diff options
Diffstat (limited to 'scene/3d/lightmap_gi.cpp')
-rw-r--r-- | scene/3d/lightmap_gi.cpp | 1466 |
1 files changed, 1466 insertions, 0 deletions
diff --git a/scene/3d/lightmap_gi.cpp b/scene/3d/lightmap_gi.cpp new file mode 100644 index 0000000000..a3f681e53c --- /dev/null +++ b/scene/3d/lightmap_gi.cpp @@ -0,0 +1,1466 @@ +/*************************************************************************/ +/* lightmap_gi.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "lightmap_gi.h" + +#include "core/io/config_file.h" +#include "core/io/dir_access.h" +#include "core/io/file_access.h" +#include "core/io/resource_saver.h" +#include "core/math/camera_matrix.h" +#include "core/math/delaunay_3d.h" +#include "core/os/os.h" +#include "core/templates/sort_array.h" +#include "lightmap_probe.h" + +void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) { + User user; + user.path = p_path; + user.uv_scale = p_uv_scale; + user.slice_index = p_slice_index; + user.sub_instance = p_sub_instance; + users.push_back(user); +} + +int LightmapGIData::get_user_count() const { + return users.size(); +} + +NodePath LightmapGIData::get_user_path(int p_user) const { + ERR_FAIL_INDEX_V(p_user, users.size(), NodePath()); + return users[p_user].path; +} + +int32_t LightmapGIData::get_user_sub_instance(int p_user) const { + ERR_FAIL_INDEX_V(p_user, users.size(), -1); + return users[p_user].sub_instance; +} + +Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const { + ERR_FAIL_INDEX_V(p_user, users.size(), Rect2()); + return users[p_user].uv_scale; +} + +int LightmapGIData::get_user_lightmap_slice_index(int p_user) const { + ERR_FAIL_INDEX_V(p_user, users.size(), -1); + return users[p_user].slice_index; +} + +void LightmapGIData::clear_users() { + users.clear(); +} + +void LightmapGIData::_set_user_data(const Array &p_data) { + ERR_FAIL_COND(p_data.size() <= 0); + ERR_FAIL_COND((p_data.size() % 4) != 0); + + for (int i = 0; i < p_data.size(); i += 4) { + add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]); + } +} + +Array LightmapGIData::_get_user_data() const { + Array ret; + for (int i = 0; i < users.size(); i++) { + ret.push_back(users[i].path); + ret.push_back(users[i].uv_scale); + ret.push_back(users[i].slice_index); + ret.push_back(users[i].sub_instance); + } + return ret; +} + +RID LightmapGIData::get_rid() const { + return lightmap; +} + +void LightmapGIData::clear() { + users.clear(); +} + +void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) { + light_texture = p_light_texture; + RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics); +} + +Ref<TextureLayered> LightmapGIData::get_light_texture() const { + return light_texture; +} + +void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) { + uses_spherical_harmonics = p_enable; + RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics); +} + +bool LightmapGIData::is_using_spherical_harmonics() const { + return uses_spherical_harmonics; +} + +void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { + if (p_points.size()) { + int pc = p_points.size(); + ERR_FAIL_COND(pc * 9 != p_point_sh.size()); + ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0); + ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0); + RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree); + RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds); + RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior); + } else { + RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array()); + RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB()); + RS::get_singleton()->lightmap_set_probe_interior(lightmap, false); + } + interior = p_interior; + bounds = p_bounds; +} + +PackedVector3Array LightmapGIData::get_capture_points() const { + return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap); +} + +PackedColorArray LightmapGIData::get_capture_sh() const { + return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap); +} + +PackedInt32Array LightmapGIData::get_capture_tetrahedra() const { + return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap); +} + +PackedInt32Array LightmapGIData::get_capture_bsp_tree() const { + return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap); +} + +AABB LightmapGIData::get_capture_bounds() const { + return bounds; +} + +bool LightmapGIData::is_interior() const { + return interior; +} + +void LightmapGIData::_set_probe_data(const Dictionary &p_data) { + ERR_FAIL_COND(!p_data.has("bounds")); + ERR_FAIL_COND(!p_data.has("points")); + ERR_FAIL_COND(!p_data.has("tetrahedra")); + ERR_FAIL_COND(!p_data.has("bsp")); + ERR_FAIL_COND(!p_data.has("sh")); + ERR_FAIL_COND(!p_data.has("interior")); + set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"]); +} + +Dictionary LightmapGIData::_get_probe_data() const { + Dictionary d; + d["bounds"] = get_capture_bounds(); + d["points"] = get_capture_points(); + d["tetrahedra"] = get_capture_tetrahedra(); + d["bsp"] = get_capture_bsp_tree(); + d["sh"] = get_capture_sh(); + d["interior"] = is_interior(); + return d; +} + +void LightmapGIData::_bind_methods() { + ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &LightmapGIData::_set_user_data); + ClassDB::bind_method(D_METHOD("_get_user_data"), &LightmapGIData::_get_user_data); + + ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &LightmapGIData::set_light_texture); + ClassDB::bind_method(D_METHOD("get_light_texture"), &LightmapGIData::get_light_texture); + + ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics); + ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics); + + ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &LightmapGIData::add_user); + ClassDB::bind_method(D_METHOD("get_user_count"), &LightmapGIData::get_user_count); + ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &LightmapGIData::get_user_path); + ClassDB::bind_method(D_METHOD("clear_users"), &LightmapGIData::clear_users); + + ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &LightmapGIData::_set_probe_data); + ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data); + + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered"), "set_light_texture", "get_light_texture"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics"); + ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data"); + ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data"); +} + +LightmapGIData::LightmapGIData() { + lightmap = RS::get_singleton()->lightmap_create(); +} + +LightmapGIData::~LightmapGIData() { + RS::get_singleton()->free(lightmap); +} + +/////////////////////////// + +void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) { + MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node); + if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_BAKED && mi->is_visible_in_tree()) { + Ref<Mesh> mesh = mi->get_mesh(); + if (mesh.is_valid()) { + bool all_have_uv2_and_normal = true; + bool surfaces_found = false; + for (int i = 0; i < mesh->get_surface_count(); i++) { + if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { + continue; + } + if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) { + all_have_uv2_and_normal = false; + break; + } + if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) { + all_have_uv2_and_normal = false; + break; + } + surfaces_found = true; + } + + if (surfaces_found && all_have_uv2_and_normal) { + //READY TO BAKE! size hint could be computed if not found, actually.. + + MeshesFound mf; + mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform(); + mf.node_path = get_path_to(mi); + mf.subindex = -1; + mf.mesh = mesh; + + static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 }; + mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()]; + + Ref<Material> all_override = mi->get_material_override(); + for (int i = 0; i < mesh->get_surface_count(); i++) { + if (all_override.is_valid()) { + mf.overrides.push_back(all_override); + } else { + mf.overrides.push_back(mi->get_surface_override_material(i)); + } + } + + meshes.push_back(mf); + } + } + } + + Node3D *s = Object::cast_to<Node3D>(p_at_node); + + if (!mi && s) { + Array bmeshes = p_at_node->call("get_bake_bmeshes"); + if (bmeshes.size() && (bmeshes.size() & 1) == 0) { + Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform(); + for (int i = 0; i < bmeshes.size(); i += 2) { + Ref<Mesh> mesh = bmeshes[i]; + if (!mesh.is_valid()) { + continue; + } + + MeshesFound mf; + + Transform3D mesh_xf = bmeshes[i + 1]; + mf.xform = xf * mesh_xf; + mf.node_path = get_path_to(s); + mf.subindex = i / 2; + mf.lightmap_scale = 1; + mf.mesh = mesh; + + meshes.push_back(mf); + } + } + } + + Light3D *light = Object::cast_to<Light3D>(p_at_node); + + if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) { + LightsFound lf; + lf.xform = get_global_transform().affine_inverse() * light->get_global_transform(); + lf.light = light; + lights.push_back(lf); + } + + LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node); + + if (probe) { + Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform(); + probes.push_back(xf.origin); + } + + for (int i = 0; i < p_at_node->get_child_count(); i++) { + Node *child = p_at_node->get_child(i); + if (!child->get_owner()) { + continue; //maybe a helper + } + + _find_meshes_and_lights(child, meshes, lights, probes); + } +} + +int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const { + int over = 0; + int under = 0; + int coplanar = 0; + const BSPSimplex &s = p_simplices[p_simplex]; + for (int i = 0; i < 4; i++) { + const Vector3 v = p_points[s.vertices[i]]; + if (p_plane.has_point(v)) { //coplanar + coplanar++; + } else if (p_plane.is_point_over(v)) { + over++; + } else { + under++; + } + } + + ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error + if (under == 0) { + return 1; // all over + } else if (over == 0) { + return -1; // all under + } else { + return 0; // crossing + } +} + +//#define DEBUG_BSP + +int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) { + //if we reach here, it means there is more than one simplex + int32_t node_index = (int32_t)bsp_nodes.size(); + bsp_nodes.push_back(BSPNode()); + + //test with all the simplex planes + Plane best_plane; + float best_plane_score = -1.0; + + for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { + const BSPSimplex &s = p_simplices[p_simplex_indices[i]]; + for (int j = 0; j < 4; j++) { + uint32_t plane_index = s.planes[j]; + if (planes_tested[plane_index] == node_index) { + continue; //tested this plane already + } + + planes_tested[plane_index] = node_index; + + static const int face_order[4][3] = { + { 0, 1, 2 }, + { 0, 2, 3 }, + { 0, 1, 3 }, + { 1, 2, 3 } + }; + + // despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error + // from thinking this same simplex is intersecting rather than on a side + Vector3 v0 = p_points[s.vertices[face_order[j][0]]]; + Vector3 v1 = p_points[s.vertices[face_order[j][1]]]; + Vector3 v2 = p_points[s.vertices[face_order[j][2]]]; + + Plane plane(v0, v1, v2); + + //test with all the simplices + int over_count = 0; + int under_count = 0; + + for (uint32_t k = 0; k < p_simplex_indices.size(); k++) { + int side = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[k]); + if (side == -2) { + continue; //this simplex is invalid, skip for now + } else if (side < 0) { + under_count++; + } else if (side > 0) { + over_count++; + } + } + + if (under_count == 0 && over_count == 0) { + continue; //most likely precision issue with a flat simplex, do not try this plane + } + + if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio + SWAP(under_count, over_count); + } + + float score = 0; //by default, score is 0 (worst) + if (over_count > 0) { + //give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced + score = float(under_count) / over_count; + } + + //adjusting priority over least splits, probably not a great idea + //score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score + + if (score > best_plane_score) { + best_plane = plane; + best_plane_score = score; + } + } + } + + LocalVector<int32_t> indices_over; + LocalVector<int32_t> indices_under; + + //split again, but add to list + for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { + uint32_t index = p_simplex_indices[i]; + int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index); + + if (side == -2) { + continue; //simplex sits on the plane, does not make sense to use it + } + if (side <= 0) { + indices_under.push_back(index); + } + + if (side >= 0) { + indices_over.push_back(index); + } + } + +#ifdef DEBUG_BSP + print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting)); +#endif + + if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) { + ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug + + // Failed to separate the tetrahedrons using planes + // this means Delaunay broke at some point. + // Luckily, because we are using tetrahedrons, we can resort to + // less precise but still working ways to generate the separating plane + // this will most likely look bad when interpolating, but at least it will not crash. + // and the arctifact will most likely also be very small, so too difficult to notice. + + //find the longest axis + + WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit."); + + LocalVector<Vector3> centers; + AABB bounds_all; + for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { + AABB bounds; + for (uint32_t j = 0; j < 4; j++) { + Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]]; + if (j == 0) { + bounds.position = p; + } else { + bounds.expand_to(p); + } + } + if (i == 0) { + centers.push_back(bounds.position + bounds.size * 0.5); + } else { + bounds_all.merge_with(bounds); + } + } + Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index()); + + //find the simplex that will go under + uint32_t min_d_idx = 0xFFFFFFFF; + float min_d_dist = 1e20; + + for (uint32_t i = 0; i < centers.size(); i++) { + if (centers[i][longest_axis] < min_d_dist) { + min_d_idx = i; + min_d_dist = centers[i][longest_axis]; + } + } + //rebuild best_plane and over/under arrays + best_plane = Plane(); + best_plane.normal[longest_axis] = 1.0; + best_plane.d = min_d_dist; + + indices_under.clear(); + indices_under.push_back(min_d_idx); + + indices_over.clear(); + + for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { + if (i == min_d_idx) { + continue; + } + indices_over.push_back(p_simplex_indices[i]); + } + } + + BSPNode node; + node.plane = best_plane; + + if (indices_under.size() == 0) { + //nothing to do here + node.under = BSPNode::EMPTY_LEAF; + } else if (indices_under.size() == 1) { + node.under = -(indices_under[0] + 1); + } else { + node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes); + } + + if (indices_over.size() == 0) { + //nothing to do here + node.over = BSPNode::EMPTY_LEAF; + } else if (indices_over.size() == 1) { + node.over = -(indices_over[0] + 1); + } else { + node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes); + } + + bsp_nodes[node_index] = node; + + return node_index; +} + +bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) { + BakeStepUD *bsud = (BakeStepUD *)ud; + bool ret = false; + if (bsud->func) { + ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh); + } + return ret; +} + +void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) { + for (int i = 0; i < 8; i++) { + Vector3i pos = p_cell->offset; + uint32_t half_size = p_cell->size / 2; + if (i & 1) { + pos.x += half_size; + } + if (i & 2) { + pos.y += half_size; + } + if (i & 4) { + pos.z += half_size; + } + + AABB subcell; + subcell.position = Vector3(pos) * p_cell_size; + subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size; + + if (!Geometry3D::triangle_box_overlap(subcell.position + subcell.size * 0.5, subcell.size * 0.5, p_triangle)) { + continue; + } + + if (p_cell->children[i] == nullptr) { + GenProbesOctree *child = memnew(GenProbesOctree); + child->offset = pos; + child->size = half_size; + p_cell->children[i] = child; + } + + if (half_size > 1) { + //still levels missing + _plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle); + } + } +} + +void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool, Vector3iHash> &positions_used, const AABB &p_bounds) { + for (int i = 0; i < 8; i++) { + Vector3i pos = p_cell->offset; + if (i & 1) { + pos.x += p_cell->size; + } + if (i & 2) { + pos.y += p_cell->size; + } + if (i & 4) { + pos.z += p_cell->size; + } + + if (p_cell->size == 1 && !positions_used.has(pos)) { + //new position to insert! + Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size; + //see if a user submitted probe is too close + int ppcount = probe_positions.size(); + const Vector3 *pp = probe_positions.ptr(); + bool exists = false; + for (int j = 0; j < ppcount; j++) { + if (pp[j].distance_to(real_pos) < CMP_EPSILON) { + exists = true; + break; + } + } + + if (!exists) { + new_probe_positions.push_back(real_pos); + } + + positions_used[pos] = true; + } + + if (p_cell->children[i] != nullptr) { + _gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds); + } + } +} + +LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) { + if (p_image_data_path == "") { + if (get_light_data().is_null()) { + return BAKE_ERROR_NO_SAVE_PATH; + } + + p_image_data_path = get_light_data()->get_path(); + if (!p_image_data_path.is_resource_file()) { + return BAKE_ERROR_NO_SAVE_PATH; + } + } + + Ref<Lightmapper> lightmapper = Lightmapper::create(); + ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER); + + BakeStepUD bsud; + bsud.func = p_bake_step; + bsud.ud = p_bake_userdata; + bsud.from_percent = 0.2; + bsud.to_percent = 0.8; + + if (p_bake_step) { + p_bake_step(0.0, TTR("Finding meshes, lights and probes"), p_bake_userdata, true); + } + /* STEP 1, FIND MESHES, LIGHTS AND PROBES */ + Vector<Lightmapper::MeshData> mesh_data; + Vector<LightsFound> lights_found; + Vector<Vector3> probes_found; + AABB bounds; + { + Vector<MeshesFound> meshes_found; + _find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found); + + if (meshes_found.size() == 0) { + return BAKE_ERROR_NO_MESHES; + } + // create mesh data for insert + + //get the base material textures, help compute atlas size and bounds + for (int m_i = 0; m_i < meshes_found.size(); m_i++) { + if (p_bake_step) { + float p = (float)(m_i) / meshes_found.size(); + p_bake_step(p * 0.1, vformat(TTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false); + } + + MeshesFound &mf = meshes_found.write[m_i]; + + Size2i lightmap_size = mf.mesh->get_lightmap_size_hint() * mf.lightmap_scale; + Vector<RID> overrides; + overrides.resize(mf.overrides.size()); + for (int i = 0; i < mf.overrides.size(); i++) { + if (mf.overrides[i].is_valid()) { + overrides.write[i] = mf.overrides[i]->get_rid(); + } + } + TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size); + + ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE); + + Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA]; + Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM]; + + //multiply albedo by metal + + Lightmapper::MeshData md; + + { + Dictionary d; + d["path"] = mf.node_path; + if (mf.subindex >= 0) { + d["subindex"] = mf.subindex; + } + md.userdata = d; + } + + { + if (albedo->get_format() != Image::FORMAT_RGBA8) { + albedo->convert(Image::FORMAT_RGBA8); + } + if (orm->get_format() != Image::FORMAT_RGBA8) { + orm->convert(Image::FORMAT_RGBA8); + } + Vector<uint8_t> albedo_alpha = albedo->get_data(); + Vector<uint8_t> orm_data = orm->get_data(); + + Vector<uint8_t> albedom; + uint32_t len = albedo_alpha.size(); + albedom.resize(len); + const uint8_t *r_aa = albedo_alpha.ptr(); + const uint8_t *r_orm = orm_data.ptr(); + uint8_t *w_albedo = albedom.ptrw(); + + for (uint32_t i = 0; i < len; i += 4) { + w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); + w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); + w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); + w_albedo[i + 3] = 255; + } + + md.albedo_on_uv2.instance(); + md.albedo_on_uv2->create(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom); + } + + md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION]; + if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) { + md.emission_on_uv2->convert(Image::FORMAT_RGBAH); + } + + //get geometry + + Basis normal_xform = mf.xform.basis.inverse().transposed(); + + for (int i = 0; i < mf.mesh->get_surface_count(); i++) { + if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { + continue; + } + Array a = mf.mesh->surface_get_arrays(i); + + Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; + const Vector3 *vr = vertices.ptr(); + Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2]; + const Vector2 *uvr = nullptr; + Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; + const Vector3 *nr = nullptr; + Vector<int> index = a[Mesh::ARRAY_INDEX]; + + ERR_CONTINUE(uv.size() == 0); + ERR_CONTINUE(normals.size() == 0); + + uvr = uv.ptr(); + nr = normals.ptr(); + + int facecount; + const int *ir = nullptr; + + if (index.size()) { + facecount = index.size() / 3; + ir = index.ptr(); + } else { + facecount = vertices.size() / 3; + } + + for (int j = 0; j < facecount; j++) { + uint32_t vidx[3]; + + if (ir) { + for (int k = 0; k < 3; k++) { + vidx[k] = ir[j * 3 + k]; + } + } else { + for (int k = 0; k < 3; k++) { + vidx[k] = j * 3 + k; + } + } + + for (int k = 0; k < 3; k++) { + Vector3 v = mf.xform.xform(vr[vidx[k]]); + if (bounds == AABB()) { + bounds.position = v; + } else { + bounds.expand_to(v); + } + md.points.push_back(v); + + md.uv2.push_back(uvr[vidx[k]]); + md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized()); + } + } + } + + mesh_data.push_back(md); + } + } + + /* STEP 2, CREATE PROBES */ + + if (p_bake_step) { + p_bake_step(0.3, TTR("Creating probes"), p_bake_userdata, true); + } + + //bounds need to include the user probes + for (int i = 0; i < probes_found.size(); i++) { + bounds.expand_to(probes_found[i]); + } + + bounds.grow_by(bounds.size.length() * 0.001); + + if (gen_probes == GENERATE_PROBES_DISABLED) { + // generate 8 probes on bound endpoints + for (int i = 0; i < 8; i++) { + probes_found.push_back(bounds.get_endpoint(i)); + } + } else { + // detect probes from geometry + static const int subdiv_values[6] = { 0, 4, 8, 16, 32 }; + int subdiv = subdiv_values[gen_probes]; + + float subdiv_cell_size; + Vector3i bound_limit; + { + int longest_axis = bounds.get_longest_axis_index(); + subdiv_cell_size = bounds.size[longest_axis] / subdiv; + int axis_n1 = (longest_axis + 1) % 3; + int axis_n2 = (longest_axis + 2) % 3; + + bound_limit[longest_axis] = subdiv; + bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size)); + bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size)); + //compensate bounds + bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size; + bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size; + } + + GenProbesOctree octree; + octree.size = subdiv; + + for (int i = 0; i < mesh_data.size(); i++) { + if (p_bake_step) { + float p = (float)(i) / mesh_data.size(); + p_bake_step(0.3 + p * 0.1, vformat(TTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false); + } + + for (int j = 0; j < mesh_data[i].points.size(); j += 3) { + Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position }; + _plot_triangle_into_octree(&octree, subdiv_cell_size, points); + } + } + + LocalVector<Vector3> new_probe_positions; + HashMap<Vector3i, bool, Vector3iHash> positions_used; + for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints + Vector3i pos; + if (i & 1) { + pos.x += bound_limit.x; + } + if (i & 2) { + pos.y += bound_limit.y; + } + if (i & 4) { + pos.z += bound_limit.z; + } + + positions_used[pos] = true; + Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability + new_probe_positions.push_back(real_pos); + } + //skip first level, since probes are always added at bounds endpoints anyway (code above this) + for (int i = 0; i < 8; i++) { + if (octree.children[i]) { + _gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds); + } + } + + for (uint32_t i = 0; i < new_probe_positions.size(); i++) { + probes_found.push_back(new_probe_positions[i]); + } + } + + // Add everything to lightmapper + if (p_bake_step) { + p_bake_step(0.4, TTR("Preparing Lightmapper"), p_bake_userdata, true); + } + + { + for (int i = 0; i < mesh_data.size(); i++) { + lightmapper->add_mesh(mesh_data[i]); + } + for (int i = 0; i < lights_found.size(); i++) { + Light3D *light = lights_found[i].light; + Transform3D xf = lights_found[i].xform; + + if (Object::cast_to<DirectionalLight3D>(light)) { + DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light); + lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_SIZE)); + } else if (Object::cast_to<OmniLight3D>(light)) { + OmniLight3D *l = Object::cast_to<OmniLight3D>(light); + lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE)); + } else if (Object::cast_to<SpotLight3D>(light)) { + SpotLight3D *l = Object::cast_to<SpotLight3D>(light); + lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE)); + } + } + for (int i = 0; i < probes_found.size(); i++) { + lightmapper->add_probe(probes_found[i]); + } + } + + Ref<Image> environment_image; + Basis environment_transform; + + // Add everything to lightmapper + if (environment_mode != ENVIRONMENT_MODE_DISABLED) { + if (p_bake_step) { + p_bake_step(4.1, TTR("Preparing Environment"), p_bake_userdata, true); + } + + environment_transform = get_global_transform().basis; + + switch (environment_mode) { + case ENVIRONMENT_MODE_DISABLED: { + //nothing + } break; + case ENVIRONMENT_MODE_SCENE: { + Ref<World3D> world = get_world_3d(); + if (world.is_valid()) { + Ref<Environment> env = world->get_environment(); + if (env.is_null()) { + env = world->get_fallback_environment(); + } + + if (env.is_valid()) { + environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64)); + } + } + } break; + case ENVIRONMENT_MODE_CUSTOM_SKY: { + if (environment_custom_sky.is_valid()) { + environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64)); + } + + } break; + case ENVIRONMENT_MODE_CUSTOM_COLOR: { + environment_image.instance(); + environment_image->create(128, 64, false, Image::FORMAT_RGBAF); + Color c = environment_custom_color; + c.r *= environment_custom_energy; + c.g *= environment_custom_energy; + c.b *= environment_custom_energy; + for (int i = 0; i < 128; i++) { + for (int j = 0; j < 64; j++) { + environment_image->set_pixel(i, j, c); + } + } + + } break; + } + } + + Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud); + + if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) { + return BAKE_ERROR_MESHES_INVALID; + } + + /* POSTBAKE: Save Textures */ + + Ref<TextureLayered> texture; + { + Vector<Ref<Image>> images; + for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) { + images.push_back(lightmapper->get_bake_texture(i)); + } + //we assume they are all the same, so let's create a large one for saving + Ref<Image> large_image; + large_image.instance(); + + large_image->create(images[0]->get_width(), images[0]->get_height() * images.size(), false, images[0]->get_format()); + + for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) { + large_image->blit_rect(images[i], Rect2(0, 0, images[i]->get_width(), images[i]->get_height()), Point2(0, images[i]->get_height() * i)); + } + + String base_path = p_image_data_path.get_basename() + ".exr"; + + Ref<ConfigFile> config; + + config.instance(); + if (FileAccess::exists(base_path + ".import")) { + config->load(base_path + ".import"); + } + + config->set_value("remap", "importer", "2d_array_texture"); + config->set_value("remap", "type", "StreamTexture2DArray"); + if (!config->has_section_key("params", "compress/mode")) { + config->set_value("params", "compress/mode", 2); //user may want another compression, so leave it be + } + config->set_value("params", "compress/channel_pack", 1); + config->set_value("params", "mipmaps/generate", false); + config->set_value("params", "slices/horizontal", 1); + config->set_value("params", "slices/vertical", images.size()); + + config->save(base_path + ".import"); + + Error err = large_image->save_exr(base_path, false); + ERR_FAIL_COND_V(err, BAKE_ERROR_CANT_CREATE_IMAGE); + ResourceLoader::import(base_path); + Ref<Texture> t = ResourceLoader::load(base_path); //if already loaded, it will be updated on refocus? + ERR_FAIL_COND_V(t.is_null(), BAKE_ERROR_CANT_CREATE_IMAGE); + texture = t; + } + + /* POSTBAKE: Save Light Data */ + + Ref<LightmapGIData> data; + if (get_light_data().is_valid()) { + data = get_light_data(); + set_light_data(Ref<LightmapGIData>()); //clear + data->clear(); + } else { + data.instance(); + } + + data->set_light_texture(texture); + data->set_uses_spherical_harmonics(directional); + + for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) { + Dictionary d = lightmapper->get_bake_mesh_userdata(i); + NodePath np = d["path"]; + int32_t subindex = -1; + if (d.has("subindex")) { + subindex = d["subindex"]; + } + + Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i); + int slice_index = lightmapper->get_bake_mesh_texture_slice(i); + data->add_user(np, uv_scale, slice_index, subindex); + } + + { + // create tetrahedrons + Vector<Vector3> points; + Vector<Color> sh; + points.resize(lightmapper->get_bake_probe_count()); + sh.resize(lightmapper->get_bake_probe_count() * 9); + for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) { + points.write[i] = lightmapper->get_bake_probe_point(i); + Vector<Color> colors = lightmapper->get_bake_probe_sh(i); + ERR_CONTINUE(colors.size() != 9); + for (int j = 0; j < 9; j++) { + sh.write[i * 9 + j] = colors[j]; + } + } + + //Obtain solved simplices + + if (p_bake_step) { + p_bake_step(0.8, TTR("Generating Probe Volumes"), p_bake_userdata, true); + } + Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points); + + LocalVector<BSPSimplex> bsp_simplices; + LocalVector<Plane> bsp_planes; + LocalVector<int32_t> bsp_simplex_indices; + PackedInt32Array tetrahedrons; + + for (int i = 0; i < solved_simplices.size(); i++) { + //Prepare a special representation of the simplex, which uses a BSP Tree + BSPSimplex bsp_simplex; + for (int j = 0; j < 4; j++) { + bsp_simplex.vertices[j] = solved_simplices[i].points[j]; + } + for (int j = 0; j < 4; j++) { + static const int face_order[4][3] = { + { 0, 1, 2 }, + { 0, 2, 3 }, + { 0, 1, 3 }, + { 1, 2, 3 } + }; + Vector3 a = points[solved_simplices[i].points[face_order[j][0]]]; + Vector3 b = points[solved_simplices[i].points[face_order[j][1]]]; + Vector3 c = points[solved_simplices[i].points[face_order[j][2]]]; + + //store planes in an array, but ensure they are reused, to speed up processing + + Plane p(a, b, c); + int plane_index = -1; + for (uint32_t k = 0; k < bsp_planes.size(); k++) { + if (bsp_planes[k].is_equal_approx_any_side(p)) { + plane_index = k; + break; + } + } + + if (plane_index == -1) { + plane_index = bsp_planes.size(); + bsp_planes.push_back(p); + } + + bsp_simplex.planes[j] = plane_index; + + //also fill simplex array + tetrahedrons.push_back(solved_simplices[i].points[j]); + } + + bsp_simplex_indices.push_back(bsp_simplices.size()); + bsp_simplices.push_back(bsp_simplex); + } + +//#define DEBUG_SIMPLICES_AS_OBJ_FILE +#ifdef DEBUG_SIMPLICES_AS_OBJ_FILE + { + FileAccessRef f = FileAccess::open("res://bsp.obj", FileAccess::WRITE); + for (uint32_t i = 0; i < bsp_simplices.size(); i++) { + f->store_line("o Simplex" + itos(i)); + for (int j = 0; j < 4; j++) { + f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z)); + } + static const int face_order[4][3] = { + { 1, 2, 3 }, + { 1, 3, 4 }, + { 1, 2, 4 }, + { 2, 3, 4 } + }; + + for (int j = 0; j < 4; j++) { + f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2])); + } + } + f->close(); + } +#endif + + LocalVector<BSPNode> bsp_nodes; + LocalVector<int32_t> planes_tested; + planes_tested.resize(bsp_planes.size()); + for (uint32_t i = 0; i < planes_tested.size(); i++) { + planes_tested[i] = 0x7FFFFFFF; + } + + if (p_bake_step) { + p_bake_step(0.9, TTR("Generating Probe Acceleration Structures"), p_bake_userdata, true); + } + + _compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes); + + PackedInt32Array bsp_array; + bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node + { + float *fptr = (float *)bsp_array.ptrw(); + int32_t *iptr = (int32_t *)bsp_array.ptrw(); + for (uint32_t i = 0; i < bsp_nodes.size(); i++) { + fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x; + fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y; + fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z; + fptr[i * 6 + 3] = bsp_nodes[i].plane.d; + iptr[i * 6 + 4] = bsp_nodes[i].over; + iptr[i * 6 + 5] = bsp_nodes[i].under; + } +//#define DEBUG_BSP_TREE +#ifdef DEBUG_BSP_TREE + FileAccessRef f = FileAccess::open("res://bsp.txt", FileAccess::WRITE); + for (uint32_t i = 0; i < bsp_nodes.size(); i++) { + f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under)); + } +#endif + } + + /* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */ + + data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array); + /* Compute a BSP tree of the simplices, so it's easy to find the exact one */ + } + + Error err = ResourceSaver::save(p_image_data_path, data); + data->set_path(p_image_data_path); + + if (err != OK) { + return BAKE_ERROR_CANT_CREATE_IMAGE; + } + + set_light_data(data); + + return BAKE_ERROR_OK; +} + +void LightmapGI::_notification(int p_what) { + if (p_what == NOTIFICATION_POST_ENTER_TREE) { + if (light_data.is_valid()) { + _assign_lightmaps(); + } + } + + if (p_what == NOTIFICATION_EXIT_TREE) { + if (light_data.is_valid()) { + _clear_lightmaps(); + } + } +} + +void LightmapGI::_assign_lightmaps() { + ERR_FAIL_COND(!light_data.is_valid()); + + for (int i = 0; i < light_data->get_user_count(); i++) { + Node *node = get_node(light_data->get_user_path(i)); + int instance_idx = light_data->get_user_sub_instance(i); + if (instance_idx >= 0) { + RID instance = node->call("get_bake_mesh_instance", instance_idx); + if (instance.is_valid()) { + RS::get_singleton()->instance_geometry_set_lightmap(instance, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i)); + } + } else { + VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node); + ERR_CONTINUE(!vi); + RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i)); + } + } +} + +void LightmapGI::_clear_lightmaps() { + ERR_FAIL_COND(!light_data.is_valid()); + for (int i = 0; i < light_data->get_user_count(); i++) { + Node *node = get_node(light_data->get_user_path(i)); + int instance_idx = light_data->get_user_sub_instance(i); + if (instance_idx >= 0) { + RID instance = node->call("get_bake_mesh_instance", instance_idx); + if (instance.is_valid()) { + RS::get_singleton()->instance_geometry_set_lightmap(instance, RID(), Rect2(), 0); + } + } else { + VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node); + ERR_CONTINUE(!vi); + RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0); + } + } +} + +void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) { + if (light_data.is_valid()) { + if (is_inside_tree()) { + _clear_lightmaps(); + } + set_base(RID()); + } + light_data = p_data; + + if (light_data.is_valid()) { + set_base(light_data->get_rid()); + if (is_inside_tree()) { + _assign_lightmaps(); + } + } + + update_gizmo(); +} + +Ref<LightmapGIData> LightmapGI::get_light_data() const { + return light_data; +} + +void LightmapGI::set_bake_quality(BakeQuality p_quality) { + bake_quality = p_quality; +} + +LightmapGI::BakeQuality LightmapGI::get_bake_quality() const { + return bake_quality; +} + +AABB LightmapGI::get_aabb() const { + return AABB(); +} + +Vector<Face3> LightmapGI::get_faces(uint32_t p_usage_flags) const { + return Vector<Face3>(); +} + +void LightmapGI::set_use_denoiser(bool p_enable) { + use_denoiser = p_enable; +} + +bool LightmapGI::is_using_denoiser() const { + return use_denoiser; +} + +void LightmapGI::set_directional(bool p_enable) { + directional = p_enable; +} + +bool LightmapGI::is_directional() const { + return directional; +} + +void LightmapGI::set_interior(bool p_enable) { + interior = p_enable; +} + +bool LightmapGI::is_interior() const { + return interior; +} + +void LightmapGI::set_environment_mode(EnvironmentMode p_mode) { + environment_mode = p_mode; + notify_property_list_changed(); +} + +LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const { + return environment_mode; +} + +void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) { + environment_custom_sky = p_sky; +} + +Ref<Sky> LightmapGI::get_environment_custom_sky() const { + return environment_custom_sky; +} + +void LightmapGI::set_environment_custom_color(const Color &p_color) { + environment_custom_color = p_color; +} + +Color LightmapGI::get_environment_custom_color() const { + return environment_custom_color; +} + +void LightmapGI::set_environment_custom_energy(float p_energy) { + environment_custom_energy = p_energy; +} + +float LightmapGI::get_environment_custom_energy() const { + return environment_custom_energy; +} + +void LightmapGI::set_bounces(int p_bounces) { + ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16); + bounces = p_bounces; +} + +int LightmapGI::get_bounces() const { + return bounces; +} + +void LightmapGI::set_bias(float p_bias) { + ERR_FAIL_COND(p_bias < 0.00001); + bias = p_bias; +} + +float LightmapGI::get_bias() const { + return bias; +} + +void LightmapGI::set_max_texture_size(int p_size) { + ERR_FAIL_COND(p_size < 2048); + max_texture_size = p_size; +} + +int LightmapGI::get_max_texture_size() const { + return max_texture_size; +} + +void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) { + gen_probes = p_generate_probes; +} + +LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const { + return gen_probes; +} + +void LightmapGI::_validate_property(PropertyInfo &property) const { + if (property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) { + property.usage = 0; + } + if (property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) { + property.usage = 0; + } + if (property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) { + property.usage = 0; + } +} + +void LightmapGI::_bind_methods() { + ClassDB::bind_method(D_METHOD("set_light_data", "data"), &LightmapGI::set_light_data); + ClassDB::bind_method(D_METHOD("get_light_data"), &LightmapGI::get_light_data); + + ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &LightmapGI::set_bake_quality); + ClassDB::bind_method(D_METHOD("get_bake_quality"), &LightmapGI::get_bake_quality); + + ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &LightmapGI::set_bounces); + ClassDB::bind_method(D_METHOD("get_bounces"), &LightmapGI::get_bounces); + + ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &LightmapGI::set_generate_probes); + ClassDB::bind_method(D_METHOD("get_generate_probes"), &LightmapGI::get_generate_probes); + + ClassDB::bind_method(D_METHOD("set_bias", "bias"), &LightmapGI::set_bias); + ClassDB::bind_method(D_METHOD("get_bias"), &LightmapGI::get_bias); + + ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &LightmapGI::set_environment_mode); + ClassDB::bind_method(D_METHOD("get_environment_mode"), &LightmapGI::get_environment_mode); + + ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &LightmapGI::set_environment_custom_sky); + ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &LightmapGI::get_environment_custom_sky); + + ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &LightmapGI::set_environment_custom_color); + ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &LightmapGI::get_environment_custom_color); + + ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &LightmapGI::set_environment_custom_energy); + ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &LightmapGI::get_environment_custom_energy); + + ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &LightmapGI::set_max_texture_size); + ClassDB::bind_method(D_METHOD("get_max_texture_size"), &LightmapGI::get_max_texture_size); + + ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &LightmapGI::set_use_denoiser); + ClassDB::bind_method(D_METHOD("is_using_denoiser"), &LightmapGI::is_using_denoiser); + + ClassDB::bind_method(D_METHOD("set_interior", "enable"), &LightmapGI::set_interior); + ClassDB::bind_method(D_METHOD("is_interior"), &LightmapGI::is_interior); + + ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional); + ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional); + + // ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant())); + + ADD_GROUP("Tweaks", ""); + ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,16,1"), "set_bounces", "get_bounces"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser"); + ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size"), "set_max_texture_size", "get_max_texture_size"); + ADD_GROUP("Environment", "environment_"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode"); + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky"); + ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color"); + ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy"); + ADD_GROUP("Gen Probes", "generate_probes_"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes"); + ADD_GROUP("Data", ""); + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData"), "set_light_data", "get_light_data"); + + BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW); + BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM); + BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH); + BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA); + + BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED); + BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4); + BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8); + BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16); + BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32); + + BIND_ENUM_CONSTANT(BAKE_ERROR_OK); + BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER); + BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH); + BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES); + BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID); + BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE); + BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED); + + BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED); + BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE); + BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY); + BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR); +} + +LightmapGI::LightmapGI() { +} |