summaryrefslogtreecommitdiff
path: root/scene/3d/lightmap_gi.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/3d/lightmap_gi.cpp')
-rw-r--r--scene/3d/lightmap_gi.cpp1466
1 files changed, 1466 insertions, 0 deletions
diff --git a/scene/3d/lightmap_gi.cpp b/scene/3d/lightmap_gi.cpp
new file mode 100644
index 0000000000..cc1177d541
--- /dev/null
+++ b/scene/3d/lightmap_gi.cpp
@@ -0,0 +1,1466 @@
+/*************************************************************************/
+/* lightmap_gi.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "lightmap_gi.h"
+
+#include "core/io/config_file.h"
+#include "core/io/resource_saver.h"
+#include "core/math/camera_matrix.h"
+#include "core/math/delaunay_3d.h"
+#include "core/os/dir_access.h"
+#include "core/os/file_access.h"
+#include "core/os/os.h"
+#include "core/templates/sort_array.h"
+#include "lightmap_probe.h"
+
+void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) {
+ User user;
+ user.path = p_path;
+ user.uv_scale = p_uv_scale;
+ user.slice_index = p_slice_index;
+ user.sub_instance = p_sub_instance;
+ users.push_back(user);
+}
+
+int LightmapGIData::get_user_count() const {
+ return users.size();
+}
+
+NodePath LightmapGIData::get_user_path(int p_user) const {
+ ERR_FAIL_INDEX_V(p_user, users.size(), NodePath());
+ return users[p_user].path;
+}
+
+int32_t LightmapGIData::get_user_sub_instance(int p_user) const {
+ ERR_FAIL_INDEX_V(p_user, users.size(), -1);
+ return users[p_user].sub_instance;
+}
+
+Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const {
+ ERR_FAIL_INDEX_V(p_user, users.size(), Rect2());
+ return users[p_user].uv_scale;
+}
+
+int LightmapGIData::get_user_lightmap_slice_index(int p_user) const {
+ ERR_FAIL_INDEX_V(p_user, users.size(), -1);
+ return users[p_user].slice_index;
+}
+
+void LightmapGIData::clear_users() {
+ users.clear();
+}
+
+void LightmapGIData::_set_user_data(const Array &p_data) {
+ ERR_FAIL_COND(p_data.size() <= 0);
+ ERR_FAIL_COND((p_data.size() % 4) != 0);
+
+ for (int i = 0; i < p_data.size(); i += 4) {
+ add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]);
+ }
+}
+
+Array LightmapGIData::_get_user_data() const {
+ Array ret;
+ for (int i = 0; i < users.size(); i++) {
+ ret.push_back(users[i].path);
+ ret.push_back(users[i].uv_scale);
+ ret.push_back(users[i].slice_index);
+ ret.push_back(users[i].sub_instance);
+ }
+ return ret;
+}
+
+RID LightmapGIData::get_rid() const {
+ return lightmap;
+}
+
+void LightmapGIData::clear() {
+ users.clear();
+}
+
+void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) {
+ light_texture = p_light_texture;
+ RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
+}
+
+Ref<TextureLayered> LightmapGIData::get_light_texture() const {
+ return light_texture;
+}
+
+void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) {
+ uses_spherical_harmonics = p_enable;
+ RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
+}
+
+bool LightmapGIData::is_using_spherical_harmonics() const {
+ return uses_spherical_harmonics;
+}
+
+void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
+ if (p_points.size()) {
+ int pc = p_points.size();
+ ERR_FAIL_COND(pc * 9 != p_point_sh.size());
+ ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0);
+ ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0);
+ RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree);
+ RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds);
+ RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior);
+ } else {
+ RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array());
+ RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB());
+ RS::get_singleton()->lightmap_set_probe_interior(lightmap, false);
+ }
+ interior = p_interior;
+ bounds = p_bounds;
+}
+
+PackedVector3Array LightmapGIData::get_capture_points() const {
+ return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap);
+}
+
+PackedColorArray LightmapGIData::get_capture_sh() const {
+ return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap);
+}
+
+PackedInt32Array LightmapGIData::get_capture_tetrahedra() const {
+ return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap);
+}
+
+PackedInt32Array LightmapGIData::get_capture_bsp_tree() const {
+ return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap);
+}
+
+AABB LightmapGIData::get_capture_bounds() const {
+ return bounds;
+}
+
+bool LightmapGIData::is_interior() const {
+ return interior;
+}
+
+void LightmapGIData::_set_probe_data(const Dictionary &p_data) {
+ ERR_FAIL_COND(!p_data.has("bounds"));
+ ERR_FAIL_COND(!p_data.has("points"));
+ ERR_FAIL_COND(!p_data.has("tetrahedra"));
+ ERR_FAIL_COND(!p_data.has("bsp"));
+ ERR_FAIL_COND(!p_data.has("sh"));
+ ERR_FAIL_COND(!p_data.has("interior"));
+ set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"]);
+}
+
+Dictionary LightmapGIData::_get_probe_data() const {
+ Dictionary d;
+ d["bounds"] = get_capture_bounds();
+ d["points"] = get_capture_points();
+ d["tetrahedra"] = get_capture_tetrahedra();
+ d["bsp"] = get_capture_bsp_tree();
+ d["sh"] = get_capture_sh();
+ d["interior"] = is_interior();
+ return d;
+}
+
+void LightmapGIData::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &LightmapGIData::_set_user_data);
+ ClassDB::bind_method(D_METHOD("_get_user_data"), &LightmapGIData::_get_user_data);
+
+ ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &LightmapGIData::set_light_texture);
+ ClassDB::bind_method(D_METHOD("get_light_texture"), &LightmapGIData::get_light_texture);
+
+ ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics);
+ ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics);
+
+ ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &LightmapGIData::add_user);
+ ClassDB::bind_method(D_METHOD("get_user_count"), &LightmapGIData::get_user_count);
+ ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &LightmapGIData::get_user_path);
+ ClassDB::bind_method(D_METHOD("clear_users"), &LightmapGIData::clear_users);
+
+ ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &LightmapGIData::_set_probe_data);
+ ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data);
+
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered"), "set_light_texture", "get_light_texture");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics");
+ ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data");
+ ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data");
+}
+
+LightmapGIData::LightmapGIData() {
+ lightmap = RS::get_singleton()->lightmap_create();
+}
+
+LightmapGIData::~LightmapGIData() {
+ RS::get_singleton()->free(lightmap);
+}
+
+///////////////////////////
+
+void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) {
+ MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node);
+ if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_BAKED && mi->is_visible_in_tree()) {
+ Ref<Mesh> mesh = mi->get_mesh();
+ if (mesh.is_valid()) {
+ bool all_have_uv2_and_normal = true;
+ bool surfaces_found = false;
+ for (int i = 0; i < mesh->get_surface_count(); i++) {
+ if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
+ continue;
+ }
+ if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) {
+ all_have_uv2_and_normal = false;
+ break;
+ }
+ if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) {
+ all_have_uv2_and_normal = false;
+ break;
+ }
+ surfaces_found = true;
+ }
+
+ if (surfaces_found && all_have_uv2_and_normal) {
+ //READY TO BAKE! size hint could be computed if not found, actually..
+
+ MeshesFound mf;
+ mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform();
+ mf.node_path = get_path_to(mi);
+ mf.subindex = -1;
+ mf.mesh = mesh;
+
+ static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 };
+ mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()];
+
+ Ref<Material> all_override = mi->get_material_override();
+ for (int i = 0; i < mesh->get_surface_count(); i++) {
+ if (all_override.is_valid()) {
+ mf.overrides.push_back(all_override);
+ } else {
+ mf.overrides.push_back(mi->get_surface_override_material(i));
+ }
+ }
+
+ meshes.push_back(mf);
+ }
+ }
+ }
+
+ Node3D *s = Object::cast_to<Node3D>(p_at_node);
+
+ if (!mi && s) {
+ Array bmeshes = p_at_node->call("get_bake_bmeshes");
+ if (bmeshes.size() && (bmeshes.size() & 1) == 0) {
+ Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform();
+ for (int i = 0; i < bmeshes.size(); i += 2) {
+ Ref<Mesh> mesh = bmeshes[i];
+ if (!mesh.is_valid()) {
+ continue;
+ }
+
+ MeshesFound mf;
+
+ Transform3D mesh_xf = bmeshes[i + 1];
+ mf.xform = xf * mesh_xf;
+ mf.node_path = get_path_to(s);
+ mf.subindex = i / 2;
+ mf.lightmap_scale = 1;
+ mf.mesh = mesh;
+
+ meshes.push_back(mf);
+ }
+ }
+ }
+
+ Light3D *light = Object::cast_to<Light3D>(p_at_node);
+
+ if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) {
+ LightsFound lf;
+ lf.xform = get_global_transform().affine_inverse() * light->get_global_transform();
+ lf.light = light;
+ lights.push_back(lf);
+ }
+
+ LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node);
+
+ if (probe) {
+ Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform();
+ probes.push_back(xf.origin);
+ }
+
+ for (int i = 0; i < p_at_node->get_child_count(); i++) {
+ Node *child = p_at_node->get_child(i);
+ if (!child->get_owner()) {
+ continue; //maybe a helper
+ }
+
+ _find_meshes_and_lights(child, meshes, lights, probes);
+ }
+}
+
+int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const {
+ int over = 0;
+ int under = 0;
+ int coplanar = 0;
+ const BSPSimplex &s = p_simplices[p_simplex];
+ for (int i = 0; i < 4; i++) {
+ const Vector3 v = p_points[s.vertices[i]];
+ if (p_plane.has_point(v)) { //coplanar
+ coplanar++;
+ } else if (p_plane.is_point_over(v)) {
+ over++;
+ } else {
+ under++;
+ }
+ }
+
+ ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error
+ if (under == 0) {
+ return 1; // all over
+ } else if (over == 0) {
+ return -1; // all under
+ } else {
+ return 0; // crossing
+ }
+}
+
+//#define DEBUG_BSP
+
+int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) {
+ //if we reach here, it means there is more than one simplex
+ int32_t node_index = (int32_t)bsp_nodes.size();
+ bsp_nodes.push_back(BSPNode());
+
+ //test with all the simplex planes
+ Plane best_plane;
+ float best_plane_score = -1.0;
+
+ for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
+ const BSPSimplex &s = p_simplices[p_simplex_indices[i]];
+ for (int j = 0; j < 4; j++) {
+ uint32_t plane_index = s.planes[j];
+ if (planes_tested[plane_index] == node_index) {
+ continue; //tested this plane already
+ }
+
+ planes_tested[plane_index] = node_index;
+
+ static const int face_order[4][3] = {
+ { 0, 1, 2 },
+ { 0, 2, 3 },
+ { 0, 1, 3 },
+ { 1, 2, 3 }
+ };
+
+ // despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error
+ // from thinking this same simplex is intersecting rather than on a side
+ Vector3 v0 = p_points[s.vertices[face_order[j][0]]];
+ Vector3 v1 = p_points[s.vertices[face_order[j][1]]];
+ Vector3 v2 = p_points[s.vertices[face_order[j][2]]];
+
+ Plane plane(v0, v1, v2);
+
+ //test with all the simplices
+ int over_count = 0;
+ int under_count = 0;
+
+ for (uint32_t k = 0; k < p_simplex_indices.size(); k++) {
+ int side = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[k]);
+ if (side == -2) {
+ continue; //this simplex is invalid, skip for now
+ } else if (side < 0) {
+ under_count++;
+ } else if (side > 0) {
+ over_count++;
+ }
+ }
+
+ if (under_count == 0 && over_count == 0) {
+ continue; //most likely precision issue with a flat simplex, do not try this plane
+ }
+
+ if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio
+ SWAP(under_count, over_count);
+ }
+
+ float score = 0; //by default, score is 0 (worst)
+ if (over_count > 0) {
+ //give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced
+ score = float(under_count) / over_count;
+ }
+
+ //adjusting priority over least splits, probably not a great idea
+ //score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score
+
+ if (score > best_plane_score) {
+ best_plane = plane;
+ best_plane_score = score;
+ }
+ }
+ }
+
+ LocalVector<int32_t> indices_over;
+ LocalVector<int32_t> indices_under;
+
+ //split again, but add to list
+ for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
+ uint32_t index = p_simplex_indices[i];
+ int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index);
+
+ if (side == -2) {
+ continue; //simplex sits on the plane, does not make sense to use it
+ }
+ if (side <= 0) {
+ indices_under.push_back(index);
+ }
+
+ if (side >= 0) {
+ indices_over.push_back(index);
+ }
+ }
+
+#ifdef DEBUG_BSP
+ print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting));
+#endif
+
+ if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) {
+ ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug
+
+ // Failed to separate the tetrahedrons using planes
+ // this means Delaunay broke at some point.
+ // Luckily, because we are using tetrahedrons, we can resort to
+ // less precise but still working ways to generate the separating plane
+ // this will most likely look bad when interpolating, but at least it will not crash.
+ // and the arctifact will most likely also be very small, so too difficult to notice.
+
+ //find the longest axis
+
+ WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit.");
+
+ LocalVector<Vector3> centers;
+ AABB bounds_all;
+ for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
+ AABB bounds;
+ for (uint32_t j = 0; j < 4; j++) {
+ Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]];
+ if (j == 0) {
+ bounds.position = p;
+ } else {
+ bounds.expand_to(p);
+ }
+ }
+ if (i == 0) {
+ centers.push_back(bounds.position + bounds.size * 0.5);
+ } else {
+ bounds_all.merge_with(bounds);
+ }
+ }
+ Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index());
+
+ //find the simplex that will go under
+ uint32_t min_d_idx = 0xFFFFFFFF;
+ float min_d_dist = 1e20;
+
+ for (uint32_t i = 0; i < centers.size(); i++) {
+ if (centers[i][longest_axis] < min_d_dist) {
+ min_d_idx = i;
+ min_d_dist = centers[i][longest_axis];
+ }
+ }
+ //rebuild best_plane and over/under arrays
+ best_plane = Plane();
+ best_plane.normal[longest_axis] = 1.0;
+ best_plane.d = min_d_dist;
+
+ indices_under.clear();
+ indices_under.push_back(min_d_idx);
+
+ indices_over.clear();
+
+ for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
+ if (i == min_d_idx) {
+ continue;
+ }
+ indices_over.push_back(p_simplex_indices[i]);
+ }
+ }
+
+ BSPNode node;
+ node.plane = best_plane;
+
+ if (indices_under.size() == 0) {
+ //nothing to do here
+ node.under = BSPNode::EMPTY_LEAF;
+ } else if (indices_under.size() == 1) {
+ node.under = -(indices_under[0] + 1);
+ } else {
+ node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes);
+ }
+
+ if (indices_over.size() == 0) {
+ //nothing to do here
+ node.over = BSPNode::EMPTY_LEAF;
+ } else if (indices_over.size() == 1) {
+ node.over = -(indices_over[0] + 1);
+ } else {
+ node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes);
+ }
+
+ bsp_nodes[node_index] = node;
+
+ return node_index;
+}
+
+bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) {
+ BakeStepUD *bsud = (BakeStepUD *)ud;
+ bool ret = false;
+ if (bsud->func) {
+ ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh);
+ }
+ return ret;
+}
+
+void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) {
+ for (int i = 0; i < 8; i++) {
+ Vector3i pos = p_cell->offset;
+ uint32_t half_size = p_cell->size / 2;
+ if (i & 1) {
+ pos.x += half_size;
+ }
+ if (i & 2) {
+ pos.y += half_size;
+ }
+ if (i & 4) {
+ pos.z += half_size;
+ }
+
+ AABB subcell;
+ subcell.position = Vector3(pos) * p_cell_size;
+ subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size;
+
+ if (!Geometry3D::triangle_box_overlap(subcell.position + subcell.size * 0.5, subcell.size * 0.5, p_triangle)) {
+ continue;
+ }
+
+ if (p_cell->children[i] == nullptr) {
+ GenProbesOctree *child = memnew(GenProbesOctree);
+ child->offset = pos;
+ child->size = half_size;
+ p_cell->children[i] = child;
+ }
+
+ if (half_size > 1) {
+ //still levels missing
+ _plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle);
+ }
+ }
+}
+
+void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool, Vector3iHash> &positions_used, const AABB &p_bounds) {
+ for (int i = 0; i < 8; i++) {
+ Vector3i pos = p_cell->offset;
+ if (i & 1) {
+ pos.x += p_cell->size;
+ }
+ if (i & 2) {
+ pos.y += p_cell->size;
+ }
+ if (i & 4) {
+ pos.z += p_cell->size;
+ }
+
+ if (p_cell->size == 1 && !positions_used.has(pos)) {
+ //new position to insert!
+ Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size;
+ //see if a user submitted probe is too close
+ int ppcount = probe_positions.size();
+ const Vector3 *pp = probe_positions.ptr();
+ bool exists = false;
+ for (int j = 0; j < ppcount; j++) {
+ if (pp[j].distance_to(real_pos) < CMP_EPSILON) {
+ exists = true;
+ break;
+ }
+ }
+
+ if (!exists) {
+ new_probe_positions.push_back(real_pos);
+ }
+
+ positions_used[pos] = true;
+ }
+
+ if (p_cell->children[i] != nullptr) {
+ _gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds);
+ }
+ }
+}
+
+LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) {
+ if (p_image_data_path == "") {
+ if (get_light_data().is_null()) {
+ return BAKE_ERROR_NO_SAVE_PATH;
+ }
+
+ p_image_data_path = get_light_data()->get_path();
+ if (!p_image_data_path.is_resource_file()) {
+ return BAKE_ERROR_NO_SAVE_PATH;
+ }
+ }
+
+ Ref<Lightmapper> lightmapper = Lightmapper::create();
+ ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER);
+
+ BakeStepUD bsud;
+ bsud.func = p_bake_step;
+ bsud.ud = p_bake_userdata;
+ bsud.from_percent = 0.2;
+ bsud.to_percent = 0.8;
+
+ if (p_bake_step) {
+ p_bake_step(0.0, TTR("Finding meshes, lights and probes"), p_bake_userdata, true);
+ }
+ /* STEP 1, FIND MESHES, LIGHTS AND PROBES */
+ Vector<Lightmapper::MeshData> mesh_data;
+ Vector<LightsFound> lights_found;
+ Vector<Vector3> probes_found;
+ AABB bounds;
+ {
+ Vector<MeshesFound> meshes_found;
+ _find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found);
+
+ if (meshes_found.size() == 0) {
+ return BAKE_ERROR_NO_MESHES;
+ }
+ // create mesh data for insert
+
+ //get the base material textures, help compute atlas size and bounds
+ for (int m_i = 0; m_i < meshes_found.size(); m_i++) {
+ if (p_bake_step) {
+ float p = (float)(m_i) / meshes_found.size();
+ p_bake_step(p * 0.1, vformat(TTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false);
+ }
+
+ MeshesFound &mf = meshes_found.write[m_i];
+
+ Size2i lightmap_size = mf.mesh->get_lightmap_size_hint() * mf.lightmap_scale;
+ Vector<RID> overrides;
+ overrides.resize(mf.overrides.size());
+ for (int i = 0; i < mf.overrides.size(); i++) {
+ if (mf.overrides[i].is_valid()) {
+ overrides.write[i] = mf.overrides[i]->get_rid();
+ }
+ }
+ TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size);
+
+ ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE);
+
+ Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA];
+ Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM];
+
+ //multiply albedo by metal
+
+ Lightmapper::MeshData md;
+
+ {
+ Dictionary d;
+ d["path"] = mf.node_path;
+ if (mf.subindex >= 0) {
+ d["subindex"] = mf.subindex;
+ }
+ md.userdata = d;
+ }
+
+ {
+ if (albedo->get_format() != Image::FORMAT_RGBA8) {
+ albedo->convert(Image::FORMAT_RGBA8);
+ }
+ if (orm->get_format() != Image::FORMAT_RGBA8) {
+ orm->convert(Image::FORMAT_RGBA8);
+ }
+ Vector<uint8_t> albedo_alpha = albedo->get_data();
+ Vector<uint8_t> orm_data = orm->get_data();
+
+ Vector<uint8_t> albedom;
+ uint32_t len = albedo_alpha.size();
+ albedom.resize(len);
+ const uint8_t *r_aa = albedo_alpha.ptr();
+ const uint8_t *r_orm = orm_data.ptr();
+ uint8_t *w_albedo = albedom.ptrw();
+
+ for (uint32_t i = 0; i < len; i += 4) {
+ w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
+ w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
+ w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
+ w_albedo[i + 3] = 255;
+ }
+
+ md.albedo_on_uv2.instance();
+ md.albedo_on_uv2->create(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom);
+ }
+
+ md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION];
+ if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) {
+ md.emission_on_uv2->convert(Image::FORMAT_RGBAH);
+ }
+
+ //get geometry
+
+ Basis normal_xform = mf.xform.basis.inverse().transposed();
+
+ for (int i = 0; i < mf.mesh->get_surface_count(); i++) {
+ if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
+ continue;
+ }
+ Array a = mf.mesh->surface_get_arrays(i);
+
+ Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
+ const Vector3 *vr = vertices.ptr();
+ Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2];
+ const Vector2 *uvr = nullptr;
+ Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
+ const Vector3 *nr = nullptr;
+ Vector<int> index = a[Mesh::ARRAY_INDEX];
+
+ ERR_CONTINUE(uv.size() == 0);
+ ERR_CONTINUE(normals.size() == 0);
+
+ uvr = uv.ptr();
+ nr = normals.ptr();
+
+ int facecount;
+ const int *ir = nullptr;
+
+ if (index.size()) {
+ facecount = index.size() / 3;
+ ir = index.ptr();
+ } else {
+ facecount = vertices.size() / 3;
+ }
+
+ for (int j = 0; j < facecount; j++) {
+ uint32_t vidx[3];
+
+ if (ir) {
+ for (int k = 0; k < 3; k++) {
+ vidx[k] = ir[j * 3 + k];
+ }
+ } else {
+ for (int k = 0; k < 3; k++) {
+ vidx[k] = j * 3 + k;
+ }
+ }
+
+ for (int k = 0; k < 3; k++) {
+ Vector3 v = mf.xform.xform(vr[vidx[k]]);
+ if (bounds == AABB()) {
+ bounds.position = v;
+ } else {
+ bounds.expand_to(v);
+ }
+ md.points.push_back(v);
+
+ md.uv2.push_back(uvr[vidx[k]]);
+ md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized());
+ }
+ }
+ }
+
+ mesh_data.push_back(md);
+ }
+ }
+
+ /* STEP 2, CREATE PROBES */
+
+ if (p_bake_step) {
+ p_bake_step(0.3, TTR("Creating probes"), p_bake_userdata, true);
+ }
+
+ //bounds need to include the user probes
+ for (int i = 0; i < probes_found.size(); i++) {
+ bounds.expand_to(probes_found[i]);
+ }
+
+ bounds.grow_by(bounds.size.length() * 0.001);
+
+ if (gen_probes == GENERATE_PROBES_DISABLED) {
+ // generate 8 probes on bound endpoints
+ for (int i = 0; i < 8; i++) {
+ probes_found.push_back(bounds.get_endpoint(i));
+ }
+ } else {
+ // detect probes from geometry
+ static const int subdiv_values[6] = { 0, 4, 8, 16, 32 };
+ int subdiv = subdiv_values[gen_probes];
+
+ float subdiv_cell_size;
+ Vector3i bound_limit;
+ {
+ int longest_axis = bounds.get_longest_axis_index();
+ subdiv_cell_size = bounds.size[longest_axis] / subdiv;
+ int axis_n1 = (longest_axis + 1) % 3;
+ int axis_n2 = (longest_axis + 2) % 3;
+
+ bound_limit[longest_axis] = subdiv;
+ bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size));
+ bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size));
+ //compensate bounds
+ bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size;
+ bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size;
+ }
+
+ GenProbesOctree octree;
+ octree.size = subdiv;
+
+ for (int i = 0; i < mesh_data.size(); i++) {
+ if (p_bake_step) {
+ float p = (float)(i) / mesh_data.size();
+ p_bake_step(0.3 + p * 0.1, vformat(TTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false);
+ }
+
+ for (int j = 0; j < mesh_data[i].points.size(); j += 3) {
+ Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position };
+ _plot_triangle_into_octree(&octree, subdiv_cell_size, points);
+ }
+ }
+
+ LocalVector<Vector3> new_probe_positions;
+ HashMap<Vector3i, bool, Vector3iHash> positions_used;
+ for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints
+ Vector3i pos;
+ if (i & 1) {
+ pos.x += bound_limit.x;
+ }
+ if (i & 2) {
+ pos.y += bound_limit.y;
+ }
+ if (i & 4) {
+ pos.z += bound_limit.z;
+ }
+
+ positions_used[pos] = true;
+ Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability
+ new_probe_positions.push_back(real_pos);
+ }
+ //skip first level, since probes are always added at bounds endpoints anyway (code above this)
+ for (int i = 0; i < 8; i++) {
+ if (octree.children[i]) {
+ _gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds);
+ }
+ }
+
+ for (uint32_t i = 0; i < new_probe_positions.size(); i++) {
+ probes_found.push_back(new_probe_positions[i]);
+ }
+ }
+
+ // Add everything to lightmapper
+ if (p_bake_step) {
+ p_bake_step(0.4, TTR("Preparing Lightmapper"), p_bake_userdata, true);
+ }
+
+ {
+ for (int i = 0; i < mesh_data.size(); i++) {
+ lightmapper->add_mesh(mesh_data[i]);
+ }
+ for (int i = 0; i < lights_found.size(); i++) {
+ Light3D *light = lights_found[i].light;
+ Transform3D xf = lights_found[i].xform;
+
+ if (Object::cast_to<DirectionalLight3D>(light)) {
+ DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light);
+ lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_SIZE));
+ } else if (Object::cast_to<OmniLight3D>(light)) {
+ OmniLight3D *l = Object::cast_to<OmniLight3D>(light);
+ lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE));
+ } else if (Object::cast_to<SpotLight3D>(light)) {
+ SpotLight3D *l = Object::cast_to<SpotLight3D>(light);
+ lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE));
+ }
+ }
+ for (int i = 0; i < probes_found.size(); i++) {
+ lightmapper->add_probe(probes_found[i]);
+ }
+ }
+
+ Ref<Image> environment_image;
+ Basis environment_transform;
+
+ // Add everything to lightmapper
+ if (environment_mode != ENVIRONMENT_MODE_DISABLED) {
+ if (p_bake_step) {
+ p_bake_step(4.1, TTR("Preparing Environment"), p_bake_userdata, true);
+ }
+
+ environment_transform = get_global_transform().basis;
+
+ switch (environment_mode) {
+ case ENVIRONMENT_MODE_DISABLED: {
+ //nothing
+ } break;
+ case ENVIRONMENT_MODE_SCENE: {
+ Ref<World3D> world = get_world_3d();
+ if (world.is_valid()) {
+ Ref<Environment> env = world->get_environment();
+ if (env.is_null()) {
+ env = world->get_fallback_environment();
+ }
+
+ if (env.is_valid()) {
+ environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64));
+ }
+ }
+ } break;
+ case ENVIRONMENT_MODE_CUSTOM_SKY: {
+ if (environment_custom_sky.is_valid()) {
+ environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64));
+ }
+
+ } break;
+ case ENVIRONMENT_MODE_CUSTOM_COLOR: {
+ environment_image.instance();
+ environment_image->create(128, 64, false, Image::FORMAT_RGBAF);
+ Color c = environment_custom_color;
+ c.r *= environment_custom_energy;
+ c.g *= environment_custom_energy;
+ c.b *= environment_custom_energy;
+ for (int i = 0; i < 128; i++) {
+ for (int j = 0; j < 64; j++) {
+ environment_image->set_pixel(i, j, c);
+ }
+ }
+
+ } break;
+ }
+ }
+
+ Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud);
+
+ if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) {
+ return BAKE_ERROR_MESHES_INVALID;
+ }
+
+ /* POSTBAKE: Save Textures */
+
+ Ref<TextureLayered> texture;
+ {
+ Vector<Ref<Image>> images;
+ for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
+ images.push_back(lightmapper->get_bake_texture(i));
+ }
+ //we assume they are all the same, so let's create a large one for saving
+ Ref<Image> large_image;
+ large_image.instance();
+
+ large_image->create(images[0]->get_width(), images[0]->get_height() * images.size(), false, images[0]->get_format());
+
+ for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
+ large_image->blit_rect(images[i], Rect2(0, 0, images[i]->get_width(), images[i]->get_height()), Point2(0, images[i]->get_height() * i));
+ }
+
+ String base_path = p_image_data_path.get_basename() + ".exr";
+
+ Ref<ConfigFile> config;
+
+ config.instance();
+ if (FileAccess::exists(base_path + ".import")) {
+ config->load(base_path + ".import");
+ }
+
+ config->set_value("remap", "importer", "2d_array_texture");
+ config->set_value("remap", "type", "StreamTexture2DArray");
+ if (!config->has_section_key("params", "compress/mode")) {
+ config->set_value("params", "compress/mode", 2); //user may want another compression, so leave it be
+ }
+ config->set_value("params", "compress/channel_pack", 1);
+ config->set_value("params", "mipmaps/generate", false);
+ config->set_value("params", "slices/horizontal", 1);
+ config->set_value("params", "slices/vertical", images.size());
+
+ config->save(base_path + ".import");
+
+ Error err = large_image->save_exr(base_path, false);
+ ERR_FAIL_COND_V(err, BAKE_ERROR_CANT_CREATE_IMAGE);
+ ResourceLoader::import(base_path);
+ Ref<Texture> t = ResourceLoader::load(base_path); //if already loaded, it will be updated on refocus?
+ ERR_FAIL_COND_V(t.is_null(), BAKE_ERROR_CANT_CREATE_IMAGE);
+ texture = t;
+ }
+
+ /* POSTBAKE: Save Light Data */
+
+ Ref<LightmapGIData> data;
+ if (get_light_data().is_valid()) {
+ data = get_light_data();
+ set_light_data(Ref<LightmapGIData>()); //clear
+ data->clear();
+ } else {
+ data.instance();
+ }
+
+ data->set_light_texture(texture);
+ data->set_uses_spherical_harmonics(directional);
+
+ for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) {
+ Dictionary d = lightmapper->get_bake_mesh_userdata(i);
+ NodePath np = d["path"];
+ int32_t subindex = -1;
+ if (d.has("subindex")) {
+ subindex = d["subindex"];
+ }
+
+ Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i);
+ int slice_index = lightmapper->get_bake_mesh_texture_slice(i);
+ data->add_user(np, uv_scale, slice_index, subindex);
+ }
+
+ {
+ // create tetrahedrons
+ Vector<Vector3> points;
+ Vector<Color> sh;
+ points.resize(lightmapper->get_bake_probe_count());
+ sh.resize(lightmapper->get_bake_probe_count() * 9);
+ for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) {
+ points.write[i] = lightmapper->get_bake_probe_point(i);
+ Vector<Color> colors = lightmapper->get_bake_probe_sh(i);
+ ERR_CONTINUE(colors.size() != 9);
+ for (int j = 0; j < 9; j++) {
+ sh.write[i * 9 + j] = colors[j];
+ }
+ }
+
+ //Obtain solved simplices
+
+ if (p_bake_step) {
+ p_bake_step(0.8, TTR("Generating Probe Volumes"), p_bake_userdata, true);
+ }
+ Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points);
+
+ LocalVector<BSPSimplex> bsp_simplices;
+ LocalVector<Plane> bsp_planes;
+ LocalVector<int32_t> bsp_simplex_indices;
+ PackedInt32Array tetrahedrons;
+
+ for (int i = 0; i < solved_simplices.size(); i++) {
+ //Prepare a special representation of the simplex, which uses a BSP Tree
+ BSPSimplex bsp_simplex;
+ for (int j = 0; j < 4; j++) {
+ bsp_simplex.vertices[j] = solved_simplices[i].points[j];
+ }
+ for (int j = 0; j < 4; j++) {
+ static const int face_order[4][3] = {
+ { 0, 1, 2 },
+ { 0, 2, 3 },
+ { 0, 1, 3 },
+ { 1, 2, 3 }
+ };
+ Vector3 a = points[solved_simplices[i].points[face_order[j][0]]];
+ Vector3 b = points[solved_simplices[i].points[face_order[j][1]]];
+ Vector3 c = points[solved_simplices[i].points[face_order[j][2]]];
+
+ //store planes in an array, but ensure they are reused, to speed up processing
+
+ Plane p(a, b, c);
+ int plane_index = -1;
+ for (uint32_t k = 0; k < bsp_planes.size(); k++) {
+ if (bsp_planes[k].is_equal_approx_any_side(p)) {
+ plane_index = k;
+ break;
+ }
+ }
+
+ if (plane_index == -1) {
+ plane_index = bsp_planes.size();
+ bsp_planes.push_back(p);
+ }
+
+ bsp_simplex.planes[j] = plane_index;
+
+ //also fill simplex array
+ tetrahedrons.push_back(solved_simplices[i].points[j]);
+ }
+
+ bsp_simplex_indices.push_back(bsp_simplices.size());
+ bsp_simplices.push_back(bsp_simplex);
+ }
+
+//#define DEBUG_SIMPLICES_AS_OBJ_FILE
+#ifdef DEBUG_SIMPLICES_AS_OBJ_FILE
+ {
+ FileAccessRef f = FileAccess::open("res://bsp.obj", FileAccess::WRITE);
+ for (uint32_t i = 0; i < bsp_simplices.size(); i++) {
+ f->store_line("o Simplex" + itos(i));
+ for (int j = 0; j < 4; j++) {
+ f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z));
+ }
+ static const int face_order[4][3] = {
+ { 1, 2, 3 },
+ { 1, 3, 4 },
+ { 1, 2, 4 },
+ { 2, 3, 4 }
+ };
+
+ for (int j = 0; j < 4; j++) {
+ f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2]));
+ }
+ }
+ f->close();
+ }
+#endif
+
+ LocalVector<BSPNode> bsp_nodes;
+ LocalVector<int32_t> planes_tested;
+ planes_tested.resize(bsp_planes.size());
+ for (uint32_t i = 0; i < planes_tested.size(); i++) {
+ planes_tested[i] = 0x7FFFFFFF;
+ }
+
+ if (p_bake_step) {
+ p_bake_step(0.9, TTR("Generating Probe Acceleration Structures"), p_bake_userdata, true);
+ }
+
+ _compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes);
+
+ PackedInt32Array bsp_array;
+ bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node
+ {
+ float *fptr = (float *)bsp_array.ptrw();
+ int32_t *iptr = (int32_t *)bsp_array.ptrw();
+ for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
+ fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x;
+ fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y;
+ fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z;
+ fptr[i * 6 + 3] = bsp_nodes[i].plane.d;
+ iptr[i * 6 + 4] = bsp_nodes[i].over;
+ iptr[i * 6 + 5] = bsp_nodes[i].under;
+ }
+//#define DEBUG_BSP_TREE
+#ifdef DEBUG_BSP_TREE
+ FileAccessRef f = FileAccess::open("res://bsp.txt", FileAccess::WRITE);
+ for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
+ f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under));
+ }
+#endif
+ }
+
+ /* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */
+
+ data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array);
+ /* Compute a BSP tree of the simplices, so it's easy to find the exact one */
+ }
+
+ Error err = ResourceSaver::save(p_image_data_path, data);
+ data->set_path(p_image_data_path);
+
+ if (err != OK) {
+ return BAKE_ERROR_CANT_CREATE_IMAGE;
+ }
+
+ set_light_data(data);
+
+ return BAKE_ERROR_OK;
+}
+
+void LightmapGI::_notification(int p_what) {
+ if (p_what == NOTIFICATION_POST_ENTER_TREE) {
+ if (light_data.is_valid()) {
+ _assign_lightmaps();
+ }
+ }
+
+ if (p_what == NOTIFICATION_EXIT_TREE) {
+ if (light_data.is_valid()) {
+ _clear_lightmaps();
+ }
+ }
+}
+
+void LightmapGI::_assign_lightmaps() {
+ ERR_FAIL_COND(!light_data.is_valid());
+
+ for (int i = 0; i < light_data->get_user_count(); i++) {
+ Node *node = get_node(light_data->get_user_path(i));
+ int instance_idx = light_data->get_user_sub_instance(i);
+ if (instance_idx >= 0) {
+ RID instance = node->call("get_bake_mesh_instance", instance_idx);
+ if (instance.is_valid()) {
+ RS::get_singleton()->instance_geometry_set_lightmap(instance, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
+ }
+ } else {
+ VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
+ ERR_CONTINUE(!vi);
+ RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
+ }
+ }
+}
+
+void LightmapGI::_clear_lightmaps() {
+ ERR_FAIL_COND(!light_data.is_valid());
+ for (int i = 0; i < light_data->get_user_count(); i++) {
+ Node *node = get_node(light_data->get_user_path(i));
+ int instance_idx = light_data->get_user_sub_instance(i);
+ if (instance_idx >= 0) {
+ RID instance = node->call("get_bake_mesh_instance", instance_idx);
+ if (instance.is_valid()) {
+ RS::get_singleton()->instance_geometry_set_lightmap(instance, RID(), Rect2(), 0);
+ }
+ } else {
+ VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
+ ERR_CONTINUE(!vi);
+ RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0);
+ }
+ }
+}
+
+void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) {
+ if (light_data.is_valid()) {
+ if (is_inside_tree()) {
+ _clear_lightmaps();
+ }
+ set_base(RID());
+ }
+ light_data = p_data;
+
+ if (light_data.is_valid()) {
+ set_base(light_data->get_rid());
+ if (is_inside_tree()) {
+ _assign_lightmaps();
+ }
+ }
+
+ update_gizmo();
+}
+
+Ref<LightmapGIData> LightmapGI::get_light_data() const {
+ return light_data;
+}
+
+void LightmapGI::set_bake_quality(BakeQuality p_quality) {
+ bake_quality = p_quality;
+}
+
+LightmapGI::BakeQuality LightmapGI::get_bake_quality() const {
+ return bake_quality;
+}
+
+AABB LightmapGI::get_aabb() const {
+ return AABB();
+}
+
+Vector<Face3> LightmapGI::get_faces(uint32_t p_usage_flags) const {
+ return Vector<Face3>();
+}
+
+void LightmapGI::set_use_denoiser(bool p_enable) {
+ use_denoiser = p_enable;
+}
+
+bool LightmapGI::is_using_denoiser() const {
+ return use_denoiser;
+}
+
+void LightmapGI::set_directional(bool p_enable) {
+ directional = p_enable;
+}
+
+bool LightmapGI::is_directional() const {
+ return directional;
+}
+
+void LightmapGI::set_interior(bool p_enable) {
+ interior = p_enable;
+}
+
+bool LightmapGI::is_interior() const {
+ return interior;
+}
+
+void LightmapGI::set_environment_mode(EnvironmentMode p_mode) {
+ environment_mode = p_mode;
+ notify_property_list_changed();
+}
+
+LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const {
+ return environment_mode;
+}
+
+void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) {
+ environment_custom_sky = p_sky;
+}
+
+Ref<Sky> LightmapGI::get_environment_custom_sky() const {
+ return environment_custom_sky;
+}
+
+void LightmapGI::set_environment_custom_color(const Color &p_color) {
+ environment_custom_color = p_color;
+}
+
+Color LightmapGI::get_environment_custom_color() const {
+ return environment_custom_color;
+}
+
+void LightmapGI::set_environment_custom_energy(float p_energy) {
+ environment_custom_energy = p_energy;
+}
+
+float LightmapGI::get_environment_custom_energy() const {
+ return environment_custom_energy;
+}
+
+void LightmapGI::set_bounces(int p_bounces) {
+ ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16);
+ bounces = p_bounces;
+}
+
+int LightmapGI::get_bounces() const {
+ return bounces;
+}
+
+void LightmapGI::set_bias(float p_bias) {
+ ERR_FAIL_COND(p_bias < 0.00001);
+ bias = p_bias;
+}
+
+float LightmapGI::get_bias() const {
+ return bias;
+}
+
+void LightmapGI::set_max_texture_size(int p_size) {
+ ERR_FAIL_COND(p_size < 2048);
+ max_texture_size = p_size;
+}
+
+int LightmapGI::get_max_texture_size() const {
+ return max_texture_size;
+}
+
+void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) {
+ gen_probes = p_generate_probes;
+}
+
+LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const {
+ return gen_probes;
+}
+
+void LightmapGI::_validate_property(PropertyInfo &property) const {
+ if (property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
+ property.usage = 0;
+ }
+ if (property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) {
+ property.usage = 0;
+ }
+ if (property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
+ property.usage = 0;
+ }
+}
+
+void LightmapGI::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_light_data", "data"), &LightmapGI::set_light_data);
+ ClassDB::bind_method(D_METHOD("get_light_data"), &LightmapGI::get_light_data);
+
+ ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &LightmapGI::set_bake_quality);
+ ClassDB::bind_method(D_METHOD("get_bake_quality"), &LightmapGI::get_bake_quality);
+
+ ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &LightmapGI::set_bounces);
+ ClassDB::bind_method(D_METHOD("get_bounces"), &LightmapGI::get_bounces);
+
+ ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &LightmapGI::set_generate_probes);
+ ClassDB::bind_method(D_METHOD("get_generate_probes"), &LightmapGI::get_generate_probes);
+
+ ClassDB::bind_method(D_METHOD("set_bias", "bias"), &LightmapGI::set_bias);
+ ClassDB::bind_method(D_METHOD("get_bias"), &LightmapGI::get_bias);
+
+ ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &LightmapGI::set_environment_mode);
+ ClassDB::bind_method(D_METHOD("get_environment_mode"), &LightmapGI::get_environment_mode);
+
+ ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &LightmapGI::set_environment_custom_sky);
+ ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &LightmapGI::get_environment_custom_sky);
+
+ ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &LightmapGI::set_environment_custom_color);
+ ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &LightmapGI::get_environment_custom_color);
+
+ ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &LightmapGI::set_environment_custom_energy);
+ ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &LightmapGI::get_environment_custom_energy);
+
+ ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &LightmapGI::set_max_texture_size);
+ ClassDB::bind_method(D_METHOD("get_max_texture_size"), &LightmapGI::get_max_texture_size);
+
+ ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &LightmapGI::set_use_denoiser);
+ ClassDB::bind_method(D_METHOD("is_using_denoiser"), &LightmapGI::is_using_denoiser);
+
+ ClassDB::bind_method(D_METHOD("set_interior", "enable"), &LightmapGI::set_interior);
+ ClassDB::bind_method(D_METHOD("is_interior"), &LightmapGI::is_interior);
+
+ ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional);
+ ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional);
+
+ // ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant()));
+
+ ADD_GROUP("Tweaks", "");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,16,1"), "set_bounces", "get_bounces");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size"), "set_max_texture_size", "get_max_texture_size");
+ ADD_GROUP("Environment", "environment_");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode");
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky");
+ ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy");
+ ADD_GROUP("Gen Probes", "generate_probes_");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes");
+ ADD_GROUP("Data", "");
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData"), "set_light_data", "get_light_data");
+
+ BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW);
+ BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM);
+ BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH);
+ BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA);
+
+ BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED);
+ BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4);
+ BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8);
+ BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16);
+ BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32);
+
+ BIND_ENUM_CONSTANT(BAKE_ERROR_OK);
+ BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER);
+ BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH);
+ BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES);
+ BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID);
+ BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE);
+ BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED);
+
+ BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED);
+ BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE);
+ BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY);
+ BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR);
+}
+
+LightmapGI::LightmapGI() {
+}