summaryrefslogtreecommitdiff
path: root/scene/resources/curve.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/resources/curve.cpp')
-rw-r--r--scene/resources/curve.cpp484
1 files changed, 242 insertions, 242 deletions
diff --git a/scene/resources/curve.cpp b/scene/resources/curve.cpp
index b87639de6a..bf3efd7599 100644
--- a/scene/resources/curve.cpp
+++ b/scene/resources/curve.cpp
@@ -33,15 +33,15 @@
#include "core/core_string_names.h"
template <class T>
-static _FORCE_INLINE_ T _bezier_interp(real_t t, T start, T control_1, T control_2, T end) {
+static _FORCE_INLINE_ T _bezier_interp(real_t p_t, T p_start, T p_control_1, T p_control_2, T p_end) {
/* Formula from Wikipedia article on Bezier curves. */
- real_t omt = (1.0 - t);
+ real_t omt = (1.0 - p_t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
- real_t t2 = t * t;
- real_t t3 = t2 * t;
+ real_t t2 = p_t * p_t;
+ real_t t3 = t2 * p_t;
- return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
+ return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}
const char *Curve::SIGNAL_RANGE_CHANGED = "range_changed";
@@ -49,46 +49,46 @@ const char *Curve::SIGNAL_RANGE_CHANGED = "range_changed";
Curve::Curve() {
}
-int Curve::add_point(Vector2 p_pos, real_t left_tangent, real_t right_tangent, TangentMode left_mode, TangentMode right_mode) {
+int Curve::add_point(Vector2 p_position, real_t p_left_tangent, real_t p_right_tangent, TangentMode p_left_mode, TangentMode p_right_mode) {
// Add a point and preserve order
// Curve bounds is in 0..1
- if (p_pos.x > MAX_X) {
- p_pos.x = MAX_X;
- } else if (p_pos.x < MIN_X) {
- p_pos.x = MIN_X;
+ if (p_position.x > MAX_X) {
+ p_position.x = MAX_X;
+ } else if (p_position.x < MIN_X) {
+ p_position.x = MIN_X;
}
int ret = -1;
if (_points.size() == 0) {
- _points.push_back(Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
+ _points.push_back(Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode));
ret = 0;
} else if (_points.size() == 1) {
// TODO Is the `else` able to handle this block already?
- real_t diff = p_pos.x - _points[0].pos.x;
+ real_t diff = p_position.x - _points[0].position.x;
if (diff > 0) {
- _points.push_back(Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
+ _points.push_back(Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode));
ret = 1;
} else {
- _points.insert(0, Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
+ _points.insert(0, Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode));
ret = 0;
}
} else {
- int i = get_index(p_pos.x);
+ int i = get_index(p_position.x);
- if (i == 0 && p_pos.x < _points[0].pos.x) {
+ if (i == 0 && p_position.x < _points[0].position.x) {
// Insert before anything else
- _points.insert(0, Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
+ _points.insert(0, Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode));
ret = 0;
} else {
// Insert between i and i+1
++i;
- _points.insert(i, Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
+ _points.insert(i, Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode));
ret = i;
}
}
@@ -100,7 +100,7 @@ int Curve::add_point(Vector2 p_pos, real_t left_tangent, real_t right_tangent, T
return ret;
}
-int Curve::get_index(real_t offset) const {
+int Curve::get_index(real_t p_offset) const {
// Lower-bound float binary search
int imin = 0;
@@ -109,13 +109,13 @@ int Curve::get_index(real_t offset) const {
while (imax - imin > 1) {
int m = (imin + imax) / 2;
- real_t a = _points[m].pos.x;
- real_t b = _points[m + 1].pos.x;
+ real_t a = _points[m].position.x;
+ real_t b = _points[m + 1].position.x;
- if (a < offset && b < offset) {
+ if (a < p_offset && b < p_offset) {
imin = m;
- } else if (a > offset) {
+ } else if (a > p_offset) {
imax = m;
} else {
@@ -124,7 +124,7 @@ int Curve::get_index(real_t offset) const {
}
// Will happen if the offset is out of bounds
- if (offset > _points[imax].pos.x) {
+ if (p_offset > _points[imax].position.x) {
return imax;
}
return imin;
@@ -134,7 +134,7 @@ void Curve::clean_dupes() {
bool dirty = false;
for (int i = 1; i < _points.size(); ++i) {
- real_t diff = _points[i - 1].pos.x - _points[i].pos.x;
+ real_t diff = _points[i - 1].position.x - _points[i].position.x;
if (diff <= CMP_EPSILON) {
_points.remove_at(i);
--i;
@@ -147,62 +147,62 @@ void Curve::clean_dupes() {
}
}
-void Curve::set_point_left_tangent(int i, real_t tangent) {
- ERR_FAIL_INDEX(i, _points.size());
- _points.write[i].left_tangent = tangent;
- _points.write[i].left_mode = TANGENT_FREE;
+void Curve::set_point_left_tangent(int p_index, real_t p_tangent) {
+ ERR_FAIL_INDEX(p_index, _points.size());
+ _points.write[p_index].left_tangent = p_tangent;
+ _points.write[p_index].left_mode = TANGENT_FREE;
mark_dirty();
}
-void Curve::set_point_right_tangent(int i, real_t tangent) {
- ERR_FAIL_INDEX(i, _points.size());
- _points.write[i].right_tangent = tangent;
- _points.write[i].right_mode = TANGENT_FREE;
+void Curve::set_point_right_tangent(int p_index, real_t p_tangent) {
+ ERR_FAIL_INDEX(p_index, _points.size());
+ _points.write[p_index].right_tangent = p_tangent;
+ _points.write[p_index].right_mode = TANGENT_FREE;
mark_dirty();
}
-void Curve::set_point_left_mode(int i, TangentMode p_mode) {
- ERR_FAIL_INDEX(i, _points.size());
- _points.write[i].left_mode = p_mode;
- if (i > 0) {
+void Curve::set_point_left_mode(int p_index, TangentMode p_mode) {
+ ERR_FAIL_INDEX(p_index, _points.size());
+ _points.write[p_index].left_mode = p_mode;
+ if (p_index > 0) {
if (p_mode == TANGENT_LINEAR) {
- Vector2 v = (_points[i - 1].pos - _points[i].pos).normalized();
- _points.write[i].left_tangent = v.y / v.x;
+ Vector2 v = (_points[p_index - 1].position - _points[p_index].position).normalized();
+ _points.write[p_index].left_tangent = v.y / v.x;
}
}
mark_dirty();
}
-void Curve::set_point_right_mode(int i, TangentMode p_mode) {
- ERR_FAIL_INDEX(i, _points.size());
- _points.write[i].right_mode = p_mode;
- if (i + 1 < _points.size()) {
+void Curve::set_point_right_mode(int p_index, TangentMode p_mode) {
+ ERR_FAIL_INDEX(p_index, _points.size());
+ _points.write[p_index].right_mode = p_mode;
+ if (p_index + 1 < _points.size()) {
if (p_mode == TANGENT_LINEAR) {
- Vector2 v = (_points[i + 1].pos - _points[i].pos).normalized();
- _points.write[i].right_tangent = v.y / v.x;
+ Vector2 v = (_points[p_index + 1].position - _points[p_index].position).normalized();
+ _points.write[p_index].right_tangent = v.y / v.x;
}
}
mark_dirty();
}
-real_t Curve::get_point_left_tangent(int i) const {
- ERR_FAIL_INDEX_V(i, _points.size(), 0);
- return _points[i].left_tangent;
+real_t Curve::get_point_left_tangent(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, _points.size(), 0);
+ return _points[p_index].left_tangent;
}
-real_t Curve::get_point_right_tangent(int i) const {
- ERR_FAIL_INDEX_V(i, _points.size(), 0);
- return _points[i].right_tangent;
+real_t Curve::get_point_right_tangent(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, _points.size(), 0);
+ return _points[p_index].right_tangent;
}
-Curve::TangentMode Curve::get_point_left_mode(int i) const {
- ERR_FAIL_INDEX_V(i, _points.size(), TANGENT_FREE);
- return _points[i].left_mode;
+Curve::TangentMode Curve::get_point_left_mode(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, _points.size(), TANGENT_FREE);
+ return _points[p_index].left_mode;
}
-Curve::TangentMode Curve::get_point_right_mode(int i) const {
- ERR_FAIL_INDEX_V(i, _points.size(), TANGENT_FREE);
- return _points[i].right_mode;
+Curve::TangentMode Curve::get_point_right_mode(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, _points.size(), TANGENT_FREE);
+ return _points[p_index].right_mode;
}
void Curve::remove_point(int p_index) {
@@ -216,18 +216,18 @@ void Curve::clear_points() {
mark_dirty();
}
-void Curve::set_point_value(int p_index, real_t pos) {
+void Curve::set_point_value(int p_index, real_t p_position) {
ERR_FAIL_INDEX(p_index, _points.size());
- _points.write[p_index].pos.y = pos;
+ _points.write[p_index].position.y = p_position;
update_auto_tangents(p_index);
mark_dirty();
}
-int Curve::set_point_offset(int p_index, float offset) {
+int Curve::set_point_offset(int p_index, real_t p_offset) {
ERR_FAIL_INDEX_V(p_index, _points.size(), -1);
Point p = _points[p_index];
remove_point(p_index);
- int i = add_point(Vector2(offset, p.pos.y));
+ int i = add_point(Vector2(p_offset, p.position.y));
_points.write[i].left_tangent = p.left_tangent;
_points.write[i].right_tangent = p.right_tangent;
_points.write[i].left_mode = p.left_mode;
@@ -241,7 +241,7 @@ int Curve::set_point_offset(int p_index, float offset) {
Vector2 Curve::get_point_position(int p_index) const {
ERR_FAIL_INDEX_V(p_index, _points.size(), Vector2(0, 0));
- return _points[p_index].pos;
+ return _points[p_index].position;
}
Curve::Point Curve::get_point(int p_index) const {
@@ -249,35 +249,35 @@ Curve::Point Curve::get_point(int p_index) const {
return _points[p_index];
}
-void Curve::update_auto_tangents(int i) {
- Point &p = _points.write[i];
+void Curve::update_auto_tangents(int p_index) {
+ Point &p = _points.write[p_index];
- if (i > 0) {
+ if (p_index > 0) {
if (p.left_mode == TANGENT_LINEAR) {
- Vector2 v = (_points[i - 1].pos - p.pos).normalized();
+ Vector2 v = (_points[p_index - 1].position - p.position).normalized();
p.left_tangent = v.y / v.x;
}
- if (_points[i - 1].right_mode == TANGENT_LINEAR) {
- Vector2 v = (_points[i - 1].pos - p.pos).normalized();
- _points.write[i - 1].right_tangent = v.y / v.x;
+ if (_points[p_index - 1].right_mode == TANGENT_LINEAR) {
+ Vector2 v = (_points[p_index - 1].position - p.position).normalized();
+ _points.write[p_index - 1].right_tangent = v.y / v.x;
}
}
- if (i + 1 < _points.size()) {
+ if (p_index + 1 < _points.size()) {
if (p.right_mode == TANGENT_LINEAR) {
- Vector2 v = (_points[i + 1].pos - p.pos).normalized();
+ Vector2 v = (_points[p_index + 1].position - p.position).normalized();
p.right_tangent = v.y / v.x;
}
- if (_points[i + 1].left_mode == TANGENT_LINEAR) {
- Vector2 v = (_points[i + 1].pos - p.pos).normalized();
- _points.write[i + 1].left_tangent = v.y / v.x;
+ if (_points[p_index + 1].left_mode == TANGENT_LINEAR) {
+ Vector2 v = (_points[p_index + 1].position - p.position).normalized();
+ _points.write[p_index + 1].left_tangent = v.y / v.x;
}
}
}
#define MIN_Y_RANGE 0.01
-void Curve::set_min_value(float p_min) {
+void Curve::set_min_value(real_t p_min) {
if (_minmax_set_once & 0b11 && p_min > _max_value - MIN_Y_RANGE) {
_min_value = _max_value - MIN_Y_RANGE;
} else {
@@ -289,7 +289,7 @@ void Curve::set_min_value(float p_min) {
emit_signal(SNAME(SIGNAL_RANGE_CHANGED));
}
-void Curve::set_max_value(float p_max) {
+void Curve::set_max_value(real_t p_max) {
if (_minmax_set_once & 0b11 && p_max < _min_value + MIN_Y_RANGE) {
_max_value = _min_value + MIN_Y_RANGE;
} else {
@@ -299,32 +299,32 @@ void Curve::set_max_value(float p_max) {
emit_signal(SNAME(SIGNAL_RANGE_CHANGED));
}
-real_t Curve::interpolate(real_t offset) const {
+real_t Curve::interpolate(real_t p_offset) const {
if (_points.size() == 0) {
return 0;
}
if (_points.size() == 1) {
- return _points[0].pos.y;
+ return _points[0].position.y;
}
- int i = get_index(offset);
+ int i = get_index(p_offset);
if (i == _points.size() - 1) {
- return _points[i].pos.y;
+ return _points[i].position.y;
}
- real_t local = offset - _points[i].pos.x;
+ real_t local = p_offset - _points[i].position.x;
if (i == 0 && local <= 0) {
- return _points[0].pos.y;
+ return _points[0].position.y;
}
return interpolate_local_nocheck(i, local);
}
-real_t Curve::interpolate_local_nocheck(int index, real_t local_offset) const {
- const Point a = _points[index];
- const Point b = _points[index + 1];
+real_t Curve::interpolate_local_nocheck(int p_index, real_t p_local_offset) const {
+ const Point a = _points[p_index];
+ const Point b = _points[p_index + 1];
/* Cubic bezier
*
@@ -341,16 +341,16 @@ real_t Curve::interpolate_local_nocheck(int index, real_t local_offset) const {
*/
// Control points are chosen at equal distances
- real_t d = b.pos.x - a.pos.x;
- if (Math::abs(d) <= CMP_EPSILON) {
- return b.pos.y;
+ real_t d = b.position.x - a.position.x;
+ if (Math::is_zero_approx(d)) {
+ return b.position.y;
}
- local_offset /= d;
+ p_local_offset /= d;
d /= 3.0;
- real_t yac = a.pos.y + d * a.right_tangent;
- real_t ybc = b.pos.y - d * b.left_tangent;
+ real_t yac = a.position.y + d * a.right_tangent;
+ real_t ybc = b.position.y - d * b.left_tangent;
- real_t y = _bezier_interp(local_offset, a.pos.y, yac, ybc, b.pos.y);
+ real_t y = _bezier_interp(p_local_offset, a.position.y, yac, ybc, b.position.y);
return y;
}
@@ -369,7 +369,7 @@ Array Curve::get_data() const {
const Point p = _points[j];
int i = j * ELEMS;
- output[i] = p.pos;
+ output[i] = p.position;
output[i + 1] = p.left_tangent;
output[i + 2] = p.right_tangent;
output[i + 3] = p.left_mode;
@@ -379,39 +379,39 @@ Array Curve::get_data() const {
return output;
}
-void Curve::set_data(Array input) {
+void Curve::set_data(const Array p_input) {
const unsigned int ELEMS = 5;
- ERR_FAIL_COND(input.size() % ELEMS != 0);
+ ERR_FAIL_COND(p_input.size() % ELEMS != 0);
_points.clear();
// Validate input
- for (int i = 0; i < input.size(); i += ELEMS) {
- ERR_FAIL_COND(input[i].get_type() != Variant::VECTOR2);
- ERR_FAIL_COND(!input[i + 1].is_num());
- ERR_FAIL_COND(input[i + 2].get_type() != Variant::FLOAT);
+ for (int i = 0; i < p_input.size(); i += ELEMS) {
+ ERR_FAIL_COND(p_input[i].get_type() != Variant::VECTOR2);
+ ERR_FAIL_COND(!p_input[i + 1].is_num());
+ ERR_FAIL_COND(p_input[i + 2].get_type() != Variant::FLOAT);
- ERR_FAIL_COND(input[i + 3].get_type() != Variant::INT);
- int left_mode = input[i + 3];
+ ERR_FAIL_COND(p_input[i + 3].get_type() != Variant::INT);
+ int left_mode = p_input[i + 3];
ERR_FAIL_COND(left_mode < 0 || left_mode >= TANGENT_MODE_COUNT);
- ERR_FAIL_COND(input[i + 4].get_type() != Variant::INT);
- int right_mode = input[i + 4];
+ ERR_FAIL_COND(p_input[i + 4].get_type() != Variant::INT);
+ int right_mode = p_input[i + 4];
ERR_FAIL_COND(right_mode < 0 || right_mode >= TANGENT_MODE_COUNT);
}
- _points.resize(input.size() / ELEMS);
+ _points.resize(p_input.size() / ELEMS);
for (int j = 0; j < _points.size(); ++j) {
Point &p = _points.write[j];
int i = j * ELEMS;
- p.pos = input[i];
- p.left_tangent = input[i + 1];
- p.right_tangent = input[i + 2];
+ p.position = p_input[i];
+ p.left_tangent = p_input[i + 1];
+ p.right_tangent = p_input[i + 2];
// TODO For some reason the compiler won't convert from Variant to enum
- int left_mode = input[i + 3];
- int right_mode = input[i + 4];
+ int left_mode = p_input[i + 3];
+ int right_mode = p_input[i + 4];
p.left_mode = (TangentMode)left_mode;
p.right_mode = (TangentMode)right_mode;
}
@@ -431,8 +431,8 @@ void Curve::bake() {
}
if (_points.size() != 0) {
- _baked_cache.write[0] = _points[0].pos.y;
- _baked_cache.write[_baked_cache.size() - 1] = _points[_points.size() - 1].pos.y;
+ _baked_cache.write[0] = _points[0].position.y;
+ _baked_cache.write[_baked_cache.size() - 1] = _points[_points.size() - 1].position.y;
}
_baked_cache_dirty = false;
@@ -445,7 +445,7 @@ void Curve::set_bake_resolution(int p_resolution) {
_baked_cache_dirty = true;
}
-real_t Curve::interpolate_baked(real_t offset) const {
+real_t Curve::interpolate_baked(real_t p_offset) const {
if (_baked_cache_dirty) {
// Last-second bake if not done already
const_cast<Curve *>(this)->bake();
@@ -456,13 +456,13 @@ real_t Curve::interpolate_baked(real_t offset) const {
if (_points.size() == 0) {
return 0;
}
- return _points[0].pos.y;
+ return _points[0].position.y;
} else if (_baked_cache.size() == 1) {
return _baked_cache[0];
}
// Get interpolation index
- real_t fi = offset * _baked_cache.size();
+ real_t fi = p_offset * _baked_cache.size();
int i = Math::floor(fi);
if (i < 0) {
i = 0;
@@ -481,7 +481,7 @@ real_t Curve::interpolate_baked(real_t offset) const {
}
}
-void Curve::ensure_default_setup(float p_min, float p_max) {
+void Curve::ensure_default_setup(real_t p_min, real_t p_max) {
if (_points.size() == 0 && _min_value == 0 && _max_value == 1) {
add_point(Vector2(0, 1));
add_point(Vector2(1, 1));
@@ -535,9 +535,9 @@ int Curve2D::get_point_count() const {
return points.size();
}
-void Curve2D::add_point(const Vector2 &p_pos, const Vector2 &p_in, const Vector2 &p_out, int p_atpos) {
+void Curve2D::add_point(const Vector2 &p_position, const Vector2 &p_in, const Vector2 &p_out, int p_atpos) {
Point n;
- n.pos = p_pos;
+ n.position = p_position;
n.in = p_in;
n.out = p_out;
if (p_atpos >= 0 && p_atpos < points.size()) {
@@ -550,17 +550,17 @@ void Curve2D::add_point(const Vector2 &p_pos, const Vector2 &p_in, const Vector2
emit_signal(CoreStringNames::get_singleton()->changed);
}
-void Curve2D::set_point_position(int p_index, const Vector2 &p_pos) {
+void Curve2D::set_point_position(int p_index, const Vector2 &p_position) {
ERR_FAIL_INDEX(p_index, points.size());
- points.write[p_index].pos = p_pos;
+ points.write[p_index].position = p_position;
baked_cache_dirty = true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector2 Curve2D::get_point_position(int p_index) const {
ERR_FAIL_INDEX_V(p_index, points.size(), Vector2());
- return points[p_index].pos;
+ return points[p_index].position;
}
void Curve2D::set_point_in(int p_index, const Vector2 &p_in) {
@@ -604,19 +604,19 @@ void Curve2D::clear_points() {
}
}
-Vector2 Curve2D::interpolate(int p_index, float p_offset) const {
+Vector2 Curve2D::interpolate(int p_index, const real_t p_offset) const {
int pc = points.size();
ERR_FAIL_COND_V(pc == 0, Vector2());
if (p_index >= pc - 1) {
- return points[pc - 1].pos;
+ return points[pc - 1].position;
} else if (p_index < 0) {
- return points[0].pos;
+ return points[0].position;
}
- Vector2 p0 = points[p_index].pos;
+ Vector2 p0 = points[p_index].position;
Vector2 p1 = p0 + points[p_index].out;
- Vector2 p3 = points[p_index + 1].pos;
+ Vector2 p3 = points[p_index + 1].position;
Vector2 p2 = p3 + points[p_index + 1].in;
return _bezier_interp(p_offset, p0, p1, p2, p3);
@@ -632,15 +632,15 @@ Vector2 Curve2D::interpolatef(real_t p_findex) const {
return interpolate((int)p_findex, Math::fmod(p_findex, (real_t)1.0));
}
-void Curve2D::_bake_segment2d(Map<float, Vector2> &r_bake, float p_begin, float p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, float p_tol) const {
- float mp = p_begin + (p_end - p_begin) * 0.5;
+void Curve2D::_bake_segment2d(Map<real_t, Vector2> &r_bake, real_t p_begin, real_t p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, real_t p_tol) const {
+ real_t mp = p_begin + (p_end - p_begin) * 0.5;
Vector2 beg = _bezier_interp(p_begin, p_a, p_a + p_out, p_b + p_in, p_b);
Vector2 mid = _bezier_interp(mp, p_a, p_a + p_out, p_b + p_in, p_b);
Vector2 end = _bezier_interp(p_end, p_a, p_a + p_out, p_b + p_in, p_b);
Vector2 na = (mid - beg).normalized();
Vector2 nb = (end - mid).normalized();
- float dp = na.dot(nb);
+ real_t dp = na.dot(nb);
if (dp < Math::cos(Math::deg2rad(p_tol))) {
r_bake[mp] = mid;
@@ -668,47 +668,47 @@ void Curve2D::_bake() const {
if (points.size() == 1) {
baked_point_cache.resize(1);
- baked_point_cache.set(0, points[0].pos);
+ baked_point_cache.set(0, points[0].position);
baked_dist_cache.resize(1);
baked_dist_cache.set(0, 0.0);
return;
}
- Vector2 pos = points[0].pos;
- float dist = 0.0;
+ Vector2 position = points[0].position;
+ real_t dist = 0.0;
List<Vector2> pointlist;
- List<float> distlist;
+ List<real_t> distlist;
- pointlist.push_back(pos); //start always from origin
+ pointlist.push_back(position); //start always from origin
distlist.push_back(0.0);
for (int i = 0; i < points.size() - 1; i++) {
- float step = 0.1; // at least 10 substeps ought to be enough?
- float p = 0.0;
+ real_t step = 0.1; // at least 10 substeps ought to be enough?
+ real_t p = 0.0;
while (p < 1.0) {
- float np = p + step;
+ real_t np = p + step;
if (np > 1.0) {
np = 1.0;
}
- Vector2 npp = _bezier_interp(np, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
- float d = pos.distance_to(npp);
+ Vector2 npp = _bezier_interp(np, points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position);
+ real_t d = position.distance_to(npp);
if (d > bake_interval) {
// OK! between P and NP there _has_ to be Something, let's go searching!
int iterations = 10; //lots of detail!
- float low = p;
- float hi = np;
- float mid = low + (hi - low) * 0.5;
+ real_t low = p;
+ real_t hi = np;
+ real_t mid = low + (hi - low) * 0.5;
for (int j = 0; j < iterations; j++) {
- npp = _bezier_interp(mid, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
- d = pos.distance_to(npp);
+ npp = _bezier_interp(mid, points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position);
+ d = position.distance_to(npp);
if (bake_interval < d) {
hi = mid;
@@ -718,11 +718,11 @@ void Curve2D::_bake() const {
mid = low + (hi - low) * 0.5;
}
- pos = npp;
+ position = npp;
p = mid;
dist += d;
- pointlist.push_back(pos);
+ pointlist.push_back(position);
distlist.push_back(dist);
} else {
p = np;
@@ -730,9 +730,9 @@ void Curve2D::_bake() const {
}
}
- Vector2 lastpos = points[points.size() - 1].pos;
+ Vector2 lastpos = points[points.size() - 1].position;
- float rem = pos.distance_to(lastpos);
+ real_t rem = position.distance_to(lastpos);
dist += rem;
baked_max_ofs = dist;
pointlist.push_back(lastpos);
@@ -742,7 +742,7 @@ void Curve2D::_bake() const {
baked_dist_cache.resize(distlist.size());
Vector2 *w = baked_point_cache.ptrw();
- float *wd = baked_dist_cache.ptrw();
+ real_t *wd = baked_dist_cache.ptrw();
for (int i = 0; i < pointlist.size(); i++) {
w[i] = pointlist[i];
@@ -750,7 +750,7 @@ void Curve2D::_bake() const {
}
}
-float Curve2D::get_baked_length() const {
+real_t Curve2D::get_baked_length() const {
if (baked_cache_dirty) {
_bake();
}
@@ -758,7 +758,7 @@ float Curve2D::get_baked_length() const {
return baked_max_ofs;
}
-Vector2 Curve2D::interpolate_baked(float p_offset, bool p_cubic) const {
+Vector2 Curve2D::interpolate_baked(real_t p_offset, bool p_cubic) const {
if (baked_cache_dirty) {
_bake();
}
@@ -784,7 +784,7 @@ Vector2 Curve2D::interpolate_baked(float p_offset, bool p_cubic) const {
int start = 0, end = bpc, idx = (end + start) / 2;
// binary search to find baked points
while (start < idx) {
- float offset = baked_dist_cache[idx];
+ real_t offset = baked_dist_cache[idx];
if (p_offset <= offset) {
end = idx;
} else {
@@ -793,13 +793,13 @@ Vector2 Curve2D::interpolate_baked(float p_offset, bool p_cubic) const {
idx = (end + start) / 2;
}
- float offset_begin = baked_dist_cache[idx];
- float offset_end = baked_dist_cache[idx + 1];
+ real_t offset_begin = baked_dist_cache[idx];
+ real_t offset_end = baked_dist_cache[idx + 1];
- float idx_interval = offset_end - offset_begin;
+ real_t idx_interval = offset_end - offset_begin;
ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, Vector2(), "failed to find baked segment");
- float frac = (p_offset - offset_begin) / idx_interval;
+ real_t frac = (p_offset - offset_begin) / idx_interval;
if (p_cubic) {
Vector2 pre = idx > 0 ? r[idx - 1] : r[idx];
@@ -818,13 +818,13 @@ PackedVector2Array Curve2D::get_baked_points() const {
return baked_point_cache;
}
-void Curve2D::set_bake_interval(float p_tolerance) {
+void Curve2D::set_bake_interval(real_t p_tolerance) {
bake_interval = p_tolerance;
baked_cache_dirty = true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
-float Curve2D::get_bake_interval() const {
+real_t Curve2D::get_bake_interval() const {
return bake_interval;
}
@@ -846,16 +846,16 @@ Vector2 Curve2D::get_closest_point(const Vector2 &p_to_point) const {
const Vector2 *r = baked_point_cache.ptr();
Vector2 nearest;
- float nearest_dist = -1.0f;
+ real_t nearest_dist = -1.0f;
for (int i = 0; i < pc - 1; i++) {
Vector2 origin = r[i];
Vector2 direction = (r[i + 1] - origin) / bake_interval;
- float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
+ real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
Vector2 proj = origin + direction * d;
- float dist = proj.distance_squared_to(p_to_point);
+ real_t dist = proj.distance_squared_to(p_to_point);
if (nearest_dist < 0.0f || dist < nearest_dist) {
nearest = proj;
@@ -866,7 +866,7 @@ Vector2 Curve2D::get_closest_point(const Vector2 &p_to_point) const {
return nearest;
}
-float Curve2D::get_closest_offset(const Vector2 &p_to_point) const {
+real_t Curve2D::get_closest_offset(const Vector2 &p_to_point) const {
// Brute force method
if (baked_cache_dirty) {
@@ -883,18 +883,18 @@ float Curve2D::get_closest_offset(const Vector2 &p_to_point) const {
const Vector2 *r = baked_point_cache.ptr();
- float nearest = 0.0f;
- float nearest_dist = -1.0f;
- float offset = 0.0f;
+ real_t nearest = 0.0f;
+ real_t nearest_dist = -1.0f;
+ real_t offset = 0.0f;
for (int i = 0; i < pc - 1; i++) {
Vector2 origin = r[i];
Vector2 direction = (r[i + 1] - origin) / bake_interval;
- float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
+ real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
Vector2 proj = origin + direction * d;
- float dist = proj.distance_squared_to(p_to_point);
+ real_t dist = proj.distance_squared_to(p_to_point);
if (nearest_dist < 0.0f || dist < nearest_dist) {
nearest = offset + d;
@@ -917,7 +917,7 @@ Dictionary Curve2D::_get_data() const {
for (int i = 0; i < points.size(); i++) {
w[i * 3 + 0] = points[i].in;
w[i * 3 + 1] = points[i].out;
- w[i * 3 + 2] = points[i].pos;
+ w[i * 3 + 2] = points[i].position;
}
dc["points"] = d;
@@ -937,42 +937,42 @@ void Curve2D::_set_data(const Dictionary &p_data) {
for (int i = 0; i < points.size(); i++) {
points.write[i].in = r[i * 3 + 0];
points.write[i].out = r[i * 3 + 1];
- points.write[i].pos = r[i * 3 + 2];
+ points.write[i].position = r[i * 3 + 2];
}
baked_cache_dirty = true;
}
-PackedVector2Array Curve2D::tessellate(int p_max_stages, float p_tolerance) const {
+PackedVector2Array Curve2D::tessellate(int p_max_stages, real_t p_tolerance) const {
PackedVector2Array tess;
if (points.size() == 0) {
return tess;
}
- Vector<Map<float, Vector2>> midpoints;
+ Vector<Map<real_t, Vector2>> midpoints;
midpoints.resize(points.size() - 1);
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
- _bake_segment2d(midpoints.write[i], 0, 1, points[i].pos, points[i].out, points[i + 1].pos, points[i + 1].in, 0, p_max_stages, p_tolerance);
+ _bake_segment2d(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_tolerance);
pc++;
pc += midpoints[i].size();
}
tess.resize(pc);
Vector2 *bpw = tess.ptrw();
- bpw[0] = points[0].pos;
+ bpw[0] = points[0].position;
int pidx = 0;
for (int i = 0; i < points.size() - 1; i++) {
- for (const KeyValue<float, Vector2> &E : midpoints[i]) {
+ for (const KeyValue<real_t, Vector2> &E : midpoints[i]) {
pidx++;
bpw[pidx] = E.value;
}
pidx++;
- bpw[pidx] = points[i + 1].pos;
+ bpw[pidx] = points[i + 1].position;
}
return tess;
@@ -1026,9 +1026,9 @@ int Curve3D::get_point_count() const {
return points.size();
}
-void Curve3D::add_point(const Vector3 &p_pos, const Vector3 &p_in, const Vector3 &p_out, int p_atpos) {
+void Curve3D::add_point(const Vector3 &p_position, const Vector3 &p_in, const Vector3 &p_out, int p_atpos) {
Point n;
- n.pos = p_pos;
+ n.position = p_position;
n.in = p_in;
n.out = p_out;
if (p_atpos >= 0 && p_atpos < points.size()) {
@@ -1041,20 +1041,20 @@ void Curve3D::add_point(const Vector3 &p_pos, const Vector3 &p_in, const Vector3
emit_signal(CoreStringNames::get_singleton()->changed);
}
-void Curve3D::set_point_position(int p_index, const Vector3 &p_pos) {
+void Curve3D::set_point_position(int p_index, const Vector3 &p_position) {
ERR_FAIL_INDEX(p_index, points.size());
- points.write[p_index].pos = p_pos;
+ points.write[p_index].position = p_position;
baked_cache_dirty = true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
Vector3 Curve3D::get_point_position(int p_index) const {
ERR_FAIL_INDEX_V(p_index, points.size(), Vector3());
- return points[p_index].pos;
+ return points[p_index].position;
}
-void Curve3D::set_point_tilt(int p_index, float p_tilt) {
+void Curve3D::set_point_tilt(int p_index, real_t p_tilt) {
ERR_FAIL_INDEX(p_index, points.size());
points.write[p_index].tilt = p_tilt;
@@ -1062,7 +1062,7 @@ void Curve3D::set_point_tilt(int p_index, float p_tilt) {
emit_signal(CoreStringNames::get_singleton()->changed);
}
-float Curve3D::get_point_tilt(int p_index) const {
+real_t Curve3D::get_point_tilt(int p_index) const {
ERR_FAIL_INDEX_V(p_index, points.size(), 0);
return points[p_index].tilt;
}
@@ -1108,19 +1108,19 @@ void Curve3D::clear_points() {
}
}
-Vector3 Curve3D::interpolate(int p_index, float p_offset) const {
+Vector3 Curve3D::interpolate(int p_index, real_t p_offset) const {
int pc = points.size();
ERR_FAIL_COND_V(pc == 0, Vector3());
if (p_index >= pc - 1) {
- return points[pc - 1].pos;
+ return points[pc - 1].position;
} else if (p_index < 0) {
- return points[0].pos;
+ return points[0].position;
}
- Vector3 p0 = points[p_index].pos;
+ Vector3 p0 = points[p_index].position;
Vector3 p1 = p0 + points[p_index].out;
- Vector3 p3 = points[p_index + 1].pos;
+ Vector3 p3 = points[p_index + 1].position;
Vector3 p2 = p3 + points[p_index + 1].in;
return _bezier_interp(p_offset, p0, p1, p2, p3);
@@ -1136,15 +1136,15 @@ Vector3 Curve3D::interpolatef(real_t p_findex) const {
return interpolate((int)p_findex, Math::fmod(p_findex, (real_t)1.0));
}
-void Curve3D::_bake_segment3d(Map<float, Vector3> &r_bake, float p_begin, float p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, float p_tol) const {
- float mp = p_begin + (p_end - p_begin) * 0.5;
+void Curve3D::_bake_segment3d(Map<real_t, Vector3> &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_tol) const {
+ real_t mp = p_begin + (p_end - p_begin) * 0.5;
Vector3 beg = _bezier_interp(p_begin, p_a, p_a + p_out, p_b + p_in, p_b);
Vector3 mid = _bezier_interp(mp, p_a, p_a + p_out, p_b + p_in, p_b);
Vector3 end = _bezier_interp(p_end, p_a, p_a + p_out, p_b + p_in, p_b);
Vector3 na = (mid - beg).normalized();
Vector3 nb = (end - mid).normalized();
- float dp = na.dot(nb);
+ real_t dp = na.dot(nb);
if (dp < Math::cos(Math::deg2rad(p_tol))) {
r_bake[mp] = mid;
@@ -1173,7 +1173,7 @@ void Curve3D::_bake() const {
if (points.size() == 1) {
baked_point_cache.resize(1);
- baked_point_cache.set(0, points[0].pos);
+ baked_point_cache.set(0, points[0].position);
baked_tilt_cache.resize(1);
baked_tilt_cache.set(0, points[0].tilt);
baked_dist_cache.resize(1);
@@ -1189,39 +1189,39 @@ void Curve3D::_bake() const {
return;
}
- Vector3 pos = points[0].pos;
- float dist = 0.0;
+ Vector3 position = points[0].position;
+ real_t dist = 0.0;
List<Plane> pointlist;
- List<float> distlist;
+ List<real_t> distlist;
- pointlist.push_back(Plane(pos, points[0].tilt));
+ pointlist.push_back(Plane(position, points[0].tilt));
distlist.push_back(0.0);
for (int i = 0; i < points.size() - 1; i++) {
- float step = 0.1; // at least 10 substeps ought to be enough?
- float p = 0.0;
+ real_t step = 0.1; // at least 10 substeps ought to be enough?
+ real_t p = 0.0;
while (p < 1.0) {
- float np = p + step;
+ real_t np = p + step;
if (np > 1.0) {
np = 1.0;
}
- Vector3 npp = _bezier_interp(np, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
- float d = pos.distance_to(npp);
+ Vector3 npp = _bezier_interp(np, points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position);
+ real_t d = position.distance_to(npp);
if (d > bake_interval) {
// OK! between P and NP there _has_ to be Something, let's go searching!
int iterations = 10; //lots of detail!
- float low = p;
- float hi = np;
- float mid = low + (hi - low) * 0.5;
+ real_t low = p;
+ real_t hi = np;
+ real_t mid = low + (hi - low) * 0.5;
for (int j = 0; j < iterations; j++) {
- npp = _bezier_interp(mid, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
- d = pos.distance_to(npp);
+ npp = _bezier_interp(mid, points[i].position, points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position);
+ d = position.distance_to(npp);
if (bake_interval < d) {
hi = mid;
@@ -1231,10 +1231,10 @@ void Curve3D::_bake() const {
mid = low + (hi - low) * 0.5;
}
- pos = npp;
+ position = npp;
p = mid;
Plane post;
- post.normal = pos;
+ post.normal = position;
post.d = Math::lerp(points[i].tilt, points[i + 1].tilt, mid);
dist += d;
@@ -1246,10 +1246,10 @@ void Curve3D::_bake() const {
}
}
- Vector3 lastpos = points[points.size() - 1].pos;
- float lastilt = points[points.size() - 1].tilt;
+ Vector3 lastpos = points[points.size() - 1].position;
+ real_t lastilt = points[points.size() - 1].tilt;
- float rem = pos.distance_to(lastpos);
+ real_t rem = position.distance_to(lastpos);
dist += rem;
baked_max_ofs = dist;
pointlist.push_back(Plane(lastpos, lastilt));
@@ -1266,7 +1266,7 @@ void Curve3D::_bake() const {
Vector3 *up_write = baked_up_vector_cache.ptrw();
baked_dist_cache.resize(pointlist.size());
- float *wd = baked_dist_cache.ptrw();
+ real_t *wd = baked_dist_cache.ptrw();
Vector3 sideways;
Vector3 up;
@@ -1288,7 +1288,7 @@ void Curve3D::_bake() const {
forward = idx > 0 ? (w[idx] - w[idx - 1]).normalized() : prev_forward;
- float y_dot = prev_up.dot(forward);
+ real_t y_dot = prev_up.dot(forward);
if (y_dot > (1.0f - CMP_EPSILON)) {
sideways = prev_sideways;
@@ -1315,7 +1315,7 @@ void Curve3D::_bake() const {
}
}
-float Curve3D::get_baked_length() const {
+real_t Curve3D::get_baked_length() const {
if (baked_cache_dirty) {
_bake();
}
@@ -1323,7 +1323,7 @@ float Curve3D::get_baked_length() const {
return baked_max_ofs;
}
-Vector3 Curve3D::interpolate_baked(float p_offset, bool p_cubic) const {
+Vector3 Curve3D::interpolate_baked(real_t p_offset, bool p_cubic) const {
if (baked_cache_dirty) {
_bake();
}
@@ -1349,7 +1349,7 @@ Vector3 Curve3D::interpolate_baked(float p_offset, bool p_cubic) const {
int start = 0, end = bpc, idx = (end + start) / 2;
// binary search to find baked points
while (start < idx) {
- float offset = baked_dist_cache[idx];
+ real_t offset = baked_dist_cache[idx];
if (p_offset <= offset) {
end = idx;
} else {
@@ -1358,13 +1358,13 @@ Vector3 Curve3D::interpolate_baked(float p_offset, bool p_cubic) const {
idx = (end + start) / 2;
}
- float offset_begin = baked_dist_cache[idx];
- float offset_end = baked_dist_cache[idx + 1];
+ real_t offset_begin = baked_dist_cache[idx];
+ real_t offset_end = baked_dist_cache[idx + 1];
- float idx_interval = offset_end - offset_begin;
+ real_t idx_interval = offset_end - offset_begin;
ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, Vector3(), "failed to find baked segment");
- float frac = (p_offset - offset_begin) / idx_interval;
+ real_t frac = (p_offset - offset_begin) / idx_interval;
if (p_cubic) {
Vector3 pre = idx > 0 ? r[idx - 1] : r[idx];
@@ -1375,7 +1375,7 @@ Vector3 Curve3D::interpolate_baked(float p_offset, bool p_cubic) const {
}
}
-float Curve3D::interpolate_baked_tilt(float p_offset) const {
+real_t Curve3D::interpolate_baked_tilt(real_t p_offset) const {
if (baked_cache_dirty) {
_bake();
}
@@ -1399,7 +1399,7 @@ float Curve3D::interpolate_baked_tilt(float p_offset) const {
}
int idx = Math::floor((double)p_offset / (double)bake_interval);
- float frac = Math::fmod(p_offset, bake_interval);
+ real_t frac = Math::fmod(p_offset, bake_interval);
if (idx >= bpc - 1) {
return r[bpc - 1];
@@ -1414,7 +1414,7 @@ float Curve3D::interpolate_baked_tilt(float p_offset) const {
return Math::lerp(r[idx], r[idx + 1], (real_t)frac);
}
-Vector3 Curve3D::interpolate_baked_up_vector(float p_offset, bool p_apply_tilt) const {
+Vector3 Curve3D::interpolate_baked_up_vector(real_t p_offset, bool p_apply_tilt) const {
if (baked_cache_dirty) {
_bake();
}
@@ -1432,10 +1432,10 @@ Vector3 Curve3D::interpolate_baked_up_vector(float p_offset, bool p_apply_tilt)
const Vector3 *rp = baked_point_cache.ptr();
const real_t *rt = baked_tilt_cache.ptr();
- float offset = CLAMP(p_offset, 0.0f, baked_max_ofs);
+ real_t offset = CLAMP(p_offset, 0.0f, baked_max_ofs);
int idx = Math::floor((double)offset / (double)bake_interval);
- float frac = Math::fmod(offset, bake_interval) / bake_interval;
+ real_t frac = Math::fmod(offset, bake_interval) / bake_interval;
if (idx == count - 1) {
return p_apply_tilt ? r[idx].rotated((rp[idx] - rp[idx - 1]).normalized(), rt[idx]) : r[idx];
@@ -1503,16 +1503,16 @@ Vector3 Curve3D::get_closest_point(const Vector3 &p_to_point) const {
const Vector3 *r = baked_point_cache.ptr();
Vector3 nearest;
- float nearest_dist = -1.0f;
+ real_t nearest_dist = -1.0f;
for (int i = 0; i < pc - 1; i++) {
Vector3 origin = r[i];
Vector3 direction = (r[i + 1] - origin) / bake_interval;
- float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
+ real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
Vector3 proj = origin + direction * d;
- float dist = proj.distance_squared_to(p_to_point);
+ real_t dist = proj.distance_squared_to(p_to_point);
if (nearest_dist < 0.0f || dist < nearest_dist) {
nearest = proj;
@@ -1523,7 +1523,7 @@ Vector3 Curve3D::get_closest_point(const Vector3 &p_to_point) const {
return nearest;
}
-float Curve3D::get_closest_offset(const Vector3 &p_to_point) const {
+real_t Curve3D::get_closest_offset(const Vector3 &p_to_point) const {
// Brute force method
if (baked_cache_dirty) {
@@ -1540,18 +1540,18 @@ float Curve3D::get_closest_offset(const Vector3 &p_to_point) const {
const Vector3 *r = baked_point_cache.ptr();
- float nearest = 0.0f;
- float nearest_dist = -1.0f;
- float offset = 0.0f;
+ real_t nearest = 0.0f;
+ real_t nearest_dist = -1.0f;
+ real_t offset = 0.0f;
for (int i = 0; i < pc - 1; i++) {
Vector3 origin = r[i];
Vector3 direction = (r[i + 1] - origin) / bake_interval;
- float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
+ real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
Vector3 proj = origin + direction * d;
- float dist = proj.distance_squared_to(p_to_point);
+ real_t dist = proj.distance_squared_to(p_to_point);
if (nearest_dist < 0.0f || dist < nearest_dist) {
nearest = offset + d;
@@ -1564,13 +1564,13 @@ float Curve3D::get_closest_offset(const Vector3 &p_to_point) const {
return nearest;
}
-void Curve3D::set_bake_interval(float p_tolerance) {
+void Curve3D::set_bake_interval(real_t p_tolerance) {
bake_interval = p_tolerance;
baked_cache_dirty = true;
emit_signal(CoreStringNames::get_singleton()->changed);
}
-float Curve3D::get_bake_interval() const {
+real_t Curve3D::get_bake_interval() const {
return bake_interval;
}
@@ -1597,7 +1597,7 @@ Dictionary Curve3D::_get_data() const {
for (int i = 0; i < points.size(); i++) {
w[i * 3 + 0] = points[i].in;
w[i * 3 + 1] = points[i].out;
- w[i * 3 + 2] = points[i].pos;
+ w[i * 3 + 2] = points[i].position;
wt[i] = points[i].tilt;
}
@@ -1622,43 +1622,43 @@ void Curve3D::_set_data(const Dictionary &p_data) {
for (int i = 0; i < points.size(); i++) {
points.write[i].in = r[i * 3 + 0];
points.write[i].out = r[i * 3 + 1];
- points.write[i].pos = r[i * 3 + 2];
+ points.write[i].position = r[i * 3 + 2];
points.write[i].tilt = rt[i];
}
baked_cache_dirty = true;
}
-PackedVector3Array Curve3D::tessellate(int p_max_stages, float p_tolerance) const {
+PackedVector3Array Curve3D::tessellate(int p_max_stages, real_t p_tolerance) const {
PackedVector3Array tess;
if (points.size() == 0) {
return tess;
}
- Vector<Map<float, Vector3>> midpoints;
+ Vector<Map<real_t, Vector3>> midpoints;
midpoints.resize(points.size() - 1);
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
- _bake_segment3d(midpoints.write[i], 0, 1, points[i].pos, points[i].out, points[i + 1].pos, points[i + 1].in, 0, p_max_stages, p_tolerance);
+ _bake_segment3d(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_tolerance);
pc++;
pc += midpoints[i].size();
}
tess.resize(pc);
Vector3 *bpw = tess.ptrw();
- bpw[0] = points[0].pos;
+ bpw[0] = points[0].position;
int pidx = 0;
for (int i = 0; i < points.size() - 1; i++) {
- for (const KeyValue<float, Vector3> &E : midpoints[i]) {
+ for (const KeyValue<real_t, Vector3> &E : midpoints[i]) {
pidx++;
bpw[pidx] = E.value;
}
pidx++;
- bpw[pidx] = points[i + 1].pos;
+ bpw[pidx] = points[i + 1].position;
}
return tess;