightmapSurface { + Ref<Material> material; + LocalVector<SurfaceTool::Vertex> vertices; + Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX; + uint32_t format = 0; + String name; +}; + +Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) { + ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); + ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes."); + + LocalVector<float> vertices; + LocalVector<float> normals; + LocalVector<int> indices; + LocalVector<float> uv; + LocalVector<Pair<int, int>> uv_indices; + + Vector<EditorSceneFormatImporterMeshLightmapSurface> lightmap_surfaces; + + // Keep only the scale + Basis basis = p_base_transform.get_basis(); + Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length()); + + Transform3D transform; + transform.scale(scale); + + Basis normal_basis = transform.basis.inverse().transposed(); + + for (int i = 0; i < get_surface_count(); i++) { + EditorSceneFormatImporterMeshLightmapSurface s; + s.primitive = get_surface_primitive_type(i); + + ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap."); + Array arrays = get_surface_arrays(i); + s.material = get_surface_material(i); + s.name = get_surface_name(i); + + SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format); + + PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX]; + int vc = rvertices.size(); + + PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL]; + + int vertex_ofs = vertices.size() / 3; + + vertices.resize((vertex_ofs + vc) * 3); + normals.resize((vertex_ofs + vc) * 3); + uv_indices.resize(vertex_ofs + vc); + + for (int j = 0; j < vc; j++) { + Vector3 v = transform.xform(rvertices[j]); + Vector3 n = normal_basis.xform(rnormals[j]).normalized(); + + vertices[(j + vertex_ofs) * 3 + 0] = v.x; + vertices[(j + vertex_ofs) * 3 + 1] = v.y; + vertices[(j + vertex_ofs) * 3 + 2] = v.z; + normals[(j + vertex_ofs) * 3 + 0] = n.x; + normals[(j + vertex_ofs) * 3 + 1] = n.y; + normals[(j + vertex_ofs) * 3 + 2] = n.z; + uv_indices[j + vertex_ofs] = Pair<int, int>(i, j); + } + + PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX]; + int ic = rindices.size(); + + float eps = 1.19209290e-7F; // Taken from xatlas.h + if (ic == 0) { + for (int j = 0; j < vc / 3; j++) { + Vector3 p0 = transform.xform(rvertices[j * 3 + 0]); + Vector3 p1 = transform.xform(rvertices[j * 3 + 1]); + Vector3 p2 = transform.xform(rvertices[j * 3 + 2]); + + if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { + continue; + } + + indices.push_back(vertex_ofs + j * 3 + 0); + indices.push_back(vertex_ofs + j * 3 + 1); + indices.push_back(vertex_ofs + j * 3 + 2); + } + + } else { + for (int j = 0; j < ic / 3; j++) { + Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]); + Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]); + Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]); + + if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { + continue; + } + + indices.push_back(vertex_ofs + rindices[j * 3 + 0]); + indices.push_back(vertex_ofs + rindices[j * 3 + 1]); + indices.push_back(vertex_ofs + rindices[j * 3 + 2]); + } + } + + lightmap_surfaces.push_back(s); + } + + //unwrap + + bool use_cache = true; // Used to request cache generation and to know if cache was used + uint8_t *gen_cache; + int gen_cache_size; + float *gen_uvs; + int *gen_vertices; + int *gen_indices; + int gen_vertex_count; + int gen_index_count; + int size_x; + int size_y; + + bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y); + + if (!ok) { + return ERR_CANT_CREATE; + } + + //remove surfaces + clear(); + + //create surfacetools for each surface.. + LocalVector<Ref<SurfaceTool>> surfaces_tools; + + for (int i = 0; i < lightmap_surfaces.size(); i++) { + Ref<SurfaceTool> st; + st.instantiate(); + st->begin(Mesh::PRIMITIVE_TRIANGLES); + st->set_material(lightmap_surfaces[i].material); + st->set_meta("name", lightmap_surfaces[i].name); + surfaces_tools.push_back(st); //stay there + } + + print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); + + //go through all indices + for (int i = 0; i < gen_index_count; i += 3) { + ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG); + ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG); + ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG); + + ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); + + int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; + + for (int j = 0; j < 3; j++) { + SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; + + if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) { + surfaces_tools[surface]->set_color(v.color); + } + if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) { + surfaces_tools[surface]->set_uv(v.uv); + } + if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) { + surfaces_tools[surface]->set_normal(v.normal); + } + if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) { + Plane t; + t.normal = v.tangent; + t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; + surfaces_tools[surface]->set_tangent(t); + } + if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) { + surfaces_tools[surface]->set_bones(v.bones); + } + if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) { + surfaces_tools[surface]->set_weights(v.weights); + } + + Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); + surfaces_tools[surface]->set_uv2(uv2); + + surfaces_tools[surface]->add_vertex(v.vertex); + } + } + + //generate surfaces + for (unsigned int i = 0; i < surfaces_tools.size(); i++) { + surfaces_tools[i]->index(); + Array arrays = surfaces_tools[i]->commit_to_arrays(); + add_surface(surfaces_tools[i]->get_primitive(), arrays, Array(), Dictionary(), surfaces_tools[i]->get_material(), surfaces_tools[i]->get_meta("name")); + } + + set_lightmap_size_hint(Size2(size_x, size_y)); + + if (gen_cache_size > 0) { + r_dst_cache.resize(gen_cache_size); + memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size); + memfree(gen_cache); + } + + if (!use_cache) { + // Cache was not used, free the buffers + memfree(gen_vertices); + memfree(gen_indices); + memfree(gen_uvs); + } + + return OK; +} + +void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) { + lightmap_size_hint = p_size; +} + +Size2i ImporterMesh::get_lightmap_size_hint() const { + return lightmap_size_hint; +} + +void ImporterMesh::_bind_methods() { + ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ImporterMesh::add_blend_shape); + ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ImporterMesh::get_blend_shape_count); + ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &ImporterMesh::get_blend_shape_name); + + ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ImporterMesh::set_blend_shape_mode); + ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ImporterMesh::get_blend_shape_mode); + + ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name", "flags"), &ImporterMesh::add_surface, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0)); + + ClassDB::bind_method(D_METHOD("get_surface_count"), &ImporterMesh::get_surface_count); + ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &ImporterMesh::get_surface_primitive_type); + ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &ImporterMesh::get_surface_name); + ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &ImporterMesh::get_surface_arrays); + ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &ImporterMesh::get_surface_blend_shape_arrays); + ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &ImporterMesh::get_surface_lod_count); + ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_size); + ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_indices); + ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &ImporterMesh::get_surface_material); + ClassDB::bind_method(D_METHOD("get_surface_format", "surface_idx"), &ImporterMesh::get_surface_format); + + ClassDB::bind_method(D_METHOD("set_surface_name", "surface_idx", "name"), &ImporterMesh::set_surface_name); + ClassDB::bind_method(D_METHOD("set_surface_material", "surface_idx", "material"), &ImporterMesh::set_surface_material); + + ClassDB::bind_method(D_METHOD("get_mesh", "base_mesh"), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>())); + ClassDB::bind_method(D_METHOD("clear"), &ImporterMesh::clear); + + ClassDB::bind_method(D_METHOD("_set_data", "data"), &ImporterMesh::_set_data); + ClassDB::bind_method(D_METHOD("_get_data"), &ImporterMesh::_get_data); + + ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &ImporterMesh::set_lightmap_size_hint); + ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &ImporterMesh::get_lightmap_size_hint); + + ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "_set_data", "_get_data"); +} |