diff options
Diffstat (limited to 'scene/resources/curve.cpp')
-rw-r--r-- | scene/resources/curve.cpp | 439 |
1 files changed, 265 insertions, 174 deletions
diff --git a/scene/resources/curve.cpp b/scene/resources/curve.cpp index 9289c5da4a..6fa0ebbf55 100644 --- a/scene/resources/curve.cpp +++ b/scene/resources/curve.cpp @@ -1,32 +1,32 @@ -/*************************************************************************/ -/* curve.cpp */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ +/**************************************************************************/ +/* curve.cpp */ +/**************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/**************************************************************************/ +/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/**************************************************************************/ #include "curve.h" @@ -341,7 +341,7 @@ real_t Curve::sample_local_nocheck(int p_index, real_t p_local_offset) const { const Point a = _points[p_index]; const Point b = _points[p_index + 1]; - /* Cubic bezier + /* Cubic bézier * * ac-----bc * / \ @@ -774,6 +774,35 @@ void Curve2D::_bake_segment2d(RBMap<real_t, Vector2> &r_bake, real_t p_begin, re } } +void Curve2D::_bake_segment2d_even_length(RBMap<real_t, Vector2> &r_bake, real_t p_begin, real_t p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, real_t p_length) const { + Vector2 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin); + Vector2 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end); + + real_t length = beg.distance_to(end); + + if (length > p_length && p_depth < p_max_depth) { + real_t mp = (p_begin + p_end) * 0.5; + Vector2 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp); + r_bake[mp] = mid; + + _bake_segment2d_even_length(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + _bake_segment2d_even_length(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + } +} + +Vector2 Curve2D::_calculate_tangent(const Vector2 &p_begin, const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) { + // Handle corner cases. + if (Math::is_zero_approx(p_t - 0.0f) && p_control_1.is_equal_approx(p_begin)) { + return (p_end - p_begin).normalized(); + } + + if (Math::is_zero_approx(p_t - 1.0f) && p_control_2.is_equal_approx(p_end)) { + return (p_end - p_begin).normalized(); + } + + return p_begin.bezier_derivative(p_control_1, p_control_2, p_end, p_t).normalized(); +} + void Curve2D::_bake() const { if (!baked_cache_dirty) { return; @@ -785,94 +814,62 @@ void Curve2D::_bake() const { if (points.size() == 0) { baked_point_cache.clear(); baked_dist_cache.clear(); + baked_forward_vector_cache.clear(); return; } if (points.size() == 1) { baked_point_cache.resize(1); baked_point_cache.set(0, points[0].position); - baked_dist_cache.resize(1); baked_dist_cache.set(0, 0.0); + baked_forward_vector_cache.resize(1); + baked_forward_vector_cache.set(0, Vector2(0.0, 0.1)); + return; } - Vector2 position = points[0].position; - real_t dist = 0.0; - - List<Vector2> pointlist; - List<real_t> distlist; - - // Start always from origin. - pointlist.push_back(position); - distlist.push_back(0.0); - - for (int i = 0; i < points.size() - 1; i++) { - real_t step = 0.1; // at least 10 substeps ought to be enough? - real_t p = 0.0; - - while (p < 1.0) { - real_t np = p + step; - if (np > 1.0) { - np = 1.0; - } - - Vector2 npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, np); - real_t d = position.distance_to(npp); - - if (d > bake_interval) { - // OK! between P and NP there _has_ to be Something, let's go searching! - - int iterations = 10; //lots of detail! - - real_t low = p; - real_t hi = np; - real_t mid = low + (hi - low) * 0.5; - - for (int j = 0; j < iterations; j++) { - npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, mid); - d = position.distance_to(npp); - - if (bake_interval < d) { - hi = mid; - } else { - low = mid; - } - mid = low + (hi - low) * 0.5; - } - - position = npp; - p = mid; - dist += d; + // Tessellate curve to (almost) even length segments + { + Vector<RBMap<real_t, Vector2>> midpoints = _tessellate_even_length(10, bake_interval); - pointlist.push_back(position); - distlist.push_back(dist); - } else { - p = np; - } + int pc = 1; + for (int i = 0; i < points.size() - 1; i++) { + pc++; + pc += midpoints[i].size(); } - Vector2 npp = points[i + 1].position; - real_t d = position.distance_to(npp); - - position = npp; - dist += d; + baked_point_cache.resize(pc); + baked_dist_cache.resize(pc); + baked_forward_vector_cache.resize(pc); - pointlist.push_back(position); - distlist.push_back(dist); - } + Vector2 *bpw = baked_point_cache.ptrw(); + Vector2 *bfw = baked_forward_vector_cache.ptrw(); - baked_max_ofs = dist; + // Collect positions and sample tilts and tangents for each baked points. + bpw[0] = points[0].position; + bfw[0] = _calculate_tangent(points[0].position, points[0].position + points[0].out, points[1].position + points[1].in, points[1].position, 0.0); + int pidx = 0; - baked_point_cache.resize(pointlist.size()); - baked_dist_cache.resize(distlist.size()); + for (int i = 0; i < points.size() - 1; i++) { + for (const KeyValue<real_t, Vector2> &E : midpoints[i]) { + pidx++; + bpw[pidx] = E.value; + bfw[pidx] = _calculate_tangent(points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, E.key); + } - Vector2 *w = baked_point_cache.ptrw(); - real_t *wd = baked_dist_cache.ptrw(); + pidx++; + bpw[pidx] = points[i + 1].position; + bfw[pidx] = _calculate_tangent(points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, 1.0); + } - for (int i = 0; i < pointlist.size(); i++) { - w[i] = pointlist[i]; - wd[i] = distlist[i]; + // Recalculate the baked distances. + real_t *bdw = baked_dist_cache.ptrw(); + bdw[0] = 0.0; + for (int i = 0; i < pc - 1; i++) { + bdw[i + 1] = bdw[i] + bpw[i].distance_to(bpw[i + 1]); + } + baked_max_ofs = bdw[pc - 1]; } } @@ -884,27 +881,15 @@ real_t Curve2D::get_baked_length() const { return baked_max_ofs; } -Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const { - if (baked_cache_dirty) { - _bake(); - } +Curve2D::Interval Curve2D::_find_interval(real_t p_offset) const { + Interval interval = { + -1, + 0.0 + }; + ERR_FAIL_COND_V_MSG(baked_cache_dirty, interval, "Backed cache is dirty"); - // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); - ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D."); - - if (pc == 1) { - return baked_point_cache.get(0); - } - - const Vector2 *r = baked_point_cache.ptr(); - - if (p_offset < 0) { - return r[0]; - } - if (p_offset >= baked_max_ofs) { - return r[pc - 1]; - } + ERR_FAIL_COND_V_MSG(pc < 2, interval, "Less than two points in cache"); int start = 0; int end = pc; @@ -924,9 +909,27 @@ Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const { real_t offset_end = baked_dist_cache[idx + 1]; real_t idx_interval = offset_end - offset_begin; - ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, Vector2(), "Couldn't find baked segment."); + ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, interval, "Offset out of range."); + + interval.idx = idx; + if (idx_interval < FLT_EPSILON) { + interval.frac = 0.5; // For a very short interval, 0.5 is a reasonable choice. + ERR_FAIL_V_MSG(interval, "Zero length interval."); + } + + interval.frac = (p_offset - offset_begin) / idx_interval; + return interval; +} + +Vector2 Curve2D::_sample_baked(Interval p_interval, bool p_cubic) const { + // Assuming p_interval is valid. + ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Vector2(), "Invalid interval"); - real_t frac = (p_offset - offset_begin) / idx_interval; + int idx = p_interval.idx; + real_t frac = p_interval.frac; + + const Vector2 *r = baked_point_cache.ptr(); + int pc = baked_point_cache.size(); if (p_cubic) { Vector2 pre = idx > 0 ? r[idx - 1] : r[idx]; @@ -937,44 +940,70 @@ Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const { } } -Transform2D Curve2D::sample_baked_with_rotation(real_t p_offset, bool p_cubic, bool p_loop, real_t p_lookahead) const { - real_t path_length = get_baked_length(); // Ensure baked. - ERR_FAIL_COND_V_MSG(path_length == 0, Transform2D(), "Length of Curve2D is 0."); +Transform2D Curve2D::_sample_posture(Interval p_interval) const { + // Assuming that p_interval is valid. + ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Transform2D(), "Invalid interval"); - Vector2 pos = sample_baked(p_offset, p_cubic); + int idx = p_interval.idx; + real_t frac = p_interval.frac; - real_t ahead = p_offset + p_lookahead; + Vector2 forward_begin = baked_forward_vector_cache[idx]; + Vector2 forward_end = baked_forward_vector_cache[idx + 1]; - if (p_loop && ahead >= path_length) { - // If our lookahead will loop, we need to check if the path is closed. - int point_count = get_point_count(); - if (point_count > 0) { - Vector2 start_point = get_point_position(0); - Vector2 end_point = get_point_position(point_count - 1); - if (start_point == end_point) { - // Since the path is closed we want to 'smooth off' - // the corner at the start/end. - // So we wrap the lookahead back round. - ahead = Math::fmod(ahead, path_length); - } - } + // Build frames at both ends of the interval, then interpolate. + const Vector2 forward = forward_begin.slerp(forward_end, frac).normalized(); + const Vector2 side = Vector2(-forward.y, forward.x); + + return Transform2D(side, forward, Vector2(0.0, 0.0)); +} + +Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const { + if (baked_cache_dirty) { + _bake(); } - Vector2 ahead_pos = sample_baked(ahead, p_cubic); + // Validate: Curve may not have baked points. + int pc = baked_point_cache.size(); + ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D."); - Vector2 tangent_to_curve; - if (ahead_pos == pos) { - // This will happen at the end of non-looping or non-closed paths. - // We'll try a look behind instead, in order to get a meaningful angle. - tangent_to_curve = - (pos - sample_baked(p_offset - p_lookahead, p_cubic)).normalized(); - } else { - tangent_to_curve = (ahead_pos - pos).normalized(); + if (pc == 1) { + return baked_point_cache[0]; } - Vector2 normal_of_curve = -tangent_to_curve.orthogonal(); + p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic. - return Transform2D(normal_of_curve, tangent_to_curve, pos); + Curve2D::Interval interval = _find_interval(p_offset); + return _sample_baked(interval, p_cubic); +} + +Transform2D Curve2D::sample_baked_with_rotation(real_t p_offset, bool p_cubic) const { + if (baked_cache_dirty) { + _bake(); + } + + // Validate: Curve may not have baked points. + const int point_count = baked_point_cache.size(); + ERR_FAIL_COND_V_MSG(point_count == 0, Transform2D(), "No points in Curve3D."); + + if (point_count == 1) { + Transform2D t; + t.set_origin(baked_point_cache.get(0)); + ERR_FAIL_V_MSG(t, "Only 1 point in Curve2D."); + } + + p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic. + + // 0. Find interval for all sampling steps. + Curve2D::Interval interval = _find_interval(p_offset); + + // 1. Sample position. + Vector2 pos = _sample_baked(interval, p_cubic); + + // 2. Sample rotation frame. + Transform2D frame = _sample_posture(interval); + frame.set_origin(pos); + + return frame; } PackedVector2Array Curve2D::get_baked_points() const { @@ -1015,10 +1044,11 @@ Vector2 Curve2D::get_closest_point(const Vector2 &p_to_point) const { real_t nearest_dist = -1.0f; for (int i = 0; i < pc - 1; i++) { + const real_t interval = baked_dist_cache[i + 1] - baked_dist_cache[i]; Vector2 origin = r[i]; - Vector2 direction = (r[i + 1] - origin) / bake_interval; + Vector2 direction = (r[i + 1] - origin) / interval; - real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); + real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, interval); Vector2 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); @@ -1054,10 +1084,13 @@ real_t Curve2D::get_closest_offset(const Vector2 &p_to_point) const { real_t offset = 0.0f; for (int i = 0; i < pc - 1; i++) { + offset = baked_dist_cache[i]; + + const real_t interval = baked_dist_cache[i + 1] - baked_dist_cache[i]; Vector2 origin = r[i]; - Vector2 direction = (r[i + 1] - origin) / bake_interval; + Vector2 direction = (r[i + 1] - origin) / interval; - real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); + real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, interval); Vector2 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); @@ -1066,8 +1099,6 @@ real_t Curve2D::get_closest_offset(const Vector2 &p_to_point) const { nearest = offset + d; nearest_dist = dist; } - - offset += bake_interval; } return nearest; @@ -1147,6 +1178,50 @@ PackedVector2Array Curve2D::tessellate(int p_max_stages, real_t p_tolerance) con return tess; } +Vector<RBMap<real_t, Vector2>> Curve2D::_tessellate_even_length(int p_max_stages, real_t p_length) const { + Vector<RBMap<real_t, Vector2>> midpoints; + ERR_FAIL_COND_V_MSG(points.size() < 2, midpoints, "Curve must have at least 2 control point"); + + midpoints.resize(points.size() - 1); + + for (int i = 0; i < points.size() - 1; i++) { + _bake_segment2d_even_length(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_length); + } + return midpoints; +} + +PackedVector2Array Curve2D::tessellate_even_length(int p_max_stages, real_t p_length) const { + PackedVector2Array tess; + + Vector<RBMap<real_t, Vector2>> midpoints = _tessellate_even_length(p_max_stages, p_length); + if (midpoints.size() == 0) { + return tess; + } + + int pc = 1; + for (int i = 0; i < points.size() - 1; i++) { + pc++; + pc += midpoints[i].size(); + } + + tess.resize(pc); + Vector2 *bpw = tess.ptrw(); + bpw[0] = points[0].position; + int pidx = 0; + + for (int i = 0; i < points.size() - 1; i++) { + for (const KeyValue<real_t, Vector2> &E : midpoints[i]) { + pidx++; + bpw[pidx] = E.value; + } + + pidx++; + bpw[pidx] = points[i + 1].position; + } + + return tess; +} + bool Curve2D::_set(const StringName &p_name, const Variant &p_value) { Vector<String> components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { @@ -1224,12 +1299,13 @@ void Curve2D::_bind_methods() { ClassDB::bind_method(D_METHOD("get_bake_interval"), &Curve2D::get_bake_interval); ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve2D::get_baked_length); - ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve2D::sample_baked, DEFVAL(false)); - ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "loop", "lookahead"), &Curve2D::sample_baked_with_rotation, DEFVAL(false), DEFVAL(true), DEFVAL(4.0)); + ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve2D::sample_baked, DEFVAL(0.0), DEFVAL(false)); + ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic"), &Curve2D::sample_baked_with_rotation, DEFVAL(0.0), DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve2D::get_baked_points); ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve2D::get_closest_point); ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve2D::get_closest_offset); ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve2D::tessellate, DEFVAL(5), DEFVAL(4)); + ClassDB::bind_method(D_METHOD("tessellate_even_length", "max_stages", "tolerance_length"), &Curve2D::tessellate_even_length, DEFVAL(5), DEFVAL(20.0)); ClassDB::bind_method(D_METHOD("_get_data"), &Curve2D::_get_data); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve2D::_set_data); @@ -1407,16 +1483,29 @@ void Curve3D::_bake_segment3d_even_length(RBMap<real_t, Vector3> &r_bake, real_t Vector3 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin); Vector3 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end); - size_t length = beg.distance_to(end); + real_t length = beg.distance_to(end); if (length > p_length && p_depth < p_max_depth) { real_t mp = (p_begin + p_end) * 0.5; Vector3 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp); r_bake[mp] = mid; - _bake_segment3d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); - _bake_segment3d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + _bake_segment3d_even_length(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + _bake_segment3d_even_length(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + } +} + +Vector3 Curve3D::_calculate_tangent(const Vector3 &p_begin, const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) { + // Handle corner cases. + if (Math::is_zero_approx(p_t - 0.0f) && p_control_1.is_equal_approx(p_begin)) { + return (p_end - p_begin).normalized(); } + + if (Math::is_zero_approx(p_t - 1.0f) && p_control_2.is_equal_approx(p_end)) { + return (p_end - p_begin).normalized(); + } + + return p_begin.bezier_derivative(p_control_1, p_control_2, p_end, p_t).normalized(); } void Curve3D::_bake() const { @@ -1457,7 +1546,7 @@ void Curve3D::_bake() const { return; } - // Step 1: Tesselate curve to (almost) even length segments + // Step 1: Tessellate curve to (almost) even length segments { Vector<RBMap<real_t, Vector3>> midpoints = _tessellate_even_length(10, bake_interval); @@ -1478,7 +1567,7 @@ void Curve3D::_bake() const { // Collect positions and sample tilts and tangents for each baked points. bpw[0] = points[0].position; - bfw[0] = points[0].position.bezier_derivative(points[0].position + points[0].out, points[1].position + points[1].in, points[1].position, 0.0).normalized(); + bfw[0] = _calculate_tangent(points[0].position, points[0].position + points[0].out, points[1].position + points[1].in, points[1].position, 0.0); btw[0] = points[0].tilt; int pidx = 0; @@ -1486,13 +1575,13 @@ void Curve3D::_bake() const { for (const KeyValue<real_t, Vector3> &E : midpoints[i]) { pidx++; bpw[pidx] = E.value; - bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, E.key).normalized(); + bfw[pidx] = _calculate_tangent(points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, E.key); btw[pidx] = Math::lerp(points[i].tilt, points[i + 1].tilt, E.key); } pidx++; bpw[pidx] = points[i + 1].position; - bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, 1.0).normalized(); + bfw[pidx] = _calculate_tangent(points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, 1.0); btw[pidx] = points[i + 1].tilt; } @@ -1560,7 +1649,7 @@ void Curve3D::_bake() const { } real_t dot = forward_ptr[0].dot(forward_ptr[point_count - 1]); - if (dot < 1.0 - UNIT_EPSILON) { // Alignment should not be too tight, or it dosen't work for coarse bake interval. + if (dot < 1.0 - UNIT_EPSILON) { // Alignment should not be too tight, or it doesn't work for coarse bake interval. is_loop = false; } } @@ -1839,10 +1928,11 @@ Vector3 Curve3D::get_closest_point(const Vector3 &p_to_point) const { real_t nearest_dist = -1.0f; for (int i = 0; i < pc - 1; i++) { + const real_t interval = baked_dist_cache[i + 1] - baked_dist_cache[i]; Vector3 origin = r[i]; - Vector3 direction = (r[i + 1] - origin) / bake_interval; + Vector3 direction = (r[i + 1] - origin) / interval; - real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); + real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, interval); Vector3 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); @@ -1875,13 +1965,16 @@ real_t Curve3D::get_closest_offset(const Vector3 &p_to_point) const { real_t nearest = 0.0f; real_t nearest_dist = -1.0f; - real_t offset = 0.0f; + real_t offset; for (int i = 0; i < pc - 1; i++) { + offset = baked_dist_cache[i]; + + const real_t interval = baked_dist_cache[i + 1] - baked_dist_cache[i]; Vector3 origin = r[i]; - Vector3 direction = (r[i + 1] - origin) / bake_interval; + Vector3 direction = (r[i + 1] - origin) / interval; - real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); + real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, interval); Vector3 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); @@ -1890,8 +1983,6 @@ real_t Curve3D::get_closest_offset(const Vector3 &p_to_point) const { nearest = offset + d; nearest_dist = dist; } - - offset += bake_interval; } return nearest; @@ -2131,8 +2222,8 @@ void Curve3D::_bind_methods() { ClassDB::bind_method(D_METHOD("is_up_vector_enabled"), &Curve3D::is_up_vector_enabled); ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve3D::get_baked_length); - ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve3D::sample_baked, DEFVAL(false)); - ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "apply_tilt"), &Curve3D::sample_baked_with_rotation, DEFVAL(false), DEFVAL(false)); + ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve3D::sample_baked, DEFVAL(0.0), DEFVAL(false)); + ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "apply_tilt"), &Curve3D::sample_baked_with_rotation, DEFVAL(0.0), DEFVAL(false), DEFVAL(false)); ClassDB::bind_method(D_METHOD("sample_baked_up_vector", "offset", "apply_tilt"), &Curve3D::sample_baked_up_vector, DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve3D::get_baked_points); ClassDB::bind_method(D_METHOD("get_baked_tilts"), &Curve3D::get_baked_tilts); |