summaryrefslogtreecommitdiff
path: root/scene/resources/importer_mesh.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/resources/importer_mesh.cpp')
-rw-r--r--scene/resources/importer_mesh.cpp1247
1 files changed, 1247 insertions, 0 deletions
diff --git a/scene/resources/importer_mesh.cpp b/scene/resources/importer_mesh.cpp
new file mode 100644
index 0000000000..2572c5de33
--- /dev/null
+++ b/scene/resources/importer_mesh.cpp
@@ -0,0 +1,1247 @@
+/*************************************************************************/
+/* importer_mesh.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "importer_mesh.h"
+
+#include "core/math/random_pcg.h"
+#include "core/math/static_raycaster.h"
+#include "scene/resources/surface_tool.h"
+
+#include <cstdint>
+
+void ImporterMesh::Surface::split_normals(const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) {
+ _split_normals(arrays, p_indices, p_normals);
+
+ for (BlendShape &blend_shape : blend_shape_data) {
+ _split_normals(blend_shape.arrays, p_indices, p_normals);
+ }
+}
+
+void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) {
+ ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX);
+
+ const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX];
+ int current_vertex_count = vertices.size();
+ int new_vertex_count = p_indices.size();
+ int final_vertex_count = current_vertex_count + new_vertex_count;
+ const int *indices_ptr = p_indices.ptr();
+
+ for (int i = 0; i < r_arrays.size(); i++) {
+ if (i == RS::ARRAY_INDEX) {
+ continue;
+ }
+
+ if (r_arrays[i].get_type() == Variant::NIL) {
+ continue;
+ }
+
+ switch (r_arrays[i].get_type()) {
+ case Variant::PACKED_VECTOR3_ARRAY: {
+ PackedVector3Array data = r_arrays[i];
+ data.resize(final_vertex_count);
+ Vector3 *data_ptr = data.ptrw();
+ if (i == RS::ARRAY_NORMAL) {
+ const Vector3 *normals_ptr = p_normals.ptr();
+ memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count);
+ } else {
+ for (int j = 0; j < new_vertex_count; j++) {
+ data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
+ }
+ }
+ r_arrays[i] = data;
+ } break;
+ case Variant::PACKED_VECTOR2_ARRAY: {
+ PackedVector2Array data = r_arrays[i];
+ data.resize(final_vertex_count);
+ Vector2 *data_ptr = data.ptrw();
+ for (int j = 0; j < new_vertex_count; j++) {
+ data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
+ }
+ r_arrays[i] = data;
+ } break;
+ case Variant::PACKED_FLOAT32_ARRAY: {
+ PackedFloat32Array data = r_arrays[i];
+ int elements = data.size() / current_vertex_count;
+ data.resize(final_vertex_count * elements);
+ float *data_ptr = data.ptrw();
+ for (int j = 0; j < new_vertex_count; j++) {
+ memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements);
+ }
+ r_arrays[i] = data;
+ } break;
+ case Variant::PACKED_INT32_ARRAY: {
+ PackedInt32Array data = r_arrays[i];
+ int elements = data.size() / current_vertex_count;
+ data.resize(final_vertex_count * elements);
+ int32_t *data_ptr = data.ptrw();
+ for (int j = 0; j < new_vertex_count; j++) {
+ memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements);
+ }
+ r_arrays[i] = data;
+ } break;
+ case Variant::PACKED_BYTE_ARRAY: {
+ PackedByteArray data = r_arrays[i];
+ int elements = data.size() / current_vertex_count;
+ data.resize(final_vertex_count * elements);
+ uint8_t *data_ptr = data.ptrw();
+ for (int j = 0; j < new_vertex_count; j++) {
+ memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements);
+ }
+ r_arrays[i] = data;
+ } break;
+ case Variant::PACKED_COLOR_ARRAY: {
+ PackedColorArray data = r_arrays[i];
+ data.resize(final_vertex_count);
+ Color *data_ptr = data.ptrw();
+ for (int j = 0; j < new_vertex_count; j++) {
+ data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
+ }
+ r_arrays[i] = data;
+ } break;
+ default: {
+ ERR_FAIL_MSG("Unhandled array type.");
+ } break;
+ }
+ }
+}
+
+void ImporterMesh::add_blend_shape(const String &p_name) {
+ ERR_FAIL_COND(surfaces.size() > 0);
+ blend_shapes.push_back(p_name);
+}
+
+int ImporterMesh::get_blend_shape_count() const {
+ return blend_shapes.size();
+}
+
+String ImporterMesh::get_blend_shape_name(int p_blend_shape) const {
+ ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String());
+ return blend_shapes[p_blend_shape];
+}
+
+void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) {
+ blend_shape_mode = p_blend_shape_mode;
+}
+
+Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const {
+ return blend_shape_mode;
+}
+
+void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name, const uint32_t p_flags) {
+ ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
+ ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX);
+ Surface s;
+ s.primitive = p_primitive;
+ s.arrays = p_arrays;
+ s.name = p_name;
+ s.flags = p_flags;
+
+ Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX];
+ int vertex_count = vertex_array.size();
+ ERR_FAIL_COND(vertex_count == 0);
+
+ for (int i = 0; i < blend_shapes.size(); i++) {
+ Array bsdata = p_blend_shapes[i];
+ ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX);
+ Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX];
+ ERR_FAIL_COND(vertex_data.size() != vertex_count);
+ Surface::BlendShape bs;
+ bs.arrays = bsdata;
+ s.blend_shape_data.push_back(bs);
+ }
+
+ List<Variant> lods;
+ p_lods.get_key_list(&lods);
+ for (const Variant &E : lods) {
+ ERR_CONTINUE(!E.is_num());
+ Surface::LOD lod;
+ lod.distance = E;
+ lod.indices = p_lods[E];
+ ERR_CONTINUE(lod.indices.size() == 0);
+ s.lods.push_back(lod);
+ }
+
+ s.material = p_material;
+
+ surfaces.push_back(s);
+ mesh.unref();
+}
+
+int ImporterMesh::get_surface_count() const {
+ return surfaces.size();
+}
+
+Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX);
+ return surfaces[p_surface].primitive;
+}
+Array ImporterMesh::get_surface_arrays(int p_surface) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
+ return surfaces[p_surface].arrays;
+}
+String ImporterMesh::get_surface_name(int p_surface) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String());
+ return surfaces[p_surface].name;
+}
+void ImporterMesh::set_surface_name(int p_surface, const String &p_name) {
+ ERR_FAIL_INDEX(p_surface, surfaces.size());
+ surfaces.write[p_surface].name = p_name;
+ mesh.unref();
+}
+
+Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
+ ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array());
+ return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays;
+}
+int ImporterMesh::get_surface_lod_count(int p_surface) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
+ return surfaces[p_surface].lods.size();
+}
+Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>());
+ ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>());
+
+ return surfaces[p_surface].lods[p_lod].indices;
+}
+
+float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
+ ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0);
+ return surfaces[p_surface].lods[p_lod].distance;
+}
+
+uint32_t ImporterMesh::get_surface_format(int p_surface) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
+ return surfaces[p_surface].flags;
+}
+
+Ref<Material> ImporterMesh::get_surface_material(int p_surface) const {
+ ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>());
+ return surfaces[p_surface].material;
+}
+
+void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) {
+ ERR_FAIL_INDEX(p_surface, surfaces.size());
+ surfaces.write[p_surface].material = p_material;
+ mesh.unref();
+}
+
+void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle) {
+ if (!SurfaceTool::simplify_scale_func) {
+ return;
+ }
+ if (!SurfaceTool::simplify_with_attrib_func) {
+ return;
+ }
+ if (!SurfaceTool::optimize_vertex_cache_func) {
+ return;
+ }
+
+ for (int i = 0; i < surfaces.size(); i++) {
+ if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
+ continue;
+ }
+
+ surfaces.write[i].lods.clear();
+ Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
+ PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX];
+ Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL];
+ Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV];
+
+ unsigned int index_count = indices.size();
+ unsigned int vertex_count = vertices.size();
+
+ if (index_count == 0) {
+ continue; //no lods if no indices
+ }
+
+ const Vector3 *vertices_ptr = vertices.ptr();
+ const int *indices_ptr = indices.ptr();
+
+ if (normals.is_empty()) {
+ normals.resize(vertices.size());
+ Vector3 *n_ptr = normals.ptrw();
+ for (unsigned int j = 0; j < index_count; j += 3) {
+ const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]];
+ const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]];
+ const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]];
+ Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized();
+ n_ptr[j + 0] = n;
+ n_ptr[j + 1] = n;
+ n_ptr[j + 2] = n;
+ }
+ }
+
+ float normal_merge_threshold = Math::cos(Math::deg2rad(p_normal_merge_angle));
+ float normal_pre_split_threshold = Math::cos(Math::deg2rad(MIN(180.0f, p_normal_split_angle * 2.0f)));
+ float normal_split_threshold = Math::cos(Math::deg2rad(p_normal_split_angle));
+ const Vector3 *normals_ptr = normals.ptr();
+
+ Map<Vector3, LocalVector<Pair<int, int>>> unique_vertices;
+
+ LocalVector<int> vertex_remap;
+ LocalVector<int> vertex_inverse_remap;
+ LocalVector<Vector3> merged_vertices;
+ LocalVector<Vector3> merged_normals;
+ LocalVector<int> merged_normals_counts;
+ const Vector2 *uvs_ptr = uvs.ptr();
+
+ for (unsigned int j = 0; j < vertex_count; j++) {
+ const Vector3 &v = vertices_ptr[j];
+ const Vector3 &n = normals_ptr[j];
+
+ Map<Vector3, LocalVector<Pair<int, int>>>::Element *E = unique_vertices.find(v);
+
+ if (E) {
+ const LocalVector<Pair<int, int>> &close_verts = E->get();
+
+ bool found = false;
+ for (unsigned int k = 0; k < close_verts.size(); k++) {
+ const Pair<int, int> &idx = close_verts[k];
+
+ // TODO check more attributes?
+ if ((!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2) && normals[idx.second].dot(n) > normal_merge_threshold) {
+ vertex_remap.push_back(idx.first);
+ merged_normals[idx.first] += normals[idx.second];
+ merged_normals_counts[idx.first]++;
+ found = true;
+ break;
+ }
+ }
+
+ if (!found) {
+ int vcount = merged_vertices.size();
+ unique_vertices[v].push_back(Pair<int, int>(vcount, j));
+ vertex_inverse_remap.push_back(j);
+ merged_vertices.push_back(v);
+ vertex_remap.push_back(vcount);
+ merged_normals.push_back(normals_ptr[j]);
+ merged_normals_counts.push_back(1);
+ }
+ } else {
+ int vcount = merged_vertices.size();
+ unique_vertices[v] = LocalVector<Pair<int, int>>();
+ unique_vertices[v].push_back(Pair<int, int>(vcount, j));
+ vertex_inverse_remap.push_back(j);
+ merged_vertices.push_back(v);
+ vertex_remap.push_back(vcount);
+ merged_normals.push_back(normals_ptr[j]);
+ merged_normals_counts.push_back(1);
+ }
+ }
+
+ LocalVector<int> merged_indices;
+ merged_indices.resize(index_count);
+ for (unsigned int j = 0; j < index_count; j++) {
+ merged_indices[j] = vertex_remap[indices[j]];
+ }
+
+ unsigned int merged_vertex_count = merged_vertices.size();
+ const Vector3 *merged_vertices_ptr = merged_vertices.ptr();
+ const int32_t *merged_indices_ptr = merged_indices.ptr();
+
+ {
+ const int *counts_ptr = merged_normals_counts.ptr();
+ Vector3 *merged_normals_ptrw = merged_normals.ptr();
+ for (unsigned int j = 0; j < merged_vertex_count; j++) {
+ merged_normals_ptrw[j] /= counts_ptr[j];
+ }
+ }
+
+ LocalVector<float> normal_weights;
+ normal_weights.resize(merged_vertex_count);
+ for (unsigned int j = 0; j < merged_vertex_count; j++) {
+ normal_weights[j] = 2.0; // Give some weight to normal preservation, may be worth exposing as an import setting
+ }
+
+ const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target
+ float scale = SurfaceTool::simplify_scale_func((const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3));
+ float mesh_error = 0.0f;
+
+ unsigned int index_target = 12; // Start with the smallest target, 4 triangles
+ unsigned int last_index_count = 0;
+
+ int split_vertex_count = vertex_count;
+ LocalVector<Vector3> split_vertex_normals;
+ LocalVector<int> split_vertex_indices;
+ split_vertex_normals.reserve(index_count / 3);
+ split_vertex_indices.reserve(index_count / 3);
+
+ RandomPCG pcg;
+ pcg.seed(123456789); // Keep seed constant across imports
+
+ Ref<StaticRaycaster> raycaster = StaticRaycaster::create();
+ if (raycaster.is_valid()) {
+ raycaster->add_mesh(vertices, indices, 0);
+ raycaster->commit();
+ }
+
+ while (index_target < index_count) {
+ PackedInt32Array new_indices;
+ new_indices.resize(index_count);
+
+ size_t new_index_count = SurfaceTool::simplify_with_attrib_func((unsigned int *)new_indices.ptrw(), (const uint32_t *)merged_indices_ptr, index_count, (const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3), index_target, max_mesh_error, &mesh_error, (float *)merged_normals.ptr(), normal_weights.ptr(), 3);
+
+ if (new_index_count < last_index_count * 1.5f) {
+ index_target = index_target * 1.5f;
+ continue;
+ }
+
+ if (new_index_count <= 0 || (new_index_count >= (index_count * 0.75f))) {
+ break;
+ }
+
+ new_indices.resize(new_index_count);
+
+ LocalVector<LocalVector<int>> vertex_corners;
+ vertex_corners.resize(vertex_count);
+ {
+ int *ptrw = new_indices.ptrw();
+ for (unsigned int j = 0; j < new_index_count; j++) {
+ const int &remapped = vertex_inverse_remap[ptrw[j]];
+ vertex_corners[remapped].push_back(j);
+ ptrw[j] = remapped;
+ }
+ }
+
+ if (raycaster.is_valid()) {
+ float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15));
+ const float ray_bias = 0.05;
+ float ray_length = ray_bias + mesh_error * scale * 3.0f;
+
+ Vector<StaticRaycaster::Ray> rays;
+ LocalVector<Vector2> ray_uvs;
+
+ int32_t *new_indices_ptr = new_indices.ptrw();
+
+ int current_ray_count = 0;
+ for (unsigned int j = 0; j < new_index_count; j += 3) {
+ const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]];
+ const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]];
+ const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]];
+ Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1);
+ float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care
+
+ Vector3 dir = face_normal / face_area;
+ int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64);
+
+ rays.resize(current_ray_count + ray_count);
+ StaticRaycaster::Ray *rays_ptr = rays.ptrw();
+
+ ray_uvs.resize(current_ray_count + ray_count);
+ Vector2 *ray_uvs_ptr = ray_uvs.ptr();
+
+ for (int k = 0; k < ray_count; k++) {
+ float u = pcg.randf();
+ float v = pcg.randf();
+
+ if (u + v >= 1.0f) {
+ u = 1.0f - u;
+ v = 1.0f - v;
+ }
+
+ u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge
+ v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third;
+ float w = 1.0f - u - v;
+
+ Vector3 org = v0 * w + v1 * u + v2 * v;
+ org -= dir * ray_bias;
+ rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length);
+ rays_ptr[current_ray_count + k].id = j / 3;
+ ray_uvs_ptr[current_ray_count + k] = Vector2(u, v);
+ }
+
+ current_ray_count += ray_count;
+ }
+
+ raycaster->intersect(rays);
+
+ LocalVector<Vector3> ray_normals;
+ LocalVector<float> ray_normal_weights;
+
+ ray_normals.resize(new_index_count);
+ ray_normal_weights.resize(new_index_count);
+
+ for (unsigned int j = 0; j < new_index_count; j++) {
+ ray_normal_weights[j] = 0.0f;
+ }
+
+ const StaticRaycaster::Ray *rp = rays.ptr();
+ for (int j = 0; j < rays.size(); j++) {
+ if (rp[j].geomID != 0) { // Ray missed
+ continue;
+ }
+
+ if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face.
+ continue;
+ }
+
+ const float &u = rp[j].u;
+ const float &v = rp[j].v;
+ const float w = 1.0f - u - v;
+
+ const unsigned int &hit_tri_id = rp[j].primID;
+ const unsigned int &orig_tri_id = rp[j].id;
+
+ const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]];
+ const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]];
+ const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]];
+ Vector3 normal = n0 * w + n1 * u + n2 * v;
+
+ Vector2 orig_uv = ray_uvs[j];
+ float orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y };
+ for (int k = 0; k < 3; k++) {
+ int idx = orig_tri_id * 3 + k;
+ float weight = orig_bary[k];
+ ray_normals[idx] += normal * weight;
+ ray_normal_weights[idx] += weight;
+ }
+ }
+
+ for (unsigned int j = 0; j < new_index_count; j++) {
+ if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess
+ ray_normals[j] = Vector3();
+ } else {
+ ray_normals[j] /= ray_normal_weights[j];
+ }
+ }
+
+ LocalVector<LocalVector<int>> normal_group_indices;
+ LocalVector<Vector3> normal_group_averages;
+ normal_group_indices.reserve(24);
+ normal_group_averages.reserve(24);
+
+ for (unsigned int j = 0; j < vertex_count; j++) {
+ const LocalVector<int> &corners = vertex_corners[j];
+ const Vector3 &vertex_normal = normals_ptr[j];
+
+ for (unsigned int k = 0; k < corners.size(); k++) {
+ const int &corner_idx = corners[k];
+ const Vector3 &ray_normal = ray_normals[corner_idx];
+
+ if (ray_normal.length_squared() < CMP_EPSILON2) {
+ continue;
+ }
+
+ bool found = false;
+ for (unsigned int l = 0; l < normal_group_indices.size(); l++) {
+ LocalVector<int> &group_indices = normal_group_indices[l];
+ Vector3 n = normal_group_averages[l] / group_indices.size();
+ if (n.dot(ray_normal) > normal_pre_split_threshold) {
+ found = true;
+ group_indices.push_back(corner_idx);
+ normal_group_averages[l] += ray_normal;
+ break;
+ }
+ }
+
+ if (!found) {
+ LocalVector<int> new_group;
+ new_group.push_back(corner_idx);
+ normal_group_indices.push_back(new_group);
+ normal_group_averages.push_back(ray_normal);
+ }
+ }
+
+ for (unsigned int k = 0; k < normal_group_indices.size(); k++) {
+ LocalVector<int> &group_indices = normal_group_indices[k];
+ Vector3 n = normal_group_averages[k] / group_indices.size();
+
+ if (vertex_normal.dot(n) < normal_split_threshold) {
+ split_vertex_indices.push_back(j);
+ split_vertex_normals.push_back(n);
+ int new_idx = split_vertex_count++;
+ for (unsigned int l = 0; l < group_indices.size(); l++) {
+ new_indices_ptr[group_indices[l]] = new_idx;
+ }
+ }
+ }
+
+ normal_group_indices.clear();
+ normal_group_averages.clear();
+ }
+ }
+
+ Surface::LOD lod;
+ lod.distance = MAX(mesh_error * scale, CMP_EPSILON2);
+ lod.indices = new_indices;
+ surfaces.write[i].lods.push_back(lod);
+ index_target = MAX(new_index_count, index_target) * 2;
+ last_index_count = new_index_count;
+
+ if (mesh_error == 0.0f) {
+ break;
+ }
+ }
+
+ surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals);
+ surfaces.write[i].lods.sort_custom<Surface::LODComparator>();
+
+ for (int j = 0; j < surfaces.write[i].lods.size(); j++) {
+ Surface::LOD &lod = surfaces.write[i].lods.write[j];
+ unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw();
+ SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count);
+ }
+ }
+}
+
+bool ImporterMesh::has_mesh() const {
+ return mesh.is_valid();
+}
+
+Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) {
+ ERR_FAIL_COND_V(surfaces.size() == 0, Ref<ArrayMesh>());
+
+ if (mesh.is_null()) {
+ if (p_base.is_valid()) {
+ mesh = p_base;
+ }
+ if (mesh.is_null()) {
+ mesh.instantiate();
+ }
+ mesh->set_name(get_name());
+ if (has_meta("import_id")) {
+ mesh->set_meta("import_id", get_meta("import_id"));
+ }
+ for (int i = 0; i < blend_shapes.size(); i++) {
+ mesh->add_blend_shape(blend_shapes[i]);
+ }
+ mesh->set_blend_shape_mode(blend_shape_mode);
+ for (int i = 0; i < surfaces.size(); i++) {
+ Array bs_data;
+ if (surfaces[i].blend_shape_data.size()) {
+ for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
+ bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
+ }
+ }
+ Dictionary lods;
+ if (surfaces[i].lods.size()) {
+ for (int j = 0; j < surfaces[i].lods.size(); j++) {
+ lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
+ }
+ }
+
+ mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags);
+ if (surfaces[i].material.is_valid()) {
+ mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material);
+ }
+ if (surfaces[i].name != String()) {
+ mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name);
+ }
+ }
+
+ mesh->set_lightmap_size_hint(lightmap_size_hint);
+
+ if (shadow_mesh.is_valid()) {
+ Ref<ArrayMesh> shadow = shadow_mesh->get_mesh();
+ mesh->set_shadow_mesh(shadow);
+ }
+ }
+
+ return mesh;
+}
+
+void ImporterMesh::clear() {
+ surfaces.clear();
+ blend_shapes.clear();
+ mesh.unref();
+}
+
+void ImporterMesh::create_shadow_mesh() {
+ if (shadow_mesh.is_valid()) {
+ shadow_mesh.unref();
+ }
+
+ //no shadow mesh for blendshapes
+ if (blend_shapes.size() > 0) {
+ return;
+ }
+ //no shadow mesh for skeletons
+ for (int i = 0; i < surfaces.size(); i++) {
+ if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) {
+ return;
+ }
+ if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) {
+ return;
+ }
+ }
+
+ shadow_mesh.instantiate();
+
+ for (int i = 0; i < surfaces.size(); i++) {
+ LocalVector<int> vertex_remap;
+ Vector<Vector3> new_vertices;
+ Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
+ int vertex_count = vertices.size();
+ {
+ Map<Vector3, int> unique_vertices;
+ const Vector3 *vptr = vertices.ptr();
+ for (int j = 0; j < vertex_count; j++) {
+ const Vector3 &v = vptr[j];
+
+ Map<Vector3, int>::Element *E = unique_vertices.find(v);
+
+ if (E) {
+ vertex_remap.push_back(E->get());
+ } else {
+ int vcount = unique_vertices.size();
+ unique_vertices[v] = vcount;
+ vertex_remap.push_back(vcount);
+ new_vertices.push_back(v);
+ }
+ }
+ }
+
+ Array new_surface;
+ new_surface.resize(RS::ARRAY_MAX);
+ Dictionary lods;
+
+ // print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size()));
+
+ new_surface[RS::ARRAY_VERTEX] = new_vertices;
+
+ Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX];
+ if (indices.size()) {
+ int index_count = indices.size();
+ const int *index_rptr = indices.ptr();
+ Vector<int> new_indices;
+ new_indices.resize(indices.size());
+ int *index_wptr = new_indices.ptrw();
+
+ for (int j = 0; j < index_count; j++) {
+ int index = index_rptr[j];
+ ERR_FAIL_INDEX(index, vertex_count);
+ index_wptr[j] = vertex_remap[index];
+ }
+
+ new_surface[RS::ARRAY_INDEX] = new_indices;
+
+ // Make sure the same LODs as the full version are used.
+ // This makes it more coherent between rendered model and its shadows.
+ for (int j = 0; j < surfaces[i].lods.size(); j++) {
+ indices = surfaces[i].lods[j].indices;
+
+ index_count = indices.size();
+ index_rptr = indices.ptr();
+ new_indices.resize(indices.size());
+ index_wptr = new_indices.ptrw();
+
+ for (int k = 0; k < index_count; k++) {
+ int index = index_rptr[k];
+ ERR_FAIL_INDEX(index, vertex_count);
+ index_wptr[k] = vertex_remap[index];
+ }
+
+ lods[surfaces[i].lods[j].distance] = new_indices;
+ }
+ }
+
+ shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags);
+ }
+}
+
+Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const {
+ return shadow_mesh;
+}
+
+void ImporterMesh::_set_data(const Dictionary &p_data) {
+ clear();
+ if (p_data.has("blend_shape_names")) {
+ blend_shapes = p_data["blend_shape_names"];
+ }
+ if (p_data.has("surfaces")) {
+ Array surface_arr = p_data["surfaces"];
+ for (int i = 0; i < surface_arr.size(); i++) {
+ Dictionary s = surface_arr[i];
+ ERR_CONTINUE(!s.has("primitive"));
+ ERR_CONTINUE(!s.has("arrays"));
+ Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"]));
+ ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX);
+ Array arr = s["arrays"];
+ Dictionary lods;
+ String name;
+ if (s.has("name")) {
+ name = s["name"];
+ }
+ if (s.has("lods")) {
+ lods = s["lods"];
+ }
+ Array b_shapes;
+ if (s.has("b_shapes")) {
+ b_shapes = s["b_shapes"];
+ }
+ Ref<Material> material;
+ if (s.has("material")) {
+ material = s["material"];
+ }
+ uint32_t flags = 0;
+ if (s.has("flags")) {
+ flags = s["flags"];
+ }
+ add_surface(prim, arr, b_shapes, lods, material, name, flags);
+ }
+ }
+}
+Dictionary ImporterMesh::_get_data() const {
+ Dictionary data;
+ if (blend_shapes.size()) {
+ data["blend_shape_names"] = blend_shapes;
+ }
+ Array surface_arr;
+ for (int i = 0; i < surfaces.size(); i++) {
+ Dictionary d;
+ d["primitive"] = surfaces[i].primitive;
+ d["arrays"] = surfaces[i].arrays;
+ if (surfaces[i].blend_shape_data.size()) {
+ Array bs_data;
+ for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
+ bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
+ }
+ d["blend_shapes"] = bs_data;
+ }
+ if (surfaces[i].lods.size()) {
+ Dictionary lods;
+ for (int j = 0; j < surfaces[i].lods.size(); j++) {
+ lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
+ }
+ d["lods"] = lods;
+ }
+
+ if (surfaces[i].material.is_valid()) {
+ d["material"] = surfaces[i].material;
+ }
+
+ if (surfaces[i].name != String()) {
+ d["name"] = surfaces[i].name;
+ }
+
+ if (surfaces[i].flags != 0) {
+ d["flags"] = surfaces[i].flags;
+ }
+
+ surface_arr.push_back(d);
+ }
+ data["surfaces"] = surface_arr;
+ return data;
+}
+
+Vector<Face3> ImporterMesh::get_faces() const {
+ Vector<Face3> faces;
+ for (int i = 0; i < surfaces.size(); i++) {
+ if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) {
+ Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX];
+ Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX];
+ if (indices.size()) {
+ for (int j = 0; j < indices.size(); j += 3) {
+ Face3 f;
+ f.vertex[0] = vertices[indices[j + 0]];
+ f.vertex[1] = vertices[indices[j + 1]];
+ f.vertex[2] = vertices[indices[j + 2]];
+ faces.push_back(f);
+ }
+ } else {
+ for (int j = 0; j < vertices.size(); j += 3) {
+ Face3 f;
+ f.vertex[0] = vertices[j + 0];
+ f.vertex[1] = vertices[j + 1];
+ f.vertex[2] = vertices[j + 2];
+ faces.push_back(f);
+ }
+ }
+ }
+ }
+
+ return faces;
+}
+
+Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Mesh::ConvexDecompositionSettings &p_settings) const {
+ ERR_FAIL_COND_V(!Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>());
+
+ const Vector<Face3> faces = get_faces();
+ int face_count = faces.size();
+
+ Vector<Vector3> vertices;
+ uint32_t vertex_count = 0;
+ vertices.resize(face_count * 3);
+ Vector<uint32_t> indices;
+ indices.resize(face_count * 3);
+ {
+ Map<Vector3, uint32_t> vertex_map;
+ Vector3 *vertex_w = vertices.ptrw();
+ uint32_t *index_w = indices.ptrw();
+ for (int i = 0; i < face_count; i++) {
+ for (int j = 0; j < 3; j++) {
+ const Vector3 &vertex = faces[i].vertex[j];
+ Map<Vector3, uint32_t>::Element *found_vertex = vertex_map.find(vertex);
+ uint32_t index;
+ if (found_vertex) {
+ index = found_vertex->get();
+ } else {
+ index = ++vertex_count;
+ vertex_map[vertex] = index;
+ vertex_w[index] = vertex;
+ }
+ index_w[i * 3 + j] = index;
+ }
+ }
+ }
+ vertices.resize(vertex_count);
+
+ Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr);
+
+ Vector<Ref<Shape3D>> ret;
+
+ for (int i = 0; i < decomposed.size(); i++) {
+ Ref<ConvexPolygonShape3D> shape;
+ shape.instantiate();
+ shape->set_points(decomposed[i]);
+ ret.push_back(shape);
+ }
+
+ return ret;
+}
+
+Ref<Shape3D> ImporterMesh::create_trimesh_shape() const {
+ Vector<Face3> faces = get_faces();
+ if (faces.size() == 0) {
+ return Ref<Shape3D>();
+ }
+
+ Vector<Vector3> face_points;
+ face_points.resize(faces.size() * 3);
+
+ for (int i = 0; i < face_points.size(); i += 3) {
+ Face3 f = faces.get(i / 3);
+ face_points.set(i, f.vertex[0]);
+ face_points.set(i + 1, f.vertex[1]);
+ face_points.set(i + 2, f.vertex[2]);
+ }
+
+ Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
+ shape->set_faces(face_points);
+ return shape;
+}
+
+Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() {
+ Vector<Face3> faces = get_faces();
+ if (faces.size() == 0) {
+ return Ref<NavigationMesh>();
+ }
+
+ Map<Vector3, int> unique_vertices;
+ LocalVector<int> face_indices;
+
+ for (int i = 0; i < faces.size(); i++) {
+ for (int j = 0; j < 3; j++) {
+ Vector3 v = faces[i].vertex[j];
+ int idx;
+ if (unique_vertices.has(v)) {
+ idx = unique_vertices[v];
+ } else {
+ idx = unique_vertices.size();
+ unique_vertices[v] = idx;
+ }
+ face_indices.push_back(idx);
+ }
+ }
+
+ Vector<Vector3> vertices;
+ vertices.resize(unique_vertices.size());
+ for (const KeyValue<Vector3, int> &E : unique_vertices) {
+ vertices.write[E.value] = E.key;
+ }
+
+ Ref<NavigationMesh> nm;
+ nm.instantiate();
+ nm->set_vertices(vertices);
+
+ Vector<int> v3;
+ v3.resize(3);
+ for (uint32_t i = 0; i < face_indices.size(); i += 3) {
+ v3.write[0] = face_indices[i + 0];
+ v3.write[1] = face_indices[i + 1];
+ v3.write[2] = face_indices[i + 2];
+ nm->add_polygon(v3);
+ }
+
+ return nm;
+}
+
+extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y);
+
+struct EditorSceneImporterMeshLightmapSurface {
+ Ref<Material> material;
+ LocalVector<SurfaceTool::Vertex> vertices;
+ Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
+ uint32_t format = 0;
+ String name;
+};
+
+Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) {
+ ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
+ ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
+
+ LocalVector<float> vertices;
+ LocalVector<float> normals;
+ LocalVector<int> indices;
+ LocalVector<float> uv;
+ LocalVector<Pair<int, int>> uv_indices;
+
+ Vector<EditorSceneImporterMeshLightmapSurface> lightmap_surfaces;
+
+ // Keep only the scale
+ Basis basis = p_base_transform.get_basis();
+ Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length());
+
+ Transform3D transform;
+ transform.scale(scale);
+
+ Basis normal_basis = transform.basis.inverse().transposed();
+
+ for (int i = 0; i < get_surface_count(); i++) {
+ EditorSceneImporterMeshLightmapSurface s;
+ s.primitive = get_surface_primitive_type(i);
+
+ ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
+ Array arrays = get_surface_arrays(i);
+ s.material = get_surface_material(i);
+ s.name = get_surface_name(i);
+
+ SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format);
+
+ PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
+ int vc = rvertices.size();
+
+ PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];
+
+ int vertex_ofs = vertices.size() / 3;
+
+ vertices.resize((vertex_ofs + vc) * 3);
+ normals.resize((vertex_ofs + vc) * 3);
+ uv_indices.resize(vertex_ofs + vc);
+
+ for (int j = 0; j < vc; j++) {
+ Vector3 v = transform.xform(rvertices[j]);
+ Vector3 n = normal_basis.xform(rnormals[j]).normalized();
+
+ vertices[(j + vertex_ofs) * 3 + 0] = v.x;
+ vertices[(j + vertex_ofs) * 3 + 1] = v.y;
+ vertices[(j + vertex_ofs) * 3 + 2] = v.z;
+ normals[(j + vertex_ofs) * 3 + 0] = n.x;
+ normals[(j + vertex_ofs) * 3 + 1] = n.y;
+ normals[(j + vertex_ofs) * 3 + 2] = n.z;
+ uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
+ }
+
+ PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
+ int ic = rindices.size();
+
+ float eps = 1.19209290e-7F; // Taken from xatlas.h
+ if (ic == 0) {
+ for (int j = 0; j < vc / 3; j++) {
+ Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
+ Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
+ Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);
+
+ if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
+ continue;
+ }
+
+ indices.push_back(vertex_ofs + j * 3 + 0);
+ indices.push_back(vertex_ofs + j * 3 + 1);
+ indices.push_back(vertex_ofs + j * 3 + 2);
+ }
+
+ } else {
+ for (int j = 0; j < ic / 3; j++) {
+ Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
+ Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
+ Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);
+
+ if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
+ continue;
+ }
+
+ indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
+ indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
+ indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
+ }
+ }
+
+ lightmap_surfaces.push_back(s);
+ }
+
+ //unwrap
+
+ bool use_cache = true; // Used to request cache generation and to know if cache was used
+ uint8_t *gen_cache;
+ int gen_cache_size;
+ float *gen_uvs;
+ int *gen_vertices;
+ int *gen_indices;
+ int gen_vertex_count;
+ int gen_index_count;
+ int size_x;
+ int size_y;
+
+ bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
+
+ if (!ok) {
+ return ERR_CANT_CREATE;
+ }
+
+ //remove surfaces
+ clear();
+
+ //create surfacetools for each surface..
+ LocalVector<Ref<SurfaceTool>> surfaces_tools;
+
+ for (int i = 0; i < lightmap_surfaces.size(); i++) {
+ Ref<SurfaceTool> st;
+ st.instantiate();
+ st->begin(Mesh::PRIMITIVE_TRIANGLES);
+ st->set_material(lightmap_surfaces[i].material);
+ st->set_meta("name", lightmap_surfaces[i].name);
+ surfaces_tools.push_back(st); //stay there
+ }
+
+ print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
+
+ //go through all indices
+ for (int i = 0; i < gen_index_count; i += 3) {
+ ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
+ ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
+ ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
+
+ ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
+
+ int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
+
+ for (int j = 0; j < 3; j++) {
+ SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
+
+ if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) {
+ surfaces_tools[surface]->set_color(v.color);
+ }
+ if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) {
+ surfaces_tools[surface]->set_uv(v.uv);
+ }
+ if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) {
+ surfaces_tools[surface]->set_normal(v.normal);
+ }
+ if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) {
+ Plane t;
+ t.normal = v.tangent;
+ t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
+ surfaces_tools[surface]->set_tangent(t);
+ }
+ if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) {
+ surfaces_tools[surface]->set_bones(v.bones);
+ }
+ if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) {
+ surfaces_tools[surface]->set_weights(v.weights);
+ }
+
+ Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
+ surfaces_tools[surface]->set_uv2(uv2);
+
+ surfaces_tools[surface]->add_vertex(v.vertex);
+ }
+ }
+
+ //generate surfaces
+ for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
+ surfaces_tools[i]->index();
+ Array arrays = surfaces_tools[i]->commit_to_arrays();
+ add_surface(surfaces_tools[i]->get_primitive(), arrays, Array(), Dictionary(), surfaces_tools[i]->get_material(), surfaces_tools[i]->get_meta("name"));
+ }
+
+ set_lightmap_size_hint(Size2(size_x, size_y));
+
+ if (gen_cache_size > 0) {
+ r_dst_cache.resize(gen_cache_size);
+ memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
+ memfree(gen_cache);
+ }
+
+ if (!use_cache) {
+ // Cache was not used, free the buffers
+ memfree(gen_vertices);
+ memfree(gen_indices);
+ memfree(gen_uvs);
+ }
+
+ return OK;
+}
+
+void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) {
+ lightmap_size_hint = p_size;
+}
+
+Size2i ImporterMesh::get_lightmap_size_hint() const {
+ return lightmap_size_hint;
+}
+
+void ImporterMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ImporterMesh::add_blend_shape);
+ ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ImporterMesh::get_blend_shape_count);
+ ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &ImporterMesh::get_blend_shape_name);
+
+ ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ImporterMesh::set_blend_shape_mode);
+ ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ImporterMesh::get_blend_shape_mode);
+
+ ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name", "flags"), &ImporterMesh::add_surface, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0));
+
+ ClassDB::bind_method(D_METHOD("get_surface_count"), &ImporterMesh::get_surface_count);
+ ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &ImporterMesh::get_surface_primitive_type);
+ ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &ImporterMesh::get_surface_name);
+ ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &ImporterMesh::get_surface_arrays);
+ ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &ImporterMesh::get_surface_blend_shape_arrays);
+ ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &ImporterMesh::get_surface_lod_count);
+ ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_size);
+ ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_indices);
+ ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &ImporterMesh::get_surface_material);
+ ClassDB::bind_method(D_METHOD("get_surface_format", "surface_idx"), &ImporterMesh::get_surface_format);
+
+ ClassDB::bind_method(D_METHOD("set_surface_name", "surface_idx", "name"), &ImporterMesh::set_surface_name);
+ ClassDB::bind_method(D_METHOD("set_surface_material", "surface_idx", "material"), &ImporterMesh::set_surface_material);
+
+ ClassDB::bind_method(D_METHOD("get_mesh", "base_mesh"), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>()));
+ ClassDB::bind_method(D_METHOD("clear"), &ImporterMesh::clear);
+
+ ClassDB::bind_method(D_METHOD("_set_data", "data"), &ImporterMesh::_set_data);
+ ClassDB::bind_method(D_METHOD("_get_data"), &ImporterMesh::_get_data);
+
+ ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &ImporterMesh::set_lightmap_size_hint);
+ ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &ImporterMesh::get_lightmap_size_hint);
+
+ ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_data", "_get_data");
+}