summaryrefslogtreecommitdiff
path: root/scene/3d/vehicle_body.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/3d/vehicle_body.cpp')
-rw-r--r--scene/3d/vehicle_body.cpp846
1 files changed, 846 insertions, 0 deletions
diff --git a/scene/3d/vehicle_body.cpp b/scene/3d/vehicle_body.cpp
new file mode 100644
index 0000000000..7680c1d56c
--- /dev/null
+++ b/scene/3d/vehicle_body.cpp
@@ -0,0 +1,846 @@
+#include "vehicle_body.h"
+
+#define ROLLING_INFLUENCE_FIX
+
+class btVehicleJacobianEntry
+{
+public:
+
+ Vector3 m_linearJointAxis;
+ Vector3 m_aJ;
+ Vector3 m_bJ;
+ Vector3 m_0MinvJt;
+ Vector3 m_1MinvJt;
+ //Optimization: can be stored in the w/last component of one of the vectors
+ real_t m_Adiag;
+
+ real_t getDiagonal() const { return m_Adiag; }
+
+ btVehicleJacobianEntry() {};
+ //constraint between two different rigidbodies
+ btVehicleJacobianEntry(
+ const Matrix3& world2A,
+ const Matrix3& world2B,
+ const Vector3& rel_pos1,
+ const Vector3& rel_pos2,
+ const Vector3& jointAxis,
+ const Vector3& inertiaInvA,
+ const real_t massInvA,
+ const Vector3& inertiaInvB,
+ const real_t massInvB)
+ :m_linearJointAxis(jointAxis)
+ {
+ m_aJ = world2A.xform(rel_pos1.cross(m_linearJointAxis));
+ m_bJ = world2B.xform(rel_pos2.cross(-m_linearJointAxis));
+ m_0MinvJt = inertiaInvA * m_aJ;
+ m_1MinvJt = inertiaInvB * m_bJ;
+ m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
+
+ //btAssert(m_Adiag > real_t(0.0));
+ }
+
+ real_t getRelativeVelocity(const Vector3& linvelA,const Vector3& angvelA,const Vector3& linvelB,const Vector3& angvelB)
+ {
+ Vector3 linrel = linvelA - linvelB;
+ Vector3 angvela = angvelA * m_aJ;
+ Vector3 angvelb = angvelB * m_bJ;
+ linrel *= m_linearJointAxis;
+ angvela += angvelb;
+ angvela += linrel;
+ real_t rel_vel2 = angvela[0]+angvela[1]+angvela[2];
+ return rel_vel2 + CMP_EPSILON;
+ }
+
+
+};
+
+void VehicleWheel::_notification(int p_what) {
+
+
+ if (p_what==NOTIFICATION_ENTER_SCENE) {
+
+ if (!get_parent())
+ return;
+ VehicleBody *cb = get_parent()->cast_to<VehicleBody>();
+ if (!cb)
+ return;
+ body=cb;
+ local_xform=get_transform();
+ cb->wheels.push_back(this);
+
+ m_chassisConnectionPointCS = get_transform().origin;
+ m_wheelDirectionCS = -get_transform().basis.get_axis(Vector3::AXIS_Y).normalized();
+ m_wheelAxleCS = get_transform().basis.get_axis(Vector3::AXIS_X).normalized();
+
+ }
+ if (p_what==NOTIFICATION_EXIT_SCENE) {
+
+ if (!get_parent())
+ return;
+ VehicleBody *cb = get_parent()->cast_to<VehicleBody>();
+ if (!cb)
+ return;
+ cb->wheels.erase(this);
+ body=NULL;
+ }
+
+}
+
+
+void VehicleWheel::_update(PhysicsDirectBodyState *s) {
+
+
+
+ if (m_raycastInfo.m_isInContact)
+
+ {
+ real_t project= m_raycastInfo.m_contactNormalWS.dot( m_raycastInfo.m_wheelDirectionWS );
+ Vector3 chassis_velocity_at_contactPoint;
+ Vector3 relpos = m_raycastInfo.m_contactPointWS - s->get_transform().origin;
+
+ chassis_velocity_at_contactPoint = s->get_linear_velocity() +
+ (s->get_angular_velocity()).cross(relpos);// * mPos);
+
+ real_t projVel = m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint );
+ if ( project >= real_t(-0.1))
+ {
+ m_suspensionRelativeVelocity = real_t(0.0);
+ m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
+ }
+ else
+ {
+ real_t inv = real_t(-1.) / project;
+ m_suspensionRelativeVelocity = projVel * inv;
+ m_clippedInvContactDotSuspension = inv;
+ }
+
+ }
+
+ else // Not in contact : position wheel in a nice (rest length) position
+ {
+ m_raycastInfo.m_suspensionLength = m_suspensionRestLength;
+ m_suspensionRelativeVelocity = real_t(0.0);
+ m_raycastInfo.m_contactNormalWS = -m_raycastInfo.m_wheelDirectionWS;
+ m_clippedInvContactDotSuspension = real_t(1.0);
+ }
+}
+
+void VehicleWheel::_bind_methods() {
+
+
+
+}
+
+
+VehicleWheel::VehicleWheel() {
+
+
+
+ m_steering = real_t(0.);
+ m_engineForce = real_t(0.);
+ m_rotation = real_t(0.);
+ m_deltaRotation = real_t(0.);
+ m_brake = real_t(0.);
+ m_rollInfluence = real_t(0.1);
+
+ m_suspensionRestLength = 0.15;
+ m_wheelRadius = 0.5;//0.28;
+ m_suspensionStiffness = 5.88;
+ m_wheelsDampingCompression = 0.83;
+ m_wheelsDampingRelaxation = 0.88;
+ m_frictionSlip = 10.5;
+ m_bIsFrontWheel = false;
+ m_maxSuspensionTravelCm = 500;
+ m_maxSuspensionForce = 6000;
+
+ m_suspensionRelativeVelocity=0;
+ m_clippedInvContactDotSuspension=1.0;
+ m_raycastInfo.m_isInContact=false;
+
+ body=NULL;
+}
+
+
+void VehicleBody::_update_wheel_transform(VehicleWheel& wheel ,PhysicsDirectBodyState *s) {
+
+ wheel.m_raycastInfo.m_isInContact = false;
+
+ Transform chassisTrans = s->get_transform();
+ //if (interpolatedTransform && (getRigidBody()->getMotionState()))
+ //{
+ // getRigidBody()->getMotionState()->getWorldTransform(chassisTrans);
+ //}
+
+ wheel.m_raycastInfo.m_hardPointWS = chassisTrans.xform( wheel.m_chassisConnectionPointCS );
+ wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.get_basis().xform( wheel.m_wheelDirectionCS).normalized();
+ wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.get_basis().xform( wheel.m_wheelAxleCS ).normalized();
+}
+
+void VehicleBody::_update_wheel(int p_idx,PhysicsDirectBodyState *s) {
+
+ VehicleWheel& wheel = *wheels[p_idx];
+ _update_wheel_transform(wheel,s);
+
+ Vector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS;
+ const Vector3& right = wheel.m_raycastInfo.m_wheelAxleWS;
+ Vector3 fwd = up.cross(right);
+ fwd = fwd.normalized();
+// up = right.cross(fwd);
+// up.normalize();
+
+ //rotate around steering over de wheelAxleWS
+ real_t steering = wheel.m_steering;
+
+ Matrix3 steeringMat(up,steering);
+
+ Matrix3 rotatingMat(right,-wheel.m_rotation);
+
+ Matrix3 basis2(
+ right[0],up[0],fwd[0],
+ right[1],up[1],fwd[1],
+ right[2],up[2],fwd[2]
+ );
+
+ wheel.m_worldTransform.set_basis(steeringMat * rotatingMat * basis2);
+ wheel.m_worldTransform.set_origin(
+ wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength
+ );
+}
+
+
+real_t VehicleBody::_ray_cast(int p_idx,PhysicsDirectBodyState *s) {
+
+
+ VehicleWheel& wheel = *wheels[p_idx];
+
+ _update_wheel_transform(wheel,s);
+
+
+ real_t depth = -1;
+
+ real_t raylen = wheel.m_suspensionRestLength+wheel.m_wheelRadius;
+
+ Vector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen);
+ const Vector3& source = wheel.m_raycastInfo.m_hardPointWS;
+ wheel.m_raycastInfo.m_contactPointWS = source + rayvector;
+ const Vector3& target = wheel.m_raycastInfo.m_contactPointWS;
+
+ real_t param = real_t(0.);
+
+
+ PhysicsDirectSpaceState::RayResult rr;
+
+
+ PhysicsDirectSpaceState *ss=s->get_space_state();
+
+ bool col = ss->intersect_ray(source,target,rr,exclude);
+
+
+ wheel.m_raycastInfo.m_groundObject = 0;
+
+ if (col)
+ {
+ //print_line("WHEEL "+itos(p_idx)+" FROM "+source+" TO: "+target);
+ //print_line("WHEEL "+itos(p_idx)+" COLLIDE? "+itos(col));
+ param = source.distance_to(rr.position)/source.distance_to(target);
+ depth = raylen * param;
+ wheel.m_raycastInfo.m_contactNormalWS = rr.normal;
+
+ wheel.m_raycastInfo.m_isInContact = true;
+ if (rr.collider)
+ wheel.m_raycastInfo.m_groundObject=rr.collider->cast_to<PhysicsBody>();
+
+
+ real_t hitDistance = param*raylen;
+ wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelRadius;
+ //clamp on max suspension travel
+
+ real_t minSuspensionLength = wheel.m_suspensionRestLength - wheel.m_maxSuspensionTravelCm*real_t(0.01);
+ real_t maxSuspensionLength = wheel.m_suspensionRestLength+ wheel.m_maxSuspensionTravelCm*real_t(0.01);
+ if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength)
+ {
+ wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength;
+ }
+ if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength)
+ {
+ wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength;
+ }
+
+ wheel.m_raycastInfo.m_contactPointWS = rr.position;
+
+ real_t denominator= wheel.m_raycastInfo.m_contactNormalWS.dot( wheel.m_raycastInfo.m_wheelDirectionWS );
+
+ Vector3 chassis_velocity_at_contactPoint;
+ //Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS-getRigidBody()->getCenterOfMassPosition();
+
+ //chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos);
+
+ chassis_velocity_at_contactPoint = s->get_linear_velocity() +
+ (s->get_angular_velocity()).cross(wheel.m_raycastInfo.m_contactPointWS-s->get_transform().origin);// * mPos);
+
+
+ real_t projVel = wheel.m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint );
+
+ if ( denominator >= real_t(-0.1))
+ {
+ wheel.m_suspensionRelativeVelocity = real_t(0.0);
+ wheel.m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
+ }
+ else
+ {
+ real_t inv = real_t(-1.) / denominator;
+ wheel.m_suspensionRelativeVelocity = projVel * inv;
+ wheel.m_clippedInvContactDotSuspension = inv;
+ }
+
+ } else
+ {
+ wheel.m_raycastInfo.m_isInContact = false;
+ //put wheel info as in rest position
+ wheel.m_raycastInfo.m_suspensionLength = wheel.m_suspensionRestLength;
+ wheel.m_suspensionRelativeVelocity = real_t(0.0);
+ wheel.m_raycastInfo.m_contactNormalWS = - wheel.m_raycastInfo.m_wheelDirectionWS;
+ wheel.m_clippedInvContactDotSuspension = real_t(1.0);
+ }
+
+ return depth;
+}
+
+
+void VehicleBody::_update_suspension(PhysicsDirectBodyState *s)
+{
+
+ real_t deltaTime = s->get_step();
+ real_t chassisMass = mass;
+
+ for (int w_it=0; w_it<wheels.size(); w_it++)
+ {
+ VehicleWheel& wheel_info = *wheels[w_it];
+
+
+ if ( wheel_info.m_raycastInfo.m_isInContact )
+ {
+ real_t force;
+ // Spring
+ {
+ real_t susp_length = wheel_info.m_suspensionRestLength;
+ real_t current_length = wheel_info.m_raycastInfo.m_suspensionLength;
+
+ real_t length_diff = (susp_length - current_length);
+
+ force = wheel_info.m_suspensionStiffness
+ * length_diff * wheel_info.m_clippedInvContactDotSuspension;
+ }
+
+ // Damper
+ {
+ real_t projected_rel_vel = wheel_info.m_suspensionRelativeVelocity;
+ {
+ real_t susp_damping;
+ if ( projected_rel_vel < real_t(0.0) )
+ {
+ susp_damping = wheel_info.m_wheelsDampingCompression;
+ }
+ else
+ {
+ susp_damping = wheel_info.m_wheelsDampingRelaxation;
+ }
+ force -= susp_damping * projected_rel_vel;
+ }
+ }
+
+ // RESULT
+ wheel_info.m_wheelsSuspensionForce = force * chassisMass;
+ if (wheel_info.m_wheelsSuspensionForce < real_t(0.))
+ {
+ wheel_info.m_wheelsSuspensionForce = real_t(0.);
+ }
+ }
+ else
+ {
+ wheel_info.m_wheelsSuspensionForce = real_t(0.0);
+ }
+ }
+
+}
+
+
+//bilateral constraint between two dynamic objects
+void VehicleBody::_resolve_single_bilateral(PhysicsDirectBodyState *s, const Vector3& pos1,
+ PhysicsBody* body2, const Vector3& pos2, const Vector3& normal,real_t& impulse)
+{
+
+ real_t normalLenSqr = normal.length_squared();
+ //ERR_FAIL_COND( normalLenSqr < real_t(1.1));
+
+ if (normalLenSqr > real_t(1.1))
+ {
+ impulse = real_t(0.);
+ return;
+ }
+
+ Vector3 rel_pos1 = pos1 - s->get_transform().origin;
+ Vector3 rel_pos2;
+ if (body2)
+ rel_pos2 = pos2 - body2->get_global_transform().origin;
+ //this jacobian entry could be re-used for all iterations
+
+ Vector3 vel1 = s->get_linear_velocity() + (s->get_angular_velocity()).cross(rel_pos1);// * mPos);
+ Vector3 vel2;
+
+ if (body2)
+ vel2=body2->get_linear_velocity() + body2->get_angular_velocity().cross(rel_pos2);
+
+ Vector3 vel = vel1 - vel2;
+
+ Matrix3 b2trans;
+ float b2invmass=0;
+ Vector3 b2lv;
+ Vector3 b2av;
+ Vector3 b2invinertia; //todo
+
+ if (body2) {
+ b2trans = body2->get_global_transform().basis.transposed();
+ b2invmass = body2->get_inverse_mass();
+ b2lv = body2->get_linear_velocity();
+ b2av = body2->get_angular_velocity();
+ }
+
+
+
+ btVehicleJacobianEntry jac(s->get_transform().basis.transposed(),
+ b2trans,
+ rel_pos1,
+ rel_pos2,
+ normal,
+ s->get_inverse_inertia(),
+ 1.0/mass,
+ b2invinertia,
+ b2invmass);
+
+ real_t jacDiagAB = jac.getDiagonal();
+ real_t jacDiagABInv = real_t(1.) / jacDiagAB;
+
+ real_t rel_vel = jac.getRelativeVelocity(
+ s->get_linear_velocity(),
+ s->get_transform().basis.transposed().xform(s->get_angular_velocity()),
+ b2lv,
+ b2trans.xform(b2av));
+ real_t a;
+ a=jacDiagABInv;
+
+
+ rel_vel = normal.dot(vel);
+
+ //todo: move this into proper structure
+ real_t contactDamping = real_t(0.4);
+#define ONLY_USE_LINEAR_MASS
+#ifdef ONLY_USE_LINEAR_MASS
+ real_t massTerm = real_t(1.) / ((1.0/mass) + b2invmass);
+ impulse = - contactDamping * rel_vel * massTerm;
+#else
+ real_t velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
+ impulse = velocityImpulse;
+#endif
+
+}
+
+
+
+VehicleBody::btVehicleWheelContactPoint::btVehicleWheelContactPoint(PhysicsDirectBodyState *s,PhysicsBody* body1,const Vector3& frictionPosWorld,const Vector3& frictionDirectionWorld, real_t maxImpulse)
+ :m_s(s),
+ m_body1(body1),
+ m_frictionPositionWorld(frictionPosWorld),
+ m_frictionDirectionWorld(frictionDirectionWorld),
+ m_maxImpulse(maxImpulse)
+{
+ float denom0=0;
+ float denom1=0;
+
+ {
+ Vector3 r0 = frictionPosWorld - s->get_transform().origin;
+ Vector3 c0 = (r0).cross(frictionDirectionWorld);
+ Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
+ denom0= s->get_inverse_mass() + frictionDirectionWorld.dot(vec);
+ }
+
+ if (body1) {
+
+ Vector3 r0 = frictionPosWorld - body1->get_global_transform().origin;
+ Vector3 c0 = (r0).cross(frictionDirectionWorld);
+ Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
+ //denom1= body1->get_inverse_mass() + frictionDirectionWorld.dot(vec);
+ denom1=0;
+
+ }
+
+
+ real_t relaxation = 1.f;
+ m_jacDiagABInv = relaxation/(denom0+denom1);
+}
+
+
+real_t VehicleBody::_calc_rolling_friction(btVehicleWheelContactPoint& contactPoint) {
+
+ real_t j1=0.f;
+
+ const Vector3& contactPosWorld = contactPoint.m_frictionPositionWorld;
+
+ Vector3 rel_pos1 = contactPosWorld - contactPoint.m_s->get_transform().origin;
+ Vector3 rel_pos2;
+ if (contactPoint.m_body1)
+ rel_pos2 = contactPosWorld - contactPoint.m_body1->get_global_transform().origin;
+
+ real_t maxImpulse = contactPoint.m_maxImpulse;
+
+ Vector3 vel1 = contactPoint.m_s->get_linear_velocity() + (contactPoint.m_s->get_angular_velocity()).cross(rel_pos1);// * mPos);
+
+ Vector3 vel2;
+ if (contactPoint.m_body1) {
+ vel2=contactPoint.m_body1->get_linear_velocity() + contactPoint.m_body1->get_angular_velocity().cross(rel_pos2);
+
+ }
+
+ Vector3 vel = vel1 - vel2;
+
+ real_t vrel = contactPoint.m_frictionDirectionWorld.dot(vel);
+
+ // calculate j that moves us to zero relative velocity
+ j1 = -vrel * contactPoint.m_jacDiagABInv;
+
+ return CLAMP(j1,-maxImpulse,maxImpulse);
+}
+
+
+static const real_t sideFrictionStiffness2 = real_t(1.0);
+void VehicleBody::_update_friction(PhysicsDirectBodyState *s) {
+
+ //calculate the impulse, so that the wheels don't move sidewards
+ int numWheel = wheels.size();
+ if (!numWheel)
+ return;
+
+ m_forwardWS.resize(numWheel);
+ m_axle.resize(numWheel);
+ m_forwardImpulse.resize(numWheel);
+ m_sideImpulse.resize(numWheel);
+
+ int numWheelsOnGround = 0;
+
+
+ //collapse all those loops into one!
+ for (int i=0;i<wheels.size();i++)
+ {
+ VehicleWheel& wheelInfo = *wheels[i];
+ if (wheelInfo.m_raycastInfo.m_isInContact)
+ numWheelsOnGround++;
+ m_sideImpulse[i] = real_t(0.);
+ m_forwardImpulse[i] = real_t(0.);
+
+ }
+
+ {
+
+ for (int i=0;i<wheels.size();i++)
+ {
+
+ VehicleWheel& wheelInfo = *wheels[i];
+
+
+ if (wheelInfo.m_raycastInfo.m_isInContact)
+ {
+
+ //const btTransform& wheelTrans = getWheelTransformWS( i );
+
+ Matrix3 wheelBasis0 = wheelInfo.get_global_transform().basis;
+ m_axle[i] = wheelBasis0.get_axis(Vector3::AXIS_X);
+ m_axle[i] = wheelInfo.m_raycastInfo.m_wheelAxleWS;
+
+ const Vector3& surfNormalWS = wheelInfo.m_raycastInfo.m_contactNormalWS;
+ real_t proj = m_axle[i].dot(surfNormalWS);
+ m_axle[i] -= surfNormalWS * proj;
+ m_axle[i] = m_axle[i].normalized();
+
+ m_forwardWS[i] = surfNormalWS.cross(m_axle[i]);
+ m_forwardWS[i].normalize();
+
+
+ _resolve_single_bilateral(s, wheelInfo.m_raycastInfo.m_contactPointWS,
+ wheelInfo.m_raycastInfo.m_groundObject, wheelInfo.m_raycastInfo.m_contactPointWS,
+ m_axle[i],m_sideImpulse[i]);
+
+ m_sideImpulse[i] *= sideFrictionStiffness2;
+
+
+ }
+ }
+ }
+
+ real_t sideFactor = real_t(1.);
+ real_t fwdFactor = 0.5;
+
+ bool sliding = false;
+ {
+ for (int wheel =0;wheel <wheels.size();wheel++)
+ {
+ VehicleWheel& wheelInfo = *wheels[wheel];
+
+
+ //class btRigidBody* groundObject = (class btRigidBody*) wheelInfo.m_raycastInfo.m_groundObject;
+
+ real_t rollingFriction = 0.f;
+
+ if (wheelInfo.m_raycastInfo.m_isInContact)
+ {
+ if (wheelInfo.m_engineForce != 0.f)
+ {
+ rollingFriction = wheelInfo.m_engineForce* s->get_step();
+ } else
+ {
+ real_t defaultRollingFrictionImpulse = 0.f;
+ real_t maxImpulse = wheelInfo.m_brake ? wheelInfo.m_brake : defaultRollingFrictionImpulse;
+ btVehicleWheelContactPoint contactPt(s,wheelInfo.m_raycastInfo.m_groundObject,wheelInfo.m_raycastInfo.m_contactPointWS,m_forwardWS[wheel],maxImpulse);
+ rollingFriction = _calc_rolling_friction(contactPt);
+ }
+ }
+
+ //switch between active rolling (throttle), braking and non-active rolling friction (no throttle/break)
+
+
+
+
+ m_forwardImpulse[wheel] = real_t(0.);
+ wheelInfo.m_skidInfo= real_t(1.);
+
+ if (wheelInfo.m_raycastInfo.m_isInContact)
+ {
+ wheelInfo.m_skidInfo= real_t(1.);
+
+ real_t maximp = wheelInfo.m_wheelsSuspensionForce * s->get_step() * wheelInfo.m_frictionSlip;
+ real_t maximpSide = maximp;
+
+ real_t maximpSquared = maximp * maximpSide;
+
+
+ m_forwardImpulse[wheel] = rollingFriction;//wheelInfo.m_engineForce* timeStep;
+
+ real_t x = (m_forwardImpulse[wheel] ) * fwdFactor;
+ real_t y = (m_sideImpulse[wheel] ) * sideFactor;
+
+ real_t impulseSquared = (x*x + y*y);
+
+ if (impulseSquared > maximpSquared)
+ {
+ sliding = true;
+
+ real_t factor = maximp / Math::sqrt(impulseSquared);
+
+ wheelInfo.m_skidInfo *= factor;
+ }
+ }
+
+ }
+ }
+
+
+
+
+ if (sliding)
+ {
+ for (int wheel = 0;wheel < wheels.size(); wheel++)
+ {
+ if (m_sideImpulse[wheel] != real_t(0.))
+ {
+ if (wheels[wheel]->m_skidInfo< real_t(1.))
+ {
+ m_forwardImpulse[wheel] *= wheels[wheel]->m_skidInfo;
+ m_sideImpulse[wheel] *= wheels[wheel]->m_skidInfo;
+ }
+ }
+ }
+ }
+
+ // apply the impulses
+ {
+ for (int wheel = 0;wheel<wheels.size(); wheel++)
+ {
+ VehicleWheel& wheelInfo = *wheels[wheel];
+
+ Vector3 rel_pos = wheelInfo.m_raycastInfo.m_contactPointWS -
+ s->get_transform().origin;
+
+ if (m_forwardImpulse[wheel] != real_t(0.))
+ {
+ s->apply_impulse(rel_pos,m_forwardWS[wheel]*(m_forwardImpulse[wheel]));
+ }
+ if (m_sideImpulse[wheel] != real_t(0.))
+ {
+ PhysicsBody* groundObject = wheelInfo.m_raycastInfo.m_groundObject;
+
+ Vector3 rel_pos2;
+ if (groundObject) {
+ rel_pos2=wheelInfo.m_raycastInfo.m_contactPointWS - groundObject->get_global_transform().origin;
+ }
+
+
+ Vector3 sideImp = m_axle[wheel] * m_sideImpulse[wheel];
+
+#if defined ROLLING_INFLUENCE_FIX // fix. It only worked if car's up was along Y - VT.
+ Vector3 vChassisWorldUp = s->get_transform().basis.transposed()[1];//getRigidBody()->getCenterOfMassTransform().getBasis().getColumn(m_indexUpAxis);
+ rel_pos -= vChassisWorldUp * (vChassisWorldUp.dot(rel_pos) * (1.f-wheelInfo.m_rollInfluence));
+#else
+ rel_pos[1] *= wheelInfo.m_rollInfluence; //?
+#endif
+ s->apply_impulse(rel_pos,sideImp);
+
+ //apply friction impulse on the ground
+ //todo
+ //groundObject->applyImpulse(-sideImp,rel_pos2);
+ }
+ }
+ }
+
+
+}
+
+
+void VehicleBody::_direct_state_changed(Object *p_state) {
+
+
+ PhysicsDirectBodyState *s = p_state->cast_to<PhysicsDirectBodyState>();
+
+ set_ignore_transform_notification(true);
+ set_global_transform(s->get_transform());
+ set_ignore_transform_notification(false);
+
+
+ float step = s->get_step();
+
+ for(int i=0;i<wheels.size();i++) {
+
+ _update_wheel(i,s);
+ }
+
+ for(int i=0;i<wheels.size();i++) {
+
+ _ray_cast(i,s);
+ }
+
+ _update_suspension(s);
+
+ for(int i=0;i<wheels.size();i++) {
+
+ //apply suspension force
+ VehicleWheel& wheel = *wheels[i];
+
+ real_t suspensionForce = wheel.m_wheelsSuspensionForce;
+
+ if (suspensionForce > wheel.m_maxSuspensionForce)
+ {
+ suspensionForce = wheel.m_maxSuspensionForce;
+ }
+ Vector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step;
+ Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS - s->get_transform().origin;
+
+ s->apply_impulse(relpos,impulse);
+ //getRigidBody()->applyImpulse(impulse, relpos);
+
+ }
+
+
+ _update_friction(s);
+
+
+ for (int i=0;i<wheels.size();i++)
+ {
+ VehicleWheel& wheel = *wheels[i];
+ Vector3 relpos = wheel.m_raycastInfo.m_hardPointWS - s->get_transform().origin;
+ Vector3 vel = s->get_linear_velocity() + (s->get_angular_velocity()).cross(relpos);// * mPos);
+
+ if (wheel.m_raycastInfo.m_isInContact)
+ {
+ const Transform& chassisWorldTransform = s->get_transform();
+
+ Vector3 fwd (
+ chassisWorldTransform.basis[0][Vector3::AXIS_Z],
+ chassisWorldTransform.basis[1][Vector3::AXIS_Z],
+ chassisWorldTransform.basis[2][Vector3::AXIS_Z]);
+
+ real_t proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS);
+ fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj;
+
+ real_t proj2 = fwd.dot(vel);
+
+ wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelRadius);
+ wheel.m_rotation += wheel.m_deltaRotation;
+
+ } else
+ {
+ wheel.m_rotation += wheel.m_deltaRotation;
+ }
+
+ wheel.m_deltaRotation *= real_t(0.99);//damping of rotation when not in contact
+
+ }
+
+}
+
+void VehicleBody::set_mass(real_t p_mass) {
+
+ mass=p_mass;
+ PhysicsServer::get_singleton()->body_set_param(get_rid(),PhysicsServer::BODY_PARAM_MASS,mass);
+}
+
+real_t VehicleBody::get_mass() const{
+
+ return mass;
+}
+
+
+void VehicleBody::set_friction(real_t p_friction) {
+
+ friction=p_friction;
+ PhysicsServer::get_singleton()->body_set_param(get_rid(),PhysicsServer::BODY_PARAM_FRICTION,friction);
+}
+
+real_t VehicleBody::get_friction() const{
+
+ return friction;
+}
+
+void VehicleBody::_bind_methods(){
+
+ ObjectTypeDB::bind_method(_MD("set_mass","mass"),&VehicleBody::set_mass);
+ ObjectTypeDB::bind_method(_MD("get_mass"),&VehicleBody::get_mass);
+
+ ObjectTypeDB::bind_method(_MD("set_friction","friction"),&VehicleBody::set_friction);
+ ObjectTypeDB::bind_method(_MD("get_friction"),&VehicleBody::get_friction);
+
+ ObjectTypeDB::bind_method(_MD("_direct_state_changed"),&VehicleBody::_direct_state_changed);
+
+ ADD_PROPERTY( PropertyInfo(Variant::REAL,"body/mass",PROPERTY_HINT_RANGE,"0.01,65536,0.01"),_SCS("set_mass"),_SCS("get_mass"));
+ ADD_PROPERTY( PropertyInfo(Variant::REAL,"body/friction",PROPERTY_HINT_RANGE,"0.01,1,0.01"),_SCS("set_friction"),_SCS("get_friction"));
+
+
+}
+
+
+
+VehicleBody::VehicleBody() : PhysicsBody(PhysicsServer::BODY_MODE_RIGID) {
+
+
+ m_pitchControl=0;
+ m_currentVehicleSpeedKmHour = real_t(0.);
+ m_steeringValue = real_t(0.);
+
+
+ mass=1;
+ friction=1;
+
+ ccd=false;
+
+ exclude.insert(get_rid());
+ PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(),this,"_direct_state_changed");
+
+}
+