diff options
Diffstat (limited to 'scene/3d')
-rw-r--r-- | scene/3d/baked_lightmap.cpp | 717 | ||||
-rw-r--r-- | scene/3d/baked_lightmap.h | 189 | ||||
-rw-r--r-- | scene/3d/gi_probe.cpp | 1028 | ||||
-rw-r--r-- | scene/3d/gi_probe.h | 80 | ||||
-rw-r--r-- | scene/3d/light.cpp | 17 | ||||
-rw-r--r-- | scene/3d/light.h | 11 | ||||
-rw-r--r-- | scene/3d/voxel_light_baker.cpp | 2373 | ||||
-rw-r--r-- | scene/3d/voxel_light_baker.h | 148 |
8 files changed, 3493 insertions, 1070 deletions
diff --git a/scene/3d/baked_lightmap.cpp b/scene/3d/baked_lightmap.cpp new file mode 100644 index 0000000000..8af8c2f7da --- /dev/null +++ b/scene/3d/baked_lightmap.cpp @@ -0,0 +1,717 @@ +#include "baked_lightmap.h" +#include "io/resource_saver.h" +#include "os/dir_access.h" +#include "os/os.h" +#include "voxel_light_baker.h" + +void BakedLightmapData::set_bounds(const AABB &p_bounds) { + + bounds = p_bounds; + VS::get_singleton()->lightmap_capture_set_bounds(baked_light, p_bounds); +} + +AABB BakedLightmapData::get_bounds() const { + + return bounds; +} + +void BakedLightmapData::set_octree(const PoolVector<uint8_t> &p_octree) { + + VS::get_singleton()->lightmap_capture_set_octree(baked_light, p_octree); +} + +PoolVector<uint8_t> BakedLightmapData::get_octree() const { + + return VS::get_singleton()->lightmap_capture_get_octree(baked_light); +} + +void BakedLightmapData::set_cell_space_transform(const Transform &p_xform) { + + cell_space_xform = p_xform; + VS::get_singleton()->lightmap_capture_set_octree_cell_transform(baked_light, p_xform); +} + +Transform BakedLightmapData::get_cell_space_transform() const { + return cell_space_xform; +} + +void BakedLightmapData::set_cell_subdiv(int p_cell_subdiv) { + cell_subdiv = p_cell_subdiv; + VS::get_singleton()->lightmap_capture_set_octree_cell_subdiv(baked_light, p_cell_subdiv); +} + +int BakedLightmapData::get_cell_subdiv() const { + return cell_subdiv; +} + +void BakedLightmapData::set_energy(float p_energy) { + + energy = p_energy; + VS::get_singleton()->lightmap_capture_set_energy(baked_light, energy); +} + +float BakedLightmapData::get_energy() const { + + return energy; +} + +void BakedLightmapData::add_user(const NodePath &p_path, const Ref<Texture> &p_lightmap) { + + ERR_FAIL_COND(p_lightmap.is_null()); + User user; + user.path = p_path; + user.lightmap = p_lightmap; + users.push_back(user); +} + +int BakedLightmapData::get_user_count() const { + + return users.size(); +} +NodePath BakedLightmapData::get_user_path(int p_user) const { + + ERR_FAIL_INDEX_V(p_user, users.size(), NodePath()); + return users[p_user].path; +} +Ref<Texture> BakedLightmapData::get_user_lightmap(int p_user) const { + + ERR_FAIL_INDEX_V(p_user, users.size(), Ref<Texture>()); + return users[p_user].lightmap; +} + +void BakedLightmapData::clear_users() { + users.clear(); +} + +void BakedLightmapData::_set_user_data(const Array &p_data) { + + ERR_FAIL_COND(p_data.size() & 1); + + for (int i = 0; i < p_data.size(); i += 2) { + add_user(p_data[i], p_data[i + 1]); + } +} + +Array BakedLightmapData::_get_user_data() const { + + Array ret; + for (int i = 0; i < users.size(); i++) { + ret.push_back(users[i].path); + ret.push_back(users[i].lightmap); + } + return ret; +} + +RID BakedLightmapData::get_rid() const { + return baked_light; +} +void BakedLightmapData::_bind_methods() { + + ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &BakedLightmapData::_set_user_data); + ClassDB::bind_method(D_METHOD("_get_user_data"), &BakedLightmapData::_get_user_data); + + ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &BakedLightmapData::set_bounds); + ClassDB::bind_method(D_METHOD("get_bounds"), &BakedLightmapData::get_bounds); + + ClassDB::bind_method(D_METHOD("set_cell_space_transform", "xform"), &BakedLightmapData::set_cell_space_transform); + ClassDB::bind_method(D_METHOD("get_cell_space_transform"), &BakedLightmapData::get_cell_space_transform); + + ClassDB::bind_method(D_METHOD("set_cell_subdiv", "cell_subdiv"), &BakedLightmapData::set_cell_subdiv); + ClassDB::bind_method(D_METHOD("get_cell_subdiv"), &BakedLightmapData::get_cell_subdiv); + + ClassDB::bind_method(D_METHOD("set_octree", "octree"), &BakedLightmapData::set_octree); + ClassDB::bind_method(D_METHOD("get_octree"), &BakedLightmapData::get_octree); + + ClassDB::bind_method(D_METHOD("set_energy", "energy"), &BakedLightmapData::set_energy); + ClassDB::bind_method(D_METHOD("get_energy"), &BakedLightmapData::get_energy); + + ClassDB::bind_method(D_METHOD("add_user", "path", "lightmap"), &BakedLightmapData::add_user); + ClassDB::bind_method(D_METHOD("get_user_count"), &BakedLightmapData::get_user_count); + ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &BakedLightmapData::get_user_path); + ClassDB::bind_method(D_METHOD("get_user_lightmap", "user_idx"), &BakedLightmapData::get_user_lightmap); + ClassDB::bind_method(D_METHOD("clear_users"), &BakedLightmapData::clear_users); + + ADD_PROPERTY(PropertyInfo(Variant::AABB, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds"); + ADD_PROPERTY(PropertyInfo(Variant::POOL_BYTE_ARRAY, "octree", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_octree", "get_octree"); + ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "cell_space_transform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_space_transform", "get_cell_space_transform"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "cell_subdiv", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_subdiv", "get_cell_subdiv"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_energy", "get_energy"); + ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_user_data", "_get_user_data"); +} + +BakedLightmapData::BakedLightmapData() { + + baked_light = VS::get_singleton()->lightmap_capture_create(); + energy = 1; + cell_subdiv = 1; +} + +BakedLightmapData::~BakedLightmapData() { + + VS::get_singleton()->free(baked_light); +} + +/////////////////////////// + +BakedLightmap::BakeBeginFunc BakedLightmap::bake_begin_function = NULL; +BakedLightmap::BakeStepFunc BakedLightmap::bake_step_function = NULL; +BakedLightmap::BakeEndFunc BakedLightmap::bake_end_function = NULL; + +void BakedLightmap::set_bake_subdiv(Subdiv p_subdiv) { + bake_subdiv = p_subdiv; +} + +BakedLightmap::Subdiv BakedLightmap::get_bake_subdiv() const { + return bake_subdiv; +} + +void BakedLightmap::set_capture_subdiv(Subdiv p_subdiv) { + capture_subdiv = p_subdiv; +} + +BakedLightmap::Subdiv BakedLightmap::get_capture_subdiv() const { + return capture_subdiv; +} + +void BakedLightmap::set_extents(const Vector3 &p_extents) { + extents = p_extents; +} + +Vector3 BakedLightmap::get_extents() const { + return extents; +} + +void BakedLightmap::_find_meshes_and_lights(Node *p_at_node, List<PlotMesh> &plot_meshes, List<PlotLight> &plot_lights) { + + MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node); + if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) { + Ref<Mesh> mesh = mi->get_mesh(); + if (mesh.is_valid()) { + + bool all_have_uv2 = true; + for (int i = 0; i < mesh->get_surface_count(); i++) { + if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) { + all_have_uv2 = false; + break; + } + } + + if (all_have_uv2 && mesh->get_lightmap_size_hint() != Size2()) { + //READY TO BAKE! size hint could be computed if not found, actually.. + + AABB aabb = mesh->get_aabb(); + + Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); + + if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { + PlotMesh pm; + pm.local_xform = xf; + pm.mesh = mesh; + pm.path = get_path_to(mi); + for (int i = 0; i < mesh->get_surface_count(); i++) { + pm.instance_materials.push_back(mi->get_surface_material(i)); + } + pm.override_material = mi->get_material_override(); + plot_meshes.push_back(pm); + } + } + } + } + + Light *light = Object::cast_to<Light>(p_at_node); + + if (light && light->get_bake_mode() != Light::BAKE_DISABLED) { + PlotLight pl; + Transform xf = get_global_transform().affine_inverse() * light->get_global_transform(); + + pl.local_xform = xf; + pl.light = light; + plot_lights.push_back(pl); + } + for (int i = 0; i < p_at_node->get_child_count(); i++) { + + Node *child = p_at_node->get_child(i); + if (!child->get_owner()) + continue; //maybe a helper + + _find_meshes_and_lights(child, plot_meshes, plot_lights); + } +} + +void BakedLightmap::set_hdr(bool p_enable) { + hdr = p_enable; +} + +bool BakedLightmap::is_hdr() const { + return hdr; +} + +bool BakedLightmap::_bake_time(void *ud, float p_secs, float p_progress) { + + uint64_t time = OS::get_singleton()->get_ticks_usec(); + BakeTimeData *btd = (BakeTimeData *)ud; + + if (time - btd->last_step > 1000000) { + + int mins_left = p_secs / 60; + int secs_left = Math::fmod(p_secs, 60.0f); + int percent = p_progress * 100; + bool abort = bake_step_function(btd->pass + percent, btd->text + " " + itos(percent) + "% (Time Left: " + itos(mins_left) + ":" + itos(secs_left) + "s)"); + btd->last_step = time; + if (abort) + return true; + } + + return false; +} + +BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_visual_debug) { + + String save_path; + + if (image_path.begins_with("res://")) { + save_path = image_path; + } else { + if (get_filename() != "") { + save_path = get_filename().get_base_dir(); + } else if (get_owner() && get_owner()->get_filename() != "") { + save_path = get_owner()->get_filename().get_base_dir(); + } + + if (save_path == "") { + return BAKE_ERROR_NO_SAVE_PATH; + } + if (image_path != "") { + save_path.plus_file(image_path); + } + } + { + //check for valid save path + DirAccessRef d = DirAccess::open(save_path); + if (!d) { + ERR_PRINTS("Invalid Save Path: " + save_path); + return BAKE_ERROR_NO_SAVE_PATH; + } + } + + Ref<BakedLightmapData> new_light_data; + new_light_data.instance(); + + static const int subdiv_value[SUBDIV_MAX] = { 8, 9, 10, 11, 12, 13 }; + + VoxelLightBaker baker; + + baker.begin_bake(subdiv_value[bake_subdiv], AABB(-extents, extents * 2.0)); + + List<PlotMesh> mesh_list; + List<PlotLight> light_list; + + _find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), mesh_list, light_list); + + if (bake_begin_function) { + bake_begin_function(mesh_list.size() + light_list.size() + 1 + mesh_list.size() * 100); + } + + int step = 0; + + int pmc = 0; + + for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { + + if (bake_step_function) { + bake_step_function(step++, RTR("Plotting Meshes: ") + " (" + itos(pmc + 1) + "/" + itos(mesh_list.size()) + ")"); + } + + pmc++; + baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material); + } + + pmc = 0; + baker.begin_bake_light(VoxelLightBaker::BakeQuality(bake_quality), VoxelLightBaker::BakeMode(bake_mode), propagation, energy); + + for (List<PlotLight>::Element *E = light_list.front(); E; E = E->next()) { + + if (bake_step_function) { + bake_step_function(step++, RTR("Plotting Lights:") + " (" + itos(pmc + 1) + "/" + itos(light_list.size()) + ")"); + } + + pmc++; + PlotLight pl = E->get(); + switch (pl.light->get_light_type()) { + case VS::LIGHT_DIRECTIONAL: { + baker.plot_light_directional(-pl.local_xform.basis.get_axis(2), pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_bake_mode() == Light::BAKE_ALL); + } break; + case VS::LIGHT_OMNI: { + baker.plot_light_omni(pl.local_xform.origin, pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_param(Light::PARAM_RANGE), pl.light->get_param(Light::PARAM_ATTENUATION), pl.light->get_bake_mode() == Light::BAKE_ALL); + } break; + case VS::LIGHT_SPOT: { + baker.plot_light_spot(pl.local_xform.origin, pl.local_xform.basis.get_axis(2), pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_param(Light::PARAM_RANGE), pl.light->get_param(Light::PARAM_ATTENUATION), pl.light->get_param(Light::PARAM_SPOT_ANGLE), pl.light->get_param(Light::PARAM_SPOT_ATTENUATION), pl.light->get_bake_mode() == Light::BAKE_ALL); + + } break; + } + } + /*if (bake_step_function) { + bake_step_function(pmc++, RTR("Finishing Plot")); + }*/ + + baker.end_bake(); + + Set<String> used_mesh_names; + + pmc = 0; + for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { + + String mesh_name = E->get().mesh->get_name(); + if (mesh_name == "" || mesh_name.find(":") != -1 || mesh_name.find("/") != -1) { + mesh_name = "LightMap"; + } + + if (used_mesh_names.has(mesh_name)) { + int idx = 2; + String base = mesh_name; + while (true) { + mesh_name = base + itos(idx); + if (!used_mesh_names.has(mesh_name)) + break; + idx++; + } + } + used_mesh_names.insert(mesh_name); + + pmc++; + VoxelLightBaker::LightMapData lm; + + Error err; + if (bake_step_function) { + BakeTimeData btd; + btd.text = RTR("Lighting Meshes: ") + mesh_name + " (" + itos(pmc) + "/" + itos(mesh_list.size()) + ")"; + btd.pass = step; + btd.last_step = 0; + err = baker.make_lightmap(E->get().local_xform, E->get().mesh, lm, _bake_time, &btd); + if (err != OK) { + bake_end_function(); + if (err == ERR_SKIP) + return BAKE_ERROR_USER_ABORTED; + return BAKE_ERROR_CANT_CREATE_IMAGE; + } + step += 100; + } else { + + err = baker.make_lightmap(E->get().local_xform, E->get().mesh, lm); + } + + if (err == OK) { + + Ref<Image> image; + image.instance(); + + uint32_t tex_flags = Texture::FLAGS_DEFAULT; + if (hdr) { + + //just save a regular image + PoolVector<uint8_t> data; + int s = lm.light.size(); + data.resize(lm.light.size() * 2); + { + + PoolVector<uint8_t>::Write w = data.write(); + PoolVector<float>::Read r = lm.light.read(); + uint16_t *hfw = (uint16_t *)w.ptr(); + for (int i = 0; i < s; i++) { + hfw[i] = Math::make_half_float(r[i]); + } + } + + image->create(lm.width, lm.height, false, Image::FORMAT_RGBH, data); + + } else { + + //just save a regular image + PoolVector<uint8_t> data; + int s = lm.light.size(); + data.resize(lm.light.size()); + { + + PoolVector<uint8_t>::Write w = data.write(); + PoolVector<float>::Read r = lm.light.read(); + for (int i = 0; i < s; i += 3) { + Color c(r[i + 0], r[i + 1], r[i + 2]); + c = c.to_srgb(); + w[i + 0] = CLAMP(c.r * 255, 0, 255); + w[i + 1] = CLAMP(c.g * 255, 0, 255); + w[i + 2] = CLAMP(c.b * 255, 0, 255); + } + } + + image->create(lm.width, lm.height, false, Image::FORMAT_RGB8, data); + + //This texture is saved to SRGB for two reasons: + // 1) first is so it looks better when doing the LINEAR->SRGB conversion (more accurate) + // 2) So it can be used in the GLES2 backend, which does not support linkear workflow + tex_flags |= Texture::FLAG_CONVERT_TO_LINEAR; + } + + Ref<ImageTexture> tex; + String image_path = save_path.plus_file(mesh_name + ".tex"); + bool set_path = true; + if (ResourceCache::has(image_path)) { + tex = Ref<Resource>((Resource *)ResourceCache::get(image_path)); + set_path = false; + } + + if (!tex.is_valid()) { + tex.instance(); + } + + tex->create_from_image(image, tex_flags); + + err = ResourceSaver::save(image_path, tex, ResourceSaver::FLAG_CHANGE_PATH); + if (err != OK) { + if (bake_end_function) { + bake_end_function(); + } + ERR_FAIL_COND_V(err != OK, BAKE_ERROR_CANT_CREATE_IMAGE); + } + + if (set_path) { + tex->set_path(image_path); + } + new_light_data->add_user(E->get().path, tex); + } + } + + int csubdiv = subdiv_value[capture_subdiv]; + AABB bounds = AABB(-extents, extents * 2); + new_light_data->set_cell_subdiv(csubdiv); + new_light_data->set_bounds(bounds); + new_light_data->set_octree(baker.create_capture_octree(csubdiv)); + { + + Transform to_bounds; + to_bounds.basis.scale(Vector3(bounds.get_longest_axis_size(), bounds.get_longest_axis_size(), bounds.get_longest_axis_size())); + to_bounds.origin = bounds.position; + + Transform to_grid; + to_grid.basis.scale(Vector3(1 << (csubdiv - 1), 1 << (csubdiv - 1), 1 << (csubdiv - 1))); + + Transform to_cell_space = to_grid * to_bounds.affine_inverse(); + new_light_data->set_cell_space_transform(to_cell_space); + } + + if (bake_end_function) { + bake_end_function(); + } + + //create the data for visual server + + if (p_create_visual_debug) { + MultiMeshInstance *mmi = memnew(MultiMeshInstance); + mmi->set_multimesh(baker.create_debug_multimesh(VoxelLightBaker::DEBUG_LIGHT)); + add_child(mmi); +#ifdef TOOLS_ENABLED + if (get_tree()->get_edited_scene_root() == this) { + mmi->set_owner(this); + } else { + mmi->set_owner(get_owner()); + } +#else + mmi->set_owner(get_owner()); +#endif + } + + set_light_data(new_light_data); + + return BAKE_ERROR_OK; +} + +void BakedLightmap::_notification(int p_what) { + if (p_what == NOTIFICATION_READY) { + + if (light_data.is_valid()) { + _assign_lightmaps(); + } + request_ready(); //will need ready again if re-enters tree + } + + if (p_what == NOTIFICATION_EXIT_TREE) { + + if (light_data.is_valid()) { + _clear_lightmaps(); + } + } +} + +void BakedLightmap::_assign_lightmaps() { + + ERR_FAIL_COND(!light_data.is_valid()); + + for (int i = 0; i < light_data->get_user_count(); i++) { + Node *node = get_node(light_data->get_user_path(i)); + VisualInstance *vi = Object::cast_to<VisualInstance>(node); + ERR_CONTINUE(!vi); + Ref<Texture> lightmap = light_data->get_user_lightmap(i); + ERR_CONTINUE(!lightmap.is_valid()); + VS::get_singleton()->instance_set_use_lightmap(vi->get_instance(), get_instance(), lightmap->get_rid()); + } +} + +void BakedLightmap::_clear_lightmaps() { + ERR_FAIL_COND(!light_data.is_valid()); + for (int i = 0; i < light_data->get_user_count(); i++) { + Node *node = get_node(light_data->get_user_path(i)); + VisualInstance *vi = Object::cast_to<VisualInstance>(node); + ERR_CONTINUE(!vi); + VS::get_singleton()->instance_set_use_lightmap(vi->get_instance(), RID(), RID()); + } +} + +void BakedLightmap::set_light_data(const Ref<BakedLightmapData> &p_data) { + + if (light_data.is_valid()) { + if (is_inside_tree()) { + _clear_lightmaps(); + } + set_base(RID()); + } + light_data = p_data; + + if (light_data.is_valid()) { + set_base(light_data->get_rid()); + if (is_inside_tree()) { + _assign_lightmaps(); + } + } +} + +Ref<BakedLightmapData> BakedLightmap::get_light_data() const { + + return light_data; +} + +void BakedLightmap::_debug_bake() { + bake(get_parent(), true); +} + +void BakedLightmap::set_propagation(float p_propagation) { + propagation = p_propagation; +} + +float BakedLightmap::get_propagation() const { + + return propagation; +} + +void BakedLightmap::set_energy(float p_energy) { + energy = p_energy; +} + +float BakedLightmap::get_energy() const { + + return energy; +} + +void BakedLightmap::set_bake_quality(BakeQuality p_quality) { + bake_quality = p_quality; +} + +BakedLightmap::BakeQuality BakedLightmap::get_bake_quality() const { + return bake_quality; +} + +void BakedLightmap::set_bake_mode(BakeMode p_mode) { + bake_mode = p_mode; +} + +BakedLightmap::BakeMode BakedLightmap::get_bake_mode() const { + return bake_mode; +} + +void BakedLightmap::set_image_path(const String &p_path) { + image_path = p_path; +} + +String BakedLightmap::get_image_path() const { + return image_path; +} + +AABB BakedLightmap::get_aabb() const { + return AABB(-extents, extents * 2); +} +PoolVector<Face3> BakedLightmap::get_faces(uint32_t p_usage_flags) const { + return PoolVector<Face3>(); +} + +void BakedLightmap::_bind_methods() { + + ClassDB::bind_method(D_METHOD("set_light_data", "data"), &BakedLightmap::set_light_data); + ClassDB::bind_method(D_METHOD("get_light_data"), &BakedLightmap::get_light_data); + + ClassDB::bind_method(D_METHOD("set_bake_subdiv", "bake_subdiv"), &BakedLightmap::set_bake_subdiv); + ClassDB::bind_method(D_METHOD("get_bake_subdiv"), &BakedLightmap::get_bake_subdiv); + + ClassDB::bind_method(D_METHOD("set_capture_subdiv", "capture_subdiv"), &BakedLightmap::set_capture_subdiv); + ClassDB::bind_method(D_METHOD("get_capture_subdiv"), &BakedLightmap::get_capture_subdiv); + + ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &BakedLightmap::set_bake_quality); + ClassDB::bind_method(D_METHOD("get_bake_quality"), &BakedLightmap::get_bake_quality); + + ClassDB::bind_method(D_METHOD("set_bake_mode", "bake_mode"), &BakedLightmap::set_bake_mode); + ClassDB::bind_method(D_METHOD("get_bake_mode"), &BakedLightmap::get_bake_mode); + + ClassDB::bind_method(D_METHOD("set_extents", "extents"), &BakedLightmap::set_extents); + ClassDB::bind_method(D_METHOD("get_extents"), &BakedLightmap::get_extents); + + ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &BakedLightmap::set_propagation); + ClassDB::bind_method(D_METHOD("get_propagation"), &BakedLightmap::get_propagation); + + ClassDB::bind_method(D_METHOD("set_energy", "energy"), &BakedLightmap::set_energy); + ClassDB::bind_method(D_METHOD("get_energy"), &BakedLightmap::get_energy); + + ClassDB::bind_method(D_METHOD("set_hdr", "hdr"), &BakedLightmap::set_hdr); + ClassDB::bind_method(D_METHOD("is_hdr"), &BakedLightmap::is_hdr); + + ClassDB::bind_method(D_METHOD("set_image_path", "image_path"), &BakedLightmap::set_image_path); + ClassDB::bind_method(D_METHOD("get_image_path"), &BakedLightmap::get_image_path); + + ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &BakedLightmap::bake, DEFVAL(Variant()), DEFVAL(false)); + ClassDB::bind_method(D_METHOD("debug_bake"), &BakedLightmap::_debug_bake); + ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); + + ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_subdiv", PROPERTY_HINT_ENUM, "128,256,512,1024,2048,4096"), "set_bake_subdiv", "get_bake_subdiv"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "capture_subdiv", PROPERTY_HINT_ENUM, "128,256,512"), "set_capture_subdiv", "get_capture_subdiv"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_quality", PROPERTY_HINT_ENUM, "Low,Medium,High"), "set_bake_quality", "get_bake_quality"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_mode", PROPERTY_HINT_ENUM, "ConeTrace,RayTrace"), "set_bake_mode", "get_bake_mode"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,32,0.01"), "set_energy", "get_energy"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "hdr"), "set_hdr", "is_hdr"); + ADD_PROPERTY(PropertyInfo(Variant::STRING, "image_path", PROPERTY_HINT_DIR), "set_image_path", "get_image_path"); + ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents"); + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "BakedIndirectLightData"), "set_light_data", "get_light_data"); + + BIND_ENUM_CONSTANT(SUBDIV_128); + BIND_ENUM_CONSTANT(SUBDIV_256); + BIND_ENUM_CONSTANT(SUBDIV_512); + BIND_ENUM_CONSTANT(SUBDIV_1024); + BIND_ENUM_CONSTANT(SUBDIV_2048); + BIND_ENUM_CONSTANT(SUBDIV_4096); + BIND_ENUM_CONSTANT(SUBDIV_MAX); + + BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW); + BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM); + BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH); + BIND_ENUM_CONSTANT(BAKE_MODE_CONE_TRACE); + BIND_ENUM_CONSTANT(BAKE_MODE_RAY_TRACE); +} + +BakedLightmap::BakedLightmap() { + + extents = Vector3(10, 10, 10); + bake_subdiv = SUBDIV_256; + capture_subdiv = SUBDIV_128; + bake_quality = BAKE_QUALITY_MEDIUM; + bake_mode = BAKE_MODE_CONE_TRACE; + energy = 1; + propagation = 1; + hdr = false; + image_path = "."; +} diff --git a/scene/3d/baked_lightmap.h b/scene/3d/baked_lightmap.h new file mode 100644 index 0000000000..5595ec1e61 --- /dev/null +++ b/scene/3d/baked_lightmap.h @@ -0,0 +1,189 @@ +#ifndef BAKED_INDIRECT_LIGHT_H +#define BAKED_INDIRECT_LIGHT_H + +#include "multimesh_instance.h" +#include "scene/3d/light.h" +#include "scene/3d/visual_instance.h" + +class BakedLightmapData : public Resource { + GDCLASS(BakedLightmapData, Resource); + + RID baked_light; + AABB bounds; + float energy; + int cell_subdiv; + Transform cell_space_xform; + + struct User { + + NodePath path; + Ref<Texture> lightmap; + }; + + Vector<User> users; + + void _set_user_data(const Array &p_data); + Array _get_user_data() const; + +protected: + static void _bind_methods(); + +public: + void set_bounds(const AABB &p_bounds); + AABB get_bounds() const; + + void set_octree(const PoolVector<uint8_t> &p_octree); + PoolVector<uint8_t> get_octree() const; + + void set_cell_space_transform(const Transform &p_xform); + Transform get_cell_space_transform() const; + + void set_cell_subdiv(int p_cell_subdiv); + int get_cell_subdiv() const; + + void set_energy(float p_energy); + float get_energy() const; + + void add_user(const NodePath &p_path, const Ref<Texture> &p_lightmap); + int get_user_count() const; + NodePath get_user_path(int p_user) const; + Ref<Texture> get_user_lightmap(int p_user) const; + void clear_users(); + + virtual RID get_rid() const; + BakedLightmapData(); + ~BakedLightmapData(); +}; + +class BakedLightmap : public VisualInstance { + GDCLASS(BakedLightmap, VisualInstance); + +public: + enum Subdiv { + SUBDIV_128, + SUBDIV_256, + SUBDIV_512, + SUBDIV_1024, + SUBDIV_2048, + SUBDIV_4096, + SUBDIV_MAX + + }; + + enum BakeQuality { + BAKE_QUALITY_LOW, + BAKE_QUALITY_MEDIUM, + BAKE_QUALITY_HIGH + }; + + enum BakeMode { + BAKE_MODE_CONE_TRACE, + BAKE_MODE_RAY_TRACE, + }; + + enum BakeError { + BAKE_ERROR_OK, + BAKE_ERROR_NO_SAVE_PATH, + BAKE_ERROR_NO_MESHES, + BAKE_ERROR_CANT_CREATE_IMAGE, + BAKE_ERROR_USER_ABORTED + + }; + + typedef void (*BakeBeginFunc)(int); + typedef bool (*BakeStepFunc)(int, const String &); + typedef void (*BakeEndFunc)(); + +private: + Subdiv bake_subdiv; + Subdiv capture_subdiv; + Vector3 extents; + float propagation; + float energy; + BakeQuality bake_quality; + BakeMode bake_mode; + bool hdr; + String image_path; + + Ref<BakedLightmapData> light_data; + + struct PlotMesh { + Ref<Material> override_material; + Vector<Ref<Material> > instance_materials; + Ref<Mesh> mesh; + Transform local_xform; + NodePath path; + }; + + struct PlotLight { + Light *light; + Transform local_xform; + }; + + void _find_meshes_and_lights(Node *p_at_node, List<PlotMesh> &plot_meshes, List<PlotLight> &plot_lights); + + void _debug_bake(); + + void _assign_lightmaps(); + void _clear_lightmaps(); + + static bool _bake_time(void *ud, float p_secs, float p_progress); + + struct BakeTimeData { + String text; + int pass; + uint64_t last_step; + }; + +protected: + static void _bind_methods(); + void _notification(int p_what); + +public: + static BakeBeginFunc bake_begin_function; + static BakeStepFunc bake_step_function; + static BakeEndFunc bake_end_function; + + void set_light_data(const Ref<BakedLightmapData> &p_data); + Ref<BakedLightmapData> get_light_data() const; + + void set_bake_subdiv(Subdiv p_subdiv); + Subdiv get_bake_subdiv() const; + + void set_capture_subdiv(Subdiv p_subdiv); + Subdiv get_capture_subdiv() const; + + void set_extents(const Vector3 &p_extents); + Vector3 get_extents() const; + + void set_propagation(float p_propagation); + float get_propagation() const; + + void set_energy(float p_energy); + float get_energy() const; + + void set_bake_quality(BakeQuality p_quality); + BakeQuality get_bake_quality() const; + + void set_bake_mode(BakeMode p_mode); + BakeMode get_bake_mode() const; + + void set_hdr(bool p_enable); + bool is_hdr() const; + + void set_image_path(const String &p_path); + String get_image_path() const; + + AABB get_aabb() const; + PoolVector<Face3> get_faces(uint32_t p_usage_flags) const; + + BakeError bake(Node *p_from_node, bool p_create_visual_debug = false); + BakedLightmap(); +}; + +VARIANT_ENUM_CAST(BakedLightmap::Subdiv); +VARIANT_ENUM_CAST(BakedLightmap::BakeQuality); +VARIANT_ENUM_CAST(BakedLightmap::BakeMode); +VARIANT_ENUM_CAST(BakedLightmap::BakeError); + +#endif // BAKED_INDIRECT_LIGHT_H diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp index 1f2b43165e..9c811a74bf 100644 --- a/scene/3d/gi_probe.cpp +++ b/scene/3d/gi_probe.cpp @@ -30,6 +30,7 @@ #include "gi_probe.h" #include "mesh_instance.h" +#include "voxel_light_baker.h" void GIProbeData::set_bounds(const AABB &p_bounds) { @@ -329,754 +330,7 @@ bool GIProbe::is_compressed() const { return compress; } -#include "math.h" - -#define FINDMINMAX(x0, x1, x2, min, max) \ - min = max = x0; \ - if (x1 < min) min = x1; \ - if (x1 > max) max = x1; \ - if (x2 < min) min = x2; \ - if (x2 > max) max = x2; - -static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { - int q; - Vector3 vmin, vmax; - for (q = 0; q <= 2; q++) { - if (normal[q] > 0.0f) { - vmin[q] = -maxbox[q]; - vmax[q] = maxbox[q]; - } else { - vmin[q] = maxbox[q]; - vmax[q] = -maxbox[q]; - } - } - if (normal.dot(vmin) + d > 0.0f) return false; - if (normal.dot(vmax) + d >= 0.0f) return true; - - return false; -} - -/*======================== X-tests ========================*/ -#define AXISTEST_X01(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p2 = a * v2.y - b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_X2(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p1 = a * v1.y - b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Y-tests ========================*/ -#define AXISTEST_Y02(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p2 = -a * v2.x + b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Y1(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p1 = -a * v1.x + b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - - /*======================== Z-tests ========================*/ - -#define AXISTEST_Z12(a, b, fa, fb) \ - p1 = a * v1.x - b * v1.y; \ - p2 = a * v2.x - b * v2.y; \ - if (p2 < p1) { \ - min = p2; \ - max = p1; \ - } else { \ - min = p1; \ - max = p2; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Z0(a, b, fa, fb) \ - p0 = a * v0.x - b * v0.y; \ - p1 = a * v1.x - b * v1.y; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { - - /* use separating axis theorem to test overlap between triangle and box */ - /* need to test for overlap in these directions: */ - /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ - /* we do not even need to test these) */ - /* 2) normal of the triangle */ - /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ - /* this gives 3x3=9 more tests */ - Vector3 v0, v1, v2; - float min, max, d, p0, p1, p2, rad, fex, fey, fez; - Vector3 normal, e0, e1, e2; - - /* This is the fastest branch on Sun */ - /* move everything so that the boxcenter is in (0,0,0) */ - - v0 = triverts[0] - boxcenter; - v1 = triverts[1] - boxcenter; - v2 = triverts[2] - boxcenter; - - /* compute triangle edges */ - e0 = v1 - v0; /* tri edge 0 */ - e1 = v2 - v1; /* tri edge 1 */ - e2 = v0 - v2; /* tri edge 2 */ - - /* Bullet 3: */ - /* test the 9 tests first (this was faster) */ - fex = Math::abs(e0.x); - fey = Math::abs(e0.y); - fez = Math::abs(e0.z); - AXISTEST_X01(e0.z, e0.y, fez, fey); - AXISTEST_Y02(e0.z, e0.x, fez, fex); - AXISTEST_Z12(e0.y, e0.x, fey, fex); - - fex = Math::abs(e1.x); - fey = Math::abs(e1.y); - fez = Math::abs(e1.z); - AXISTEST_X01(e1.z, e1.y, fez, fey); - AXISTEST_Y02(e1.z, e1.x, fez, fex); - AXISTEST_Z0(e1.y, e1.x, fey, fex); - - fex = Math::abs(e2.x); - fey = Math::abs(e2.y); - fez = Math::abs(e2.z); - AXISTEST_X2(e2.z, e2.y, fez, fey); - AXISTEST_Y1(e2.z, e2.x, fez, fex); - AXISTEST_Z12(e2.y, e2.x, fey, fex); - - /* Bullet 1: */ - /* first test overlap in the {x,y,z}-directions */ - /* find min, max of the triangle each direction, and test for overlap in */ - /* that direction -- this is equivalent to testing a minimal AABB around */ - /* the triangle against the AABB */ - - /* test in X-direction */ - FINDMINMAX(v0.x, v1.x, v2.x, min, max); - if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; - - /* test in Y-direction */ - FINDMINMAX(v0.y, v1.y, v2.y, min, max); - if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; - - /* test in Z-direction */ - FINDMINMAX(v0.z, v1.z, v2.z, min, max); - if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; - - /* Bullet 2: */ - /* test if the box intersects the plane of the triangle */ - /* compute plane equation of triangle: normal*x+d=0 */ - normal = e0.cross(e1); - d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ - if (!planeBoxOverlap(normal, d, boxhalfsize)) return false; - - return true; /* box and triangle overlaps */ -} - -static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) { - - if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) - return p_uv[0]; - if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) - return p_uv[1]; - if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) - return p_uv[2]; - - Vector3 v0 = p_vtx[1] - p_vtx[0]; - Vector3 v1 = p_vtx[2] - p_vtx[0]; - Vector3 v2 = p_pos - p_vtx[0]; - - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - if (denom == 0) - return p_uv[0]; - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - - return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; -} - -void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const AABB &p_aabb, Baker *p_baker) { - - if (p_level == p_baker->cell_subdiv - 1) { - //plot the face by guessing it's albedo and emission value - - //find best axis to map to, for scanning values - int closest_axis = 0; - float closest_dot = 0; - - Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 normal = plane.normal; - - for (int i = 0; i < 3; i++) { - - Vector3 axis; - axis[i] = 1.0; - float dot = ABS(normal.dot(axis)); - if (i == 0 || dot > closest_dot) { - closest_axis = i; - closest_dot = dot; - } - } - - Vector3 axis; - axis[closest_axis] = 1.0; - Vector3 t1; - t1[(closest_axis + 1) % 3] = 1.0; - Vector3 t2; - t2[(closest_axis + 2) % 3] = 1.0; - - t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); - t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); - - Color albedo_accum; - Color emission_accum; - Vector3 normal_accum; - - float alpha = 0.0; - - //map to a grid average in the best axis for this face - for (int i = 0; i < color_scan_cell_width; i++) { - - Vector3 ofs_i = float(i) * t1; - - for (int j = 0; j < color_scan_cell_width; j++) { - - Vector3 ofs_j = float(j) * t2; - - Vector3 from = p_aabb.position + ofs_i + ofs_j; - Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; - Vector3 half = (to - from) * 0.5; - - //is in this cell? - if (!fast_tri_box_overlap(from + half, half, p_vtx)) { - continue; //face does not span this cell - } - - //go from -size to +size*2 to avoid skipping collisions - Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; - Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; - - if (normal.dot(ray_from - ray_to) < 0) { - SWAP(ray_from, ray_to); - } - - Vector3 intersection; - - if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { - if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { - intersection = plane.project(ray_from); - } else { - - intersection = plane.project(ray_to); - } - } - - intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); - - Vector2 uv = get_uv(intersection, p_vtx, p_uv); - - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - albedo_accum.r += p_material.albedo[ofs].r; - albedo_accum.g += p_material.albedo[ofs].g; - albedo_accum.b += p_material.albedo[ofs].b; - albedo_accum.a += p_material.albedo[ofs].a; - - emission_accum.r += p_material.emission[ofs].r; - emission_accum.g += p_material.emission[ofs].g; - emission_accum.b += p_material.emission[ofs].b; - - normal_accum += normal; - - alpha += 1.0; - } - } - - if (alpha == 0) { - //could not in any way get texture information.. so use closest point to center - - Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); - - Vector2 uv = get_uv(inters, p_vtx, p_uv); - - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - - alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); - - albedo_accum.r = p_material.albedo[ofs].r * alpha; - albedo_accum.g = p_material.albedo[ofs].g * alpha; - albedo_accum.b = p_material.albedo[ofs].b * alpha; - albedo_accum.a = p_material.albedo[ofs].a * alpha; - - emission_accum.r = p_material.emission[ofs].r * alpha; - emission_accum.g = p_material.emission[ofs].g * alpha; - emission_accum.b = p_material.emission[ofs].b * alpha; - - normal_accum *= alpha; - - } else { - - float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); - alpha *= accdiv; - - albedo_accum.r *= accdiv; - albedo_accum.g *= accdiv; - albedo_accum.b *= accdiv; - albedo_accum.a *= accdiv; - - emission_accum.r *= accdiv; - emission_accum.g *= accdiv; - emission_accum.b *= accdiv; - - normal_accum *= accdiv; - } - - //put this temporarily here, corrected in a later step - p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r; - p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g; - p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b; - p_baker->bake_cells[p_idx].emission[0] += emission_accum.r; - p_baker->bake_cells[p_idx].emission[1] += emission_accum.g; - p_baker->bake_cells[p_idx].emission[2] += emission_accum.b; - p_baker->bake_cells[p_idx].normal[0] += normal_accum.x; - p_baker->bake_cells[p_idx].normal[1] += normal_accum.y; - p_baker->bake_cells[p_idx].normal[2] += normal_accum.z; - p_baker->bake_cells[p_idx].alpha += alpha; - - } else { - //go down - - int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) { - aabb.position.x += aabb.size.x; - nx += half; - } - if (i & 2) { - aabb.position.y += aabb.size.y; - ny += half; - } - if (i & 4) { - aabb.position.z += aabb.size.z; - nz += half; - } - //make sure to not plot beyond limits - if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2]) - continue; - - { - AABB test_aabb = aabb; - //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time - Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test - - if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { - //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { - //does not fit in child, go on - continue; - } - } - - if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) { - //sub cell must be created - - uint32_t child_idx = p_baker->bake_cells.size(); - p_baker->bake_cells[p_idx].childs[i] = child_idx; - p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1); - p_baker->bake_cells[child_idx].level = p_level + 1; - } - - _plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker); - } - } -} - -void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) { - - if (p_level == p_baker->cell_subdiv - 1) { - - p_baker->leaf_voxel_count++; - float alpha = p_baker->bake_cells[p_idx].alpha; - - p_baker->bake_cells[p_idx].albedo[0] /= alpha; - p_baker->bake_cells[p_idx].albedo[1] /= alpha; - p_baker->bake_cells[p_idx].albedo[2] /= alpha; - - //transfer emission to light - p_baker->bake_cells[p_idx].emission[0] /= alpha; - p_baker->bake_cells[p_idx].emission[1] /= alpha; - p_baker->bake_cells[p_idx].emission[2] /= alpha; - - p_baker->bake_cells[p_idx].normal[0] /= alpha; - p_baker->bake_cells[p_idx].normal[1] /= alpha; - p_baker->bake_cells[p_idx].normal[2] /= alpha; - - Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]); - if (n.length() < 0.01) { - //too much fight over normal, zero it - p_baker->bake_cells[p_idx].normal[0] = 0; - p_baker->bake_cells[p_idx].normal[1] = 0; - p_baker->bake_cells[p_idx].normal[2] = 0; - } else { - n.normalize(); - p_baker->bake_cells[p_idx].normal[0] = n.x; - p_baker->bake_cells[p_idx].normal[1] = n.y; - p_baker->bake_cells[p_idx].normal[2] = n.z; - } - - p_baker->bake_cells[p_idx].alpha = 1.0; - - /* - //remove neighbours from used sides - - for(int n=0;n<6;n++) { - - int ofs[3]={0,0,0}; - - ofs[n/2]=(n&1)?1:-1; - - //convert to x,y,z on this level - int x=p_x; - int y=p_y; - int z=p_z; - - x+=ofs[0]; - y+=ofs[1]; - z+=ofs[2]; - - int ofs_x=0; - int ofs_y=0; - int ofs_z=0; - int size = 1<<p_level; - int half=size/2; - - - if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) { - //neighbour is out, can't use it - p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n)); - continue; - } - - uint32_t neighbour=0; - - for(int i=0;i<p_baker->cell_subdiv-1;i++) { - - Baker::Cell *bc = &p_baker->bake_cells[neighbour]; - - int child = 0; - if (x >= ofs_x + half) { - child|=1; - ofs_x+=half; - } - if (y >= ofs_y + half) { - child|=2; - ofs_y+=half; - } - if (z >= ofs_z + half) { - child|=4; - ofs_z+=half; - } - - neighbour = bc->childs[child]; - if (neighbour==Baker::CHILD_EMPTY) { - break; - } - - half>>=1; - } - - if (neighbour!=Baker::CHILD_EMPTY) { - p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n)); - } - } - */ - } else { - - //go down - - float alpha_average = 0; - int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - uint32_t child = p_baker->bake_cells[p_idx].childs[i]; - - if (child == Baker::CHILD_EMPTY) - continue; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) - nx += half; - if (i & 2) - ny += half; - if (i & 4) - nz += half; - - _fixup_plot(child, p_level + 1, nx, ny, nz, p_baker); - alpha_average += p_baker->bake_cells[child].alpha; - } - - p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0; - p_baker->bake_cells[p_idx].emission[0] = 0; - p_baker->bake_cells[p_idx].emission[1] = 0; - p_baker->bake_cells[p_idx].emission[2] = 0; - p_baker->bake_cells[p_idx].normal[0] = 0; - p_baker->bake_cells[p_idx].normal[1] = 0; - p_baker->bake_cells[p_idx].normal[2] = 0; - p_baker->bake_cells[p_idx].albedo[0] = 0; - p_baker->bake_cells[p_idx].albedo[1] = 0; - p_baker->bake_cells[p_idx].albedo[2] = 0; - } -} - -Vector<Color> GIProbe::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { - - Vector<Color> ret; - - if (p_image.is_null() || p_image->empty()) { - - ret.resize(bake_texture_size * bake_texture_size); - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - ret[i] = p_color_add; - } - - return ret; - } - p_image = p_image->duplicate(); - - if (p_image->is_compressed()) { - print_line("DECOMPRESSING!!!!"); - - p_image->decompress(); - } - p_image->convert(Image::FORMAT_RGBA8); - p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); - - PoolVector<uint8_t>::Read r = p_image->get_data().read(); - ret.resize(bake_texture_size * bake_texture_size); - - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - Color c; - c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; - c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; - c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; - - c.a = r[i * 4 + 3] / 255.0; - - ret[i] = c; - } - - return ret; -} - -GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material, Baker *p_baker) { - - //this way of obtaining materials is inaccurate and also does not support some compressed formats very well - Ref<SpatialMaterial> mat = p_material; - - Ref<Material> material = mat; //hack for now - - if (p_baker->material_cache.has(material)) { - return p_baker->material_cache[material]; - } - - Baker::MaterialCache mc; - - if (mat.is_valid()) { - - Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO); - - Ref<Image> img_albedo; - if (albedo_tex.is_valid()) { - - img_albedo = albedo_tex->get_data(); - mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative - } else { - mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive - } - - Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION); - - Color emission_col = mat->get_emission(); - float emission_energy = mat->get_emission_energy(); - - Ref<Image> img_emission; - - if (emission_tex.is_valid()) { - - img_emission = emission_tex->get_data(); - } - - if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) { - mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); - } else { - mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); - } - - } else { - Ref<Image> empty; - - mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); - mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); - } - - p_baker->material_cache[p_material] = mc; - return mc; -} - -void GIProbe::_plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { - - for (int i = 0; i < p_mesh->get_surface_count(); i++) { - - if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) - continue; //only triangles - - Ref<Material> src_material; - - if (p_override_material.is_valid()) { - src_material = p_override_material; - } else if (i < p_materials.size() && p_materials[i].is_valid()) { - src_material = p_materials[i]; - } else { - src_material = p_mesh->surface_get_material(i); - } - Baker::MaterialCache material = _get_material_cache(src_material, p_baker); - - Array a = p_mesh->surface_get_arrays(i); - - PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; - PoolVector<Vector2>::Read uvr; - PoolVector<int> index = a[Mesh::ARRAY_INDEX]; - - bool read_uv = false; - - if (uv.size()) { - - uvr = uv.read(); - read_uv = true; - } - - if (index.size()) { - - int facecount = index.size() / 3; - PoolVector<int>::Read ir = index.read(); - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[ir[j * 3 + k]]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) - continue; - //plot - _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); - } - - } else { - - int facecount = vertices.size() / 3; - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[j * 3 + k]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[j * 3 + k]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) - continue; - //plot face - _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); - } - } - } -} - -void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { +void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) { MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node); if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) { @@ -1088,14 +342,14 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { - Baker::PlotMesh pm; + PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; for (int i = 0; i < mesh->get_surface_count(); i++) { pm.instance_materials.push_back(mi->get_surface_material(i)); } pm.override_material = mi->get_material_override(); - p_baker->mesh_list.push_back(pm); + plot_meshes.push_back(pm); } } } @@ -1118,10 +372,10 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf); if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { - Baker::PlotMesh pm; + PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; - p_baker->mesh_list.push_back(pm); + plot_meshes.push_back(pm); } } } @@ -1133,7 +387,7 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { if (!child->get_owner()) continue; //maybe a helper - _find_meshes(child, p_baker); + _find_meshes(child, plot_meshes); } } @@ -1143,145 +397,56 @@ GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL; void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { - Baker baker; - static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 }; - baker.cell_subdiv = subdiv_value[subdiv]; - baker.bake_cells.resize(1); - - //find out the actual real bounds, power of 2, which gets the highest subdivision - baker.po2_bounds = AABB(-extents, extents * 2.0); - int longest_axis = baker.po2_bounds.get_longest_axis_index(); - baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1)); - baker.leaf_voxel_count = 0; - - for (int i = 0; i < 3; i++) { - - if (i == longest_axis) - continue; + VoxelLightBaker baker; - baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis]; - float axis_size = baker.po2_bounds.size[longest_axis]; + baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0)); - //shrink until fit subdiv - while (axis_size / 2.0 >= baker.po2_bounds.size[i]) { - axis_size /= 2.0; - baker.axis_cell_size[i] >>= 1; - } - - baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis]; - } - - Transform to_bounds; - to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis])); - to_bounds.origin = baker.po2_bounds.position; - - Transform to_grid; - to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis])); + List<PlotMesh> mesh_list; - baker.to_cell_space = to_grid * to_bounds.affine_inverse(); - - _find_meshes(p_from_node ? p_from_node : get_parent(), &baker); + _find_meshes(p_from_node ? p_from_node : get_parent(), mesh_list); if (bake_begin_function) { - bake_begin_function(baker.mesh_list.size() + 1); + bake_begin_function(mesh_list.size() + 1); } int pmc = 0; - for (List<Baker::PlotMesh>::Element *E = baker.mesh_list.front(); E; E = E->next()) { + for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { if (bake_step_function) { - bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(baker.mesh_list.size())); + bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(mesh_list.size())); } pmc++; - _plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material); + baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material); } if (bake_step_function) { bake_step_function(pmc++, RTR("Finishing Plot")); } - _fixup_plot(0, 0, 0, 0, 0, &baker); + baker.end_bake(); //create the data for visual server - PoolVector<int> data; - - data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest. - - { - PoolVector<int>::Write w = data.write(); - - uint32_t *w32 = (uint32_t *)w.ptr(); + PoolVector<int> data = baker.create_gi_probe_data(); - w32[0] = 0; //version - w32[1] = baker.cell_subdiv; //subdiv - w32[2] = baker.axis_cell_size[0]; - w32[3] = baker.axis_cell_size[1]; - w32[4] = baker.axis_cell_size[2]; - w32[5] = baker.bake_cells.size(); - w32[6] = baker.leaf_voxel_count; - - int ofs = 16; - - for (int i = 0; i < baker.bake_cells.size(); i++) { - - for (int j = 0; j < 8; j++) { - w32[ofs++] = baker.bake_cells[i].childs[j]; - } - - { //albedo - uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; - rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; - rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; - - w32[ofs++] = rgba; - } - { //emission - - Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]); - float l = e.length(); - if (l > 0) { - e.normalize(); - l = CLAMP(l / 8.0, 0, 1.0); - } - - uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; - em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; - em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; - em |= uint32_t(CLAMP(l * 255, 0, 255)); - - w32[ofs++] = em; - } - - //w32[ofs++]=baker.bake_cells[i].used_sides; - { //normal - - Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]); - n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); - uint32_t norm = 0; - - norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; - norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; - norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; - - w32[ofs++] = norm; - } - - { - uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535); - uint16_t level = baker.bake_cells[i].level; - - w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); - } + if (p_create_visual_debug) { + MultiMeshInstance *mmi = memnew(MultiMeshInstance); + mmi->set_multimesh(baker.create_debug_multimesh()); + add_child(mmi); +#ifdef TOOLS_ENABLED + if (get_tree()->get_edited_scene_root() == this) { + mmi->set_owner(this); + } else { + mmi->set_owner(get_owner()); } - } +#else + mmi->set_owner(get_owner()); +#endif - if (p_create_visual_debug) { - _create_debug_mesh(&baker); } else { Ref<GIProbeData> probe_data = get_probe_data(); @@ -1290,7 +455,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { probe_data.instance(); probe_data->set_bounds(AABB(-extents, extents * 2.0)); - probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]); + probe_data->set_cell_size(baker.get_cell_size()); probe_data->set_dynamic_data(data); probe_data->set_dynamic_range(dynamic_range); probe_data->set_energy(energy); @@ -1299,7 +464,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { probe_data->set_propagation(propagation); probe_data->set_interior(interior); probe_data->set_compress(compress); - probe_data->set_to_cell_xform(baker.to_cell_space); + probe_data->set_to_cell_xform(baker.get_to_cell_space_xform()); set_probe_data(probe_data); } @@ -1309,135 +474,6 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { } } -void GIProbe::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker) { - - if (p_level == p_baker->cell_subdiv - 1) { - - Vector3 center = p_aabb.position + p_aabb.size * 0.5; - Transform xform; - xform.origin = center; - xform.basis.scale(p_aabb.size * 0.5); - p_multimesh->set_instance_transform(idx, xform); - Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]); - //Color col = Color(p_baker->bake_cells[p_idx].emission[0], p_baker->bake_cells[p_idx].emission[1], p_baker->bake_cells[p_idx].emission[2]); - p_multimesh->set_instance_color(idx, col); - - idx++; - - } else { - - for (int i = 0; i < 8; i++) { - - if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) - continue; - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - if (i & 1) - aabb.position.x += aabb.size.x; - if (i & 2) - aabb.position.y += aabb.size.y; - if (i & 4) - aabb.position.z += aabb.size.z; - - _debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker); - } - } -} - -void GIProbe::_create_debug_mesh(Baker *p_baker) { - - Ref<MultiMesh> mm; - mm.instance(); - - mm->set_transform_format(MultiMesh::TRANSFORM_3D); - mm->set_color_format(MultiMesh::COLOR_8BIT); - print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count)); - mm->set_instance_count(p_baker->leaf_voxel_count); - - Ref<ArrayMesh> mesh; - mesh.instance(); - - { - Array arr; - arr.resize(Mesh::ARRAY_MAX); - - PoolVector<Vector3> vertices; - PoolVector<Color> colors; - - int vtx_idx = 0; -#define ADD_VTX(m_idx) \ - ; \ - vertices.push_back(face_points[m_idx]); \ - colors.push_back(Color(1, 1, 1, 1)); \ - vtx_idx++; - - for (int i = 0; i < 6; i++) { - - Vector3 face_points[4]; - - for (int j = 0; j < 4; j++) { - - float v[3]; - v[0] = 1.0; - v[1] = 1 - 2 * ((j >> 1) & 1); - v[2] = v[1] * (1 - 2 * (j & 1)); - - for (int k = 0; k < 3; k++) { - - if (i < 3) - face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); - else - face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); - } - } - - //tri 1 - ADD_VTX(0); - ADD_VTX(1); - ADD_VTX(2); - //tri 2 - ADD_VTX(2); - ADD_VTX(3); - ADD_VTX(0); - } - - arr[Mesh::ARRAY_VERTEX] = vertices; - arr[Mesh::ARRAY_COLOR] = colors; - mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); - } - - { - Ref<SpatialMaterial> fsm; - fsm.instance(); - fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); - fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); - fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true); - fsm->set_albedo(Color(1, 1, 1, 1)); - - mesh->surface_set_material(0, fsm); - } - - mm->set_mesh(mesh); - - int idx = 0; - _debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker); - - MultiMeshInstance *mmi = memnew(MultiMeshInstance); - mmi->set_multimesh(mm); - add_child(mmi); -#ifdef TOOLS_ENABLED - if (get_tree()->get_edited_scene_root() == this) { - mmi->set_owner(this); - } else { - mmi->set_owner(get_owner()); - } -#else - mmi->set_owner(get_owner()); -#endif -} - void GIProbe::_debug_bake() { bake(NULL, true); @@ -1516,8 +552,6 @@ GIProbe::GIProbe() { normal_bias = 0.0; propagation = 0.7; extents = Vector3(10, 10, 10); - color_scan_cell_width = 4; - bake_texture_size = 128; interior = false; compress = false; diff --git a/scene/3d/gi_probe.h b/scene/3d/gi_probe.h index 324ff8e917..0858af0001 100644 --- a/scene/3d/gi_probe.h +++ b/scene/3d/gi_probe.h @@ -100,67 +100,6 @@ public: typedef void (*BakeEndFunc)(); private: - //stuff used for bake - struct Baker { - - enum { - CHILD_EMPTY = 0xFFFFFFFF - }; - struct Cell { - - uint32_t childs[8]; - float albedo[3]; //albedo in RGB24 - float emission[3]; //accumulated light in 16:16 fixed point (needs to be integer for moving lights fast) - float normal[3]; - uint32_t used_sides; - float alpha; //used for upsampling - int level; - - Cell() { - for (int i = 0; i < 8; i++) { - childs[i] = CHILD_EMPTY; - } - - for (int i = 0; i < 3; i++) { - emission[i] = 0; - albedo[i] = 0; - normal[i] = 0; - } - alpha = 0; - used_sides = 0; - level = 0; - } - }; - - Vector<Cell> bake_cells; - int cell_subdiv; - - struct MaterialCache { - //128x128 textures - Vector<Color> albedo; - Vector<Color> emission; - }; - - Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color); - Map<Ref<Material>, MaterialCache> material_cache; - MaterialCache _get_material_cache(Ref<Material> p_material); - int leaf_voxel_count; - - AABB po2_bounds; - int axis_cell_size[3]; - - struct PlotMesh { - Ref<Material> override_material; - Vector<Ref<Material> > instance_materials; - Ref<Mesh> mesh; - Transform local_xform; - }; - - Transform to_cell_space; - - List<PlotMesh> mesh_list; - }; - Ref<GIProbeData> probe_data; RID gi_probe; @@ -175,19 +114,14 @@ private: bool interior; bool compress; - int color_scan_cell_width; - int bake_texture_size; - - Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add); - Baker::MaterialCache _get_material_cache(Ref<Material> p_material, Baker *p_baker); - void _plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const AABB &p_aabb, Baker *p_baker); - void _plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material); - void _find_meshes(Node *p_at_node, Baker *p_baker); - void _fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker); - - void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker); - void _create_debug_mesh(Baker *p_baker); + struct PlotMesh { + Ref<Material> override_material; + Vector<Ref<Material> > instance_materials; + Ref<Mesh> mesh; + Transform local_xform; + }; + void _find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes); void _debug_bake(); protected: diff --git a/scene/3d/light.cpp b/scene/3d/light.cpp index 1fc4e932e8..6eb2028d8e 100644 --- a/scene/3d/light.cpp +++ b/scene/3d/light.cpp @@ -142,6 +142,14 @@ PoolVector<Face3> Light::get_faces(uint32_t p_usage_flags) const { return PoolVector<Face3>(); } +void Light::set_bake_mode(BakeMode p_mode) { + bake_mode = p_mode; +} + +Light::BakeMode Light::get_bake_mode() const { + return bake_mode; +} + void Light::_update_visibility() { if (!is_inside_tree()) @@ -219,12 +227,16 @@ void Light::_bind_methods() { ClassDB::bind_method(D_METHOD("set_shadow_color", "shadow_color"), &Light::set_shadow_color); ClassDB::bind_method(D_METHOD("get_shadow_color"), &Light::get_shadow_color); + ClassDB::bind_method(D_METHOD("set_bake_mode", "bake_mode"), &Light::set_bake_mode); + ClassDB::bind_method(D_METHOD("get_bake_mode"), &Light::get_bake_mode); + ADD_GROUP("Light", "light_"); ADD_PROPERTY(PropertyInfo(Variant::COLOR, "light_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_color", "get_color"); ADD_PROPERTYI(PropertyInfo(Variant::REAL, "light_energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_param", "get_param", PARAM_ENERGY); ADD_PROPERTYI(PropertyInfo(Variant::REAL, "light_indirect_energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_param", "get_param", PARAM_INDIRECT_ENERGY); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "light_negative"), "set_negative", "is_negative"); ADD_PROPERTYI(PropertyInfo(Variant::REAL, "light_specular", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param", "get_param", PARAM_SPECULAR); + ADD_PROPERTY(PropertyInfo(Variant::INT, "light_bake_mode", PROPERTY_HINT_ENUM, "Disable,Indirect,All"), "set_bake_mode", "get_bake_mode"); ADD_PROPERTY(PropertyInfo(Variant::INT, "light_cull_mask", PROPERTY_HINT_LAYERS_3D_RENDER), "set_cull_mask", "get_cull_mask"); ADD_GROUP("Shadow", "shadow_"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "shadow_enabled"), "set_shadow", "has_shadow"); @@ -252,6 +264,10 @@ void Light::_bind_methods() { BIND_ENUM_CONSTANT(PARAM_SHADOW_BIAS); BIND_ENUM_CONSTANT(PARAM_SHADOW_BIAS_SPLIT_SCALE); BIND_ENUM_CONSTANT(PARAM_MAX); + + BIND_ENUM_CONSTANT(BAKE_DISABLED); + BIND_ENUM_CONSTANT(BAKE_INDIRECT); + BIND_ENUM_CONSTANT(BAKE_ALL); } Light::Light(VisualServer::LightType p_type) { @@ -267,6 +283,7 @@ Light::Light(VisualServer::LightType p_type) { VS::get_singleton()->instance_set_base(get_instance(), light); reverse_cull = false; + bake_mode = BAKE_INDIRECT; editor_only = false; set_color(Color(1, 1, 1, 1)); diff --git a/scene/3d/light.h b/scene/3d/light.h index 33e62214b1..7ba25731d9 100644 --- a/scene/3d/light.h +++ b/scene/3d/light.h @@ -63,6 +63,12 @@ public: PARAM_MAX = VS::LIGHT_PARAM_MAX }; + enum BakeMode { + BAKE_DISABLED, + BAKE_INDIRECT, + BAKE_ALL + }; + private: Color color; float param[PARAM_MAX]; @@ -74,6 +80,7 @@ private: VS::LightType type; bool editor_only; void _update_visibility(); + BakeMode bake_mode; // bind helpers @@ -114,6 +121,9 @@ public: void set_shadow_reverse_cull_face(bool p_enable); bool get_shadow_reverse_cull_face() const; + void set_bake_mode(BakeMode p_mode); + BakeMode get_bake_mode() const; + virtual AABB get_aabb() const; virtual PoolVector<Face3> get_faces(uint32_t p_usage_flags) const; @@ -122,6 +132,7 @@ public: }; VARIANT_ENUM_CAST(Light::Param); +VARIANT_ENUM_CAST(Light::BakeMode); class DirectionalLight : public Light { diff --git a/scene/3d/voxel_light_baker.cpp b/scene/3d/voxel_light_baker.cpp new file mode 100644 index 0000000000..98dc1590d8 --- /dev/null +++ b/scene/3d/voxel_light_baker.cpp @@ -0,0 +1,2373 @@ +#include "voxel_light_baker.h" +#include "os/os.h" +#define FINDMINMAX(x0, x1, x2, min, max) \ + min = max = x0; \ + if (x1 < min) min = x1; \ + if (x1 > max) max = x1; \ + if (x2 < min) min = x2; \ + if (x2 > max) max = x2; + +static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { + int q; + Vector3 vmin, vmax; + for (q = 0; q <= 2; q++) { + if (normal[q] > 0.0f) { + vmin[q] = -maxbox[q]; + vmax[q] = maxbox[q]; + } else { + vmin[q] = maxbox[q]; + vmax[q] = -maxbox[q]; + } + } + if (normal.dot(vmin) + d > 0.0f) return false; + if (normal.dot(vmax) + d >= 0.0f) return true; + + return false; +} + +/*======================== X-tests ========================*/ +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p2 = a * v2.y - b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p1 = a * v1.y - b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +/*======================== Y-tests ========================*/ +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p2 = -a * v2.x + b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p1 = -a * v1.x + b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + + /*======================== Z-tests ========================*/ + +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a * v1.x - b * v1.y; \ + p2 = a * v2.x - b * v2.y; \ + if (p2 < p1) { \ + min = p2; \ + max = p1; \ + } else { \ + min = p1; \ + max = p2; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a * v0.x - b * v0.y; \ + p1 = a * v1.x - b * v1.y; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) return false; + +static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { + + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + Vector3 v0, v1, v2; + float min, max, d, p0, p1, p2, rad, fex, fey, fez; + Vector3 normal, e0, e1, e2; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + + v0 = triverts[0] - boxcenter; + v1 = triverts[1] - boxcenter; + v2 = triverts[2] - boxcenter; + + /* compute triangle edges */ + e0 = v1 - v0; /* tri edge 0 */ + e1 = v2 - v1; /* tri edge 1 */ + e2 = v0 - v2; /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = Math::abs(e0.x); + fey = Math::abs(e0.y); + fez = Math::abs(e0.z); + AXISTEST_X01(e0.z, e0.y, fez, fey); + AXISTEST_Y02(e0.z, e0.x, fez, fex); + AXISTEST_Z12(e0.y, e0.x, fey, fex); + + fex = Math::abs(e1.x); + fey = Math::abs(e1.y); + fez = Math::abs(e1.z); + AXISTEST_X01(e1.z, e1.y, fez, fey); + AXISTEST_Y02(e1.z, e1.x, fez, fex); + AXISTEST_Z0(e1.y, e1.x, fey, fex); + + fex = Math::abs(e2.x); + fey = Math::abs(e2.y); + fez = Math::abs(e2.z); + AXISTEST_X2(e2.z, e2.y, fez, fey); + AXISTEST_Y1(e2.z, e2.x, fez, fex); + AXISTEST_Z12(e2.y, e2.x, fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; + + /* test in Y-direction */ + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; + + /* test in Z-direction */ + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + normal = e0.cross(e1); + d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ + if (!planeBoxOverlap(normal, d, boxhalfsize)) return false; + + return true; /* box and triangle overlaps */ +} + +static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) { + + if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) + return p_uv[0]; + if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) + return p_uv[1]; + if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) + return p_uv[2]; + + Vector3 v0 = p_vtx[1] - p_vtx[0]; + Vector3 v1 = p_vtx[2] - p_vtx[0]; + Vector3 v2 = p_pos - p_vtx[0]; + + float d00 = v0.dot(v0); + float d01 = v0.dot(v1); + float d11 = v1.dot(v1); + float d20 = v2.dot(v0); + float d21 = v2.dot(v1); + float denom = (d00 * d11 - d01 * d01); + if (denom == 0) + return p_uv[0]; + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + + return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; +} + +void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { + + if (p_level == cell_subdiv - 1) { + //plot the face by guessing it's albedo and emission value + + //find best axis to map to, for scanning values + int closest_axis = 0; + float closest_dot = 0; + + Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); + Vector3 normal = plane.normal; + + for (int i = 0; i < 3; i++) { + + Vector3 axis; + axis[i] = 1.0; + float dot = ABS(normal.dot(axis)); + if (i == 0 || dot > closest_dot) { + closest_axis = i; + closest_dot = dot; + } + } + + Vector3 axis; + axis[closest_axis] = 1.0; + Vector3 t1; + t1[(closest_axis + 1) % 3] = 1.0; + Vector3 t2; + t2[(closest_axis + 2) % 3] = 1.0; + + t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); + t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); + + Color albedo_accum; + Color emission_accum; + Vector3 normal_accum; + + float alpha = 0.0; + + //map to a grid average in the best axis for this face + for (int i = 0; i < color_scan_cell_width; i++) { + + Vector3 ofs_i = float(i) * t1; + + for (int j = 0; j < color_scan_cell_width; j++) { + + Vector3 ofs_j = float(j) * t2; + + Vector3 from = p_aabb.position + ofs_i + ofs_j; + Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; + Vector3 half = (to - from) * 0.5; + + //is in this cell? + if (!fast_tri_box_overlap(from + half, half, p_vtx)) { + continue; //face does not span this cell + } + + //go from -size to +size*2 to avoid skipping collisions + Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; + Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; + + if (normal.dot(ray_from - ray_to) < 0) { + SWAP(ray_from, ray_to); + } + + Vector3 intersection; + + if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { + if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { + intersection = plane.project(ray_from); + } else { + + intersection = plane.project(ray_to); + } + } + + intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); + + Vector2 uv = get_uv(intersection, p_vtx, p_uv); + + int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + + int ofs = uv_y * bake_texture_size + uv_x; + albedo_accum.r += p_material.albedo[ofs].r; + albedo_accum.g += p_material.albedo[ofs].g; + albedo_accum.b += p_material.albedo[ofs].b; + albedo_accum.a += p_material.albedo[ofs].a; + + emission_accum.r += p_material.emission[ofs].r; + emission_accum.g += p_material.emission[ofs].g; + emission_accum.b += p_material.emission[ofs].b; + + normal_accum += normal; + + alpha += 1.0; + } + } + + if (alpha == 0) { + //could not in any way get texture information.. so use closest point to center + + Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); + Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); + + Vector2 uv = get_uv(inters, p_vtx, p_uv); + + int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + + int ofs = uv_y * bake_texture_size + uv_x; + + alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); + + albedo_accum.r = p_material.albedo[ofs].r * alpha; + albedo_accum.g = p_material.albedo[ofs].g * alpha; + albedo_accum.b = p_material.albedo[ofs].b * alpha; + albedo_accum.a = p_material.albedo[ofs].a * alpha; + + emission_accum.r = p_material.emission[ofs].r * alpha; + emission_accum.g = p_material.emission[ofs].g * alpha; + emission_accum.b = p_material.emission[ofs].b * alpha; + + normal_accum *= alpha; + + } else { + + float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); + alpha *= accdiv; + + albedo_accum.r *= accdiv; + albedo_accum.g *= accdiv; + albedo_accum.b *= accdiv; + albedo_accum.a *= accdiv; + + emission_accum.r *= accdiv; + emission_accum.g *= accdiv; + emission_accum.b *= accdiv; + + normal_accum *= accdiv; + } + + //put this temporarily here, corrected in a later step + bake_cells[p_idx].albedo[0] += albedo_accum.r; + bake_cells[p_idx].albedo[1] += albedo_accum.g; + bake_cells[p_idx].albedo[2] += albedo_accum.b; + bake_cells[p_idx].emission[0] += emission_accum.r; + bake_cells[p_idx].emission[1] += emission_accum.g; + bake_cells[p_idx].emission[2] += emission_accum.b; + bake_cells[p_idx].normal[0] += normal_accum.x; + bake_cells[p_idx].normal[1] += normal_accum.y; + bake_cells[p_idx].normal[2] += normal_accum.z; + bake_cells[p_idx].alpha += alpha; + + } else { + //go down + + int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); + for (int i = 0; i < 8; i++) { + + AABB aabb = p_aabb; + aabb.size *= 0.5; + + int nx = p_x; + int ny = p_y; + int nz = p_z; + + if (i & 1) { + aabb.position.x += aabb.size.x; + nx += half; + } + if (i & 2) { + aabb.position.y += aabb.size.y; + ny += half; + } + if (i & 4) { + aabb.position.z += aabb.size.z; + nz += half; + } + //make sure to not plot beyond limits + if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) + continue; + + { + AABB test_aabb = aabb; + //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time + Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test + + if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { + //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { + //does not fit in child, go on + continue; + } + } + + if (bake_cells[p_idx].childs[i] == CHILD_EMPTY) { + //sub cell must be created + + uint32_t child_idx = bake_cells.size(); + bake_cells[p_idx].childs[i] = child_idx; + bake_cells.resize(bake_cells.size() + 1); + bake_cells[child_idx].level = p_level + 1; + } + + _plot_face(bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb); + } + } +} + +Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { + + Vector<Color> ret; + + if (p_image.is_null() || p_image->empty()) { + + ret.resize(bake_texture_size * bake_texture_size); + for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { + ret[i] = p_color_add; + } + + return ret; + } + p_image = p_image->duplicate(); + + if (p_image->is_compressed()) { + print_line("DECOMPRESSING!!!!"); + + p_image->decompress(); + } + p_image->convert(Image::FORMAT_RGBA8); + p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); + + PoolVector<uint8_t>::Read r = p_image->get_data().read(); + ret.resize(bake_texture_size * bake_texture_size); + + for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { + Color c; + c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; + c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; + c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; + + c.a = r[i * 4 + 3] / 255.0; + + ret[i] = c; + } + + return ret; +} + +VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) { + + //this way of obtaining materials is inaccurate and also does not support some compressed formats very well + Ref<SpatialMaterial> mat = p_material; + + Ref<Material> material = mat; //hack for now + + if (material_cache.has(material)) { + return material_cache[material]; + } + + MaterialCache mc; + + if (mat.is_valid()) { + + Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO); + + Ref<Image> img_albedo; + if (albedo_tex.is_valid()) { + + img_albedo = albedo_tex->get_data(); + mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative + } else { + mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive + } + + Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION); + + Color emission_col = mat->get_emission(); + float emission_energy = mat->get_emission_energy(); + + Ref<Image> img_emission; + + if (emission_tex.is_valid()) { + + img_emission = emission_tex->get_data(); + } + + if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) { + mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); + } else { + mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); + } + + } else { + Ref<Image> empty; + + mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); + mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); + } + + material_cache[p_material] = mc; + return mc; +} + +void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { + + for (int i = 0; i < p_mesh->get_surface_count(); i++) { + + if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) + continue; //only triangles + + Ref<Material> src_material; + + if (p_override_material.is_valid()) { + src_material = p_override_material; + } else if (i < p_materials.size() && p_materials[i].is_valid()) { + src_material = p_materials[i]; + } else { + src_material = p_mesh->surface_get_material(i); + } + MaterialCache material = _get_material_cache(src_material); + + Array a = p_mesh->surface_get_arrays(i); + + PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; + PoolVector<Vector3>::Read vr = vertices.read(); + PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; + PoolVector<Vector2>::Read uvr; + PoolVector<int> index = a[Mesh::ARRAY_INDEX]; + + bool read_uv = false; + + if (uv.size()) { + + uvr = uv.read(); + read_uv = true; + } + + if (index.size()) { + + int facecount = index.size() / 3; + PoolVector<int>::Read ir = index.read(); + + for (int j = 0; j < facecount; j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + + for (int k = 0; k < 3; k++) { + vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); + } + + if (read_uv) { + for (int k = 0; k < 3; k++) { + uvs[k] = uvr[ir[j * 3 + k]]; + } + } + + //test against original bounds + if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) + continue; + //plot + _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, po2_bounds); + } + + } else { + + int facecount = vertices.size() / 3; + + for (int j = 0; j < facecount; j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + + for (int k = 0; k < 3; k++) { + vtxs[k] = p_xform.xform(vr[j * 3 + k]); + } + + if (read_uv) { + for (int k = 0; k < 3; k++) { + uvs[k] = uvr[j * 3 + k]; + } + } + + //test against original bounds + if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) + continue; + //plot face + _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, po2_bounds); + } + } + } + + max_original_cells = bake_cells.size(); +} + +void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) { + + bake_light[p_idx].x = p_x; + bake_light[p_idx].y = p_y; + bake_light[p_idx].z = p_z; + + if (p_level == cell_subdiv - 1) { + + bake_light[p_idx].next_leaf = first_leaf; + first_leaf = p_idx; + } else { + + //go down + int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); + for (int i = 0; i < 8; i++) { + + uint32_t child = bake_cells[p_idx].childs[i]; + + if (child == CHILD_EMPTY) + continue; + + int nx = p_x; + int ny = p_y; + int nz = p_z; + + if (i & 1) + nx += half; + if (i & 2) + ny += half; + if (i & 4) + nz += half; + + _init_light_plot(child, p_level + 1, nx, ny, nz, p_idx); + } + } +} + +void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) { + _check_init_light(); + propagation = p_propagation; + bake_quality = p_quality; + bake_mode = p_bake_mode; + energy = p_energy; +} + +void VoxelLightBaker::_check_init_light() { + if (bake_light.size() == 0) { + + direct_lights_baked = false; + leaf_voxel_count = 0; + _fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting. + bake_light.resize(bake_cells.size()); + zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light)); + first_leaf = -1; + _init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY); + } +} + +static float _get_normal_advance(const Vector3 &p_normal) { + + Vector3 normal = p_normal; + Vector3 unorm = normal.abs(); + + if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { + // x code + unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0); + } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { + // y code + unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0); + } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { + // z code + unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0); + } else { + // oh-no we messed up code + // has to be + unorm = Vector3(1.0, 0.0, 0.0); + } + + return 1.0 / normal.dot(unorm); +} + +static const Vector3 aniso_normal[6] = { + Vector3(-1, 0, 0), + Vector3(1, 0, 0), + Vector3(0, -1, 0), + Vector3(0, 1, 0), + Vector3(0, 0, -1), + Vector3(0, 0, 1) +}; + +uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) { + + uint32_t cell = 0; + + int ofs_x = 0; + int ofs_y = 0; + int ofs_z = 0; + int size = 1 << (cell_subdiv - 1); + int half = size / 2; + + if (x < 0 || x >= size) + return -1; + if (y < 0 || y >= size) + return -1; + if (z < 0 || z >= size) + return -1; + + for (int i = 0; i < cell_subdiv - 1; i++) { + + const Cell *bc = &cells[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child |= 1; + ofs_x += half; + } + if (y >= ofs_y + half) { + child |= 2; + ofs_y += half; + } + if (z >= ofs_z + half) { + child |= 4; + ofs_z += half; + } + + cell = bc->childs[child]; + if (cell == CHILD_EMPTY) + return CHILD_EMPTY; + + half >>= 1; + } + + return cell; +} +void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) { + + _check_init_light(); + + float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1; + + if (p_direct) + direct_lights_baked = true; + + Vector3 light_axis = p_direction; + Plane clip[3]; + int clip_planes = 0; + + Light *light_data = bake_light.ptrw(); + const Cell *cells = bake_cells.ptr(); + + for (int i = 0; i < 3; i++) { + + if (ABS(light_axis[i]) < CMP_EPSILON) + continue; + clip[clip_planes].normal[i] = 1.0; + + if (light_axis[i] < 0) { + + clip[clip_planes].d = axis_cell_size[i] + 1; + } else { + clip[clip_planes].d -= 1.0; + } + + clip_planes++; + } + + float distance_adv = _get_normal_advance(light_axis); + + int success_count = 0; + + Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; + + int idx = first_leaf; + while (idx >= 0) { + + //print_line("plot idx " + itos(idx)); + Light *light = &light_data[idx]; + + Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); + to += -light_axis.sign() * 0.47; //make it more likely to receive a ray + + Vector3 from = to - max_len * light_axis; + + for (int j = 0; j < clip_planes; j++) { + + clip[j].intersects_segment(from, to, &from); + } + + float distance = (to - from).length(); + distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always + from = to - light_axis * distance; + + uint32_t result = 0xFFFFFFFF; + + while (distance > -distance_adv) { //use this to avoid precision errors + + result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); + if (result != 0xFFFFFFFF) { + break; + } + + from += light_axis * distance_adv; + distance -= distance_adv; + } + + if (result == idx) { + //cell hit itself! hooray! + + Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); + if (normal == Vector3()) { + for (int i = 0; i < 6; i++) { + light->accum[i][0] += light_energy.x * cells[idx].albedo[0]; + light->accum[i][1] += light_energy.y * cells[idx].albedo[1]; + light->accum[i][2] += light_energy.z * cells[idx].albedo[2]; + } + + } else { + + for (int i = 0; i < 6; i++) { + float s = MAX(0.0, aniso_normal[i].dot(-normal)); + light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s; + light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s; + light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s; + } + } + + for (int i = 0; i < 6; i++) { + float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct + light->direct_accum[i][0] += light_energy.x * s; + light->direct_accum[i][1] += light_energy.y * s; + light->direct_accum[i][2] += light_energy.z * s; + } + success_count++; + } + + idx = light_data[idx].next_leaf; + } +} + +void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) { + + _check_init_light(); + + if (p_direct) + direct_lights_baked = true; + + Plane clip[3]; + int clip_planes = 0; + + // uint64_t us = OS::get_singleton()->get_ticks_usec(); + + Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); + //Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); + + float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; + + Light *light_data = bake_light.ptrw(); + const Cell *cells = bake_cells.ptr(); + Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; + + int idx = first_leaf; + while (idx >= 0) { + + //print_line("plot idx " + itos(idx)); + Light *light = &light_data[idx]; + + Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); + to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray + + Vector3 light_axis = (to - light_pos).normalized(); + float distance_adv = _get_normal_advance(light_axis); + + Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); + + if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { + idx = light_data[idx].next_leaf; + continue; + } + + float att = 1.0; + { + float d = light_pos.distance_to(to); + if (d + distance_adv > local_radius) { + idx = light_data[idx].next_leaf; + continue; // too far away + } + + float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); + att *= powf(1.0 - dt, p_attenutation); + } +#if 0 + if (light_cache.type == VS::LIGHT_SPOT) { + + float angle = Math::rad2deg(acos(light_axis.dot(spot_axis))); + if (angle > light_cache.spot_angle) + continue; + + float d = CLAMP(angle / light_cache.spot_angle, 1, 0); + att *= powf(1.0 - d, light_cache.spot_attenuation); + } +#endif + clip_planes = 0; + + for (int c = 0; c < 3; c++) { + + if (ABS(light_axis[c]) < CMP_EPSILON) + continue; + clip[clip_planes].normal[c] = 1.0; + + if (light_axis[c] < 0) { + + clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; + } else { + clip[clip_planes].d -= 1.0; + } + + clip_planes++; + } + + Vector3 from = light_pos; + + for (int j = 0; j < clip_planes; j++) { + + clip[j].intersects_segment(from, to, &from); + } + + float distance = (to - from).length(); + + distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer + from = to - light_axis * distance; + to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray + + uint32_t result = 0xFFFFFFFF; + + while (distance > -distance_adv) { //use this to avoid precision errors + + result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); + if (result != 0xFFFFFFFF) { + break; + } + + from += light_axis * distance_adv; + distance -= distance_adv; + } + + if (result == idx) { + //cell hit itself! hooray! + + if (normal == Vector3()) { + for (int i = 0; i < 6; i++) { + light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; + light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; + light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; + } + + } else { + + for (int i = 0; i < 6; i++) { + float s = MAX(0.0, aniso_normal[i].dot(-normal)); + light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; + light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; + light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; + } + } + + for (int i = 0; i < 6; i++) { + float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct + light->direct_accum[i][0] += light_energy.x * s * att; + light->direct_accum[i][1] += light_energy.y * s * att; + light->direct_accum[i][2] += light_energy.z * s * att; + } + } + + idx = light_data[idx].next_leaf; + } +} + +void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) { + + _check_init_light(); + + if (p_direct) + direct_lights_baked = true; + + Plane clip[3]; + int clip_planes = 0; + + // uint64_t us = OS::get_singleton()->get_ticks_usec(); + + Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); + Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized(); + + float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; + + Light *light_data = bake_light.ptrw(); + const Cell *cells = bake_cells.ptr(); + Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; + + int idx = first_leaf; + while (idx >= 0) { + + //print_line("plot idx " + itos(idx)); + Light *light = &light_data[idx]; + + Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); + + Vector3 light_axis = (to - light_pos).normalized(); + float distance_adv = _get_normal_advance(light_axis); + + Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); + + if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { + idx = light_data[idx].next_leaf; + continue; + } + + float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis))); + if (angle > p_spot_angle) { + idx = light_data[idx].next_leaf; + continue; // too far away + } + + float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation); + + { + float d = light_pos.distance_to(to); + if (d + distance_adv > local_radius) { + idx = light_data[idx].next_leaf; + continue; // too far away + } + + float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); + att *= powf(1.0 - dt, p_attenutation); + } +#if 0 + if (light_cache.type == VS::LIGHT_SPOT) { + + float angle = Math::rad2deg(acos(light_axis.dot(spot_axis))); + if (angle > light_cache.spot_angle) + continue; + + float d = CLAMP(angle / light_cache.spot_angle, 1, 0); + att *= powf(1.0 - d, light_cache.spot_attenuation); + } +#endif + clip_planes = 0; + + for (int c = 0; c < 3; c++) { + + if (ABS(light_axis[c]) < CMP_EPSILON) + continue; + clip[clip_planes].normal[c] = 1.0; + + if (light_axis[c] < 0) { + + clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; + } else { + clip[clip_planes].d -= 1.0; + } + + clip_planes++; + } + + Vector3 from = light_pos; + + for (int j = 0; j < clip_planes; j++) { + + clip[j].intersects_segment(from, to, &from); + } + + float distance = (to - from).length(); + + distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer + from = to - light_axis * distance; + + uint32_t result = 0xFFFFFFFF; + + while (distance > -distance_adv) { //use this to avoid precision errors + + result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); + if (result != 0xFFFFFFFF) { + break; + } + + from += light_axis * distance_adv; + distance -= distance_adv; + } + + if (result == idx) { + //cell hit itself! hooray! + + if (normal == Vector3()) { + for (int i = 0; i < 6; i++) { + light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; + light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; + light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; + } + + } else { + + for (int i = 0; i < 6; i++) { + float s = MAX(0.0, aniso_normal[i].dot(-normal)); + light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; + light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; + light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; + } + } + + for (int i = 0; i < 6; i++) { + float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct + light->direct_accum[i][0] += light_energy.x * s * att; + light->direct_accum[i][1] += light_energy.y * s * att; + light->direct_accum[i][2] += light_energy.z * s * att; + } + } + + idx = light_data[idx].next_leaf; + } +} + +void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) { + + if (p_level == cell_subdiv - 1) { + + leaf_voxel_count++; + float alpha = bake_cells[p_idx].alpha; + + bake_cells[p_idx].albedo[0] /= alpha; + bake_cells[p_idx].albedo[1] /= alpha; + bake_cells[p_idx].albedo[2] /= alpha; + + //transfer emission to light + bake_cells[p_idx].emission[0] /= alpha; + bake_cells[p_idx].emission[1] /= alpha; + bake_cells[p_idx].emission[2] /= alpha; + + bake_cells[p_idx].normal[0] /= alpha; + bake_cells[p_idx].normal[1] /= alpha; + bake_cells[p_idx].normal[2] /= alpha; + + Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); + if (n.length() < 0.01) { + //too much fight over normal, zero it + bake_cells[p_idx].normal[0] = 0; + bake_cells[p_idx].normal[1] = 0; + bake_cells[p_idx].normal[2] = 0; + } else { + n.normalize(); + bake_cells[p_idx].normal[0] = n.x; + bake_cells[p_idx].normal[1] = n.y; + bake_cells[p_idx].normal[2] = n.z; + } + + bake_cells[p_idx].alpha = 1.0; + + /*if (bake_light.size()) { + for(int i=0;i<6;i++) { + + } + }*/ + + } else { + + //go down + + bake_cells[p_idx].emission[0] = 0; + bake_cells[p_idx].emission[1] = 0; + bake_cells[p_idx].emission[2] = 0; + bake_cells[p_idx].normal[0] = 0; + bake_cells[p_idx].normal[1] = 0; + bake_cells[p_idx].normal[2] = 0; + bake_cells[p_idx].albedo[0] = 0; + bake_cells[p_idx].albedo[1] = 0; + bake_cells[p_idx].albedo[2] = 0; + if (bake_light.size()) { + for (int j = 0; j < 6; j++) { + bake_light[p_idx].accum[j][0] = 0; + bake_light[p_idx].accum[j][1] = 0; + bake_light[p_idx].accum[j][2] = 0; + } + } + + float alpha_average = 0; + int children_found = 0; + + for (int i = 0; i < 8; i++) { + + uint32_t child = bake_cells[p_idx].childs[i]; + + if (child == CHILD_EMPTY) + continue; + + _fixup_plot(child, p_level + 1); + alpha_average += bake_cells[child].alpha; + + if (bake_light.size() > 0) { + for (int j = 0; j < 6; j++) { + bake_light[p_idx].accum[j][0] += bake_light[child].accum[j][0]; + bake_light[p_idx].accum[j][1] += bake_light[child].accum[j][1]; + bake_light[p_idx].accum[j][2] += bake_light[child].accum[j][2]; + } + bake_cells[p_idx].emission[0] += bake_cells[child].emission[0]; + bake_cells[p_idx].emission[1] += bake_cells[child].emission[1]; + bake_cells[p_idx].emission[2] += bake_cells[child].emission[2]; + } + + children_found++; + } + + bake_cells[p_idx].alpha = alpha_average / 8.0; + if (bake_light.size() && children_found) { + float divisor = Math::lerp(8, children_found, propagation); + for (int j = 0; j < 6; j++) { + bake_light[p_idx].accum[j][0] /= divisor; + bake_light[p_idx].accum[j][1] /= divisor; + bake_light[p_idx].accum[j][2] /= divisor; + } + bake_cells[p_idx].emission[0] /= divisor; + bake_cells[p_idx].emission[1] /= divisor; + bake_cells[p_idx].emission[2] /= divisor; + } + } +} + +//make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into + +void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) { + + int x[3]; + int y[3]; + + for (int j = 0; j < 3; j++) { + + x[j] = vertices[j].x * width; + y[j] = vertices[j].y * height; + //x[j] = CLAMP(x[j], 0, bt.width - 1); + //y[j] = CLAMP(y[j], 0, bt.height - 1); + } + + // sort the points vertically + if (y[1] > y[2]) { + SWAP(x[1], x[2]); + SWAP(y[1], y[2]); + SWAP(positions[1], positions[2]); + SWAP(normals[1], normals[2]); + } + if (y[0] > y[1]) { + SWAP(x[0], x[1]); + SWAP(y[0], y[1]); + SWAP(positions[0], positions[1]); + SWAP(normals[0], normals[1]); + } + if (y[1] > y[2]) { + SWAP(x[1], x[2]); + SWAP(y[1], y[2]); + SWAP(positions[1], positions[2]); + SWAP(normals[1], normals[2]); + } + + double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1); + double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1); + double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1); + double xf = x[0]; + double xt = x[0] + dx_upper; // if y[0] == y[1], special case + for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) { + if (yi >= 0) { + for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) { + //pixels[int(x + y * width)] = color; + + Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); + Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); + //vertices[2] - vertices[0]; + Vector2 v2 = Vector2(xi - x[0], yi - y[0]); + float d00 = v0.dot(v0); + float d01 = v0.dot(v1); + float d11 = v1.dot(v1); + float d20 = v2.dot(v0); + float d21 = v2.dot(v1); + float denom = (d00 * d11 - d01 * d01); + Vector3 pos; + Vector3 normal; + if (denom == 0) { + pos = positions[0]; + normal = normals[0]; + } else { + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + pos = positions[0] * u + positions[1] * v + positions[2] * w; + normal = normals[0] * u + normals[1] * v + normals[2] * w; + } + + int ofs = yi * width + xi; + pixels[ofs].normal = normal; + pixels[ofs].pos = pos; + } + + for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) { + //pixels[int(x + y * width)] = color; + Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); + Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); + //vertices[2] - vertices[0]; + Vector2 v2 = Vector2(xi - x[0], yi - y[0]); + float d00 = v0.dot(v0); + float d01 = v0.dot(v1); + float d11 = v1.dot(v1); + float d20 = v2.dot(v0); + float d21 = v2.dot(v1); + float denom = (d00 * d11 - d01 * d01); + Vector3 pos; + Vector3 normal; + if (denom == 0) { + pos = positions[0]; + normal = normals[0]; + } else { + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + pos = positions[0] * u + positions[1] * v + positions[2] * w; + normal = normals[0] * u + normals[1] * v + normals[2] * w; + } + + int ofs = yi * width + xi; + pixels[ofs].normal = normal; + pixels[ofs].pos = pos; + } + } + xf += dx_far; + if (yi < y[1]) + xt += dx_upper; + else + xt += dx_low; + } +} + +void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) { + + int size = 1 << (cell_subdiv - 1); + + int clamp_v = size - 1; + //first of all, clamp + Vector3 pos; + pos.x = CLAMP(p_posf.x, 0, clamp_v); + pos.y = CLAMP(p_posf.y, 0, clamp_v); + pos.z = CLAMP(p_posf.z, 0, clamp_v); + + float level = (cell_subdiv - 1) - p_level; + + int target_level; + float level_filter; + if (level <= 0.0) { + level_filter = 0; + target_level = 0; + } else { + target_level = Math::ceil(level); + level_filter = target_level - level; + } + + const Cell *cells = bake_cells.ptr(); + const Light *light = bake_light.ptr(); + + Vector3 color[2][8]; + float alpha[2][8]; + zeromem(alpha, sizeof(float) * 2 * 8); + + //find cell at given level first + + for (int c = 0; c < 2; c++) { + + int current_level = MAX(0, target_level - c); + int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level; + + for (int n = 0; n < 8; n++) { + + int x = int(pos.x); + int y = int(pos.y); + int z = int(pos.z); + + if (n & 1) + x += level_cell_size; + if (n & 2) + y += level_cell_size; + if (n & 4) + z += level_cell_size; + + int ofs_x = 0; + int ofs_y = 0; + int ofs_z = 0; + + x = CLAMP(x, 0, clamp_v); + y = CLAMP(y, 0, clamp_v); + z = CLAMP(z, 0, clamp_v); + + int half = size / 2; + uint32_t cell = 0; + for (int i = 0; i < current_level; i++) { + + const Cell *bc = &cells[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child |= 1; + ofs_x += half; + } + if (y >= ofs_y + half) { + child |= 2; + ofs_y += half; + } + if (z >= ofs_z + half) { + child |= 4; + ofs_z += half; + } + + cell = bc->childs[child]; + if (cell == CHILD_EMPTY) + break; + + half >>= 1; + } + + if (cell == CHILD_EMPTY) { + alpha[c][n] = 0; + } else { + alpha[c][n] = cells[cell].alpha; + + for (int i = 0; i < 6; i++) { + //anisotropic read light + float amount = p_direction.dot(aniso_normal[i]); + //if (c == 0) { + // print_line("\t" + itos(n) + " aniso " + itos(i) + " " + rtos(light[cell].accum[i][0]) + " VEC: " + aniso_normal[i]); + //} + if (amount < 0) + amount = 0; + //amount = 1; + color[c][n].x += light[cell].accum[i][0] * amount; + color[c][n].y += light[cell].accum[i][1] * amount; + color[c][n].z += light[cell].accum[i][2] * amount; + } + + color[c][n].x += cells[cell].emission[0]; + color[c][n].y += cells[cell].emission[1]; + color[c][n].z += cells[cell].emission[2]; + } + + //print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]); + } + } + + float target_level_size = size >> target_level; + Vector3 pos_fract[2]; + + pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; + pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; + pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; + + target_level_size = size >> MAX(0, target_level - 1); + + pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; + pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; + pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; + + float alpha_interp[2]; + Vector3 color_interp[2]; + + for (int i = 0; i < 2; i++) { + + Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); + Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); + Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); + + Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); + Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); + Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); + + color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); + + float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); + float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); + float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); + + float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); + float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); + float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); + + alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); + } + + r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); + r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); + + // print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha)); +} + +Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) { + + float bias = 2.5; + float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length(); + + float dist = bias; + float alpha = 0.0; + Vector3 color; + + Vector3 scolor; + float salpha; + + while (dist < max_distance && alpha < 0.95) { + float diameter = MAX(1.0, 2.0 * p_aperture * dist); + //print_line("VCT: pos " + (p_pos + dist * p_normal) + " dist " + rtos(dist) + " mipmap " + rtos(log2(diameter)) + " alpha " + rtos(alpha)); + //Plane scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) ); + _sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha); + float a = (1.0 - alpha); + color += scolor * a; + alpha += a * salpha; + dist += diameter * 0.5; + } + + /*if (blend_ambient) { + color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); + }*/ + + return color; +} + +Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { + + //find arbitrary tangent and bitangent, then build a matrix + Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); + Vector3 tangent = v0.cross(p_normal).normalized(); + Vector3 bitangent = tangent.cross(p_normal).normalized(); + Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); + + // print_line("normal xform: " + normal_xform); + const Vector3 *cone_dirs; + const float *cone_weights; + int cone_dir_count; + float cone_aperture; + + switch (bake_quality) { + case BAKE_QUALITY_LOW: { + //default quality + static const Vector3 dirs[4] = { + Vector3(0.707107, 0, 0.707107), + Vector3(0, 0.707107, 0.707107), + Vector3(-0.707107, 0, 0.707107), + Vector3(0, -0.707107, 0.707107) + }; + + static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 }; + + cone_dirs = dirs; + cone_dir_count = 4; + cone_aperture = 1.0; // tan(angle) 90 degrees + cone_weights = weights; + } break; + case BAKE_QUALITY_MEDIUM: { + //default quality + static const Vector3 dirs[6] = { + Vector3(0, 0, 1), + Vector3(0.866025, 0, 0.5), + Vector3(0.267617, 0.823639, 0.5), + Vector3(-0.700629, 0.509037, 0.5), + Vector3(-0.700629, -0.509037, 0.5), + Vector3(0.267617, -0.823639, 0.5) + }; + static const float weights[6] = { 0.25, 0.15, 0.15, 0.15, 0.15, 0.15 }; + // + cone_dirs = dirs; + cone_dir_count = 6; + cone_aperture = 0.577; // tan(angle) 60 degrees + cone_weights = weights; + } break; + case BAKE_QUALITY_HIGH: { + + //high qualily + static const Vector3 dirs[10] = { + Vector3(0.8781648411741658, 0.0, 0.478358141694643), + Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606), + Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645), + Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604), + Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604), + Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645), + Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606), + Vector3(-0.4451656858129485, 0.0, 0.8954482185892644), + Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214), + Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214), + }; + static const float weights[10] = { 0.08571, 0.08571, 0.08571, 0.08571, 0.08571, 0.08571, 0.08571, 0.133333, 0.133333, 0.13333 }; + cone_dirs = dirs; + cone_dir_count = 10; + cone_aperture = 0.404; // tan(angle) 45 degrees + cone_weights = weights; + } break; + } + + Vector3 accum; + + for (int i = 0; i < cone_dir_count; i++) { + // if (i > 0) + // continue; + Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell + //print_line("direction: " + dir); + accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i]; + } + + return accum; +} + +Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { + + int samples_per_quality[3] = { 48, 128, 512 }; + + int samples = samples_per_quality[bake_quality]; + + //create a basis in Z + Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); + Vector3 tangent = v0.cross(p_normal).normalized(); + Vector3 bitangent = tangent.cross(p_normal).normalized(); + Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); + + float bias = 1.5; + int max_level = cell_subdiv - 1; + int size = 1 << max_level; + + Vector3 accum; + float spread = Math::deg2rad(80.0); + + const Light *light = bake_light.ptr(); + const Cell *cells = bake_cells.ptr(); + + for (int i = 0; i < samples; i++) { + + float random_angle1 = (((Math::rand() % 65535) / 65535.0) * 2.0 - 1.0) * spread; + Vector3 axis(0, sin(random_angle1), cos(random_angle1)); + float random_angle2 = ((Math::rand() % 65535) / 65535.0) * Math_PI * 2.0; + Basis rot(Vector3(0, 0, 1), random_angle2); + axis = rot.xform(axis); + + Vector3 direction = normal_xform.xform(axis).normalized(); + + Vector3 pos = p_pos + Vector3(0.5, 0.5, 0.5) + direction * bias; + + Vector3 advance = direction * _get_normal_advance(direction); + + uint32_t cell = CHILD_EMPTY; + + while (cell == CHILD_EMPTY) { + + int x = int(pos.x); + int y = int(pos.y); + int z = int(pos.z); + + int ofs_x = 0; + int ofs_y = 0; + int ofs_z = 0; + int half = size / 2; + + if (x < 0 || x >= size) + break; + if (y < 0 || y >= size) + break; + if (z < 0 || z >= size) + break; + + //int level_limit = max_level; + + cell = 0; //start from root + for (int i = 0; i < max_level; i++) { + + const Cell *bc = &cells[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child |= 1; + ofs_x += half; + } + if (y >= ofs_y + half) { + child |= 2; + ofs_y += half; + } + if (z >= ofs_z + half) { + child |= 4; + ofs_z += half; + } + + cell = bc->childs[child]; + if (cell == CHILD_EMPTY) + break; + + half >>= 1; + } + + pos += advance; + } + + if (cell != CHILD_EMPTY) { + for (int i = 0; i < 6; i++) { + //anisotropic read light + float amount = direction.dot(aniso_normal[i]); + if (amount < 0) + amount = 0; + accum.x += light[cell].accum[i][0] * amount; + accum.y += light[cell].accum[i][1] * amount; + accum.z += light[cell].accum[i][2] * amount; + } + } + } + + return accum / samples; +} + +Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) { + + //transfer light information to a lightmap + Ref<Mesh> mesh = p_mesh; + + int width = mesh->get_lightmap_size_hint().x; + int height = mesh->get_lightmap_size_hint().y; + + //step 1 - create lightmap + Vector<LightMap> lightmap; + lightmap.resize(width * height); + + Transform xform = to_cell_space * p_xform; + + //step 2 plot faces to lightmap + for (int i = 0; i < mesh->get_surface_count(); i++) { + Array arrays = mesh->surface_get_arrays(i); + PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX]; + PoolVector<Vector3> normals = arrays[Mesh::ARRAY_NORMAL]; + PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2]; + PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX]; + + ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); + ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER); + ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); + + int vc = vertices.size(); + PoolVector<Vector3>::Read vr = vertices.read(); + PoolVector<Vector3>::Read nr = normals.read(); + PoolVector<Vector2>::Read u2r = uv2.read(); + PoolVector<int>::Read ir; + int ic = 0; + + if (indices.size()) { + ic = indices.size(); + ir = indices.read(); + } + + int faces = ic ? ic / 3 : vc / 3; + for (int i = 0; i < faces; i++) { + Vector3 vertex[3]; + Vector3 normal[3]; + Vector2 uv[3]; + for (int j = 0; j < 3; j++) { + int idx = ic ? ir[i * 3 + j] : i * 3 + j; + vertex[j] = xform.xform(vr[idx]); + normal[j] = xform.basis.xform(nr[idx]).normalized(); + uv[j] = u2r[idx]; + } + + _plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height); + } + } + //step 3 perform voxel cone trace on lightmap pixels + + { + LightMap *lightmap_ptr = lightmap.ptrw(); + uint64_t begin_time = OS::get_singleton()->get_ticks_usec(); + volatile int lines = 0; + + for (int i = 0; i < height; i++) { + + //print_line("bake line " + itos(i) + " / " + itos(height)); +#ifdef _OPENMP +#pragma omp parallel for +#endif + for (int j = 0; j < width; j++) { + + //if (i == 125 && j == 280) { + + LightMap *pixel = &lightmap_ptr[i * width + j]; + if (pixel->pos == Vector3()) + continue; //unused, skipe + + //print_line("pos: " + pixel->pos + " normal " + pixel->normal); + switch (bake_mode) { + case BAKE_MODE_CONE_TRACE: { + pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy; + } break; + case BAKE_MODE_RAY_TRACE: { + pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy; + } break; + // pixel->light = Vector3(1, 1, 1); + //} + } + } + + lines = MAX(lines, i); //for multithread + if (p_bake_time_func) { + uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time; + float elapsed_sec = double(elapsed) / 1000000.0; + float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1); + if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) { + return ERR_SKIP; + } + } + } + + if (bake_mode == BAKE_MODE_RAY_TRACE) { + //blur + print_line("bluring, use pos for separatable copy"); + //gauss kernel, 7 step sigma 2 + static const float gauss_kernel[4] = { 0.214607, 0.189879, 0.131514, 0.071303 }; + //horizontal pass + for (int i = 0; i < height; i++) { + for (int j = 0; j < width; j++) { + if (lightmap_ptr[i * width + j].normal == Vector3()) { + continue; //empty + } + float gauss_sum = gauss_kernel[0]; + Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0]; + for (int k = 1; k < 4; k++) { + int new_x = j + k; + if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3()) + break; + gauss_sum += gauss_kernel[k]; + accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; + } + for (int k = 1; k < 4; k++) { + int new_x = j - k; + if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3()) + break; + gauss_sum += gauss_kernel[k]; + accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; + } + + lightmap_ptr[i * width + j].pos = accum /= gauss_sum; + } + } + //vertical pass + for (int i = 0; i < height; i++) { + for (int j = 0; j < width; j++) { + if (lightmap_ptr[i * width + j].normal == Vector3()) + continue; //empty, dont write over it anyway + float gauss_sum = gauss_kernel[0]; + Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0]; + for (int k = 1; k < 4; k++) { + int new_y = i + k; + if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3()) + break; + gauss_sum += gauss_kernel[k]; + accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; + } + for (int k = 1; k < 4; k++) { + int new_y = i - k; + if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3()) + break; + gauss_sum += gauss_kernel[k]; + accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; + } + + lightmap_ptr[i * width + j].light = accum /= gauss_sum; + } + } + } + + //add directional light (do this after blur) + { + LightMap *lightmap_ptr = lightmap.ptrw(); + const Cell *cells = bake_cells.ptr(); + const Light *light = bake_light.ptr(); + + for (int i = 0; i < height; i++) { + + //print_line("bake line " + itos(i) + " / " + itos(height)); +#ifdef _OPENMP +#pragma omp parallel for +#endif + for (int j = 0; j < width; j++) { + + //if (i == 125 && j == 280) { + + LightMap *pixel = &lightmap_ptr[i * width + j]; + if (pixel->pos == Vector3()) + continue; //unused, skipe + + int x = int(pixel->pos.x) - 1; + int y = int(pixel->pos.y) - 1; + int z = int(pixel->pos.z) - 1; + Color accum; + int size = 1 << (cell_subdiv - 1); + + int found = 0; + + for (int k = 0; k < 8; k++) { + + int ofs_x = x; + int ofs_y = y; + int ofs_z = z; + + if (k & 1) + ofs_x++; + if (k & 2) + ofs_y++; + if (k & 4) + ofs_z++; + + if (x < 0 || x >= size) + continue; + if (y < 0 || y >= size) + continue; + if (z < 0 || z >= size) + continue; + + uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z); + + if (cell == CHILD_EMPTY) + continue; + for (int l = 0; l < 6; l++) { + float s = pixel->normal.dot(aniso_normal[l]); + if (s < 0) + s = 0; + accum.r += light[cell].direct_accum[l][0] * s; + accum.g += light[cell].direct_accum[l][1] * s; + accum.b += light[cell].direct_accum[l][2] * s; + } + found++; + } + if (found) { + accum /= found; + pixel->light.x += accum.r; + pixel->light.y += accum.g; + pixel->light.z += accum.b; + } + } + } + } + + { + //fill gaps with neighbour vertices to avoid filter fades to black on edges + + for (int i = 0; i < height; i++) { + for (int j = 0; j < width; j++) { + if (lightmap_ptr[i * width + j].normal != Vector3()) { + continue; //filled, skip + } + + //this can't be made separatable.. + + int closest_i = -1, closest_j = 1; + float closest_dist = 1e20; + + const int margin = 3; + for (int y = i - margin; y <= i + margin; y++) { + for (int x = j - margin; x <= j + margin; x++) { + + if (x == j && y == i) + continue; + if (x < 0 || x >= width) + continue; + if (y < 0 || y >= height) + continue; + if (lightmap_ptr[y * width + x].normal == Vector3()) + continue; //also ensures that blitted stuff is not reused + + float dist = Vector2(i - y, j - x).length(); + if (dist > closest_dist) + continue; + + closest_dist = dist; + closest_i = y; + closest_j = x; + } + } + + if (closest_i != -1) { + lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light; + } + } + } + } + + { + //fill the lightmap data + r_lightmap.width = width; + r_lightmap.height = height; + r_lightmap.light.resize(lightmap.size() * 3); + PoolVector<float>::Write w = r_lightmap.light.write(); + for (int i = 0; i < lightmap.size(); i++) { + w[i * 3 + 0] = lightmap[i].light.x; + w[i * 3 + 1] = lightmap[i].light.y; + w[i * 3 + 2] = lightmap[i].light.z; + } + } + +#if 0 + { + PoolVector<uint8_t> img; + int ls = lightmap.size(); + img.resize(ls * 3); + { + PoolVector<uint8_t>::Write w = img.write(); + for (int i = 0; i < ls; i++) { + w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255); + w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255); + w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255); + //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255); + //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255); + //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255); + //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255); + //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255); + //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255); + } + } + + Ref<Image> image; + image.instance(); + image->create(width, height, false, Image::FORMAT_RGB8, img); + + String name = p_mesh->get_name(); + if (name == "") { + name = "Mesh" + itos(p_mesh->get_instance_id()); + } + image->save_png(name + ".png"); + } +#endif + } + + return OK; +} + +void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) { + + original_bounds = p_bounds; + cell_subdiv = p_subdiv; + bake_cells.resize(1); + material_cache.clear(); + + //find out the actual real bounds, power of 2, which gets the highest subdivision + po2_bounds = p_bounds; + int longest_axis = po2_bounds.get_longest_axis_index(); + axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1)); + leaf_voxel_count = 0; + + for (int i = 0; i < 3; i++) { + + if (i == longest_axis) + continue; + + axis_cell_size[i] = axis_cell_size[longest_axis]; + float axis_size = po2_bounds.size[longest_axis]; + + //shrink until fit subdiv + while (axis_size / 2.0 >= po2_bounds.size[i]) { + axis_size /= 2.0; + axis_cell_size[i] >>= 1; + } + + po2_bounds.size[i] = po2_bounds.size[longest_axis]; + } + + Transform to_bounds; + to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); + to_bounds.origin = po2_bounds.position; + + Transform to_grid; + to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); + + to_cell_space = to_grid * to_bounds.affine_inverse(); + + cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; +} + +void VoxelLightBaker::end_bake() { + _fixup_plot(0, 0); +} + +//create the data for visual server + +PoolVector<int> VoxelLightBaker::create_gi_probe_data() { + + PoolVector<int> data; + + data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest. + + { + PoolVector<int>::Write w = data.write(); + + uint32_t *w32 = (uint32_t *)w.ptr(); + + w32[0] = 0; //version + w32[1] = cell_subdiv; //subdiv + w32[2] = axis_cell_size[0]; + w32[3] = axis_cell_size[1]; + w32[4] = axis_cell_size[2]; + w32[5] = bake_cells.size(); + w32[6] = leaf_voxel_count; + + int ofs = 16; + + for (int i = 0; i < bake_cells.size(); i++) { + + for (int j = 0; j < 8; j++) { + w32[ofs++] = bake_cells[i].childs[j]; + } + + { //albedo + uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; + rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; + rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; + + w32[ofs++] = rgba; + } + { //emission + + Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]); + float l = e.length(); + if (l > 0) { + e.normalize(); + l = CLAMP(l / 8.0, 0, 1.0); + } + + uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; + em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; + em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; + em |= uint32_t(CLAMP(l * 255, 0, 255)); + + w32[ofs++] = em; + } + + //w32[ofs++]=bake_cells[i].used_sides; + { //normal + + Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); + n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); + uint32_t norm = 0; + + norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; + norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; + norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; + + w32[ofs++] = norm; + } + + { + uint16_t alpha = CLAMP(uint32_t(bake_cells[i].alpha * 65535.0), 0, 65535); + uint16_t level = bake_cells[i].level; + + w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); + } + } + } + + return data; +} + +void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) { + + if (p_level == cell_subdiv - 1) { + + Vector3 center = p_aabb.position + p_aabb.size * 0.5; + Transform xform; + xform.origin = center; + xform.basis.scale(p_aabb.size * 0.5); + p_multimesh->set_instance_transform(idx, xform); + Color col; + if (p_mode == DEBUG_ALBEDO) { + col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); + } else if (p_mode == DEBUG_LIGHT) { + for (int i = 0; i < 6; i++) { + col.r += bake_light[p_idx].accum[i][0]; + col.g += bake_light[p_idx].accum[i][1]; + col.b += bake_light[p_idx].accum[i][2]; + col.r += bake_light[p_idx].direct_accum[i][0]; + col.g += bake_light[p_idx].direct_accum[i][1]; + col.b += bake_light[p_idx].direct_accum[i][2]; + } + } + //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]); + p_multimesh->set_instance_color(idx, col); + + idx++; + + } else { + + for (int i = 0; i < 8; i++) { + + uint32_t child = bake_cells[p_idx].childs[i]; + + if (child == CHILD_EMPTY || child >= max_original_cells) + continue; + + AABB aabb = p_aabb; + aabb.size *= 0.5; + + if (i & 1) + aabb.position.x += aabb.size.x; + if (i & 2) + aabb.position.y += aabb.size.y; + if (i & 4) + aabb.position.z += aabb.size.z; + + _debug_mesh(bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_mode); + } + } +} + +Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) { + + Ref<MultiMesh> mm; + + ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm); + mm.instance(); + + mm->set_transform_format(MultiMesh::TRANSFORM_3D); + mm->set_color_format(MultiMesh::COLOR_8BIT); + print_line("leaf voxels: " + itos(leaf_voxel_count)); + mm->set_instance_count(leaf_voxel_count); + + Ref<ArrayMesh> mesh; + mesh.instance(); + + { + Array arr; + arr.resize(Mesh::ARRAY_MAX); + + PoolVector<Vector3> vertices; + PoolVector<Color> colors; + + int vtx_idx = 0; +#define ADD_VTX(m_idx) \ + ; \ + vertices.push_back(face_points[m_idx]); \ + colors.push_back(Color(1, 1, 1, 1)); \ + vtx_idx++; + + for (int i = 0; i < 6; i++) { + + Vector3 face_points[4]; + + for (int j = 0; j < 4; j++) { + + float v[3]; + v[0] = 1.0; + v[1] = 1 - 2 * ((j >> 1) & 1); + v[2] = v[1] * (1 - 2 * (j & 1)); + + for (int k = 0; k < 3; k++) { + + if (i < 3) + face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); + else + face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); + } + } + + //tri 1 + ADD_VTX(0); + ADD_VTX(1); + ADD_VTX(2); + //tri 2 + ADD_VTX(2); + ADD_VTX(3); + ADD_VTX(0); + } + + arr[Mesh::ARRAY_VERTEX] = vertices; + arr[Mesh::ARRAY_COLOR] = colors; + mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); + } + + { + Ref<SpatialMaterial> fsm; + fsm.instance(); + fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); + fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); + fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true); + fsm->set_albedo(Color(1, 1, 1, 1)); + + mesh->surface_set_material(0, fsm); + } + + mm->set_mesh(mesh); + + int idx = 0; + _debug_mesh(0, 0, po2_bounds, mm, idx, p_mode); + + return mm; +} + +struct VoxelLightBakerOctree { + + enum { + CHILD_EMPTY = 0xFFFFFFFF + }; + + uint16_t light[6][3]; //anisotropic light + float alpha; + uint32_t children[8]; +}; + +PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) { + + p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one + + Vector<uint32_t> remap; + int bc = bake_cells.size(); + remap.resize(bc); + Vector<uint32_t> demap; + + int new_size = 0; + for (int i = 0; i < bc; i++) { + uint32_t c = CHILD_EMPTY; + if (bake_cells[i].level < p_subdiv) { + c = new_size; + new_size++; + demap.push_back(i); + } + remap[i] = c; + } + + Vector<VoxelLightBakerOctree> octree; + octree.resize(new_size); + + for (int i = 0; i < new_size; i++) { + octree[i].alpha = bake_cells[demap[i]].alpha; + for (int j = 0; j < 6; j++) { + for (int k = 0; k < 3; k++) { + float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light + l += bake_cells[demap[i]].emission[k]; //add emission + octree[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree + } + } + + for (int j = 0; j < 8; j++) { + uint32_t child = bake_cells[demap[i]].childs[j]; + octree[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child]; + } + } + + PoolVector<uint8_t> ret; + int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree); + ret.resize(ret_bytes); + { + PoolVector<uint8_t>::Write w = ret.write(); + copymem(w.ptr(), octree.ptr(), ret_bytes); + } + + return ret; +} + +float VoxelLightBaker::get_cell_size() const { + return cell_size; +} + +Transform VoxelLightBaker::get_to_cell_space_xform() const { + return to_cell_space; +} +VoxelLightBaker::VoxelLightBaker() { + color_scan_cell_width = 4; + bake_texture_size = 128; + propagation = 0.85; + energy = 1.0; +} diff --git a/scene/3d/voxel_light_baker.h b/scene/3d/voxel_light_baker.h new file mode 100644 index 0000000000..6dee2ee69b --- /dev/null +++ b/scene/3d/voxel_light_baker.h @@ -0,0 +1,148 @@ +#ifndef VOXEL_LIGHT_BAKER_H +#define VOXEL_LIGHT_BAKER_H + +#include "scene/3d/mesh_instance.h" +#include "scene/resources/multimesh.h" + +class VoxelLightBaker { +public: + enum DebugMode { + DEBUG_ALBEDO, + DEBUG_LIGHT + }; + + enum BakeQuality { + BAKE_QUALITY_LOW, + BAKE_QUALITY_MEDIUM, + BAKE_QUALITY_HIGH + }; + + enum BakeMode { + BAKE_MODE_CONE_TRACE, + BAKE_MODE_RAY_TRACE, + }; + +private: + enum { + CHILD_EMPTY = 0xFFFFFFFF + + }; + + struct Cell { + + uint32_t childs[8]; + float albedo[3]; //albedo in RGB24 + float emission[3]; //accumulated light in 16:16 fixed point (needs to be integer for moving lights fast) + float normal[3]; + uint32_t used_sides; + float alpha; //used for upsampling + int level; + + Cell() { + for (int i = 0; i < 8; i++) { + childs[i] = CHILD_EMPTY; + } + + for (int i = 0; i < 3; i++) { + emission[i] = 0; + albedo[i] = 0; + normal[i] = 0; + } + alpha = 0; + used_sides = 0; + level = 0; + } + }; + + Vector<Cell> bake_cells; + int cell_subdiv; + + struct Light { + int x, y, z; + float accum[6][3]; //rgb anisotropic + float direct_accum[6][3]; //for direct bake + int next_leaf; + }; + + int first_leaf; + + Vector<Light> bake_light; + + struct MaterialCache { + //128x128 textures + Vector<Color> albedo; + Vector<Color> emission; + }; + + Map<Ref<Material>, MaterialCache> material_cache; + int leaf_voxel_count; + bool direct_lights_baked; + + AABB original_bounds; + AABB po2_bounds; + int axis_cell_size[3]; + + Transform to_cell_space; + + int color_scan_cell_width; + int bake_texture_size; + float cell_size; + float propagation; + float energy; + + BakeQuality bake_quality; + BakeMode bake_mode; + + int max_original_cells; + + void _init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent); + + Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add); + MaterialCache _get_material_cache(Ref<Material> p_material); + void _plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb); + void _fixup_plot(int p_idx, int p_level); + void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode); + void _check_init_light(); + + uint32_t _find_cell_at_pos(const Cell *cells, int x, int y, int z); + + struct LightMap { + Vector3 light; + Vector3 pos; + Vector3 normal; + }; + + void _plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height); + + _FORCE_INLINE_ void _sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha); + _FORCE_INLINE_ Vector3 _voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture); + _FORCE_INLINE_ Vector3 _compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal); + _FORCE_INLINE_ Vector3 _compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal); + +public: + void begin_bake(int p_subdiv, const AABB &p_bounds); + void plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material); + void begin_bake_light(BakeQuality p_quality = BAKE_QUALITY_MEDIUM, BakeMode p_bake_mode = BAKE_MODE_CONE_TRACE, float p_propagation = 0.85, float p_energy = 1); + void plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct); + void plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct); + void plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct); + void end_bake(); + + struct LightMapData { + int width; + int height; + PoolVector<float> light; + }; + + Error make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float) = NULL, void *p_bake_time_ud = NULL); + + PoolVector<int> create_gi_probe_data(); + Ref<MultiMesh> create_debug_multimesh(DebugMode p_mode = DEBUG_ALBEDO); + PoolVector<uint8_t> create_capture_octree(int p_subdiv); + + float get_cell_size() const; + Transform get_to_cell_space_xform() const; + VoxelLightBaker(); +}; + +#endif // VOXEL_LIGHT_BAKER_H |