diff options
Diffstat (limited to 'scene/3d/voxelizer.cpp')
-rw-r--r-- | scene/3d/voxelizer.cpp | 389 |
1 files changed, 85 insertions, 304 deletions
diff --git a/scene/3d/voxelizer.cpp b/scene/3d/voxelizer.cpp index 203c3cd812..2d32379d69 100644 --- a/scene/3d/voxelizer.cpp +++ b/scene/3d/voxelizer.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -29,205 +29,19 @@ /*************************************************************************/ #include "voxelizer.h" -#include "core/os/os.h" -#include "core/os/threaded_array_processor.h" - -#include <stdlib.h> - -#define FINDMINMAX(x0, x1, x2, min, max) \ - min = max = x0; \ - if (x1 < min) min = x1; \ - if (x1 > max) max = x1; \ - if (x2 < min) min = x2; \ - if (x2 > max) max = x2; - -static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { - int q; - Vector3 vmin, vmax; - for (q = 0; q <= 2; q++) { - if (normal[q] > 0.0f) { - vmin[q] = -maxbox[q]; - vmax[q] = maxbox[q]; - } else { - vmin[q] = maxbox[q]; - vmax[q] = -maxbox[q]; - } - } - if (normal.dot(vmin) + d > 0.0f) return false; - if (normal.dot(vmax) + d >= 0.0f) return true; - - return false; -} - -/*======================== X-tests ========================*/ -#define AXISTEST_X01(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p2 = a * v2.y - b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_X2(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p1 = a * v1.y - b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Y-tests ========================*/ -#define AXISTEST_Y02(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p2 = -a * v2.x + b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Y1(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p1 = -a * v1.x + b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Z-tests ========================*/ - -#define AXISTEST_Z12(a, b, fa, fb) \ - p1 = a * v1.x - b * v1.y; \ - p2 = a * v2.x - b * v2.y; \ - if (p2 < p1) { \ - min = p2; \ - max = p1; \ - } else { \ - min = p1; \ - max = p2; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Z0(a, b, fa, fb) \ - p0 = a * v0.x - b * v0.y; \ - p1 = a * v1.x - b * v1.y; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { - - /* use separating axis theorem to test overlap between triangle and box */ - /* need to test for overlap in these directions: */ - /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ - /* we do not even need to test these) */ - /* 2) normal of the triangle */ - /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ - /* this gives 3x3=9 more tests */ - Vector3 v0, v1, v2; - float min, max, d, p0, p1, p2, rad, fex, fey, fez; - Vector3 normal, e0, e1, e2; - - /* This is the fastest branch on Sun */ - /* move everything so that the boxcenter is in (0,0,0) */ - - v0 = triverts[0] - boxcenter; - v1 = triverts[1] - boxcenter; - v2 = triverts[2] - boxcenter; - - /* compute triangle edges */ - e0 = v1 - v0; /* tri edge 0 */ - e1 = v2 - v1; /* tri edge 1 */ - e2 = v0 - v2; /* tri edge 2 */ - - /* Bullet 3: */ - /* test the 9 tests first (this was faster) */ - fex = Math::abs(e0.x); - fey = Math::abs(e0.y); - fez = Math::abs(e0.z); - AXISTEST_X01(e0.z, e0.y, fez, fey); - AXISTEST_Y02(e0.z, e0.x, fez, fex); - AXISTEST_Z12(e0.y, e0.x, fey, fex); - - fex = Math::abs(e1.x); - fey = Math::abs(e1.y); - fez = Math::abs(e1.z); - AXISTEST_X01(e1.z, e1.y, fez, fey); - AXISTEST_Y02(e1.z, e1.x, fez, fex); - AXISTEST_Z0(e1.y, e1.x, fey, fex); - - fex = Math::abs(e2.x); - fey = Math::abs(e2.y); - fez = Math::abs(e2.z); - AXISTEST_X2(e2.z, e2.y, fez, fey); - AXISTEST_Y1(e2.z, e2.x, fez, fex); - AXISTEST_Z12(e2.y, e2.x, fey, fex); - - /* Bullet 1: */ - /* first test overlap in the {x,y,z}-directions */ - /* find min, max of the triangle each direction, and test for overlap in */ - /* that direction -- this is equivalent to testing a minimal AABB around */ - /* the triangle against the AABB */ - - /* test in X-direction */ - FINDMINMAX(v0.x, v1.x, v2.x, min, max); - if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; - - /* test in Y-direction */ - FINDMINMAX(v0.y, v1.y, v2.y, min, max); - if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; - - /* test in Z-direction */ - FINDMINMAX(v0.z, v1.z, v2.z, min, max); - if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; - - /* Bullet 2: */ - /* test if the box intersects the plane of the triangle */ - /* compute plane equation of triangle: normal*x+d=0 */ - normal = e0.cross(e1); - d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ - return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ -} static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { - - if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { + if (p_pos.is_equal_approx(p_vtx[0])) { r_uv = p_uv[0]; r_normal = p_normal[0]; return; } - if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { + if (p_pos.is_equal_approx(p_vtx[1])) { r_uv = p_uv[1]; r_normal = p_normal[1]; return; } - if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { + if (p_pos.is_equal_approx(p_vtx[2])) { r_uv = p_uv[2]; r_normal = p_normal[2]; return; @@ -237,42 +51,40 @@ static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 Vector3 v1 = p_vtx[2] - p_vtx[0]; Vector3 v2 = p_pos - p_vtx[0]; - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); + real_t d00 = v0.dot(v0); + real_t d01 = v0.dot(v1); + real_t d11 = v1.dot(v1); + real_t d20 = v2.dot(v0); + real_t d21 = v2.dot(v1); + real_t denom = (d00 * d11 - d01 * d01); if (denom == 0) { r_uv = p_uv[0]; r_normal = p_normal[0]; return; } - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; + real_t v = (d11 * d20 - d01 * d21) / denom; + real_t w = (d00 * d21 - d01 * d20) / denom; + real_t u = 1.0f - v - w; r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); } void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { - if (p_level == cell_subdiv) { //plot the face by guessing its albedo and emission value //find best axis to map to, for scanning values int closest_axis = 0; - float closest_dot = 0; + real_t closest_dot = 0; Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 normal = plane.normal; for (int i = 0; i < 3; i++) { - Vector3 axis; axis[i] = 1.0; - float dot = ABS(normal.dot(axis)); + real_t dot = ABS(normal.dot(axis)); if (i == 0 || dot > closest_dot) { closest_axis = i; closest_dot = dot; @@ -286,8 +98,8 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co Vector3 t2; t2[(closest_axis + 2) % 3] = 1.0; - t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); - t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); + t1 *= p_aabb.size[(closest_axis + 1) % 3] / real_t(color_scan_cell_width); + t2 *= p_aabb.size[(closest_axis + 2) % 3] / real_t(color_scan_cell_width); Color albedo_accum; Color emission_accum; @@ -297,19 +109,17 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co //map to a grid average in the best axis for this face for (int i = 0; i < color_scan_cell_width; i++) { - - Vector3 ofs_i = float(i) * t1; + Vector3 ofs_i = real_t(i) * t1; for (int j = 0; j < color_scan_cell_width; j++) { - - Vector3 ofs_j = float(j) * t2; + Vector3 ofs_j = real_t(j) * t2; Vector3 from = p_aabb.position + ofs_i + ofs_j; Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; Vector3 half = (to - from) * 0.5; //is in this cell? - if (!fast_tri_box_overlap(from + half, half, p_vtx)) { + if (!Geometry3D::triangle_box_overlap(from + half, half, p_vtx)) { continue; //face does not span this cell } @@ -327,7 +137,6 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { intersection = plane.project(ray_from); } else { - intersection = plane.project(ray_to); } } @@ -337,11 +146,12 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co Vector2 uv; Vector3 lnormal; get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); - if (lnormal == Vector3()) //just in case normal as nor provided + if (lnormal == Vector3()) { //just in case normal is not provided lnormal = normal; + } - int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); - int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); + int uv_x = CLAMP(int(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1); + int uv_y = CLAMP(int(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; albedo_accum.r += p_material.albedo[ofs].r; @@ -368,11 +178,12 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co Vector3 lnormal; Vector2 uv; get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); - if (lnormal == Vector3()) //just in case normal as nor provided + if (lnormal == Vector3()) { //just in case normal is not provided lnormal = normal; + } - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + int uv_x = CLAMP(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1); + int uv_y = CLAMP(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; @@ -390,7 +201,6 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co normal_accum = lnormal * alpha; } else { - float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); alpha *= accdiv; @@ -423,7 +233,6 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co int half = (1 << cell_subdiv) >> (p_level + 1); for (int i = 0; i < 8; i++) { - AABB aabb = p_aabb; aabb.size *= 0.5; @@ -444,15 +253,16 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co nz += half; } //make sure to not plot beyond limits - if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) + if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) { continue; + } { AABB test_aabb = aabb; //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test - if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { + if (!Geometry3D::triangle_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { //does not fit in child, go on continue; @@ -477,11 +287,9 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co } Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { - Vector<Color> ret; - if (p_image.is_null() || p_image->empty()) { - + if (p_image.is_null() || p_image->is_empty()) { ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { ret.write[i] = p_color_add; @@ -515,7 +323,6 @@ Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_co } Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) { - //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref<StandardMaterial3D> mat = p_material; @@ -528,13 +335,11 @@ Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material MaterialCache mc; if (mat.is_valid()) { - Ref<Texture2D> albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO); Ref<Image> img_albedo; if (albedo_tex.is_valid()) { - - img_albedo = albedo_tex->get_data(); + img_albedo = albedo_tex->get_image(); mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative } else { mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive @@ -548,8 +353,7 @@ Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material Ref<Image> img_emission; if (emission_tex.is_valid()) { - - img_emission = emission_tex->get_data(); + img_emission = emission_tex->get_image(); } if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) { @@ -569,12 +373,11 @@ Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material return mc; } -void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) { - +void Voxelizer::plot_mesh(const Transform3D &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) { for (int i = 0; i < p_mesh->get_surface_count(); i++) { - - if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) + if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; //only triangles + } Ref<Material> src_material; @@ -592,32 +395,24 @@ void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vec Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; const Vector3 *vr = vertices.ptr(); Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; - const Vector2 *uvr; + const Vector2 *uvr = nullptr; Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; - const Vector3 *nr; + const Vector3 *nr = nullptr; Vector<int> index = a[Mesh::ARRAY_INDEX]; - bool read_uv = false; - bool read_normals = false; - if (uv.size()) { - uvr = uv.ptr(); - read_uv = true; } if (normals.size()) { - read_normals = true; nr = normals.ptr(); } if (index.size()) { - int facecount = index.size() / 3; const int *ir = index.ptr(); for (int j = 0; j < facecount; j++) { - Vector3 vtxs[3]; Vector2 uvs[3]; Vector3 normal[3]; @@ -626,31 +421,30 @@ void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vec vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); } - if (read_uv) { + if (uvr) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[ir[j * 3 + k]]; } } - if (read_normals) { + if (nr) { for (int k = 0; k < 3; k++) { normal[k] = nr[ir[j * 3 + k]]; } } //test against original bounds - if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) + if (!Geometry3D::triangle_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) { continue; + } //plot _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); } } else { - int facecount = vertices.size() / 3; for (int j = 0; j < facecount; j++) { - Vector3 vtxs[3]; Vector2 uvs[3]; Vector3 normal[3]; @@ -659,21 +453,22 @@ void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vec vtxs[k] = p_xform.xform(vr[j * 3 + k]); } - if (read_uv) { + if (uvr) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[j * 3 + k]; } } - if (read_normals) { + if (nr) { for (int k = 0; k < 3; k++) { normal[k] = nr[j * 3 + k]; } } //test against original bounds - if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) + if (!Geometry3D::triangle_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) { continue; + } //plot face _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); } @@ -684,7 +479,6 @@ void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vec } void Voxelizer::_sort() { - // cells need to be sorted by level and coordinates // it is important that level has more priority (for compute), and that Z has the least, // given it may aid older implementations plot using GPU @@ -693,7 +487,6 @@ void Voxelizer::_sort() { uint32_t cell_count = bake_cells.size(); sorted_cells.resize(cell_count); { - CellSort *sort_cellsp = sorted_cells.ptrw(); const Cell *bake_cellsp = bake_cells.ptr(); @@ -726,7 +519,6 @@ void Voxelizer::_sort() { } { - const CellSort *sort_cellsp = sorted_cells.ptr(); const Cell *bake_cellsp = bake_cells.ptr(); const uint32_t *reverse_mapp = reverse_map.ptr(); @@ -749,9 +541,7 @@ void Voxelizer::_sort() { } void Voxelizer::_fixup_plot(int p_idx, int p_level) { - if (p_level == cell_subdiv) { - leaf_voxel_count++; float alpha = bake_cells[p_idx].alpha; @@ -785,12 +575,10 @@ void Voxelizer::_fixup_plot(int p_idx, int p_level) { /*if (bake_light.size()) { for(int i=0;i<6;i++) { - } }*/ } else { - //go down bake_cells.write[p_idx].emission[0] = 0; @@ -807,11 +595,11 @@ void Voxelizer::_fixup_plot(int p_idx, int p_level) { int children_found = 0; for (int i = 0; i < 8; i++) { - uint32_t child = bake_cells[p_idx].children[i]; - if (child == CHILD_EMPTY) + if (child == CHILD_EMPTY) { continue; + } _fixup_plot(child, p_level + 1); alpha_average += bake_cells[child].alpha; @@ -824,7 +612,6 @@ void Voxelizer::_fixup_plot(int p_idx, int p_level) { } void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) { - sorted = false; original_bounds = p_bounds; cell_subdiv = p_subdiv; @@ -839,12 +626,12 @@ void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) { leaf_voxel_count = 0; for (int i = 0; i < 3; i++) { - - if (i == longest_axis) + if (i == longest_axis) { continue; + } axis_cell_size[i] = axis_cell_size[longest_axis]; - float axis_size = po2_bounds.size[longest_axis]; + real_t axis_size = po2_bounds.size[longest_axis]; //shrink until fit subdiv while (axis_size / 2.0 >= po2_bounds.size[i]) { @@ -855,11 +642,11 @@ void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) { po2_bounds.size[i] = po2_bounds.size[longest_axis]; } - Transform to_bounds; + Transform3D to_bounds; to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); to_bounds.origin = po2_bounds.position; - Transform to_grid; + Transform3D to_grid; to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); to_cell_space = to_grid * to_bounds.affine_inverse(); @@ -876,17 +663,19 @@ void Voxelizer::end_bake() { //create the data for visual server -int Voxelizer::get_gi_probe_octree_depth() const { +int Voxelizer::get_voxel_gi_octree_depth() const { return cell_subdiv; } -Vector3i Voxelizer::get_giprobe_octree_size() const { + +Vector3i Voxelizer::get_voxel_gi_octree_size() const { return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]); } -int Voxelizer::get_giprobe_cell_count() const { + +int Voxelizer::get_voxel_gi_cell_count() const { return bake_cells.size(); } -Vector<uint8_t> Voxelizer::get_giprobe_octree_cells() const { +Vector<uint8_t> Voxelizer::get_voxel_gi_octree_cells() const { Vector<uint8_t> data; data.resize((8 * 4) * bake_cells.size()); //8 uint32t values { @@ -897,7 +686,6 @@ Vector<uint8_t> Voxelizer::get_giprobe_octree_cells() const { uint32_t cell_count = bake_cells.size(); for (uint32_t i = 0; i < cell_count; i++) { - for (uint32_t j = 0; j < 8; j++) { children_cells[i * 8 + j] = cells[i].children[j]; } @@ -906,7 +694,8 @@ Vector<uint8_t> Voxelizer::get_giprobe_octree_cells() const { return data; } -Vector<uint8_t> Voxelizer::get_giprobe_data_cells() const { + +Vector<uint8_t> Voxelizer::get_voxel_gi_data_cells() const { Vector<uint8_t> data; data.resize((4 * 4) * bake_cells.size()); //8 uint32t values { @@ -917,7 +706,6 @@ Vector<uint8_t> Voxelizer::get_giprobe_data_cells() const { uint32_t cell_count = bake_cells.size(); for (uint32_t i = 0; i < cell_count; i++) { - { //position uint32_t x = cells[i].x; @@ -962,7 +750,7 @@ Vector<uint8_t> Voxelizer::get_giprobe_data_cells() const { return data; } -Vector<int> Voxelizer::get_giprobe_level_cell_count() const { +Vector<int> Voxelizer::get_voxel_gi_level_cell_count() const { uint32_t cell_count = bake_cells.size(); const Cell *cells = bake_cells.ptr(); Vector<int> level_count; @@ -989,7 +777,6 @@ Vector<int> Voxelizer::get_giprobe_level_cell_count() const { /* dt of 1d function using squared distance */ static void edt(float *f, int stride, int n) { - float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1)); int *v = (int *)&(d[n]); float *z = (float *)&v[n]; @@ -1013,8 +800,9 @@ static void edt(float *f, int stride, int n) { k = 0; for (int q = 0; q <= n - 1; q++) { - while (z[k + 1] < q) + while (z[k + 1] < q) { k++; + } d[q] = square(q - v[k]) + f[v[k] * stride]; } @@ -1026,8 +814,7 @@ static void edt(float *f, int stride, int n) { #undef square Vector<uint8_t> Voxelizer::get_sdf_3d_image() const { - - Vector3i octree_size = get_giprobe_octree_size(); + Vector3i octree_size = get_voxel_gi_octree_size(); uint32_t float_count = octree_size.x * octree_size.y * octree_size.z; float *work_memory = memnew_arr(float, float_count); @@ -1044,7 +831,6 @@ Vector<uint8_t> Voxelizer::get_sdf_3d_image() const { uint32_t cell_count = bake_cells.size(); for (uint32_t i = 0; i < cell_count; i++) { - if (cells[i].level < (cell_subdiv - 1)) { continue; //do not care about this level } @@ -1098,11 +884,9 @@ Vector<uint8_t> Voxelizer::get_sdf_3d_image() const { #undef INF void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) { - if (p_level == cell_subdiv - 1) { - Vector3 center = p_aabb.position + p_aabb.size * 0.5; - Transform xform; + Transform3D xform; xform.origin = center; xform.basis.scale(p_aabb.size * 0.5); p_multimesh->set_instance_transform(idx, xform); @@ -1114,23 +898,25 @@ void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<Mult idx++; } else { - for (int i = 0; i < 8; i++) { - uint32_t child = bake_cells[p_idx].children[i]; - if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) + if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) { continue; + } AABB aabb = p_aabb; aabb.size *= 0.5; - if (i & 1) + if (i & 1) { aabb.position.x += aabb.size.x; - if (i & 2) + } + if (i & 2) { aabb.position.y += aabb.size.y; - if (i & 4) + } + if (i & 4) { aabb.position.z += aabb.size.z; + } _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx); } @@ -1138,17 +924,16 @@ void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<Mult } Ref<MultiMesh> Voxelizer::create_debug_multimesh() { - Ref<MultiMesh> mm; - mm.instance(); + mm.instantiate(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_use_colors(true); mm->set_instance_count(leaf_voxel_count); Ref<ArrayMesh> mesh; - mesh.instance(); + mesh.instantiate(); { Array arr; @@ -1161,22 +946,20 @@ Ref<MultiMesh> Voxelizer::create_debug_multimesh() { colors.push_back(Color(1, 1, 1, 1)); for (int i = 0; i < 6; i++) { - Vector3 face_points[4]; for (int j = 0; j < 4; j++) { - - float v[3]; + real_t v[3]; v[0] = 1.0; v[1] = 1 - 2 * ((j >> 1) & 1); v[2] = v[1] * (1 - 2 * (j & 1)); for (int k = 0; k < 3; k++) { - - if (i < 3) + if (i < 3) { face_points[j][(i + k) % 3] = v[k]; - else + } else { face_points[3 - j][(i + k) % 3] = -v[k]; + } } } @@ -1197,7 +980,7 @@ Ref<MultiMesh> Voxelizer::create_debug_multimesh() { { Ref<StandardMaterial3D> fsm; - fsm.instance(); + fsm.instantiate(); fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true); fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED); @@ -1214,11 +997,9 @@ Ref<MultiMesh> Voxelizer::create_debug_multimesh() { return mm; } -Transform Voxelizer::get_to_cell_space_xform() const { +Transform3D Voxelizer::get_to_cell_space_xform() const { return to_cell_space; } + Voxelizer::Voxelizer() { - sorted = false; - color_scan_cell_width = 4; - bake_texture_size = 128; } |