diff options
Diffstat (limited to 'scene/3d/voxel_light_baker.cpp')
-rw-r--r-- | scene/3d/voxel_light_baker.cpp | 2486 |
1 files changed, 0 insertions, 2486 deletions
diff --git a/scene/3d/voxel_light_baker.cpp b/scene/3d/voxel_light_baker.cpp deleted file mode 100644 index c1ec59d49f..0000000000 --- a/scene/3d/voxel_light_baker.cpp +++ /dev/null @@ -1,2486 +0,0 @@ -/*************************************************************************/ -/* voxel_light_baker.cpp */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ - -#include "voxel_light_baker.h" - -#include "core/os/os.h" -#include "core/os/threaded_array_processor.h" - -#include <stdlib.h> - -#define FINDMINMAX(x0, x1, x2, min, max) \ - min = max = x0; \ - if (x1 < min) min = x1; \ - if (x1 > max) max = x1; \ - if (x2 < min) min = x2; \ - if (x2 > max) max = x2; - -static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { - int q; - Vector3 vmin, vmax; - for (q = 0; q <= 2; q++) { - if (normal[q] > 0.0f) { - vmin[q] = -maxbox[q]; - vmax[q] = maxbox[q]; - } else { - vmin[q] = maxbox[q]; - vmax[q] = -maxbox[q]; - } - } - if (normal.dot(vmin) + d > 0.0f) return false; - if (normal.dot(vmax) + d >= 0.0f) return true; - - return false; -} - -/*======================== X-tests ========================*/ -#define AXISTEST_X01(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p2 = a * v2.y - b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_X2(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p1 = a * v1.y - b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Y-tests ========================*/ -#define AXISTEST_Y02(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p2 = -a * v2.x + b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Y1(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p1 = -a * v1.x + b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Z-tests ========================*/ - -#define AXISTEST_Z12(a, b, fa, fb) \ - p1 = a * v1.x - b * v1.y; \ - p2 = a * v2.x - b * v2.y; \ - if (p2 < p1) { \ - min = p2; \ - max = p1; \ - } else { \ - min = p1; \ - max = p2; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Z0(a, b, fa, fb) \ - p0 = a * v0.x - b * v0.y; \ - p1 = a * v1.x - b * v1.y; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { - - /* use separating axis theorem to test overlap between triangle and box */ - /* need to test for overlap in these directions: */ - /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ - /* we do not even need to test these) */ - /* 2) normal of the triangle */ - /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ - /* this gives 3x3=9 more tests */ - Vector3 v0, v1, v2; - float min, max, d, p0, p1, p2, rad, fex, fey, fez; - Vector3 normal, e0, e1, e2; - - /* This is the fastest branch on Sun */ - /* move everything so that the boxcenter is in (0,0,0) */ - - v0 = triverts[0] - boxcenter; - v1 = triverts[1] - boxcenter; - v2 = triverts[2] - boxcenter; - - /* compute triangle edges */ - e0 = v1 - v0; /* tri edge 0 */ - e1 = v2 - v1; /* tri edge 1 */ - e2 = v0 - v2; /* tri edge 2 */ - - /* Bullet 3: */ - /* test the 9 tests first (this was faster) */ - fex = Math::abs(e0.x); - fey = Math::abs(e0.y); - fez = Math::abs(e0.z); - AXISTEST_X01(e0.z, e0.y, fez, fey); - AXISTEST_Y02(e0.z, e0.x, fez, fex); - AXISTEST_Z12(e0.y, e0.x, fey, fex); - - fex = Math::abs(e1.x); - fey = Math::abs(e1.y); - fez = Math::abs(e1.z); - AXISTEST_X01(e1.z, e1.y, fez, fey); - AXISTEST_Y02(e1.z, e1.x, fez, fex); - AXISTEST_Z0(e1.y, e1.x, fey, fex); - - fex = Math::abs(e2.x); - fey = Math::abs(e2.y); - fez = Math::abs(e2.z); - AXISTEST_X2(e2.z, e2.y, fez, fey); - AXISTEST_Y1(e2.z, e2.x, fez, fex); - AXISTEST_Z12(e2.y, e2.x, fey, fex); - - /* Bullet 1: */ - /* first test overlap in the {x,y,z}-directions */ - /* find min, max of the triangle each direction, and test for overlap in */ - /* that direction -- this is equivalent to testing a minimal AABB around */ - /* the triangle against the AABB */ - - /* test in X-direction */ - FINDMINMAX(v0.x, v1.x, v2.x, min, max); - if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; - - /* test in Y-direction */ - FINDMINMAX(v0.y, v1.y, v2.y, min, max); - if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; - - /* test in Z-direction */ - FINDMINMAX(v0.z, v1.z, v2.z, min, max); - if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; - - /* Bullet 2: */ - /* test if the box intersects the plane of the triangle */ - /* compute plane equation of triangle: normal*x+d=0 */ - normal = e0.cross(e1); - d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ - return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ -} - -static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { - - if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { - r_uv = p_uv[0]; - r_normal = p_normal[0]; - return; - } - if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { - r_uv = p_uv[1]; - r_normal = p_normal[1]; - return; - } - if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { - r_uv = p_uv[2]; - r_normal = p_normal[2]; - return; - } - - Vector3 v0 = p_vtx[1] - p_vtx[0]; - Vector3 v1 = p_vtx[2] - p_vtx[0]; - Vector3 v2 = p_pos - p_vtx[0]; - - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - if (denom == 0) { - r_uv = p_uv[0]; - r_normal = p_normal[0]; - return; - } - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - - r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; - r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); -} - -void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { - - if (p_level == cell_subdiv - 1) { - //plot the face by guessing its albedo and emission value - - //find best axis to map to, for scanning values - int closest_axis = 0; - float closest_dot = 0; - - Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 normal = plane.normal; - - for (int i = 0; i < 3; i++) { - - Vector3 axis; - axis[i] = 1.0; - float dot = ABS(normal.dot(axis)); - if (i == 0 || dot > closest_dot) { - closest_axis = i; - closest_dot = dot; - } - } - - Vector3 axis; - axis[closest_axis] = 1.0; - Vector3 t1; - t1[(closest_axis + 1) % 3] = 1.0; - Vector3 t2; - t2[(closest_axis + 2) % 3] = 1.0; - - t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); - t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); - - Color albedo_accum; - Color emission_accum; - Vector3 normal_accum; - - float alpha = 0.0; - - //map to a grid average in the best axis for this face - for (int i = 0; i < color_scan_cell_width; i++) { - - Vector3 ofs_i = float(i) * t1; - - for (int j = 0; j < color_scan_cell_width; j++) { - - Vector3 ofs_j = float(j) * t2; - - Vector3 from = p_aabb.position + ofs_i + ofs_j; - Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; - Vector3 half = (to - from) * 0.5; - - //is in this cell? - if (!fast_tri_box_overlap(from + half, half, p_vtx)) { - continue; //face does not span this cell - } - - //go from -size to +size*2 to avoid skipping collisions - Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; - Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; - - if (normal.dot(ray_from - ray_to) < 0) { - SWAP(ray_from, ray_to); - } - - Vector3 intersection; - - if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { - if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { - intersection = plane.project(ray_from); - } else { - - intersection = plane.project(ray_to); - } - } - - intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); - - Vector2 uv; - Vector3 lnormal; - get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); - if (lnormal == Vector3()) //just in case normal as nor provided - lnormal = normal; - - int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); - int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - albedo_accum.r += p_material.albedo[ofs].r; - albedo_accum.g += p_material.albedo[ofs].g; - albedo_accum.b += p_material.albedo[ofs].b; - albedo_accum.a += p_material.albedo[ofs].a; - - emission_accum.r += p_material.emission[ofs].r; - emission_accum.g += p_material.emission[ofs].g; - emission_accum.b += p_material.emission[ofs].b; - - normal_accum += lnormal; - - alpha += 1.0; - } - } - - if (alpha == 0) { - //could not in any way get texture information.. so use closest point to center - - Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); - - Vector3 lnormal; - Vector2 uv; - get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); - if (lnormal == Vector3()) //just in case normal as nor provided - lnormal = normal; - - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - - alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); - - albedo_accum.r = p_material.albedo[ofs].r * alpha; - albedo_accum.g = p_material.albedo[ofs].g * alpha; - albedo_accum.b = p_material.albedo[ofs].b * alpha; - albedo_accum.a = p_material.albedo[ofs].a * alpha; - - emission_accum.r = p_material.emission[ofs].r * alpha; - emission_accum.g = p_material.emission[ofs].g * alpha; - emission_accum.b = p_material.emission[ofs].b * alpha; - - normal_accum = lnormal * alpha; - - } else { - - float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); - alpha *= accdiv; - - albedo_accum.r *= accdiv; - albedo_accum.g *= accdiv; - albedo_accum.b *= accdiv; - albedo_accum.a *= accdiv; - - emission_accum.r *= accdiv; - emission_accum.g *= accdiv; - emission_accum.b *= accdiv; - - normal_accum *= accdiv; - } - - //put this temporarily here, corrected in a later step - bake_cells.write[p_idx].albedo[0] += albedo_accum.r; - bake_cells.write[p_idx].albedo[1] += albedo_accum.g; - bake_cells.write[p_idx].albedo[2] += albedo_accum.b; - bake_cells.write[p_idx].emission[0] += emission_accum.r; - bake_cells.write[p_idx].emission[1] += emission_accum.g; - bake_cells.write[p_idx].emission[2] += emission_accum.b; - bake_cells.write[p_idx].normal[0] += normal_accum.x; - bake_cells.write[p_idx].normal[1] += normal_accum.y; - bake_cells.write[p_idx].normal[2] += normal_accum.z; - bake_cells.write[p_idx].alpha += alpha; - - } else { - //go down - - int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) { - aabb.position.x += aabb.size.x; - nx += half; - } - if (i & 2) { - aabb.position.y += aabb.size.y; - ny += half; - } - if (i & 4) { - aabb.position.z += aabb.size.z; - nz += half; - } - //make sure to not plot beyond limits - if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) - continue; - - { - AABB test_aabb = aabb; - //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time - Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test - - if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { - //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { - //does not fit in child, go on - continue; - } - } - - if (bake_cells[p_idx].children[i] == CHILD_EMPTY) { - //sub cell must be created - - uint32_t child_idx = bake_cells.size(); - bake_cells.write[p_idx].children[i] = child_idx; - bake_cells.resize(bake_cells.size() + 1); - bake_cells.write[child_idx].level = p_level + 1; - } - - _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb); - } - } -} - -Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { - - Vector<Color> ret; - - if (p_image.is_null() || p_image->empty()) { - - ret.resize(bake_texture_size * bake_texture_size); - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - ret.write[i] = p_color_add; - } - - return ret; - } - p_image = p_image->duplicate(); - - if (p_image->is_compressed()) { - p_image->decompress(); - } - p_image->convert(Image::FORMAT_RGBA8); - p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); - - PoolVector<uint8_t>::Read r = p_image->get_data().read(); - ret.resize(bake_texture_size * bake_texture_size); - - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - Color c; - c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; - c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; - c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; - - c.a = r[i * 4 + 3] / 255.0; - - ret.write[i] = c; - } - - return ret; -} - -VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) { - - //this way of obtaining materials is inaccurate and also does not support some compressed formats very well - Ref<SpatialMaterial> mat = p_material; - - Ref<Material> material = mat; //hack for now - - if (material_cache.has(material)) { - return material_cache[material]; - } - - MaterialCache mc; - - if (mat.is_valid()) { - - Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO); - - Ref<Image> img_albedo; - if (albedo_tex.is_valid()) { - - img_albedo = albedo_tex->get_data(); - mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative - } else { - mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive - } - - Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION); - - Color emission_col = mat->get_emission(); - float emission_energy = mat->get_emission_energy(); - - Ref<Image> img_emission; - - if (emission_tex.is_valid()) { - - img_emission = emission_tex->get_data(); - } - - if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) { - mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); - } else { - mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); - } - - } else { - Ref<Image> empty; - - mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); - mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); - } - - material_cache[p_material] = mc; - return mc; -} - -void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { - - for (int i = 0; i < p_mesh->get_surface_count(); i++) { - - if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) - continue; //only triangles - - Ref<Material> src_material; - - if (p_override_material.is_valid()) { - src_material = p_override_material; - } else if (i < p_materials.size() && p_materials[i].is_valid()) { - src_material = p_materials[i]; - } else { - src_material = p_mesh->surface_get_material(i); - } - MaterialCache material = _get_material_cache(src_material); - - Array a = p_mesh->surface_get_arrays(i); - - PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; - PoolVector<Vector2>::Read uvr; - PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; - PoolVector<Vector3>::Read nr; - PoolVector<int> index = a[Mesh::ARRAY_INDEX]; - - bool read_uv = false; - bool read_normals = false; - - if (uv.size()) { - - uvr = uv.read(); - read_uv = true; - } - - if (normals.size()) { - read_normals = true; - nr = normals.read(); - } - - if (index.size()) { - - int facecount = index.size() / 3; - PoolVector<int>::Read ir = index.read(); - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - Vector3 normal[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[ir[j * 3 + k]]; - } - } - - if (read_normals) { - for (int k = 0; k < 3; k++) { - normal[k] = nr[ir[j * 3 + k]]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) - continue; - //plot - _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); - } - - } else { - - int facecount = vertices.size() / 3; - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - Vector3 normal[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[j * 3 + k]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[j * 3 + k]; - } - } - - if (read_normals) { - for (int k = 0; k < 3; k++) { - normal[k] = nr[j * 3 + k]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) - continue; - //plot face - _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); - } - } - } - - max_original_cells = bake_cells.size(); -} - -void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) { - - bake_light.write[p_idx].x = p_x; - bake_light.write[p_idx].y = p_y; - bake_light.write[p_idx].z = p_z; - - if (p_level == cell_subdiv - 1) { - - bake_light.write[p_idx].next_leaf = first_leaf; - first_leaf = p_idx; - } else { - - //go down - int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - uint32_t child = bake_cells[p_idx].children[i]; - - if (child == CHILD_EMPTY) - continue; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) - nx += half; - if (i & 2) - ny += half; - if (i & 4) - nz += half; - - _init_light_plot(child, p_level + 1, nx, ny, nz, p_idx); - } - } -} - -void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) { - _check_init_light(); - propagation = p_propagation; - bake_quality = p_quality; - bake_mode = p_bake_mode; - energy = p_energy; -} - -void VoxelLightBaker::_check_init_light() { - if (bake_light.size() == 0) { - - direct_lights_baked = false; - leaf_voxel_count = 0; - _fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting. - bake_light.resize(bake_cells.size()); - print_line("bake light size: " + itos(bake_light.size())); - //zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light)); - first_leaf = -1; - _init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY); - } -} - -static float _get_normal_advance(const Vector3 &p_normal) { - - Vector3 normal = p_normal; - Vector3 unorm = normal.abs(); - - if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { - // x code - unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0); - } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { - // y code - unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0); - } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { - // z code - unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0); - } else { - // oh-no we messed up code - // has to be - unorm = Vector3(1.0, 0.0, 0.0); - } - - return 1.0 / normal.dot(unorm); -} - -static const Vector3 aniso_normal[6] = { - Vector3(-1, 0, 0), - Vector3(1, 0, 0), - Vector3(0, -1, 0), - Vector3(0, 1, 0), - Vector3(0, 0, -1), - Vector3(0, 0, 1) -}; - -uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) { - - uint32_t cell = 0; - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - int size = 1 << (cell_subdiv - 1); - int half = size / 2; - - if (x < 0 || x >= size) - return -1; - if (y < 0 || y >= size) - return -1; - if (z < 0 || z >= size) - return -1; - - for (int i = 0; i < cell_subdiv - 1; i++) { - - const Cell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (cell == CHILD_EMPTY) - return CHILD_EMPTY; - - half >>= 1; - } - - return cell; -} -void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) { - - _check_init_light(); - - float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1; - - if (p_direct) - direct_lights_baked = true; - - Vector3 light_axis = p_direction; - Plane clip[3]; - int clip_planes = 0; - - Light *light_data = bake_light.ptrw(); - const Cell *cells = bake_cells.ptr(); - - for (int i = 0; i < 3; i++) { - - if (Math::is_zero_approx(light_axis[i])) - continue; - clip[clip_planes].normal[i] = 1.0; - - if (light_axis[i] < 0) { - - clip[clip_planes].d = axis_cell_size[i] + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - float distance_adv = _get_normal_advance(light_axis); - - int success_count = 0; - - Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; - - int idx = first_leaf; - while (idx >= 0) { - - Light *light = &light_data[idx]; - - Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); - to += -light_axis.sign() * 0.47; //make it more likely to receive a ray - - Vector3 from = to - max_len * light_axis; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always - from = to - light_axis * distance; - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == (uint32_t)idx) { - //cell hit itself! hooray! - - Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); - if (normal == Vector3()) { - for (int i = 0; i < 6; i++) { - light->accum[i][0] += light_energy.x * cells[idx].albedo[0]; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1]; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2]; - } - - } else { - - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-normal)); - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s; - } - } - - if (p_direct) { - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct - light->direct_accum[i][0] += light_energy.x * s; - light->direct_accum[i][1] += light_energy.y * s; - light->direct_accum[i][2] += light_energy.z * s; - } - } - success_count++; - } - - idx = light_data[idx].next_leaf; - } -} - -void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) { - - _check_init_light(); - - if (p_direct) - direct_lights_baked = true; - - Plane clip[3]; - int clip_planes = 0; - - // uint64_t us = OS::get_singleton()->get_ticks_usec(); - - Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); - //Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); - - float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; - - Light *light_data = bake_light.ptrw(); - const Cell *cells = bake_cells.ptr(); - Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; - - int idx = first_leaf; - while (idx >= 0) { - - Light *light = &light_data[idx]; - - Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); - to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray - - Vector3 light_axis = (to - light_pos).normalized(); - float distance_adv = _get_normal_advance(light_axis); - - Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); - - if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { - idx = light_data[idx].next_leaf; - continue; - } - - float att = 1.0; - { - float d = light_pos.distance_to(to); - if (d + distance_adv > local_radius) { - idx = light_data[idx].next_leaf; - continue; // too far away - } - - float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); - att *= powf(1.0 - dt, p_attenutation); - } - - clip_planes = 0; - - for (int c = 0; c < 3; c++) { - - if (Math::is_zero_approx(light_axis[c])) - continue; - clip[clip_planes].normal[c] = 1.0; - - if (light_axis[c] < 0) { - - clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - Vector3 from = light_pos; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - - distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer - from = to - light_axis * distance; - to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == (uint32_t)idx) { - //cell hit itself! hooray! - - if (normal == Vector3()) { - for (int i = 0; i < 6; i++) { - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; - } - - } else { - - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-normal)); - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; - } - } - - if (p_direct) { - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct - light->direct_accum[i][0] += light_energy.x * s * att; - light->direct_accum[i][1] += light_energy.y * s * att; - light->direct_accum[i][2] += light_energy.z * s * att; - } - } - } - - idx = light_data[idx].next_leaf; - } -} - -void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) { - - _check_init_light(); - - if (p_direct) - direct_lights_baked = true; - - Plane clip[3]; - int clip_planes = 0; - - // uint64_t us = OS::get_singleton()->get_ticks_usec(); - - Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); - Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized(); - - float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; - - Light *light_data = bake_light.ptrw(); - const Cell *cells = bake_cells.ptr(); - Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; - - int idx = first_leaf; - while (idx >= 0) { - - Light *light = &light_data[idx]; - - Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); - - Vector3 light_axis = (to - light_pos).normalized(); - float distance_adv = _get_normal_advance(light_axis); - - Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); - - if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { - idx = light_data[idx].next_leaf; - continue; - } - - float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis))); - if (angle > p_spot_angle) { - idx = light_data[idx].next_leaf; - continue; // too far away - } - - float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation); - - { - float d = light_pos.distance_to(to); - if (d + distance_adv > local_radius) { - idx = light_data[idx].next_leaf; - continue; // too far away - } - - float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); - att *= powf(1.0 - dt, p_attenutation); - } - - clip_planes = 0; - - for (int c = 0; c < 3; c++) { - - if (Math::is_zero_approx(light_axis[c])) - continue; - clip[clip_planes].normal[c] = 1.0; - - if (light_axis[c] < 0) { - - clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - Vector3 from = light_pos; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - - distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer - from = to - light_axis * distance; - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == (uint32_t)idx) { - //cell hit itself! hooray! - - if (normal == Vector3()) { - for (int i = 0; i < 6; i++) { - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; - } - - } else { - - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-normal)); - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; - } - } - - if (p_direct) { - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct - light->direct_accum[i][0] += light_energy.x * s * att; - light->direct_accum[i][1] += light_energy.y * s * att; - light->direct_accum[i][2] += light_energy.z * s * att; - } - } - } - - idx = light_data[idx].next_leaf; - } -} - -void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) { - - if (p_level == cell_subdiv - 1) { - - leaf_voxel_count++; - float alpha = bake_cells[p_idx].alpha; - - bake_cells.write[p_idx].albedo[0] /= alpha; - bake_cells.write[p_idx].albedo[1] /= alpha; - bake_cells.write[p_idx].albedo[2] /= alpha; - - //transfer emission to light - bake_cells.write[p_idx].emission[0] /= alpha; - bake_cells.write[p_idx].emission[1] /= alpha; - bake_cells.write[p_idx].emission[2] /= alpha; - - bake_cells.write[p_idx].normal[0] /= alpha; - bake_cells.write[p_idx].normal[1] /= alpha; - bake_cells.write[p_idx].normal[2] /= alpha; - - Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); - if (n.length() < 0.01) { - //too much fight over normal, zero it - bake_cells.write[p_idx].normal[0] = 0; - bake_cells.write[p_idx].normal[1] = 0; - bake_cells.write[p_idx].normal[2] = 0; - } else { - n.normalize(); - bake_cells.write[p_idx].normal[0] = n.x; - bake_cells.write[p_idx].normal[1] = n.y; - bake_cells.write[p_idx].normal[2] = n.z; - } - - bake_cells.write[p_idx].alpha = 1.0; - - /*if (bake_light.size()) { - for(int i=0;i<6;i++) { - - } - }*/ - - } else { - - //go down - - bake_cells.write[p_idx].emission[0] = 0; - bake_cells.write[p_idx].emission[1] = 0; - bake_cells.write[p_idx].emission[2] = 0; - bake_cells.write[p_idx].normal[0] = 0; - bake_cells.write[p_idx].normal[1] = 0; - bake_cells.write[p_idx].normal[2] = 0; - bake_cells.write[p_idx].albedo[0] = 0; - bake_cells.write[p_idx].albedo[1] = 0; - bake_cells.write[p_idx].albedo[2] = 0; - if (bake_light.size()) { - for (int j = 0; j < 6; j++) { - bake_light.write[p_idx].accum[j][0] = 0; - bake_light.write[p_idx].accum[j][1] = 0; - bake_light.write[p_idx].accum[j][2] = 0; - } - } - - float alpha_average = 0; - int children_found = 0; - - for (int i = 0; i < 8; i++) { - - uint32_t child = bake_cells[p_idx].children[i]; - - if (child == CHILD_EMPTY) - continue; - - _fixup_plot(child, p_level + 1); - alpha_average += bake_cells[child].alpha; - - if (bake_light.size() > 0) { - for (int j = 0; j < 6; j++) { - bake_light.write[p_idx].accum[j][0] += bake_light[child].accum[j][0]; - bake_light.write[p_idx].accum[j][1] += bake_light[child].accum[j][1]; - bake_light.write[p_idx].accum[j][2] += bake_light[child].accum[j][2]; - } - bake_cells.write[p_idx].emission[0] += bake_cells[child].emission[0]; - bake_cells.write[p_idx].emission[1] += bake_cells[child].emission[1]; - bake_cells.write[p_idx].emission[2] += bake_cells[child].emission[2]; - } - - children_found++; - } - - bake_cells.write[p_idx].alpha = alpha_average / 8.0; - if (bake_light.size() && children_found) { - float divisor = Math::lerp(8, children_found, propagation); - for (int j = 0; j < 6; j++) { - bake_light.write[p_idx].accum[j][0] /= divisor; - bake_light.write[p_idx].accum[j][1] /= divisor; - bake_light.write[p_idx].accum[j][2] /= divisor; - } - bake_cells.write[p_idx].emission[0] /= divisor; - bake_cells.write[p_idx].emission[1] /= divisor; - bake_cells.write[p_idx].emission[2] /= divisor; - } - } -} - -//make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into - -void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) { - - int x[3]; - int y[3]; - - for (int j = 0; j < 3; j++) { - - x[j] = vertices[j].x * width; - y[j] = vertices[j].y * height; - //x[j] = CLAMP(x[j], 0, bt.width - 1); - //y[j] = CLAMP(y[j], 0, bt.height - 1); - } - - // sort the points vertically - if (y[1] > y[2]) { - SWAP(x[1], x[2]); - SWAP(y[1], y[2]); - SWAP(positions[1], positions[2]); - SWAP(normals[1], normals[2]); - } - if (y[0] > y[1]) { - SWAP(x[0], x[1]); - SWAP(y[0], y[1]); - SWAP(positions[0], positions[1]); - SWAP(normals[0], normals[1]); - } - if (y[1] > y[2]) { - SWAP(x[1], x[2]); - SWAP(y[1], y[2]); - SWAP(positions[1], positions[2]); - SWAP(normals[1], normals[2]); - } - - double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1); - double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1); - double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1); - double xf = x[0]; - double xt = x[0] + dx_upper; // if y[0] == y[1], special case - for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) { - if (yi >= 0) { - for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) { - //pixels[int(x + y * width)] = color; - - Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); - Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); - //vertices[2] - vertices[0]; - Vector2 v2 = Vector2(xi - x[0], yi - y[0]); - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - Vector3 pos; - Vector3 normal; - if (denom == 0) { - pos = positions[0]; - normal = normals[0]; - } else { - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - pos = positions[0] * u + positions[1] * v + positions[2] * w; - normal = normals[0] * u + normals[1] * v + normals[2] * w; - } - - int ofs = yi * width + xi; - pixels[ofs].normal = normal; - pixels[ofs].pos = pos; - } - - for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) { - //pixels[int(x + y * width)] = color; - Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); - Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); - //vertices[2] - vertices[0]; - Vector2 v2 = Vector2(xi - x[0], yi - y[0]); - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - Vector3 pos; - Vector3 normal; - if (denom == 0) { - pos = positions[0]; - normal = normals[0]; - } else { - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - pos = positions[0] * u + positions[1] * v + positions[2] * w; - normal = normals[0] * u + normals[1] * v + normals[2] * w; - } - - int ofs = yi * width + xi; - pixels[ofs].normal = normal; - pixels[ofs].pos = pos; - } - } - xf += dx_far; - if (yi < y[1]) - xt += dx_upper; - else - xt += dx_low; - } -} - -void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) { - - int size = 1 << (cell_subdiv - 1); - - int clamp_v = size - 1; - //first of all, clamp - Vector3 pos; - pos.x = CLAMP(p_posf.x, 0, clamp_v); - pos.y = CLAMP(p_posf.y, 0, clamp_v); - pos.z = CLAMP(p_posf.z, 0, clamp_v); - - float level = (cell_subdiv - 1) - p_level; - - int target_level; - float level_filter; - if (level <= 0.0) { - level_filter = 0; - target_level = 0; - } else { - target_level = Math::ceil(level); - level_filter = target_level - level; - } - - const Cell *cells = bake_cells.ptr(); - const Light *light = bake_light.ptr(); - - Vector3 color[2][8]; - float alpha[2][8]; - zeromem(alpha, sizeof(float) * 2 * 8); - - //find cell at given level first - - for (int c = 0; c < 2; c++) { - - int current_level = MAX(0, target_level - c); - int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level; - - for (int n = 0; n < 8; n++) { - - int x = int(pos.x); - int y = int(pos.y); - int z = int(pos.z); - - if (n & 1) - x += level_cell_size; - if (n & 2) - y += level_cell_size; - if (n & 4) - z += level_cell_size; - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - - x = CLAMP(x, 0, clamp_v); - y = CLAMP(y, 0, clamp_v); - z = CLAMP(z, 0, clamp_v); - - int half = size / 2; - uint32_t cell = 0; - for (int i = 0; i < current_level; i++) { - - const Cell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (cell == CHILD_EMPTY) - break; - - half >>= 1; - } - - if (cell == CHILD_EMPTY) { - alpha[c][n] = 0; - } else { - alpha[c][n] = cells[cell].alpha; - - for (int i = 0; i < 6; i++) { - //anisotropic read light - float amount = p_direction.dot(aniso_normal[i]); - if (amount < 0) - amount = 0; - color[c][n].x += light[cell].accum[i][0] * amount; - color[c][n].y += light[cell].accum[i][1] * amount; - color[c][n].z += light[cell].accum[i][2] * amount; - } - - color[c][n].x += cells[cell].emission[0]; - color[c][n].y += cells[cell].emission[1]; - color[c][n].z += cells[cell].emission[2]; - } - } - } - - float target_level_size = size >> target_level; - Vector3 pos_fract[2]; - - pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; - pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; - pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; - - target_level_size = size >> MAX(0, target_level - 1); - - pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; - pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; - pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; - - float alpha_interp[2]; - Vector3 color_interp[2]; - - for (int i = 0; i < 2; i++) { - - Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); - Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); - Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); - - Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); - Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); - Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); - - color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); - - float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); - float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); - float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); - - float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); - float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); - float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); - - alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); - } - - r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); - r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); -} - -Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) { - - float bias = 2.5; - float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length(); - - float dist = bias; - float alpha = 0.0; - Vector3 color; - - Vector3 scolor; - float salpha; - - while (dist < max_distance && alpha < 0.95) { - float diameter = MAX(1.0, 2.0 * p_aperture * dist); - _sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha); - float a = (1.0 - alpha); - color += scolor * a; - alpha += a * salpha; - dist += diameter * 0.5; - } - - /*if (blend_ambient) { - color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); - }*/ - - return color; -} - -Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { - - //find arbitrary tangent and bitangent, then build a matrix - Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); - Vector3 tangent = v0.cross(p_normal).normalized(); - Vector3 bitangent = tangent.cross(p_normal).normalized(); - Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); - - const Vector3 *cone_dirs = NULL; - const float *cone_weights = NULL; - int cone_dir_count = 0; - float cone_aperture = 0; - - switch (bake_quality) { - case BAKE_QUALITY_LOW: { - //default quality - static const Vector3 dirs[4] = { - Vector3(Math_SQRT12, 0, Math_SQRT12), - Vector3(0, Math_SQRT12, Math_SQRT12), - Vector3(-Math_SQRT12, 0, Math_SQRT12), - Vector3(0, -Math_SQRT12, Math_SQRT12) - }; - - static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 }; - - cone_dirs = dirs; - cone_dir_count = 4; - cone_aperture = 1.0; // tan(angle) 90 degrees - cone_weights = weights; - } break; - case BAKE_QUALITY_MEDIUM: { - //default quality - static const Vector3 dirs[6] = { - Vector3(0, 0, 1), - Vector3(0.866025, 0, 0.5), - Vector3(0.267617, 0.823639, 0.5), - Vector3(-0.700629, 0.509037, 0.5), - Vector3(-0.700629, -0.509037, 0.5), - Vector3(0.267617, -0.823639, 0.5) - }; - static const float weights[6] = { 0.25f, 0.15f, 0.15f, 0.15f, 0.15f, 0.15f }; - // - cone_dirs = dirs; - cone_dir_count = 6; - cone_aperture = 0.577; // tan(angle) 60 degrees - cone_weights = weights; - } break; - case BAKE_QUALITY_HIGH: { - - //high qualily - static const Vector3 dirs[10] = { - Vector3(0.8781648411741658, 0.0, 0.478358141694643), - Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606), - Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645), - Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604), - Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604), - Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645), - Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606), - Vector3(-0.4451656858129485, 0.0, 0.8954482185892644), - Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214), - Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214), - }; - static const float weights[10] = { 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.133333f, 0.133333f, 0.13333f }; - cone_dirs = dirs; - cone_dir_count = 10; - cone_aperture = 0.404; // tan(angle) 45 degrees - cone_weights = weights; - } break; - } - - Vector3 accum; - - for (int i = 0; i < cone_dir_count; i++) { - Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell - accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i]; - } - - return accum; -} - -_ALWAYS_INLINE_ uint32_t xorshift32(uint32_t *state) { - /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */ - uint32_t x = *state; - x ^= x << 13; - x ^= x >> 17; - x ^= x << 5; - *state = x; - return x; -} - -Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { - - int samples_per_quality[3] = { 48, 128, 512 }; - - int samples = samples_per_quality[bake_quality]; - - //create a basis in Z - Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); - Vector3 tangent = v0.cross(p_normal).normalized(); - Vector3 bitangent = tangent.cross(p_normal).normalized(); - Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); - - float bias = 1.5; - int max_level = cell_subdiv - 1; - int size = 1 << max_level; - - Vector3 accum; - float spread = Math::deg2rad(80.0); - - const Light *light = bake_light.ptr(); - const Cell *cells = bake_cells.ptr(); - - uint32_t local_rng_state = rand(); //needs to be fixed again - - for (int i = 0; i < samples; i++) { - - float random_angle1 = (((xorshift32(&local_rng_state) % 65535) / 65535.0) * 2.0 - 1.0) * spread; - Vector3 axis(0, sin(random_angle1), cos(random_angle1)); - float random_angle2 = ((xorshift32(&local_rng_state) % 65535) / 65535.0) * Math_PI * 2.0; - Basis rot(Vector3(0, 0, 1), random_angle2); - axis = rot.xform(axis); - - Vector3 direction = normal_xform.xform(axis).normalized(); - - Vector3 advance = direction * _get_normal_advance(direction); - - Vector3 pos = p_pos /*+ Vector3(0.5, 0.5, 0.5)*/ + advance * bias; - - uint32_t cell = CHILD_EMPTY; - - while (cell == CHILD_EMPTY) { - - int x = int(pos.x); - int y = int(pos.y); - int z = int(pos.z); - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - int half = size / 2; - - if (x < 0 || x >= size) - break; - if (y < 0 || y >= size) - break; - if (z < 0 || z >= size) - break; - - //int level_limit = max_level; - - cell = 0; //start from root - for (int j = 0; j < max_level; j++) { - - const Cell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (unlikely(cell == CHILD_EMPTY)) - break; - - half >>= 1; - } - - pos += advance; - } - - if (unlikely(cell != CHILD_EMPTY)) { - for (int j = 0; j < 6; j++) { - //anisotropic read light - float amount = direction.dot(aniso_normal[j]); - if (amount <= 0) - continue; - accum.x += light[cell].accum[j][0] * amount; - accum.y += light[cell].accum[j][1] * amount; - accum.z += light[cell].accum[j][2] * amount; - } - accum.x += cells[cell].emission[0]; - accum.y += cells[cell].emission[1]; - accum.z += cells[cell].emission[2]; - } - } - - // Make sure we don't reset this thread's RNG state - - return accum / samples; -} - -void VoxelLightBaker::_lightmap_bake_point(uint32_t p_x, LightMap *p_line) { - - LightMap *pixel = &p_line[p_x]; - if (pixel->pos == Vector3()) - return; - switch (bake_mode) { - case BAKE_MODE_CONE_TRACE: { - pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy; - } break; - case BAKE_MODE_RAY_TRACE: { - pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy; - } break; - } -} - -Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, float default_texels_per_unit, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) { - - //transfer light information to a lightmap - Ref<Mesh> mesh = p_mesh; - - //step 1 - create lightmap - int width; - int height; - Vector<LightMap> lightmap; - Transform xform = to_cell_space * p_xform; - if (mesh->get_lightmap_size_hint() == Size2()) { - double area = 0; - double uv_area = 0; - for (int i = 0; i < mesh->get_surface_count(); i++) { - Array arrays = mesh->surface_get_arrays(i); - PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX]; - PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2]; - PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX]; - - ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); - ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); - - int vc = vertices.size(); - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector2>::Read u2r = uv2.read(); - PoolVector<int>::Read ir; - int ic = 0; - - if (indices.size()) { - ic = indices.size(); - ir = indices.read(); - } - - int faces = ic ? ic / 3 : vc / 3; - for (int j = 0; j < faces; j++) { - Vector3 vertex[3]; - Vector2 uv[3]; - - for (int k = 0; k < 3; k++) { - int idx = ic ? ir[j * 3 + k] : j * 3 + k; - vertex[k] = xform.xform(vr[idx]); - uv[k] = u2r[idx]; - } - - Vector3 p1 = vertex[0]; - Vector3 p2 = vertex[1]; - Vector3 p3 = vertex[2]; - double a = p1.distance_to(p2); - double b = p2.distance_to(p3); - double c = p3.distance_to(p1); - double halfPerimeter = (a + b + c) / 2.0; - area += sqrt(halfPerimeter * (halfPerimeter - a) * (halfPerimeter - b) * (halfPerimeter - c)); - - Vector2 uv_p1 = uv[0]; - Vector2 uv_p2 = uv[1]; - Vector2 uv_p3 = uv[2]; - double uv_a = uv_p1.distance_to(uv_p2); - double uv_b = uv_p2.distance_to(uv_p3); - double uv_c = uv_p3.distance_to(uv_p1); - double uv_halfPerimeter = (uv_a + uv_b + uv_c) / 2.0; - uv_area += sqrt(uv_halfPerimeter * (uv_halfPerimeter - uv_a) * (uv_halfPerimeter - uv_b) * (uv_halfPerimeter - uv_c)); - } - } - - if (uv_area < 0.0001f) { - uv_area = 1.0; - } - - int pixels = (ceil((1.0 / sqrt(uv_area)) * sqrt(area * default_texels_per_unit))); - width = height = CLAMP(pixels, 2, 4096); - } else { - width = mesh->get_lightmap_size_hint().x; - height = mesh->get_lightmap_size_hint().y; - } - - lightmap.resize(width * height); - - //step 2 plot faces to lightmap - for (int i = 0; i < mesh->get_surface_count(); i++) { - Array arrays = mesh->surface_get_arrays(i); - PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3> normals = arrays[Mesh::ARRAY_NORMAL]; - PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2]; - PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX]; - - ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); - ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER); - ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); - - int vc = vertices.size(); - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector3>::Read nr = normals.read(); - PoolVector<Vector2>::Read u2r = uv2.read(); - PoolVector<int>::Read ir; - int ic = 0; - - if (indices.size()) { - ic = indices.size(); - ir = indices.read(); - } - - int faces = ic ? ic / 3 : vc / 3; - for (int j = 0; j < faces; j++) { - Vector3 vertex[3]; - Vector3 normal[3]; - Vector2 uv[3]; - - for (int k = 0; k < 3; k++) { - int idx = ic ? ir[j * 3 + k] : j * 3 + k; - vertex[k] = xform.xform(vr[idx]); - normal[k] = xform.basis.xform(nr[idx]).normalized(); - uv[k] = u2r[idx]; - } - - _plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height); - } - } - - //step 3 perform voxel cone trace on lightmap pixels - { - LightMap *lightmap_ptr = lightmap.ptrw(); - uint64_t begin_time = OS::get_singleton()->get_ticks_usec(); - volatile int lines = 0; - - // make sure our OS-level rng is seeded - - for (int i = 0; i < height; i++) { - - thread_process_array(width, this, &VoxelLightBaker::_lightmap_bake_point, &lightmap_ptr[i * width]); - - lines = MAX(lines, i); //for multithread - if (p_bake_time_func) { - uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time; - float elapsed_sec = double(elapsed) / 1000000.0; - float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1); - if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) { - return ERR_SKIP; - } - } - } - - if (bake_mode == BAKE_MODE_RAY_TRACE) { - //blur - //gauss kernel, 7 step sigma 2 - static const float gauss_kernel[4] = { 0.214607f, 0.189879f, 0.131514f, 0.071303f }; - //horizontal pass - for (int i = 0; i < height; i++) { - for (int j = 0; j < width; j++) { - if (lightmap_ptr[i * width + j].normal == Vector3()) { - continue; //empty - } - float gauss_sum = gauss_kernel[0]; - Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0]; - for (int k = 1; k < 4; k++) { - int new_x = j + k; - if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; - } - for (int k = 1; k < 4; k++) { - int new_x = j - k; - if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; - } - - lightmap_ptr[i * width + j].pos = accum /= gauss_sum; - } - } - //vertical pass - for (int i = 0; i < height; i++) { - for (int j = 0; j < width; j++) { - if (lightmap_ptr[i * width + j].normal == Vector3()) - continue; //empty, don't write over it anyway - float gauss_sum = gauss_kernel[0]; - Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0]; - for (int k = 1; k < 4; k++) { - int new_y = i + k; - if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; - } - for (int k = 1; k < 4; k++) { - int new_y = i - k; - if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; - } - - lightmap_ptr[i * width + j].light = accum /= gauss_sum; - } - } - } - - //add directional light (do this after blur) - { - const Cell *cells = bake_cells.ptr(); - const Light *light = bake_light.ptr(); -#ifdef _OPENMP -#pragma omp parallel -#endif - for (int i = 0; i < height; i++) { -#ifdef _OPENMP -#pragma omp parallel for schedule(dynamic, 1) -#endif - for (int j = 0; j < width; j++) { - - //if (i == 125 && j == 280) { - - LightMap *pixel = &lightmap_ptr[i * width + j]; - if (pixel->pos == Vector3()) - continue; //unused, skipe - - int x = int(pixel->pos.x) - 1; - int y = int(pixel->pos.y) - 1; - int z = int(pixel->pos.z) - 1; - Color accum; - int size = 1 << (cell_subdiv - 1); - - int found = 0; - - for (int k = 0; k < 8; k++) { - - int ofs_x = x; - int ofs_y = y; - int ofs_z = z; - - if (k & 1) - ofs_x++; - if (k & 2) - ofs_y++; - if (k & 4) - ofs_z++; - - if (x < 0 || x >= size) - continue; - if (y < 0 || y >= size) - continue; - if (z < 0 || z >= size) - continue; - - uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z); - - if (cell == CHILD_EMPTY) - continue; - for (int l = 0; l < 6; l++) { - float s = pixel->normal.dot(aniso_normal[l]); - if (s < 0) - s = 0; - accum.r += light[cell].direct_accum[l][0] * s; - accum.g += light[cell].direct_accum[l][1] * s; - accum.b += light[cell].direct_accum[l][2] * s; - } - found++; - } - if (found) { - accum /= found; - pixel->light.x += accum.r; - pixel->light.y += accum.g; - pixel->light.z += accum.b; - } - } - } - } - - { - //fill gaps with neighbour vertices to avoid filter fades to black on edges - - for (int i = 0; i < height; i++) { - for (int j = 0; j < width; j++) { - if (lightmap_ptr[i * width + j].normal != Vector3()) { - continue; //filled, skip - } - - //this can't be made separatable.. - - int closest_i = -1, closest_j = 1; - float closest_dist = 1e20; - - const int margin = 3; - for (int y = i - margin; y <= i + margin; y++) { - for (int x = j - margin; x <= j + margin; x++) { - - if (x == j && y == i) - continue; - if (x < 0 || x >= width) - continue; - if (y < 0 || y >= height) - continue; - if (lightmap_ptr[y * width + x].normal == Vector3()) - continue; //also ensures that blitted stuff is not reused - - float dist = Vector2(i - y, j - x).length(); - if (dist > closest_dist) - continue; - - closest_dist = dist; - closest_i = y; - closest_j = x; - } - } - - if (closest_i != -1) { - lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light; - } - } - } - } - - { - //fill the lightmap data - r_lightmap.width = width; - r_lightmap.height = height; - r_lightmap.light.resize(lightmap.size() * 3); - PoolVector<float>::Write w = r_lightmap.light.write(); - for (int i = 0; i < lightmap.size(); i++) { - w[i * 3 + 0] = lightmap[i].light.x; - w[i * 3 + 1] = lightmap[i].light.y; - w[i * 3 + 2] = lightmap[i].light.z; - } - } - -#if 0 // Enable for debugging. - { - PoolVector<uint8_t> img; - int ls = lightmap.size(); - img.resize(ls * 3); - { - PoolVector<uint8_t>::Write w = img.write(); - for (int i = 0; i < ls; i++) { - w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255); - w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255); - w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255); - //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255); - //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255); - //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255); - //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255); - //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255); - //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255); - } - } - - Ref<Image> image; - image.instance(); - image->create(width, height, false, Image::FORMAT_RGB8, img); - - String name = p_mesh->get_name(); - if (name == "") { - name = "Mesh" + itos(p_mesh->get_instance_id()); - } - image->save_png(name + ".png"); - } -#endif - } - - return OK; -} - -void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) { - - original_bounds = p_bounds; - cell_subdiv = p_subdiv; - bake_cells.resize(1); - material_cache.clear(); - - //find out the actual real bounds, power of 2, which gets the highest subdivision - po2_bounds = p_bounds; - int longest_axis = po2_bounds.get_longest_axis_index(); - axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1)); - leaf_voxel_count = 0; - - for (int i = 0; i < 3; i++) { - - if (i == longest_axis) - continue; - - axis_cell_size[i] = axis_cell_size[longest_axis]; - float axis_size = po2_bounds.size[longest_axis]; - - //shrink until fit subdiv - while (axis_size / 2.0 >= po2_bounds.size[i]) { - axis_size /= 2.0; - axis_cell_size[i] >>= 1; - } - - po2_bounds.size[i] = po2_bounds.size[longest_axis]; - } - - Transform to_bounds; - to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); - to_bounds.origin = po2_bounds.position; - - Transform to_grid; - to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); - - to_cell_space = to_grid * to_bounds.affine_inverse(); - - cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; -} - -void VoxelLightBaker::end_bake() { - _fixup_plot(0, 0); -} - -//create the data for visual server - -PoolVector<int> VoxelLightBaker::create_gi_probe_data() { - - PoolVector<int> data; - - data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest. - - { - PoolVector<int>::Write w = data.write(); - - uint32_t *w32 = (uint32_t *)w.ptr(); - - w32[0] = 0; //version - w32[1] = cell_subdiv; //subdiv - w32[2] = axis_cell_size[0]; - w32[3] = axis_cell_size[1]; - w32[4] = axis_cell_size[2]; - w32[5] = bake_cells.size(); - w32[6] = leaf_voxel_count; - - int ofs = 16; - - for (int i = 0; i < bake_cells.size(); i++) { - - for (int j = 0; j < 8; j++) { - w32[ofs++] = bake_cells[i].children[j]; - } - - { //albedo - uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; - rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; - rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; - - w32[ofs++] = rgba; - } - { //emission - - Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]); - float l = e.length(); - if (l > 0) { - e.normalize(); - l = CLAMP(l / 8.0, 0, 1.0); - } - - uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; - em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; - em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; - em |= uint32_t(CLAMP(l * 255, 0, 255)); - - w32[ofs++] = em; - } - - //w32[ofs++]=bake_cells[i].used_sides; - { //normal - - Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); - n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); - uint32_t norm = 0; - - norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; - norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; - norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; - - w32[ofs++] = norm; - } - - { - uint16_t alpha = MIN(uint32_t(bake_cells[i].alpha * 65535.0), 65535); - uint16_t level = bake_cells[i].level; - - w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); - } - } - } - - return data; -} - -void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) { - - if (p_level == cell_subdiv - 1) { - - Vector3 center = p_aabb.position + p_aabb.size * 0.5; - Transform xform; - xform.origin = center; - xform.basis.scale(p_aabb.size * 0.5); - p_multimesh->set_instance_transform(idx, xform); - Color col; - if (p_mode == DEBUG_ALBEDO) { - col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); - } else if (p_mode == DEBUG_LIGHT) { - for (int i = 0; i < 6; i++) { - col.r += bake_light[p_idx].accum[i][0]; - col.g += bake_light[p_idx].accum[i][1]; - col.b += bake_light[p_idx].accum[i][2]; - col.r += bake_light[p_idx].direct_accum[i][0]; - col.g += bake_light[p_idx].direct_accum[i][1]; - col.b += bake_light[p_idx].direct_accum[i][2]; - } - } - //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]); - p_multimesh->set_instance_color(idx, col); - - idx++; - - } else { - - for (int i = 0; i < 8; i++) { - - uint32_t child = bake_cells[p_idx].children[i]; - - if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) - continue; - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - if (i & 1) - aabb.position.x += aabb.size.x; - if (i & 2) - aabb.position.y += aabb.size.y; - if (i & 4) - aabb.position.z += aabb.size.z; - - _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx, p_mode); - } - } -} - -Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) { - - Ref<MultiMesh> mm; - - ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm); - mm.instance(); - - mm->set_transform_format(MultiMesh::TRANSFORM_3D); - mm->set_color_format(MultiMesh::COLOR_8BIT); - mm->set_instance_count(leaf_voxel_count); - - Ref<ArrayMesh> mesh; - mesh.instance(); - - { - Array arr; - arr.resize(Mesh::ARRAY_MAX); - - PoolVector<Vector3> vertices; - PoolVector<Color> colors; -#define ADD_VTX(m_idx) \ - ; \ - vertices.push_back(face_points[m_idx]); \ - colors.push_back(Color(1, 1, 1, 1)); - - for (int i = 0; i < 6; i++) { - - Vector3 face_points[4]; - - for (int j = 0; j < 4; j++) { - - float v[3]; - v[0] = 1.0; - v[1] = 1 - 2 * ((j >> 1) & 1); - v[2] = v[1] * (1 - 2 * (j & 1)); - - for (int k = 0; k < 3; k++) { - - if (i < 3) - face_points[j][(i + k) % 3] = v[k]; - else - face_points[3 - j][(i + k) % 3] = -v[k]; - } - } - - //tri 1 - ADD_VTX(0); - ADD_VTX(1); - ADD_VTX(2); - //tri 2 - ADD_VTX(2); - ADD_VTX(3); - ADD_VTX(0); - } - - arr[Mesh::ARRAY_VERTEX] = vertices; - arr[Mesh::ARRAY_COLOR] = colors; - mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); - } - - { - Ref<SpatialMaterial> fsm; - fsm.instance(); - fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); - fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); - fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true); - fsm->set_albedo(Color(1, 1, 1, 1)); - - mesh->surface_set_material(0, fsm); - } - - mm->set_mesh(mesh); - - int idx = 0; - _debug_mesh(0, 0, po2_bounds, mm, idx, p_mode); - - return mm; -} - -struct VoxelLightBakerOctree { - - enum { - CHILD_EMPTY = 0xFFFFFFFF - }; - - uint16_t light[6][3]; //anisotropic light - float alpha; - uint32_t children[8]; -}; - -PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) { - - p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one - - Vector<uint32_t> remap; - int bc = bake_cells.size(); - remap.resize(bc); - Vector<uint32_t> demap; - - int new_size = 0; - for (int i = 0; i < bc; i++) { - uint32_t c = CHILD_EMPTY; - if (bake_cells[i].level < p_subdiv) { - c = new_size; - new_size++; - demap.push_back(i); - } - remap.write[i] = c; - } - - Vector<VoxelLightBakerOctree> octree; - octree.resize(new_size); - - for (int i = 0; i < new_size; i++) { - octree.write[i].alpha = bake_cells[demap[i]].alpha; - for (int j = 0; j < 6; j++) { - for (int k = 0; k < 3; k++) { - float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light - l += bake_cells[demap[i]].emission[k]; //add emission - octree.write[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree - } - } - - for (int j = 0; j < 8; j++) { - uint32_t child = bake_cells[demap[i]].children[j]; - octree.write[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child]; - } - } - - PoolVector<uint8_t> ret; - int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree); - ret.resize(ret_bytes); - { - PoolVector<uint8_t>::Write w = ret.write(); - copymem(w.ptr(), octree.ptr(), ret_bytes); - } - - return ret; -} - -float VoxelLightBaker::get_cell_size() const { - return cell_size; -} - -Transform VoxelLightBaker::get_to_cell_space_xform() const { - return to_cell_space; -} -VoxelLightBaker::VoxelLightBaker() { - color_scan_cell_width = 4; - bake_texture_size = 128; - propagation = 0.85; - energy = 1.0; -} |