summaryrefslogtreecommitdiff
path: root/scene/3d/gi_probe.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/3d/gi_probe.cpp')
-rw-r--r--scene/3d/gi_probe.cpp1028
1 files changed, 31 insertions, 997 deletions
diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp
index 1f2b43165e..9c811a74bf 100644
--- a/scene/3d/gi_probe.cpp
+++ b/scene/3d/gi_probe.cpp
@@ -30,6 +30,7 @@
#include "gi_probe.h"
#include "mesh_instance.h"
+#include "voxel_light_baker.h"
void GIProbeData::set_bounds(const AABB &p_bounds) {
@@ -329,754 +330,7 @@ bool GIProbe::is_compressed() const {
return compress;
}
-#include "math.h"
-
-#define FINDMINMAX(x0, x1, x2, min, max) \
- min = max = x0; \
- if (x1 < min) min = x1; \
- if (x1 > max) max = x1; \
- if (x2 < min) min = x2; \
- if (x2 > max) max = x2;
-
-static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
- int q;
- Vector3 vmin, vmax;
- for (q = 0; q <= 2; q++) {
- if (normal[q] > 0.0f) {
- vmin[q] = -maxbox[q];
- vmax[q] = maxbox[q];
- } else {
- vmin[q] = maxbox[q];
- vmax[q] = -maxbox[q];
- }
- }
- if (normal.dot(vmin) + d > 0.0f) return false;
- if (normal.dot(vmax) + d >= 0.0f) return true;
-
- return false;
-}
-
-/*======================== X-tests ========================*/
-#define AXISTEST_X01(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p2 = a * v2.y - b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-#define AXISTEST_X2(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p1 = a * v1.y - b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-/*======================== Y-tests ========================*/
-#define AXISTEST_Y02(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p2 = -a * v2.x + b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
-#define AXISTEST_Y1(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p1 = -a * v1.x + b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) return false;
-
- /*======================== Z-tests ========================*/
-
-#define AXISTEST_Z12(a, b, fa, fb) \
- p1 = a * v1.x - b * v1.y; \
- p2 = a * v2.x - b * v2.y; \
- if (p2 < p1) { \
- min = p2; \
- max = p1; \
- } else { \
- min = p1; \
- max = p2; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) return false;
-
-#define AXISTEST_Z0(a, b, fa, fb) \
- p0 = a * v0.x - b * v0.y; \
- p1 = a * v1.x - b * v1.y; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) return false;
-
-static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
-
- /* use separating axis theorem to test overlap between triangle and box */
- /* need to test for overlap in these directions: */
- /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
- /* we do not even need to test these) */
- /* 2) normal of the triangle */
- /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
- /* this gives 3x3=9 more tests */
- Vector3 v0, v1, v2;
- float min, max, d, p0, p1, p2, rad, fex, fey, fez;
- Vector3 normal, e0, e1, e2;
-
- /* This is the fastest branch on Sun */
- /* move everything so that the boxcenter is in (0,0,0) */
-
- v0 = triverts[0] - boxcenter;
- v1 = triverts[1] - boxcenter;
- v2 = triverts[2] - boxcenter;
-
- /* compute triangle edges */
- e0 = v1 - v0; /* tri edge 0 */
- e1 = v2 - v1; /* tri edge 1 */
- e2 = v0 - v2; /* tri edge 2 */
-
- /* Bullet 3: */
- /* test the 9 tests first (this was faster) */
- fex = Math::abs(e0.x);
- fey = Math::abs(e0.y);
- fez = Math::abs(e0.z);
- AXISTEST_X01(e0.z, e0.y, fez, fey);
- AXISTEST_Y02(e0.z, e0.x, fez, fex);
- AXISTEST_Z12(e0.y, e0.x, fey, fex);
-
- fex = Math::abs(e1.x);
- fey = Math::abs(e1.y);
- fez = Math::abs(e1.z);
- AXISTEST_X01(e1.z, e1.y, fez, fey);
- AXISTEST_Y02(e1.z, e1.x, fez, fex);
- AXISTEST_Z0(e1.y, e1.x, fey, fex);
-
- fex = Math::abs(e2.x);
- fey = Math::abs(e2.y);
- fez = Math::abs(e2.z);
- AXISTEST_X2(e2.z, e2.y, fez, fey);
- AXISTEST_Y1(e2.z, e2.x, fez, fex);
- AXISTEST_Z12(e2.y, e2.x, fey, fex);
-
- /* Bullet 1: */
- /* first test overlap in the {x,y,z}-directions */
- /* find min, max of the triangle each direction, and test for overlap in */
- /* that direction -- this is equivalent to testing a minimal AABB around */
- /* the triangle against the AABB */
-
- /* test in X-direction */
- FINDMINMAX(v0.x, v1.x, v2.x, min, max);
- if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
-
- /* test in Y-direction */
- FINDMINMAX(v0.y, v1.y, v2.y, min, max);
- if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
-
- /* test in Z-direction */
- FINDMINMAX(v0.z, v1.z, v2.z, min, max);
- if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
-
- /* Bullet 2: */
- /* test if the box intersects the plane of the triangle */
- /* compute plane equation of triangle: normal*x+d=0 */
- normal = e0.cross(e1);
- d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
- if (!planeBoxOverlap(normal, d, boxhalfsize)) return false;
-
- return true; /* box and triangle overlaps */
-}
-
-static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) {
-
- if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2)
- return p_uv[0];
- if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2)
- return p_uv[1];
- if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2)
- return p_uv[2];
-
- Vector3 v0 = p_vtx[1] - p_vtx[0];
- Vector3 v1 = p_vtx[2] - p_vtx[0];
- Vector3 v2 = p_pos - p_vtx[0];
-
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- if (denom == 0)
- return p_uv[0];
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
-
- return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
-}
-
-void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const AABB &p_aabb, Baker *p_baker) {
-
- if (p_level == p_baker->cell_subdiv - 1) {
- //plot the face by guessing it's albedo and emission value
-
- //find best axis to map to, for scanning values
- int closest_axis = 0;
- float closest_dot = 0;
-
- Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 normal = plane.normal;
-
- for (int i = 0; i < 3; i++) {
-
- Vector3 axis;
- axis[i] = 1.0;
- float dot = ABS(normal.dot(axis));
- if (i == 0 || dot > closest_dot) {
- closest_axis = i;
- closest_dot = dot;
- }
- }
-
- Vector3 axis;
- axis[closest_axis] = 1.0;
- Vector3 t1;
- t1[(closest_axis + 1) % 3] = 1.0;
- Vector3 t2;
- t2[(closest_axis + 2) % 3] = 1.0;
-
- t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
- t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
-
- Color albedo_accum;
- Color emission_accum;
- Vector3 normal_accum;
-
- float alpha = 0.0;
-
- //map to a grid average in the best axis for this face
- for (int i = 0; i < color_scan_cell_width; i++) {
-
- Vector3 ofs_i = float(i) * t1;
-
- for (int j = 0; j < color_scan_cell_width; j++) {
-
- Vector3 ofs_j = float(j) * t2;
-
- Vector3 from = p_aabb.position + ofs_i + ofs_j;
- Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
- Vector3 half = (to - from) * 0.5;
-
- //is in this cell?
- if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
- continue; //face does not span this cell
- }
-
- //go from -size to +size*2 to avoid skipping collisions
- Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
- Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
-
- if (normal.dot(ray_from - ray_to) < 0) {
- SWAP(ray_from, ray_to);
- }
-
- Vector3 intersection;
-
- if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
- if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
- intersection = plane.project(ray_from);
- } else {
-
- intersection = plane.project(ray_to);
- }
- }
-
- intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
-
- Vector2 uv = get_uv(intersection, p_vtx, p_uv);
-
- int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
-
- int ofs = uv_y * bake_texture_size + uv_x;
- albedo_accum.r += p_material.albedo[ofs].r;
- albedo_accum.g += p_material.albedo[ofs].g;
- albedo_accum.b += p_material.albedo[ofs].b;
- albedo_accum.a += p_material.albedo[ofs].a;
-
- emission_accum.r += p_material.emission[ofs].r;
- emission_accum.g += p_material.emission[ofs].g;
- emission_accum.b += p_material.emission[ofs].b;
-
- normal_accum += normal;
-
- alpha += 1.0;
- }
- }
-
- if (alpha == 0) {
- //could not in any way get texture information.. so use closest point to center
-
- Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
-
- Vector2 uv = get_uv(inters, p_vtx, p_uv);
-
- int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
-
- int ofs = uv_y * bake_texture_size + uv_x;
-
- alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
-
- albedo_accum.r = p_material.albedo[ofs].r * alpha;
- albedo_accum.g = p_material.albedo[ofs].g * alpha;
- albedo_accum.b = p_material.albedo[ofs].b * alpha;
- albedo_accum.a = p_material.albedo[ofs].a * alpha;
-
- emission_accum.r = p_material.emission[ofs].r * alpha;
- emission_accum.g = p_material.emission[ofs].g * alpha;
- emission_accum.b = p_material.emission[ofs].b * alpha;
-
- normal_accum *= alpha;
-
- } else {
-
- float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- alpha *= accdiv;
-
- albedo_accum.r *= accdiv;
- albedo_accum.g *= accdiv;
- albedo_accum.b *= accdiv;
- albedo_accum.a *= accdiv;
-
- emission_accum.r *= accdiv;
- emission_accum.g *= accdiv;
- emission_accum.b *= accdiv;
-
- normal_accum *= accdiv;
- }
-
- //put this temporarily here, corrected in a later step
- p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r;
- p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g;
- p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b;
- p_baker->bake_cells[p_idx].emission[0] += emission_accum.r;
- p_baker->bake_cells[p_idx].emission[1] += emission_accum.g;
- p_baker->bake_cells[p_idx].emission[2] += emission_accum.b;
- p_baker->bake_cells[p_idx].normal[0] += normal_accum.x;
- p_baker->bake_cells[p_idx].normal[1] += normal_accum.y;
- p_baker->bake_cells[p_idx].normal[2] += normal_accum.z;
- p_baker->bake_cells[p_idx].alpha += alpha;
-
- } else {
- //go down
-
- int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
-
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
-
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
-
- if (i & 1) {
- aabb.position.x += aabb.size.x;
- nx += half;
- }
- if (i & 2) {
- aabb.position.y += aabb.size.y;
- ny += half;
- }
- if (i & 4) {
- aabb.position.z += aabb.size.z;
- nz += half;
- }
- //make sure to not plot beyond limits
- if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2])
- continue;
-
- {
- AABB test_aabb = aabb;
- //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
- Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
-
- if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
- //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
- //does not fit in child, go on
- continue;
- }
- }
-
- if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) {
- //sub cell must be created
-
- uint32_t child_idx = p_baker->bake_cells.size();
- p_baker->bake_cells[p_idx].childs[i] = child_idx;
- p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1);
- p_baker->bake_cells[child_idx].level = p_level + 1;
- }
-
- _plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker);
- }
- }
-}
-
-void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) {
-
- if (p_level == p_baker->cell_subdiv - 1) {
-
- p_baker->leaf_voxel_count++;
- float alpha = p_baker->bake_cells[p_idx].alpha;
-
- p_baker->bake_cells[p_idx].albedo[0] /= alpha;
- p_baker->bake_cells[p_idx].albedo[1] /= alpha;
- p_baker->bake_cells[p_idx].albedo[2] /= alpha;
-
- //transfer emission to light
- p_baker->bake_cells[p_idx].emission[0] /= alpha;
- p_baker->bake_cells[p_idx].emission[1] /= alpha;
- p_baker->bake_cells[p_idx].emission[2] /= alpha;
-
- p_baker->bake_cells[p_idx].normal[0] /= alpha;
- p_baker->bake_cells[p_idx].normal[1] /= alpha;
- p_baker->bake_cells[p_idx].normal[2] /= alpha;
-
- Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]);
- if (n.length() < 0.01) {
- //too much fight over normal, zero it
- p_baker->bake_cells[p_idx].normal[0] = 0;
- p_baker->bake_cells[p_idx].normal[1] = 0;
- p_baker->bake_cells[p_idx].normal[2] = 0;
- } else {
- n.normalize();
- p_baker->bake_cells[p_idx].normal[0] = n.x;
- p_baker->bake_cells[p_idx].normal[1] = n.y;
- p_baker->bake_cells[p_idx].normal[2] = n.z;
- }
-
- p_baker->bake_cells[p_idx].alpha = 1.0;
-
- /*
- //remove neighbours from used sides
-
- for(int n=0;n<6;n++) {
-
- int ofs[3]={0,0,0};
-
- ofs[n/2]=(n&1)?1:-1;
-
- //convert to x,y,z on this level
- int x=p_x;
- int y=p_y;
- int z=p_z;
-
- x+=ofs[0];
- y+=ofs[1];
- z+=ofs[2];
-
- int ofs_x=0;
- int ofs_y=0;
- int ofs_z=0;
- int size = 1<<p_level;
- int half=size/2;
-
-
- if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) {
- //neighbour is out, can't use it
- p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n));
- continue;
- }
-
- uint32_t neighbour=0;
-
- for(int i=0;i<p_baker->cell_subdiv-1;i++) {
-
- Baker::Cell *bc = &p_baker->bake_cells[neighbour];
-
- int child = 0;
- if (x >= ofs_x + half) {
- child|=1;
- ofs_x+=half;
- }
- if (y >= ofs_y + half) {
- child|=2;
- ofs_y+=half;
- }
- if (z >= ofs_z + half) {
- child|=4;
- ofs_z+=half;
- }
-
- neighbour = bc->childs[child];
- if (neighbour==Baker::CHILD_EMPTY) {
- break;
- }
-
- half>>=1;
- }
-
- if (neighbour!=Baker::CHILD_EMPTY) {
- p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n));
- }
- }
- */
- } else {
-
- //go down
-
- float alpha_average = 0;
- int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
-
- uint32_t child = p_baker->bake_cells[p_idx].childs[i];
-
- if (child == Baker::CHILD_EMPTY)
- continue;
-
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
-
- if (i & 1)
- nx += half;
- if (i & 2)
- ny += half;
- if (i & 4)
- nz += half;
-
- _fixup_plot(child, p_level + 1, nx, ny, nz, p_baker);
- alpha_average += p_baker->bake_cells[child].alpha;
- }
-
- p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0;
- p_baker->bake_cells[p_idx].emission[0] = 0;
- p_baker->bake_cells[p_idx].emission[1] = 0;
- p_baker->bake_cells[p_idx].emission[2] = 0;
- p_baker->bake_cells[p_idx].normal[0] = 0;
- p_baker->bake_cells[p_idx].normal[1] = 0;
- p_baker->bake_cells[p_idx].normal[2] = 0;
- p_baker->bake_cells[p_idx].albedo[0] = 0;
- p_baker->bake_cells[p_idx].albedo[1] = 0;
- p_baker->bake_cells[p_idx].albedo[2] = 0;
- }
-}
-
-Vector<Color> GIProbe::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
-
- Vector<Color> ret;
-
- if (p_image.is_null() || p_image->empty()) {
-
- ret.resize(bake_texture_size * bake_texture_size);
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- ret[i] = p_color_add;
- }
-
- return ret;
- }
- p_image = p_image->duplicate();
-
- if (p_image->is_compressed()) {
- print_line("DECOMPRESSING!!!!");
-
- p_image->decompress();
- }
- p_image->convert(Image::FORMAT_RGBA8);
- p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
-
- PoolVector<uint8_t>::Read r = p_image->get_data().read();
- ret.resize(bake_texture_size * bake_texture_size);
-
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- Color c;
- c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
- c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
- c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
-
- c.a = r[i * 4 + 3] / 255.0;
-
- ret[i] = c;
- }
-
- return ret;
-}
-
-GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material, Baker *p_baker) {
-
- //this way of obtaining materials is inaccurate and also does not support some compressed formats very well
- Ref<SpatialMaterial> mat = p_material;
-
- Ref<Material> material = mat; //hack for now
-
- if (p_baker->material_cache.has(material)) {
- return p_baker->material_cache[material];
- }
-
- Baker::MaterialCache mc;
-
- if (mat.is_valid()) {
-
- Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
-
- Ref<Image> img_albedo;
- if (albedo_tex.is_valid()) {
-
- img_albedo = albedo_tex->get_data();
- mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
- } else {
- mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
- }
-
- Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION);
-
- Color emission_col = mat->get_emission();
- float emission_energy = mat->get_emission_energy();
-
- Ref<Image> img_emission;
-
- if (emission_tex.is_valid()) {
-
- img_emission = emission_tex->get_data();
- }
-
- if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) {
- mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
- } else {
- mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
- }
-
- } else {
- Ref<Image> empty;
-
- mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
- mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
- }
-
- p_baker->material_cache[p_material] = mc;
- return mc;
-}
-
-void GIProbe::_plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
-
- for (int i = 0; i < p_mesh->get_surface_count(); i++) {
-
- if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
- continue; //only triangles
-
- Ref<Material> src_material;
-
- if (p_override_material.is_valid()) {
- src_material = p_override_material;
- } else if (i < p_materials.size() && p_materials[i].is_valid()) {
- src_material = p_materials[i];
- } else {
- src_material = p_mesh->surface_get_material(i);
- }
- Baker::MaterialCache material = _get_material_cache(src_material, p_baker);
-
- Array a = p_mesh->surface_get_arrays(i);
-
- PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
- PoolVector<Vector3>::Read vr = vertices.read();
- PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
- PoolVector<Vector2>::Read uvr;
- PoolVector<int> index = a[Mesh::ARRAY_INDEX];
-
- bool read_uv = false;
-
- if (uv.size()) {
-
- uvr = uv.read();
- read_uv = true;
- }
-
- if (index.size()) {
-
- int facecount = index.size() / 3;
- PoolVector<int>::Read ir = index.read();
-
- for (int j = 0; j < facecount; j++) {
-
- Vector3 vtxs[3];
- Vector2 uvs[3];
-
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
- }
-
- if (read_uv) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[ir[j * 3 + k]];
- }
- }
-
- //test against original bounds
- if (!fast_tri_box_overlap(-extents, extents * 2, vtxs))
- continue;
- //plot
- _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker);
- }
-
- } else {
-
- int facecount = vertices.size() / 3;
-
- for (int j = 0; j < facecount; j++) {
-
- Vector3 vtxs[3];
- Vector2 uvs[3];
-
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[j * 3 + k]);
- }
-
- if (read_uv) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[j * 3 + k];
- }
- }
-
- //test against original bounds
- if (!fast_tri_box_overlap(-extents, extents * 2, vtxs))
- continue;
- //plot face
- _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker);
- }
- }
- }
-}
-
-void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) {
+void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node);
if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) {
@@ -1088,14 +342,14 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) {
Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform();
if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) {
- Baker::PlotMesh pm;
+ PlotMesh pm;
pm.local_xform = xf;
pm.mesh = mesh;
for (int i = 0; i < mesh->get_surface_count(); i++) {
pm.instance_materials.push_back(mi->get_surface_material(i));
}
pm.override_material = mi->get_material_override();
- p_baker->mesh_list.push_back(pm);
+ plot_meshes.push_back(pm);
}
}
}
@@ -1118,10 +372,10 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) {
Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf);
if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) {
- Baker::PlotMesh pm;
+ PlotMesh pm;
pm.local_xform = xf;
pm.mesh = mesh;
- p_baker->mesh_list.push_back(pm);
+ plot_meshes.push_back(pm);
}
}
}
@@ -1133,7 +387,7 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) {
if (!child->get_owner())
continue; //maybe a helper
- _find_meshes(child, p_baker);
+ _find_meshes(child, plot_meshes);
}
}
@@ -1143,145 +397,56 @@ GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL;
void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
- Baker baker;
-
static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 };
- baker.cell_subdiv = subdiv_value[subdiv];
- baker.bake_cells.resize(1);
-
- //find out the actual real bounds, power of 2, which gets the highest subdivision
- baker.po2_bounds = AABB(-extents, extents * 2.0);
- int longest_axis = baker.po2_bounds.get_longest_axis_index();
- baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1));
- baker.leaf_voxel_count = 0;
-
- for (int i = 0; i < 3; i++) {
-
- if (i == longest_axis)
- continue;
+ VoxelLightBaker baker;
- baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis];
- float axis_size = baker.po2_bounds.size[longest_axis];
+ baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0));
- //shrink until fit subdiv
- while (axis_size / 2.0 >= baker.po2_bounds.size[i]) {
- axis_size /= 2.0;
- baker.axis_cell_size[i] >>= 1;
- }
-
- baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis];
- }
-
- Transform to_bounds;
- to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis]));
- to_bounds.origin = baker.po2_bounds.position;
-
- Transform to_grid;
- to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis]));
+ List<PlotMesh> mesh_list;
- baker.to_cell_space = to_grid * to_bounds.affine_inverse();
-
- _find_meshes(p_from_node ? p_from_node : get_parent(), &baker);
+ _find_meshes(p_from_node ? p_from_node : get_parent(), mesh_list);
if (bake_begin_function) {
- bake_begin_function(baker.mesh_list.size() + 1);
+ bake_begin_function(mesh_list.size() + 1);
}
int pmc = 0;
- for (List<Baker::PlotMesh>::Element *E = baker.mesh_list.front(); E; E = E->next()) {
+ for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) {
if (bake_step_function) {
- bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(baker.mesh_list.size()));
+ bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(mesh_list.size()));
}
pmc++;
- _plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material);
+ baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material);
}
if (bake_step_function) {
bake_step_function(pmc++, RTR("Finishing Plot"));
}
- _fixup_plot(0, 0, 0, 0, 0, &baker);
+ baker.end_bake();
//create the data for visual server
- PoolVector<int> data;
-
- data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest.
-
- {
- PoolVector<int>::Write w = data.write();
-
- uint32_t *w32 = (uint32_t *)w.ptr();
+ PoolVector<int> data = baker.create_gi_probe_data();
- w32[0] = 0; //version
- w32[1] = baker.cell_subdiv; //subdiv
- w32[2] = baker.axis_cell_size[0];
- w32[3] = baker.axis_cell_size[1];
- w32[4] = baker.axis_cell_size[2];
- w32[5] = baker.bake_cells.size();
- w32[6] = baker.leaf_voxel_count;
-
- int ofs = 16;
-
- for (int i = 0; i < baker.bake_cells.size(); i++) {
-
- for (int j = 0; j < 8; j++) {
- w32[ofs++] = baker.bake_cells[i].childs[j];
- }
-
- { //albedo
- uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
- rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
- rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
-
- w32[ofs++] = rgba;
- }
- { //emission
-
- Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]);
- float l = e.length();
- if (l > 0) {
- e.normalize();
- l = CLAMP(l / 8.0, 0, 1.0);
- }
-
- uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
- em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
- em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
- em |= uint32_t(CLAMP(l * 255, 0, 255));
-
- w32[ofs++] = em;
- }
-
- //w32[ofs++]=baker.bake_cells[i].used_sides;
- { //normal
-
- Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]);
- n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
- uint32_t norm = 0;
-
- norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
- norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
- norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
-
- w32[ofs++] = norm;
- }
-
- {
- uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535);
- uint16_t level = baker.bake_cells[i].level;
-
- w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
- }
+ if (p_create_visual_debug) {
+ MultiMeshInstance *mmi = memnew(MultiMeshInstance);
+ mmi->set_multimesh(baker.create_debug_multimesh());
+ add_child(mmi);
+#ifdef TOOLS_ENABLED
+ if (get_tree()->get_edited_scene_root() == this) {
+ mmi->set_owner(this);
+ } else {
+ mmi->set_owner(get_owner());
}
- }
+#else
+ mmi->set_owner(get_owner());
+#endif
- if (p_create_visual_debug) {
- _create_debug_mesh(&baker);
} else {
Ref<GIProbeData> probe_data = get_probe_data();
@@ -1290,7 +455,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
probe_data.instance();
probe_data->set_bounds(AABB(-extents, extents * 2.0));
- probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]);
+ probe_data->set_cell_size(baker.get_cell_size());
probe_data->set_dynamic_data(data);
probe_data->set_dynamic_range(dynamic_range);
probe_data->set_energy(energy);
@@ -1299,7 +464,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
probe_data->set_propagation(propagation);
probe_data->set_interior(interior);
probe_data->set_compress(compress);
- probe_data->set_to_cell_xform(baker.to_cell_space);
+ probe_data->set_to_cell_xform(baker.get_to_cell_space_xform());
set_probe_data(probe_data);
}
@@ -1309,135 +474,6 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
}
}
-void GIProbe::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker) {
-
- if (p_level == p_baker->cell_subdiv - 1) {
-
- Vector3 center = p_aabb.position + p_aabb.size * 0.5;
- Transform xform;
- xform.origin = center;
- xform.basis.scale(p_aabb.size * 0.5);
- p_multimesh->set_instance_transform(idx, xform);
- Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]);
- //Color col = Color(p_baker->bake_cells[p_idx].emission[0], p_baker->bake_cells[p_idx].emission[1], p_baker->bake_cells[p_idx].emission[2]);
- p_multimesh->set_instance_color(idx, col);
-
- idx++;
-
- } else {
-
- for (int i = 0; i < 8; i++) {
-
- if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY)
- continue;
-
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
-
- if (i & 1)
- aabb.position.x += aabb.size.x;
- if (i & 2)
- aabb.position.y += aabb.size.y;
- if (i & 4)
- aabb.position.z += aabb.size.z;
-
- _debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker);
- }
- }
-}
-
-void GIProbe::_create_debug_mesh(Baker *p_baker) {
-
- Ref<MultiMesh> mm;
- mm.instance();
-
- mm->set_transform_format(MultiMesh::TRANSFORM_3D);
- mm->set_color_format(MultiMesh::COLOR_8BIT);
- print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count));
- mm->set_instance_count(p_baker->leaf_voxel_count);
-
- Ref<ArrayMesh> mesh;
- mesh.instance();
-
- {
- Array arr;
- arr.resize(Mesh::ARRAY_MAX);
-
- PoolVector<Vector3> vertices;
- PoolVector<Color> colors;
-
- int vtx_idx = 0;
-#define ADD_VTX(m_idx) \
- ; \
- vertices.push_back(face_points[m_idx]); \
- colors.push_back(Color(1, 1, 1, 1)); \
- vtx_idx++;
-
- for (int i = 0; i < 6; i++) {
-
- Vector3 face_points[4];
-
- for (int j = 0; j < 4; j++) {
-
- float v[3];
- v[0] = 1.0;
- v[1] = 1 - 2 * ((j >> 1) & 1);
- v[2] = v[1] * (1 - 2 * (j & 1));
-
- for (int k = 0; k < 3; k++) {
-
- if (i < 3)
- face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
- else
- face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
- }
- }
-
- //tri 1
- ADD_VTX(0);
- ADD_VTX(1);
- ADD_VTX(2);
- //tri 2
- ADD_VTX(2);
- ADD_VTX(3);
- ADD_VTX(0);
- }
-
- arr[Mesh::ARRAY_VERTEX] = vertices;
- arr[Mesh::ARRAY_COLOR] = colors;
- mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
- }
-
- {
- Ref<SpatialMaterial> fsm;
- fsm.instance();
- fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
- fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
- fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
- fsm->set_albedo(Color(1, 1, 1, 1));
-
- mesh->surface_set_material(0, fsm);
- }
-
- mm->set_mesh(mesh);
-
- int idx = 0;
- _debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker);
-
- MultiMeshInstance *mmi = memnew(MultiMeshInstance);
- mmi->set_multimesh(mm);
- add_child(mmi);
-#ifdef TOOLS_ENABLED
- if (get_tree()->get_edited_scene_root() == this) {
- mmi->set_owner(this);
- } else {
- mmi->set_owner(get_owner());
- }
-#else
- mmi->set_owner(get_owner());
-#endif
-}
-
void GIProbe::_debug_bake() {
bake(NULL, true);
@@ -1516,8 +552,6 @@ GIProbe::GIProbe() {
normal_bias = 0.0;
propagation = 0.7;
extents = Vector3(10, 10, 10);
- color_scan_cell_width = 4;
- bake_texture_size = 128;
interior = false;
compress = false;