diff options
Diffstat (limited to 'scene/resources/animation.cpp')
-rw-r--r-- | scene/resources/animation.cpp | 881 |
1 files changed, 723 insertions, 158 deletions
diff --git a/scene/resources/animation.cpp b/scene/resources/animation.cpp index da59c4dbd1..f2ac1c2e58 100644 --- a/scene/resources/animation.cpp +++ b/scene/resources/animation.cpp @@ -2102,11 +2102,9 @@ bool Animation::track_is_compressed(int p_track) const { return bst->compressed_track >= 0; } break; default: { - return false; //animation does not really use transitions + return false; // Animation does not really use transitions. } break; } - - ERR_FAIL_V(false); } void Animation::track_set_key_value(int p_track, int p_key_idx, const Variant &p_value) { @@ -2317,106 +2315,27 @@ Quaternion Animation::_interpolate(const Quaternion &p_a, const Quaternion &p_b, } Variant Animation::_interpolate(const Variant &p_a, const Variant &p_b, real_t p_c) const { - Variant dst; - Variant::interpolate(p_a, p_b, p_c, dst); - return dst; + return interpolate_variant(p_a, p_b, p_c); } real_t Animation::_interpolate(const real_t &p_a, const real_t &p_b, real_t p_c) const { - return p_a * (1.0 - p_c) + p_b * p_c; -} - -// Cubic interpolation for anytype. - -Vector3 Animation::_cubic_interpolate(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, real_t p_c) const { - return p_a.cubic_interpolate(p_b, p_pre_a, p_post_b, p_c); + return Math::lerp(p_a, p_b, p_c); } -Quaternion Animation::_cubic_interpolate(const Quaternion &p_pre_a, const Quaternion &p_a, const Quaternion &p_b, const Quaternion &p_post_b, real_t p_c) const { - return p_a.spherical_cubic_interpolate(p_b, p_pre_a, p_post_b, p_c); -} - -Variant Animation::_cubic_interpolate(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c) const { +Variant Animation::_interpolate_angle(const Variant &p_a, const Variant &p_b, real_t p_c) const { Variant::Type type_a = p_a.get_type(); Variant::Type type_b = p_b.get_type(); - Variant::Type type_pa = p_pre_a.get_type(); - Variant::Type type_pb = p_post_b.get_type(); - - //make int and real play along - uint32_t vformat = 1 << type_a; vformat |= 1 << type_b; - vformat |= 1 << type_pa; - vformat |= 1 << type_pb; - if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) { - //mix of real and int real_t a = p_a; real_t b = p_b; - real_t pa = p_pre_a; - real_t pb = p_post_b; - - return Math::cubic_interpolate(a, b, pa, pb, p_c); - } else if ((vformat & (vformat - 1))) { - return p_a; //can't interpolate, mix of types + return Math::fposmod((float)Math::lerp_angle(a, b, p_c), (float)Math_TAU); } - - switch (type_a) { - case Variant::VECTOR2: { - Vector2 a = p_a; - Vector2 b = p_b; - Vector2 pa = p_pre_a; - Vector2 pb = p_post_b; - - return a.cubic_interpolate(b, pa, pb, p_c); - } - case Variant::RECT2: { - Rect2 a = p_a; - Rect2 b = p_b; - Rect2 pa = p_pre_a; - Rect2 pb = p_post_b; - - return Rect2( - a.position.cubic_interpolate(b.position, pa.position, pb.position, p_c), - a.size.cubic_interpolate(b.size, pa.size, pb.size, p_c)); - } - case Variant::VECTOR3: { - Vector3 a = p_a; - Vector3 b = p_b; - Vector3 pa = p_pre_a; - Vector3 pb = p_post_b; - - return a.cubic_interpolate(b, pa, pb, p_c); - } - case Variant::QUATERNION: { - Quaternion a = p_a; - Quaternion b = p_b; - Quaternion pa = p_pre_a; - Quaternion pb = p_post_b; - - return a.spherical_cubic_interpolate(b, pa, pb, p_c); - } - case Variant::AABB: { - AABB a = p_a; - AABB b = p_b; - AABB pa = p_pre_a; - AABB pb = p_post_b; - - return AABB( - a.position.cubic_interpolate(b.position, pa.position, pb.position, p_c), - a.size.cubic_interpolate(b.size, pa.size, pb.size, p_c)); - } - default: { - return _interpolate(p_a, p_b, p_c); - } - } -} - -real_t Animation::_cubic_interpolate(const real_t &p_pre_a, const real_t &p_a, const real_t &p_b, const real_t &p_post_b, real_t p_c) const { return _interpolate(p_a, p_b, p_c); } -// Cubic interpolation in time for anytype. +// Cubic interpolation for anytype. Vector3 Animation::_cubic_interpolate_in_time(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { return p_a.cubic_interpolate_in_time(p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t); @@ -2503,6 +2422,25 @@ Variant Animation::_cubic_interpolate_in_time(const Variant &p_pre_a, const Vari } real_t Animation::_cubic_interpolate_in_time(const real_t &p_pre_a, const real_t &p_a, const real_t &p_b, const real_t &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { + return Math::cubic_interpolate_in_time(p_a, p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t); +} + +Variant Animation::_cubic_interpolate_angle_in_time(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { + Variant::Type type_a = p_a.get_type(); + Variant::Type type_b = p_b.get_type(); + Variant::Type type_pa = p_pre_a.get_type(); + Variant::Type type_pb = p_post_b.get_type(); + uint32_t vformat = 1 << type_a; + vformat |= 1 << type_b; + vformat |= 1 << type_pa; + vformat |= 1 << type_pb; + if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) { + real_t a = p_a; + real_t b = p_b; + real_t pa = p_pre_a; + real_t pb = p_post_b; + return Math::fposmod((float)Math::cubic_interpolate_angle_in_time(a, b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t), (float)Math_TAU); + } return _interpolate(p_a, p_b, p_c); } @@ -2685,8 +2623,11 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol case INTERPOLATION_LINEAR: { return _interpolate(p_keys[idx].value, p_keys[next].value, c); } break; + case INTERPOLATION_LINEAR_ANGLE: { + return _interpolate_angle(p_keys[idx].value, p_keys[next].value, c); + } break; case INTERPOLATION_CUBIC: - case INTERPOLATION_CUBIC_IN_TIME: { + case INTERPOLATION_CUBIC_ANGLE: { int pre = 0; int post = 0; if (!p_backward) { @@ -2725,25 +2666,27 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol } } + real_t pre_t = 0.0; + real_t to_t = 0.0; + real_t post_t = 0.0; if (loop_mode == LOOP_LINEAR && p_loop_wrap) { - if (p_interp == INTERPOLATION_CUBIC) { - return _cubic_interpolate(p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c); - } - return _cubic_interpolate_in_time( - p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c, - pre > idx ? -length + p_keys[pre].time - p_keys[idx].time : p_keys[pre].time - p_keys[idx].time, - next < idx ? length + p_keys[next].time - p_keys[idx].time : p_keys[next].time - p_keys[idx].time, - next < idx || post <= idx ? length + p_keys[post].time - p_keys[idx].time : p_keys[post].time - p_keys[idx].time); + pre_t = pre > idx ? -length + p_keys[pre].time - p_keys[idx].time : p_keys[pre].time - p_keys[idx].time; + to_t = next < idx ? length + p_keys[next].time - p_keys[idx].time : p_keys[next].time - p_keys[idx].time; + post_t = next < idx || post <= idx ? length + p_keys[post].time - p_keys[idx].time : p_keys[post].time - p_keys[idx].time; + } else { + pre_t = p_keys[pre].time - p_keys[idx].time; + to_t = p_keys[next].time - p_keys[idx].time; + post_t = p_keys[post].time - p_keys[idx].time; } - if (p_interp == INTERPOLATION_CUBIC) { - return _cubic_interpolate(p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c); + if (p_interp == INTERPOLATION_CUBIC_ANGLE) { + return _cubic_interpolate_angle_in_time( + p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c, + pre_t, to_t, post_t); } return _cubic_interpolate_in_time( p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c, - p_keys[pre].time - p_keys[idx].time, - p_keys[next].time - p_keys[idx].time, - p_keys[post].time - p_keys[idx].time); + pre_t, to_t, post_t); } break; default: return p_keys[idx].value; @@ -4073,7 +4016,8 @@ void Animation::_bind_methods() { BIND_ENUM_CONSTANT(INTERPOLATION_NEAREST); BIND_ENUM_CONSTANT(INTERPOLATION_LINEAR); BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC); - BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC_IN_TIME); + BIND_ENUM_CONSTANT(INTERPOLATION_LINEAR_ANGLE); + BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC_ANGLE); BIND_ENUM_CONSTANT(UPDATE_CONTINUOUS); BIND_ENUM_CONSTANT(UPDATE_DISCRETE); @@ -4100,28 +4044,27 @@ void Animation::clear() { emit_signal(SceneStringNames::get_singleton()->tracks_changed); } -bool Animation::_vector3_track_optimize_key(const TKey<Vector3> t0, const TKey<Vector3> t1, const TKey<Vector3> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { +bool Animation::_float_track_optimize_key(const TKey<float> t0, const TKey<float> t1, const TKey<float> t2, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; } - if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { + if (abs(t0.value - t1.value) < p_allowed_precision_error && abs(t1.value - t2.value) < p_allowed_precision_error) { return true; } // Calc velocities. - Vector3 vc0 = (t1.value - t0.value) / (t1.time - t0.time); - Vector3 vc1 = (t2.value - t1.value) / (t2.time - t1.time); - real_t v0 = vc0.length(); - real_t v1 = vc1.length(); + double v0 = (t1.value - t0.value) / (t1.time - t0.time); + double v1 = (t2.value - t1.value) / (t2.time - t1.time); // Avoid zero div but check equality. if (abs(v0 - v1) < p_allowed_precision_error) { return true; } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { return false; } - // Check axis. - if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) { - real_t ratio = v0 < v1 ? v0 / v1 : v1 / v0; + if (!signbit(v0 * v1)) { + v0 = abs(v0); + v1 = abs(v1); + double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } @@ -4129,7 +4072,7 @@ bool Animation::_vector3_track_optimize_key(const TKey<Vector3> t0, const TKey<V return false; } -bool Animation::_quaternion_track_optimize_key(const TKey<Quaternion> t0, const TKey<Quaternion> t1, const TKey<Quaternion> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { +bool Animation::_vector2_track_optimize_key(const TKey<Vector2> t0, const TKey<Vector2> t1, const TKey<Vector2> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; @@ -4137,20 +4080,22 @@ bool Animation::_quaternion_track_optimize_key(const TKey<Quaternion> t0, const if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { return true; } + // Calc velocities. + Vector2 vc0 = (t1.value - t0.value) / (t1.time - t0.time); + Vector2 vc1 = (t2.value - t1.value) / (t2.time - t1.time); + double v0 = vc0.length(); + double v1 = vc1.length(); + // Avoid zero div but check equality. + if (abs(v0 - v1) < p_allowed_precision_error) { + return true; + } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { + return false; + } // Check axis. - Quaternion q0 = t0.value * t1.value * t0.value.inverse(); - Quaternion q1 = t1.value * t2.value * t1.value.inverse(); - if (q0.get_axis().dot(q1.get_axis()) >= 1.0 - p_allowed_angular_error * 2.0) { - // Calc velocities. - real_t v0 = Math::acos(t0.value.dot(t1.value)) / (t1.time - t0.time); - real_t v1 = Math::acos(t1.value.dot(t2.value)) / (t2.time - t1.time); - // Avoid zero div but check equality. - if (abs(v0 - v1) < p_allowed_precision_error) { - return true; - } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { - return false; - } - real_t ratio = v0 < v1 ? v0 / v1 : v1 / v0; + if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) { + v0 = abs(v0); + v1 = abs(v1); + double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } @@ -4158,25 +4103,64 @@ bool Animation::_quaternion_track_optimize_key(const TKey<Quaternion> t0, const return false; } -bool Animation::_float_track_optimize_key(const TKey<float> t0, const TKey<float> t1, const TKey<float> t2, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) { +bool Animation::_vector3_track_optimize_key(const TKey<Vector3> t0, const TKey<Vector3> t1, const TKey<Vector3> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; } - if (abs(t0.value - t1.value) < p_allowed_precision_error && abs(t1.value - t2.value) < p_allowed_precision_error) { + if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { return true; } // Calc velocities. - real_t v0 = (t1.value - t0.value) / (t1.time - t0.time); - real_t v1 = (t2.value - t1.value) / (t2.time - t1.time); + Vector3 vc0 = (t1.value - t0.value) / (t1.time - t0.time); + Vector3 vc1 = (t2.value - t1.value) / (t2.time - t1.time); + double v0 = vc0.length(); + double v1 = vc1.length(); // Avoid zero div but check equality. if (abs(v0 - v1) < p_allowed_precision_error) { return true; } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { return false; } - if (!signbit(v0 * v1)) { - real_t ratio = v0 < v1 ? v0 / v1 : v1 / v0; + // Check axis. + if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) { + v0 = abs(v0); + v1 = abs(v1); + double ratio = v0 < v1 ? v0 / v1 : v1 / v0; + if (ratio >= 1.0 - p_allowed_velocity_err) { + return true; + } + } + return false; +} + +bool Animation::_quaternion_track_optimize_key(const TKey<Quaternion> t0, const TKey<Quaternion> t1, const TKey<Quaternion> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { + // Remove overlapping keys. + if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { + return true; + } + if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { + return true; + } + // Check axis. + Quaternion q0 = t0.value * t1.value * t0.value.inverse(); + Quaternion q1 = t1.value * t2.value * t1.value.inverse(); + if (q0.get_axis().dot(q1.get_axis()) >= 1.0 - p_allowed_angular_error * 2.0) { + double a0 = Math::acos(t0.value.dot(t1.value)); + double a1 = Math::acos(t1.value.dot(t2.value)); + if (a0 + a1 >= Math_PI) { + return false; // Rotation is more than 180 deg, keep key. + } + // Calc velocities. + double v0 = a0 / (t1.time - t0.time); + double v1 = a1 / (t2.time - t1.time); + // Avoid zero div but check equality. + if (abs(v0 - v1) < p_allowed_precision_error) { + return true; + } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { + return false; + } + double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } @@ -4213,25 +4197,25 @@ void Animation::_position_track_optimize(int p_idx, real_t p_allowed_velocity_er void Animation::_rotation_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_ROTATION_3D); - RotationTrack *tt = static_cast<RotationTrack *>(tracks[p_idx]); + RotationTrack *rt = static_cast<RotationTrack *>(tracks[p_idx]); int i = 0; - while (i < tt->rotations.size() - 2) { - TKey<Quaternion> t0 = tt->rotations[i]; - TKey<Quaternion> t1 = tt->rotations[i + 1]; - TKey<Quaternion> t2 = tt->rotations[i + 2]; + while (i < rt->rotations.size() - 2) { + TKey<Quaternion> t0 = rt->rotations[i]; + TKey<Quaternion> t1 = rt->rotations[i + 1]; + TKey<Quaternion> t2 = rt->rotations[i + 2]; bool erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); if (erase) { - tt->rotations.remove_at(i + 1); + rt->rotations.remove_at(i + 1); } else { i++; } } - if (tt->rotations.size() == 2) { - if ((tt->rotations[0].value - tt->rotations[1].value).length() < p_allowed_precision_error) { - tt->rotations.remove_at(1); + if (rt->rotations.size() == 2) { + if ((rt->rotations[0].value - rt->rotations[1].value).length() < p_allowed_precision_error) { + rt->rotations.remove_at(1); } } } @@ -4239,25 +4223,25 @@ void Animation::_rotation_track_optimize(int p_idx, real_t p_allowed_velocity_er void Animation::_scale_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_SCALE_3D); - ScaleTrack *tt = static_cast<ScaleTrack *>(tracks[p_idx]); + ScaleTrack *st = static_cast<ScaleTrack *>(tracks[p_idx]); int i = 0; - while (i < tt->scales.size() - 2) { - TKey<Vector3> t0 = tt->scales[i]; - TKey<Vector3> t1 = tt->scales[i + 1]; - TKey<Vector3> t2 = tt->scales[i + 2]; + while (i < st->scales.size() - 2) { + TKey<Vector3> t0 = st->scales[i]; + TKey<Vector3> t1 = st->scales[i + 1]; + TKey<Vector3> t2 = st->scales[i + 2]; bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); if (erase) { - tt->scales.remove_at(i + 1); + st->scales.remove_at(i + 1); } else { i++; } } - if (tt->scales.size() == 2) { - if ((tt->scales[0].value - tt->scales[1].value).length() < p_allowed_precision_error) { - tt->scales.remove_at(1); + if (st->scales.size() == 2) { + if ((st->scales[0].value - st->scales[1].value).length() < p_allowed_precision_error) { + st->scales.remove_at(1); } } } @@ -4265,25 +4249,144 @@ void Animation::_scale_track_optimize(int p_idx, real_t p_allowed_velocity_err, void Animation::_blend_shape_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_BLEND_SHAPE); - BlendShapeTrack *tt = static_cast<BlendShapeTrack *>(tracks[p_idx]); + BlendShapeTrack *bst = static_cast<BlendShapeTrack *>(tracks[p_idx]); int i = 0; - while (i < tt->blend_shapes.size() - 2) { - TKey<float> t0 = tt->blend_shapes[i]; - TKey<float> t1 = tt->blend_shapes[i + 1]; - TKey<float> t2 = tt->blend_shapes[i + 2]; + while (i < bst->blend_shapes.size() - 2) { + TKey<float> t0 = bst->blend_shapes[i]; + TKey<float> t1 = bst->blend_shapes[i + 1]; + TKey<float> t2 = bst->blend_shapes[i + 2]; bool erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error); if (erase) { - tt->blend_shapes.remove_at(i + 1); + bst->blend_shapes.remove_at(i + 1); + } else { + i++; + } + } + + if (bst->blend_shapes.size() == 2) { + if (abs(bst->blend_shapes[0].value - bst->blend_shapes[1].value) < p_allowed_precision_error) { + bst->blend_shapes.remove_at(1); + } + } +} + +void Animation::_value_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { + ERR_FAIL_INDEX(p_idx, tracks.size()); + ERR_FAIL_COND(tracks[p_idx]->type != TYPE_VALUE); + ValueTrack *vt = static_cast<ValueTrack *>(tracks[p_idx]); + if (vt->values.size() == 0) { + return; + } + Variant::Type type = vt->values[0].value.get_type(); + + // Special case for angle interpolation. + bool is_using_angle = vt->interpolation == Animation::INTERPOLATION_LINEAR_ANGLE || vt->interpolation == Animation::INTERPOLATION_CUBIC_ANGLE; + int i = 0; + while (i < vt->values.size() - 2) { + bool erase = false; + switch (type) { + case Variant::FLOAT: { + TKey<float> t0; + TKey<float> t1; + TKey<float> t2; + t0.time = vt->values[i].time; + t1.time = vt->values[i + 1].time; + t2.time = vt->values[i + 2].time; + t0.value = vt->values[i].value; + t1.value = vt->values[i + 1].value; + t2.value = vt->values[i + 2].value; + if (is_using_angle) { + float diff1 = fmod(t1.value - t0.value, Math_TAU); + t1.value = t0.value + fmod(2.0 * diff1, Math_TAU) - diff1; + float diff2 = fmod(t2.value - t1.value, Math_TAU); + t2.value = t1.value + fmod(2.0 * diff2, Math_TAU) - diff2; + if (abs(abs(diff1) + abs(diff2)) >= Math_PI) { + break; // Rotation is more than 180 deg, keep key. + } + } + erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error); + } break; + case Variant::VECTOR2: { + TKey<Vector2> t0; + TKey<Vector2> t1; + TKey<Vector2> t2; + t0.time = vt->values[i].time; + t1.time = vt->values[i + 1].time; + t2.time = vt->values[i + 2].time; + t0.value = vt->values[i].value; + t1.value = vt->values[i + 1].value; + t2.value = vt->values[i + 2].value; + erase = _vector2_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); + } break; + case Variant::VECTOR3: { + TKey<Vector3> t0; + TKey<Vector3> t1; + TKey<Vector3> t2; + t0.time = vt->values[i].time; + t1.time = vt->values[i + 1].time; + t2.time = vt->values[i + 2].time; + t0.value = vt->values[i].value; + t1.value = vt->values[i + 1].value; + t2.value = vt->values[i + 2].value; + erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); + } break; + case Variant::QUATERNION: { + TKey<Quaternion> t0; + TKey<Quaternion> t1; + TKey<Quaternion> t2; + t0.time = vt->values[i].time; + t1.time = vt->values[i + 1].time; + t2.time = vt->values[i + 2].time; + t0.value = vt->values[i].value; + t1.value = vt->values[i + 1].value; + t2.value = vt->values[i + 2].value; + erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); + } break; + default: { + } break; + } + + if (erase) { + vt->values.remove_at(i + 1); } else { i++; } } - if (tt->blend_shapes.size() == 2) { - if (abs(tt->blend_shapes[0].value - tt->blend_shapes[1].value) < p_allowed_precision_error) { - tt->blend_shapes.remove_at(1); + if (vt->values.size() == 2) { + bool single_key = false; + switch (type) { + case Variant::FLOAT: { + float val_0 = vt->values[0].value; + float val_1 = vt->values[1].value; + if (is_using_angle) { + float diff1 = fmod(val_1 - val_0, Math_TAU); + val_1 = val_0 + fmod(2.0 * diff1, Math_TAU) - diff1; + } + single_key = abs(val_0 - val_1) < p_allowed_precision_error; + } break; + case Variant::VECTOR2: { + Vector2 val_0 = vt->values[0].value; + Vector2 val_1 = vt->values[1].value; + single_key = (val_0 - val_1).length() < p_allowed_precision_error; + } break; + case Variant::VECTOR3: { + Vector3 val_0 = vt->values[0].value; + Vector3 val_1 = vt->values[1].value; + single_key = (val_0 - val_1).length() < p_allowed_precision_error; + } break; + case Variant::QUATERNION: { + Quaternion val_0 = vt->values[0].value; + Quaternion val_1 = vt->values[1].value; + single_key = (val_0 - val_1).length() < p_allowed_precision_error; + } break; + default: { + } break; + } + if (single_key) { + vt->values.remove_at(1); } } } @@ -4302,6 +4405,8 @@ void Animation::optimize(real_t p_allowed_velocity_err, real_t p_allowed_angular _scale_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision); } else if (tracks[i]->type == TYPE_BLEND_SHAPE) { _blend_shape_track_optimize(i, p_allowed_velocity_err, precision); + } else if (tracks[i]->type == TYPE_VALUE) { + _value_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision); } } } @@ -5454,6 +5559,466 @@ bool Animation::_fetch_compressed_by_index(uint32_t p_compressed_track, int p_in return false; } +// Helper math functions for Variant. +Variant Animation::add_variant(const Variant &a, const Variant &b) { + if (a.get_type() != b.get_type()) { + return a; + } + + switch (a.get_type()) { + case Variant::NIL: { + return Variant(); + } + case Variant::BOOL: { + return (a.operator real_t()) + (b.operator real_t()); // It is cast for interpolation. + } + case Variant::RECT2: { + const Rect2 ra = a.operator Rect2(); + const Rect2 rb = b.operator Rect2(); + return Rect2(ra.position + rb.position, ra.size + rb.size); + } + case Variant::RECT2I: { + const Rect2i ra = a.operator Rect2i(); + const Rect2i rb = b.operator Rect2i(); + return Rect2i(ra.position + rb.position, ra.size + rb.size); + } + case Variant::PLANE: { + const Plane pa = a.operator Plane(); + const Plane pb = b.operator Plane(); + return Plane(pa.normal + pb.normal, pa.d + pb.d); + } + case Variant::AABB: { + const ::AABB aa = a.operator ::AABB(); + const ::AABB ab = b.operator ::AABB(); + return ::AABB(aa.position + ab.position, aa.size + ab.size); + } + case Variant::QUATERNION: { + return (a.operator Quaternion()) * (b.operator Quaternion()); + } + case Variant::TRANSFORM2D: { + return (a.operator Transform2D()) * (b.operator Transform2D()); + } + case Variant::TRANSFORM3D: { + return (a.operator Transform3D()) * (b.operator Transform3D()); + } + default: { + return Variant::evaluate(Variant::OP_ADD, a, b); + } + } +} + +Variant Animation::subtract_variant(const Variant &a, const Variant &b) { + if (a.get_type() != b.get_type()) { + return a; + } + + switch (a.get_type()) { + case Variant::NIL: { + return Variant(); + } + case Variant::BOOL: { + return (a.operator real_t()) - (b.operator real_t()); // It is cast for interpolation. + } + case Variant::RECT2: { + const Rect2 ra = a.operator Rect2(); + const Rect2 rb = b.operator Rect2(); + return Rect2(ra.position - rb.position, ra.size - rb.size); + } + case Variant::RECT2I: { + const Rect2i ra = a.operator Rect2i(); + const Rect2i rb = b.operator Rect2i(); + return Rect2i(ra.position - rb.position, ra.size - rb.size); + } + case Variant::PLANE: { + const Plane pa = a.operator Plane(); + const Plane pb = b.operator Plane(); + return Plane(pa.normal - pb.normal, pa.d - pb.d); + } + case Variant::AABB: { + const ::AABB aa = a.operator ::AABB(); + const ::AABB ab = b.operator ::AABB(); + return ::AABB(aa.position - ab.position, aa.size - ab.size); + } + case Variant::QUATERNION: { + return (b.operator Quaternion()).inverse() * (a.operator Quaternion()); + } + case Variant::TRANSFORM2D: { + return (b.operator Transform2D()).inverse() * (a.operator Transform2D()); + } + case Variant::TRANSFORM3D: { + return (b.operator Transform3D()).inverse() * (a.operator Transform3D()); + } + default: { + return Variant::evaluate(Variant::OP_SUBTRACT, a, b); + } + } +} + +Variant Animation::blend_variant(const Variant &a, const Variant &b, float c) { + if (a.get_type() != b.get_type()) { + if (a.is_num() && b.is_num()) { + real_t va = a; + real_t vb = b; + return va + vb * c; + } + return a; + } + + switch (a.get_type()) { + case Variant::NIL: { + return Variant(); + } + case Variant::INT: { + return int((a.operator int64_t()) + (b.operator int64_t()) * c + 0.5); + } + case Variant::FLOAT: { + return (a.operator double()) + (b.operator double()) * c; + } + case Variant::VECTOR2: { + return (a.operator Vector2()) + (b.operator Vector2()) * c; + } + case Variant::VECTOR2I: { + const Vector2i va = a.operator Vector2i(); + const Vector2i vb = b.operator Vector2i(); + return Vector2i(int32_t(va.x + vb.x * c + 0.5), int32_t(va.y + vb.y * c + 0.5)); + } + case Variant::RECT2: { + const Rect2 ra = a.operator Rect2(); + const Rect2 rb = b.operator Rect2(); + return Rect2(ra.position + rb.position * c, ra.size + rb.size * c); + } + case Variant::RECT2I: { + const Rect2i ra = a.operator Rect2i(); + const Rect2i rb = b.operator Rect2i(); + return Rect2i(int32_t(ra.position.x + rb.position.x * c + 0.5), int32_t(ra.position.y + rb.position.y * c + 0.5), int32_t(ra.size.x + rb.size.x * c + 0.5), int32_t(ra.size.y + rb.size.y * c + 0.5)); + } + case Variant::VECTOR3: { + return (a.operator Vector3()) + (b.operator Vector3()) * c; + } + case Variant::VECTOR3I: { + const Vector3i va = a.operator Vector3i(); + const Vector3i vb = b.operator Vector3i(); + return Vector3i(int32_t(va.x + vb.x * c + 0.5), int32_t(va.y + vb.y * c + 0.5), int32_t(va.z + vb.z * c + 0.5)); + } + case Variant::VECTOR4: { + return (a.operator Vector4()) + (b.operator Vector4()) * c; + } + case Variant::VECTOR4I: { + const Vector4i va = a.operator Vector4i(); + const Vector4i vb = b.operator Vector4i(); + return Vector4i(int32_t(va.x + vb.x * c + 0.5), int32_t(va.y + vb.y * c + 0.5), int32_t(va.z + vb.z * c + 0.5), int32_t(va.w + vb.w * c + 0.5)); + } + case Variant::PLANE: { + const Plane pa = a.operator Plane(); + const Plane pb = b.operator Plane(); + return Plane(pa.normal + pb.normal * c, pa.d + pb.d * c); + } + case Variant::COLOR: { + return (a.operator Color()) + (b.operator Color()) * c; + } + case Variant::AABB: { + const ::AABB aa = a.operator ::AABB(); + const ::AABB ab = b.operator ::AABB(); + return ::AABB(aa.position + ab.position * c, aa.size + ab.size * c); + } + case Variant::BASIS: { + return (a.operator Basis()) + (b.operator Basis()) * c; + } + case Variant::QUATERNION: { + return (a.operator Quaternion()) * Quaternion().slerp((b.operator Quaternion()), c); + } + case Variant::TRANSFORM2D: { + return (a.operator Transform2D()) * Transform2D().interpolate_with((b.operator Transform2D()), c); + } + case Variant::TRANSFORM3D: { + return (a.operator Transform3D()) * Transform3D().interpolate_with((b.operator Transform3D()), c); + } + default: { + return c < 0.5 ? a : b; + } + } +} + +Variant Animation::interpolate_variant(const Variant &a, const Variant &b, float c) { + if (a.get_type() != b.get_type()) { + if (a.is_num() && b.is_num()) { + real_t va = a; + real_t vb = b; + return va + (vb - va) * c; + } + return a; + } + + switch (a.get_type()) { + case Variant::NIL: { + return Variant(); + } + case Variant::INT: { + const int64_t va = a.operator int64_t(); + return int(va + ((b.operator int64_t()) - va) * c); + } + case Variant::FLOAT: { + const real_t va = a.operator real_t(); + return va + ((b.operator real_t()) - va) * c; + } + case Variant::VECTOR2: { + return (a.operator Vector2()).lerp(b.operator Vector2(), c); + } + case Variant::VECTOR2I: { + const Vector2i va = a.operator Vector2i(); + const Vector2i vb = b.operator Vector2i(); + return Vector2i(int32_t(va.x + (vb.x - va.x) * c), int32_t(va.y + (vb.y - va.y) * c)); + } + case Variant::RECT2: { + const Rect2 ra = a.operator Rect2(); + const Rect2 rb = b.operator Rect2(); + return Rect2(ra.position.lerp(rb.position, c), ra.size.lerp(rb.size, c)); + } + case Variant::RECT2I: { + const Rect2i ra = a.operator Rect2i(); + const Rect2i rb = b.operator Rect2i(); + return Rect2i(int32_t(ra.position.x + (rb.position.x - ra.position.x) * c), int32_t(ra.position.y + (rb.position.y - ra.position.y) * c), int32_t(ra.size.x + (rb.size.x - ra.size.x) * c), int32_t(ra.size.y + (rb.size.y - ra.size.y) * c)); + } + case Variant::VECTOR3: { + return (a.operator Vector3()).lerp(b.operator Vector3(), c); + } + case Variant::VECTOR3I: { + const Vector3i va = a.operator Vector3i(); + const Vector3i vb = b.operator Vector3i(); + return Vector3i(int32_t(va.x + (vb.x - va.x) * c), int32_t(va.y + (vb.y - va.y) * c), int32_t(va.z + (vb.z - va.z) * c)); + } + case Variant::VECTOR4: { + return (a.operator Vector4()).lerp(b.operator Vector4(), c); + } + case Variant::VECTOR4I: { + const Vector4i va = a.operator Vector4i(); + const Vector4i vb = b.operator Vector4i(); + return Vector4i(int32_t(va.x + (vb.x - va.x) * c), int32_t(va.y + (vb.y - va.y) * c), int32_t(va.z + (vb.z - va.z) * c), int32_t(va.w + (vb.w - va.w) * c)); + } + case Variant::PLANE: { + const Plane pa = a.operator Plane(); + const Plane pb = b.operator Plane(); + return Plane(pa.normal.lerp(pb.normal, c), pa.d + (pb.d - pa.d) * c); + } + case Variant::COLOR: { + return (a.operator Color()).lerp(b.operator Color(), c); + } + case Variant::AABB: { + const ::AABB aa = a.operator ::AABB(); + const ::AABB ab = b.operator ::AABB(); + return ::AABB(aa.position.lerp(ab.position, c), aa.size.lerp(ab.size, c)); + } + case Variant::BASIS: { + return (a.operator Basis()).lerp(b.operator Basis(), c); + } + case Variant::QUATERNION: { + return (a.operator Quaternion()).slerp(b.operator Quaternion(), c); + } + case Variant::TRANSFORM2D: { + return (a.operator Transform2D()).interpolate_with(b.operator Transform2D(), c); + } + case Variant::TRANSFORM3D: { + return (a.operator Transform3D()).interpolate_with(b.operator Transform3D(), c); + } + case Variant::STRING: { + // This is pretty funny and bizarre, but artists like to use it for typewriter effects. + const String sa = a.operator String(); + const String sb = b.operator String(); + String dst; + int sa_len = sa.length(); + int sb_len = sb.length(); + int csize = sa_len + (sb_len - sa_len) * c; + if (csize == 0) { + return ""; + } + dst.resize(csize + 1); + dst[csize] = 0; + int split = csize / 2; + + for (int i = 0; i < csize; i++) { + char32_t chr = ' '; + + if (i < split) { + if (i < sa.length()) { + chr = sa[i]; + } else if (i < sb.length()) { + chr = sb[i]; + } + + } else { + if (i < sb.length()) { + chr = sb[i]; + } else if (i < sa.length()) { + chr = sa[i]; + } + } + + dst[i] = chr; + } + + return dst; + } + case Variant::PACKED_INT32_ARRAY: { + const Vector<int32_t> *arr_a = Object::cast_to<Vector<int32_t>>(a); + const Vector<int32_t> *arr_b = Object::cast_to<Vector<int32_t>>(b); + int32_t sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<int32_t> v; + v.resize(sz); + { + int32_t *vw = v.ptrw(); + const int32_t *ar = arr_a->ptr(); + const int32_t *br = arr_b->ptr(); + + Variant va; + for (int32_t i = 0; i < sz; i++) { + va = interpolate_variant(ar[i], br[i], c); + vw[i] = va; + } + } + return v; + } + } + case Variant::PACKED_INT64_ARRAY: { + const Vector<int64_t> *arr_a = Object::cast_to<Vector<int64_t>>(a); + const Vector<int64_t> *arr_b = Object::cast_to<Vector<int64_t>>(b); + int64_t sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<int64_t> v; + v.resize(sz); + { + int64_t *vw = v.ptrw(); + const int64_t *ar = arr_a->ptr(); + const int64_t *br = arr_b->ptr(); + + Variant va; + for (int64_t i = 0; i < sz; i++) { + va = interpolate_variant(ar[i], br[i], c); + vw[i] = va; + } + } + return v; + } + } + case Variant::PACKED_FLOAT32_ARRAY: { + const Vector<float> *arr_a = Object::cast_to<Vector<float>>(a); + const Vector<float> *arr_b = Object::cast_to<Vector<float>>(b); + int sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<float> v; + v.resize(sz); + { + float *vw = v.ptrw(); + const float *ar = arr_a->ptr(); + const float *br = arr_b->ptr(); + + Variant va; + for (int i = 0; i < sz; i++) { + va = interpolate_variant(ar[i], br[i], c); + vw[i] = va; + } + } + return v; + } + } + case Variant::PACKED_FLOAT64_ARRAY: { + const Vector<double> *arr_a = Object::cast_to<Vector<double>>(a); + const Vector<double> *arr_b = Object::cast_to<Vector<double>>(b); + int sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<double> v; + v.resize(sz); + { + double *vw = v.ptrw(); + const double *ar = arr_a->ptr(); + const double *br = arr_b->ptr(); + + Variant va; + for (int i = 0; i < sz; i++) { + va = interpolate_variant(ar[i], br[i], c); + vw[i] = va; + } + } + return v; + } + } + case Variant::PACKED_VECTOR2_ARRAY: { + const Vector<Vector2> *arr_a = Object::cast_to<Vector<Vector2>>(a); + const Vector<Vector2> *arr_b = Object::cast_to<Vector<Vector2>>(b); + int sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<Vector2> v; + v.resize(sz); + { + Vector2 *vw = v.ptrw(); + const Vector2 *ar = arr_a->ptr(); + const Vector2 *br = arr_b->ptr(); + + for (int i = 0; i < sz; i++) { + vw[i] = ar[i].lerp(br[i], c); + } + } + return v; + } + } + case Variant::PACKED_VECTOR3_ARRAY: { + const Vector<Vector3> *arr_a = Object::cast_to<Vector<Vector3>>(a); + const Vector<Vector3> *arr_b = Object::cast_to<Vector<Vector3>>(b); + int sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<Vector3> v; + v.resize(sz); + { + Vector3 *vw = v.ptrw(); + const Vector3 *ar = arr_a->ptr(); + const Vector3 *br = arr_b->ptr(); + + for (int i = 0; i < sz; i++) { + vw[i] = ar[i].lerp(br[i], c); + } + } + return v; + } + } + case Variant::PACKED_COLOR_ARRAY: { + const Vector<Color> *arr_a = Object::cast_to<Vector<Color>>(a); + const Vector<Color> *arr_b = Object::cast_to<Vector<Color>>(b); + int sz = arr_a->size(); + if (sz == 0 || arr_b->size() != sz) { + return a; + } else { + Vector<Color> v; + v.resize(sz); + { + Color *vw = v.ptrw(); + const Color *ar = arr_a->ptr(); + const Color *br = arr_b->ptr(); + + for (int i = 0; i < sz; i++) { + vw[i] = ar[i].lerp(br[i], c); + } + } + return v; + } + } + default: { + return c < 0.5 ? a : b; + } + } +} + Animation::Animation() {} Animation::~Animation() { |