summaryrefslogtreecommitdiff
path: root/scene/3d/voxelizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/3d/voxelizer.cpp')
-rw-r--r--scene/3d/voxelizer.cpp139
1 files changed, 66 insertions, 73 deletions
diff --git a/scene/3d/voxelizer.cpp b/scene/3d/voxelizer.cpp
index de5496ee35..6daa9e0aec 100644
--- a/scene/3d/voxelizer.cpp
+++ b/scene/3d/voxelizer.cpp
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
@@ -29,24 +29,21 @@
/*************************************************************************/
#include "voxelizer.h"
-#include "core/math/geometry_3d.h"
-#include "core/os/os.h"
-#include "core/os/threaded_array_processor.h"
-#include <stdlib.h>
+#include "core/config/project_settings.h"
static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
- if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) {
+ if (p_pos.is_equal_approx(p_vtx[0])) {
r_uv = p_uv[0];
r_normal = p_normal[0];
return;
}
- if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) {
+ if (p_pos.is_equal_approx(p_vtx[1])) {
r_uv = p_uv[1];
r_normal = p_normal[1];
return;
}
- if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) {
+ if (p_pos.is_equal_approx(p_vtx[2])) {
r_uv = p_uv[2];
r_normal = p_normal[2];
return;
@@ -56,20 +53,20 @@ static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
+ real_t d00 = v0.dot(v0);
+ real_t d01 = v0.dot(v1);
+ real_t d11 = v1.dot(v1);
+ real_t d20 = v2.dot(v0);
+ real_t d21 = v2.dot(v1);
+ real_t denom = (d00 * d11 - d01 * d01);
if (denom == 0) {
r_uv = p_uv[0];
r_normal = p_normal[0];
return;
}
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
+ real_t v = (d11 * d20 - d01 * d21) / denom;
+ real_t w = (d00 * d21 - d01 * d20) / denom;
+ real_t u = 1.0f - v - w;
r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
@@ -81,7 +78,7 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
//find best axis to map to, for scanning values
int closest_axis = 0;
- float closest_dot = 0;
+ real_t closest_dot = 0;
Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
Vector3 normal = plane.normal;
@@ -89,7 +86,7 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
- float dot = ABS(normal.dot(axis));
+ real_t dot = ABS(normal.dot(axis));
if (i == 0 || dot > closest_dot) {
closest_axis = i;
closest_dot = dot;
@@ -103,8 +100,8 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
Vector3 t2;
t2[(closest_axis + 2) % 3] = 1.0;
- t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
- t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
+ t1 *= p_aabb.size[(closest_axis + 1) % 3] / real_t(color_scan_cell_width);
+ t2 *= p_aabb.size[(closest_axis + 2) % 3] / real_t(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
@@ -114,10 +111,10 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
//map to a grid average in the best axis for this face
for (int i = 0; i < color_scan_cell_width; i++) {
- Vector3 ofs_i = float(i) * t1;
+ Vector3 ofs_i = real_t(i) * t1;
for (int j = 0; j < color_scan_cell_width; j++) {
- Vector3 ofs_j = float(j) * t2;
+ Vector3 ofs_j = real_t(j) * t2;
Vector3 from = p_aabb.position + ofs_i + ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
@@ -151,12 +148,12 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
Vector2 uv;
Vector3 lnormal;
get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
- if (lnormal == Vector3()) { //just in case normal as nor provided
+ if (lnormal == Vector3()) { //just in case normal is not provided
lnormal = normal;
}
- int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
- int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
+ int uv_x = CLAMP(int(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1);
+ int uv_y = CLAMP(int(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1);
int ofs = uv_y * bake_texture_size + uv_x;
albedo_accum.r += p_material.albedo[ofs].r;
@@ -178,17 +175,17 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
//could not in any way get texture information.. so use closest point to center
Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
+ Vector3 inters = f.get_closest_point_to(p_aabb.get_center());
Vector3 lnormal;
Vector2 uv;
get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
- if (lnormal == Vector3()) { //just in case normal as nor provided
+ if (lnormal == Vector3()) { //just in case normal is not provided
lnormal = normal;
}
- int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+ int uv_x = CLAMP(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1);
+ int uv_y = CLAMP(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1);
int ofs = uv_y * bake_texture_size + uv_x;
@@ -294,7 +291,7 @@ void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, co
Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
Vector<Color> ret;
- if (p_image.is_null() || p_image->empty()) {
+ if (p_image.is_null() || p_image->is_empty()) {
ret.resize(bake_texture_size * bake_texture_size);
for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
ret.write[i] = p_color_add;
@@ -328,8 +325,8 @@ Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_co
}
Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) {
- //this way of obtaining materials is inaccurate and also does not support some compressed formats very well
- Ref<StandardMaterial3D> mat = p_material;
+ // This way of obtaining materials is inaccurate and also does not support some compressed formats very well.
+ Ref<BaseMaterial3D> mat = p_material;
Ref<Material> material = mat; //hack for now
@@ -340,28 +337,31 @@ Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material
MaterialCache mc;
if (mat.is_valid()) {
- Ref<Texture2D> albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO);
+ Ref<Texture2D> albedo_tex = mat->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
Ref<Image> img_albedo;
if (albedo_tex.is_valid()) {
- img_albedo = albedo_tex->get_data();
+ img_albedo = albedo_tex->get_image();
mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
} else {
mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
}
- Ref<Texture2D> emission_tex = mat->get_texture(StandardMaterial3D::TEXTURE_EMISSION);
+ Ref<Texture2D> emission_tex = mat->get_texture(BaseMaterial3D::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
- float emission_energy = mat->get_emission_energy();
+ float emission_energy = mat->get_emission_energy_multiplier() * exposure_normalization;
+ if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
+ emission_energy *= mat->get_emission_intensity();
+ }
Ref<Image> img_emission;
if (emission_tex.is_valid()) {
- img_emission = emission_tex->get_data();
+ img_emission = emission_tex->get_image();
}
- if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) {
+ if (mat->get_emission_operator() == BaseMaterial3D::EMISSION_OP_ADD) {
mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
} else {
mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
@@ -378,7 +378,7 @@ Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material
return mc;
}
-void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) {
+void Voxelizer::plot_mesh(const Transform3D &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) {
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue; //only triangles
@@ -439,7 +439,7 @@ void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vec
}
//test against original bounds
- if (!Geometry3D::triangle_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) {
+ if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) {
continue;
}
//plot
@@ -471,7 +471,7 @@ void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vec
}
//test against original bounds
- if (!Geometry3D::triangle_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) {
+ if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) {
continue;
}
//plot face
@@ -580,7 +580,6 @@ void Voxelizer::_fixup_plot(int p_idx, int p_level) {
/*if (bake_light.size()) {
for(int i=0;i<6;i++) {
-
}
}*/
@@ -598,7 +597,6 @@ void Voxelizer::_fixup_plot(int p_idx, int p_level) {
bake_cells.write[p_idx].albedo[2] = 0;
float alpha_average = 0;
- int children_found = 0;
for (int i = 0; i < 8; i++) {
uint32_t child = bake_cells[p_idx].children[i];
@@ -609,22 +607,20 @@ void Voxelizer::_fixup_plot(int p_idx, int p_level) {
_fixup_plot(child, p_level + 1);
alpha_average += bake_cells[child].alpha;
-
- children_found++;
}
bake_cells.write[p_idx].alpha = alpha_average / 8.0;
}
}
-void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) {
+void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds, float p_exposure_normalization) {
sorted = false;
original_bounds = p_bounds;
cell_subdiv = p_subdiv;
+ exposure_normalization = p_exposure_normalization;
bake_cells.resize(1);
material_cache.clear();
- print_line("subdiv: " + itos(p_subdiv));
//find out the actual real bounds, power of 2, which gets the highest subdivision
po2_bounds = p_bounds;
int longest_axis = po2_bounds.get_longest_axis_index();
@@ -637,7 +633,7 @@ void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) {
}
axis_cell_size[i] = axis_cell_size[longest_axis];
- float axis_size = po2_bounds.size[longest_axis];
+ real_t axis_size = po2_bounds.size[longest_axis];
//shrink until fit subdiv
while (axis_size / 2.0 >= po2_bounds.size[i]) {
@@ -648,11 +644,11 @@ void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) {
po2_bounds.size[i] = po2_bounds.size[longest_axis];
}
- Transform to_bounds;
+ Transform3D to_bounds;
to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
to_bounds.origin = po2_bounds.position;
- Transform to_grid;
+ Transform3D to_grid;
to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
to_cell_space = to_grid * to_bounds.affine_inverse();
@@ -667,21 +663,21 @@ void Voxelizer::end_bake() {
_fixup_plot(0, 0);
}
-//create the data for visual server
+//create the data for rendering server
-int Voxelizer::get_gi_probe_octree_depth() const {
+int Voxelizer::get_voxel_gi_octree_depth() const {
return cell_subdiv;
}
-Vector3i Voxelizer::get_giprobe_octree_size() const {
+Vector3i Voxelizer::get_voxel_gi_octree_size() const {
return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]);
}
-int Voxelizer::get_giprobe_cell_count() const {
+int Voxelizer::get_voxel_gi_cell_count() const {
return bake_cells.size();
}
-Vector<uint8_t> Voxelizer::get_giprobe_octree_cells() const {
+Vector<uint8_t> Voxelizer::get_voxel_gi_octree_cells() const {
Vector<uint8_t> data;
data.resize((8 * 4) * bake_cells.size()); //8 uint32t values
{
@@ -701,7 +697,7 @@ Vector<uint8_t> Voxelizer::get_giprobe_octree_cells() const {
return data;
}
-Vector<uint8_t> Voxelizer::get_giprobe_data_cells() const {
+Vector<uint8_t> Voxelizer::get_voxel_gi_data_cells() const {
Vector<uint8_t> data;
data.resize((4 * 4) * bake_cells.size()); //8 uint32t values
{
@@ -756,7 +752,7 @@ Vector<uint8_t> Voxelizer::get_giprobe_data_cells() const {
return data;
}
-Vector<int> Voxelizer::get_giprobe_level_cell_count() const {
+Vector<int> Voxelizer::get_voxel_gi_level_cell_count() const {
uint32_t cell_count = bake_cells.size();
const Cell *cells = bake_cells.ptr();
Vector<int> level_count;
@@ -784,8 +780,8 @@ Vector<int> Voxelizer::get_giprobe_level_cell_count() const {
/* dt of 1d function using squared distance */
static void edt(float *f, int stride, int n) {
float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
- int *v = (int *)&(d[n]);
- float *z = (float *)&v[n];
+ int *v = reinterpret_cast<int *>(&(d[n]));
+ float *z = reinterpret_cast<float *>(&v[n]);
int k = 0;
v[0] = 0;
@@ -820,7 +816,7 @@ static void edt(float *f, int stride, int n) {
#undef square
Vector<uint8_t> Voxelizer::get_sdf_3d_image() const {
- Vector3i octree_size = get_giprobe_octree_size();
+ Vector3i octree_size = get_voxel_gi_octree_size();
uint32_t float_count = octree_size.x * octree_size.y * octree_size.z;
float *work_memory = memnew_arr(float, float_count);
@@ -879,7 +875,7 @@ Vector<uint8_t> Voxelizer::get_sdf_3d_image() const {
if (d == 0) {
w[i] = 0;
} else {
- w[i] = MIN(d, 254) + 1;
+ w[i] = MIN(d, 254u) + 1;
}
}
}
@@ -891,8 +887,8 @@ Vector<uint8_t> Voxelizer::get_sdf_3d_image() const {
void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) {
if (p_level == cell_subdiv - 1) {
- Vector3 center = p_aabb.position + p_aabb.size * 0.5;
- Transform xform;
+ Vector3 center = p_aabb.get_center();
+ Transform3D xform;
xform.origin = center;
xform.basis.scale(p_aabb.size * 0.5);
p_multimesh->set_instance_transform(idx, xform);
@@ -932,14 +928,14 @@ void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<Mult
Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
Ref<MultiMesh> mm;
- mm.instance();
+ mm.instantiate();
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_use_colors(true);
mm->set_instance_count(leaf_voxel_count);
Ref<ArrayMesh> mesh;
- mesh.instance();
+ mesh.instantiate();
{
Array arr;
@@ -955,7 +951,7 @@ Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
Vector3 face_points[4];
for (int j = 0; j < 4; j++) {
- float v[3];
+ real_t v[3];
v[0] = 1.0;
v[1] = 1 - 2 * ((j >> 1) & 1);
v[2] = v[1] * (1 - 2 * (j & 1));
@@ -986,7 +982,7 @@ Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
{
Ref<StandardMaterial3D> fsm;
- fsm.instance();
+ fsm.instantiate();
fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
@@ -1003,12 +999,9 @@ Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
return mm;
}
-Transform Voxelizer::get_to_cell_space_xform() const {
+Transform3D Voxelizer::get_to_cell_space_xform() const {
return to_cell_space;
}
Voxelizer::Voxelizer() {
- sorted = false;
- color_scan_cell_width = 4;
- bake_texture_size = 128;
}