diff options
Diffstat (limited to 'scene/3d/gi_probe.cpp')
-rw-r--r-- | scene/3d/gi_probe.cpp | 1028 |
1 files changed, 31 insertions, 997 deletions
diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp index 1f2b43165e..9c811a74bf 100644 --- a/scene/3d/gi_probe.cpp +++ b/scene/3d/gi_probe.cpp @@ -30,6 +30,7 @@ #include "gi_probe.h" #include "mesh_instance.h" +#include "voxel_light_baker.h" void GIProbeData::set_bounds(const AABB &p_bounds) { @@ -329,754 +330,7 @@ bool GIProbe::is_compressed() const { return compress; } -#include "math.h" - -#define FINDMINMAX(x0, x1, x2, min, max) \ - min = max = x0; \ - if (x1 < min) min = x1; \ - if (x1 > max) max = x1; \ - if (x2 < min) min = x2; \ - if (x2 > max) max = x2; - -static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { - int q; - Vector3 vmin, vmax; - for (q = 0; q <= 2; q++) { - if (normal[q] > 0.0f) { - vmin[q] = -maxbox[q]; - vmax[q] = maxbox[q]; - } else { - vmin[q] = maxbox[q]; - vmax[q] = -maxbox[q]; - } - } - if (normal.dot(vmin) + d > 0.0f) return false; - if (normal.dot(vmax) + d >= 0.0f) return true; - - return false; -} - -/*======================== X-tests ========================*/ -#define AXISTEST_X01(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p2 = a * v2.y - b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_X2(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p1 = a * v1.y - b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Y-tests ========================*/ -#define AXISTEST_Y02(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p2 = -a * v2.x + b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Y1(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p1 = -a * v1.x + b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - - /*======================== Z-tests ========================*/ - -#define AXISTEST_Z12(a, b, fa, fb) \ - p1 = a * v1.x - b * v1.y; \ - p2 = a * v2.x - b * v2.y; \ - if (p2 < p1) { \ - min = p2; \ - max = p1; \ - } else { \ - min = p1; \ - max = p2; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Z0(a, b, fa, fb) \ - p0 = a * v0.x - b * v0.y; \ - p1 = a * v1.x - b * v1.y; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { - - /* use separating axis theorem to test overlap between triangle and box */ - /* need to test for overlap in these directions: */ - /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ - /* we do not even need to test these) */ - /* 2) normal of the triangle */ - /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ - /* this gives 3x3=9 more tests */ - Vector3 v0, v1, v2; - float min, max, d, p0, p1, p2, rad, fex, fey, fez; - Vector3 normal, e0, e1, e2; - - /* This is the fastest branch on Sun */ - /* move everything so that the boxcenter is in (0,0,0) */ - - v0 = triverts[0] - boxcenter; - v1 = triverts[1] - boxcenter; - v2 = triverts[2] - boxcenter; - - /* compute triangle edges */ - e0 = v1 - v0; /* tri edge 0 */ - e1 = v2 - v1; /* tri edge 1 */ - e2 = v0 - v2; /* tri edge 2 */ - - /* Bullet 3: */ - /* test the 9 tests first (this was faster) */ - fex = Math::abs(e0.x); - fey = Math::abs(e0.y); - fez = Math::abs(e0.z); - AXISTEST_X01(e0.z, e0.y, fez, fey); - AXISTEST_Y02(e0.z, e0.x, fez, fex); - AXISTEST_Z12(e0.y, e0.x, fey, fex); - - fex = Math::abs(e1.x); - fey = Math::abs(e1.y); - fez = Math::abs(e1.z); - AXISTEST_X01(e1.z, e1.y, fez, fey); - AXISTEST_Y02(e1.z, e1.x, fez, fex); - AXISTEST_Z0(e1.y, e1.x, fey, fex); - - fex = Math::abs(e2.x); - fey = Math::abs(e2.y); - fez = Math::abs(e2.z); - AXISTEST_X2(e2.z, e2.y, fez, fey); - AXISTEST_Y1(e2.z, e2.x, fez, fex); - AXISTEST_Z12(e2.y, e2.x, fey, fex); - - /* Bullet 1: */ - /* first test overlap in the {x,y,z}-directions */ - /* find min, max of the triangle each direction, and test for overlap in */ - /* that direction -- this is equivalent to testing a minimal AABB around */ - /* the triangle against the AABB */ - - /* test in X-direction */ - FINDMINMAX(v0.x, v1.x, v2.x, min, max); - if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; - - /* test in Y-direction */ - FINDMINMAX(v0.y, v1.y, v2.y, min, max); - if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; - - /* test in Z-direction */ - FINDMINMAX(v0.z, v1.z, v2.z, min, max); - if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; - - /* Bullet 2: */ - /* test if the box intersects the plane of the triangle */ - /* compute plane equation of triangle: normal*x+d=0 */ - normal = e0.cross(e1); - d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ - if (!planeBoxOverlap(normal, d, boxhalfsize)) return false; - - return true; /* box and triangle overlaps */ -} - -static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) { - - if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) - return p_uv[0]; - if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) - return p_uv[1]; - if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) - return p_uv[2]; - - Vector3 v0 = p_vtx[1] - p_vtx[0]; - Vector3 v1 = p_vtx[2] - p_vtx[0]; - Vector3 v2 = p_pos - p_vtx[0]; - - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - if (denom == 0) - return p_uv[0]; - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - - return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; -} - -void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const AABB &p_aabb, Baker *p_baker) { - - if (p_level == p_baker->cell_subdiv - 1) { - //plot the face by guessing it's albedo and emission value - - //find best axis to map to, for scanning values - int closest_axis = 0; - float closest_dot = 0; - - Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 normal = plane.normal; - - for (int i = 0; i < 3; i++) { - - Vector3 axis; - axis[i] = 1.0; - float dot = ABS(normal.dot(axis)); - if (i == 0 || dot > closest_dot) { - closest_axis = i; - closest_dot = dot; - } - } - - Vector3 axis; - axis[closest_axis] = 1.0; - Vector3 t1; - t1[(closest_axis + 1) % 3] = 1.0; - Vector3 t2; - t2[(closest_axis + 2) % 3] = 1.0; - - t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); - t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); - - Color albedo_accum; - Color emission_accum; - Vector3 normal_accum; - - float alpha = 0.0; - - //map to a grid average in the best axis for this face - for (int i = 0; i < color_scan_cell_width; i++) { - - Vector3 ofs_i = float(i) * t1; - - for (int j = 0; j < color_scan_cell_width; j++) { - - Vector3 ofs_j = float(j) * t2; - - Vector3 from = p_aabb.position + ofs_i + ofs_j; - Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; - Vector3 half = (to - from) * 0.5; - - //is in this cell? - if (!fast_tri_box_overlap(from + half, half, p_vtx)) { - continue; //face does not span this cell - } - - //go from -size to +size*2 to avoid skipping collisions - Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; - Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; - - if (normal.dot(ray_from - ray_to) < 0) { - SWAP(ray_from, ray_to); - } - - Vector3 intersection; - - if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { - if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { - intersection = plane.project(ray_from); - } else { - - intersection = plane.project(ray_to); - } - } - - intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); - - Vector2 uv = get_uv(intersection, p_vtx, p_uv); - - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - albedo_accum.r += p_material.albedo[ofs].r; - albedo_accum.g += p_material.albedo[ofs].g; - albedo_accum.b += p_material.albedo[ofs].b; - albedo_accum.a += p_material.albedo[ofs].a; - - emission_accum.r += p_material.emission[ofs].r; - emission_accum.g += p_material.emission[ofs].g; - emission_accum.b += p_material.emission[ofs].b; - - normal_accum += normal; - - alpha += 1.0; - } - } - - if (alpha == 0) { - //could not in any way get texture information.. so use closest point to center - - Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); - - Vector2 uv = get_uv(inters, p_vtx, p_uv); - - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - - alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); - - albedo_accum.r = p_material.albedo[ofs].r * alpha; - albedo_accum.g = p_material.albedo[ofs].g * alpha; - albedo_accum.b = p_material.albedo[ofs].b * alpha; - albedo_accum.a = p_material.albedo[ofs].a * alpha; - - emission_accum.r = p_material.emission[ofs].r * alpha; - emission_accum.g = p_material.emission[ofs].g * alpha; - emission_accum.b = p_material.emission[ofs].b * alpha; - - normal_accum *= alpha; - - } else { - - float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); - alpha *= accdiv; - - albedo_accum.r *= accdiv; - albedo_accum.g *= accdiv; - albedo_accum.b *= accdiv; - albedo_accum.a *= accdiv; - - emission_accum.r *= accdiv; - emission_accum.g *= accdiv; - emission_accum.b *= accdiv; - - normal_accum *= accdiv; - } - - //put this temporarily here, corrected in a later step - p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r; - p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g; - p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b; - p_baker->bake_cells[p_idx].emission[0] += emission_accum.r; - p_baker->bake_cells[p_idx].emission[1] += emission_accum.g; - p_baker->bake_cells[p_idx].emission[2] += emission_accum.b; - p_baker->bake_cells[p_idx].normal[0] += normal_accum.x; - p_baker->bake_cells[p_idx].normal[1] += normal_accum.y; - p_baker->bake_cells[p_idx].normal[2] += normal_accum.z; - p_baker->bake_cells[p_idx].alpha += alpha; - - } else { - //go down - - int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) { - aabb.position.x += aabb.size.x; - nx += half; - } - if (i & 2) { - aabb.position.y += aabb.size.y; - ny += half; - } - if (i & 4) { - aabb.position.z += aabb.size.z; - nz += half; - } - //make sure to not plot beyond limits - if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2]) - continue; - - { - AABB test_aabb = aabb; - //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time - Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test - - if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { - //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { - //does not fit in child, go on - continue; - } - } - - if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) { - //sub cell must be created - - uint32_t child_idx = p_baker->bake_cells.size(); - p_baker->bake_cells[p_idx].childs[i] = child_idx; - p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1); - p_baker->bake_cells[child_idx].level = p_level + 1; - } - - _plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker); - } - } -} - -void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) { - - if (p_level == p_baker->cell_subdiv - 1) { - - p_baker->leaf_voxel_count++; - float alpha = p_baker->bake_cells[p_idx].alpha; - - p_baker->bake_cells[p_idx].albedo[0] /= alpha; - p_baker->bake_cells[p_idx].albedo[1] /= alpha; - p_baker->bake_cells[p_idx].albedo[2] /= alpha; - - //transfer emission to light - p_baker->bake_cells[p_idx].emission[0] /= alpha; - p_baker->bake_cells[p_idx].emission[1] /= alpha; - p_baker->bake_cells[p_idx].emission[2] /= alpha; - - p_baker->bake_cells[p_idx].normal[0] /= alpha; - p_baker->bake_cells[p_idx].normal[1] /= alpha; - p_baker->bake_cells[p_idx].normal[2] /= alpha; - - Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]); - if (n.length() < 0.01) { - //too much fight over normal, zero it - p_baker->bake_cells[p_idx].normal[0] = 0; - p_baker->bake_cells[p_idx].normal[1] = 0; - p_baker->bake_cells[p_idx].normal[2] = 0; - } else { - n.normalize(); - p_baker->bake_cells[p_idx].normal[0] = n.x; - p_baker->bake_cells[p_idx].normal[1] = n.y; - p_baker->bake_cells[p_idx].normal[2] = n.z; - } - - p_baker->bake_cells[p_idx].alpha = 1.0; - - /* - //remove neighbours from used sides - - for(int n=0;n<6;n++) { - - int ofs[3]={0,0,0}; - - ofs[n/2]=(n&1)?1:-1; - - //convert to x,y,z on this level - int x=p_x; - int y=p_y; - int z=p_z; - - x+=ofs[0]; - y+=ofs[1]; - z+=ofs[2]; - - int ofs_x=0; - int ofs_y=0; - int ofs_z=0; - int size = 1<<p_level; - int half=size/2; - - - if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) { - //neighbour is out, can't use it - p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n)); - continue; - } - - uint32_t neighbour=0; - - for(int i=0;i<p_baker->cell_subdiv-1;i++) { - - Baker::Cell *bc = &p_baker->bake_cells[neighbour]; - - int child = 0; - if (x >= ofs_x + half) { - child|=1; - ofs_x+=half; - } - if (y >= ofs_y + half) { - child|=2; - ofs_y+=half; - } - if (z >= ofs_z + half) { - child|=4; - ofs_z+=half; - } - - neighbour = bc->childs[child]; - if (neighbour==Baker::CHILD_EMPTY) { - break; - } - - half>>=1; - } - - if (neighbour!=Baker::CHILD_EMPTY) { - p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n)); - } - } - */ - } else { - - //go down - - float alpha_average = 0; - int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - uint32_t child = p_baker->bake_cells[p_idx].childs[i]; - - if (child == Baker::CHILD_EMPTY) - continue; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) - nx += half; - if (i & 2) - ny += half; - if (i & 4) - nz += half; - - _fixup_plot(child, p_level + 1, nx, ny, nz, p_baker); - alpha_average += p_baker->bake_cells[child].alpha; - } - - p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0; - p_baker->bake_cells[p_idx].emission[0] = 0; - p_baker->bake_cells[p_idx].emission[1] = 0; - p_baker->bake_cells[p_idx].emission[2] = 0; - p_baker->bake_cells[p_idx].normal[0] = 0; - p_baker->bake_cells[p_idx].normal[1] = 0; - p_baker->bake_cells[p_idx].normal[2] = 0; - p_baker->bake_cells[p_idx].albedo[0] = 0; - p_baker->bake_cells[p_idx].albedo[1] = 0; - p_baker->bake_cells[p_idx].albedo[2] = 0; - } -} - -Vector<Color> GIProbe::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { - - Vector<Color> ret; - - if (p_image.is_null() || p_image->empty()) { - - ret.resize(bake_texture_size * bake_texture_size); - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - ret[i] = p_color_add; - } - - return ret; - } - p_image = p_image->duplicate(); - - if (p_image->is_compressed()) { - print_line("DECOMPRESSING!!!!"); - - p_image->decompress(); - } - p_image->convert(Image::FORMAT_RGBA8); - p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); - - PoolVector<uint8_t>::Read r = p_image->get_data().read(); - ret.resize(bake_texture_size * bake_texture_size); - - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - Color c; - c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; - c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; - c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; - - c.a = r[i * 4 + 3] / 255.0; - - ret[i] = c; - } - - return ret; -} - -GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material, Baker *p_baker) { - - //this way of obtaining materials is inaccurate and also does not support some compressed formats very well - Ref<SpatialMaterial> mat = p_material; - - Ref<Material> material = mat; //hack for now - - if (p_baker->material_cache.has(material)) { - return p_baker->material_cache[material]; - } - - Baker::MaterialCache mc; - - if (mat.is_valid()) { - - Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO); - - Ref<Image> img_albedo; - if (albedo_tex.is_valid()) { - - img_albedo = albedo_tex->get_data(); - mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative - } else { - mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive - } - - Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION); - - Color emission_col = mat->get_emission(); - float emission_energy = mat->get_emission_energy(); - - Ref<Image> img_emission; - - if (emission_tex.is_valid()) { - - img_emission = emission_tex->get_data(); - } - - if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) { - mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); - } else { - mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); - } - - } else { - Ref<Image> empty; - - mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); - mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); - } - - p_baker->material_cache[p_material] = mc; - return mc; -} - -void GIProbe::_plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { - - for (int i = 0; i < p_mesh->get_surface_count(); i++) { - - if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) - continue; //only triangles - - Ref<Material> src_material; - - if (p_override_material.is_valid()) { - src_material = p_override_material; - } else if (i < p_materials.size() && p_materials[i].is_valid()) { - src_material = p_materials[i]; - } else { - src_material = p_mesh->surface_get_material(i); - } - Baker::MaterialCache material = _get_material_cache(src_material, p_baker); - - Array a = p_mesh->surface_get_arrays(i); - - PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; - PoolVector<Vector2>::Read uvr; - PoolVector<int> index = a[Mesh::ARRAY_INDEX]; - - bool read_uv = false; - - if (uv.size()) { - - uvr = uv.read(); - read_uv = true; - } - - if (index.size()) { - - int facecount = index.size() / 3; - PoolVector<int>::Read ir = index.read(); - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[ir[j * 3 + k]]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) - continue; - //plot - _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); - } - - } else { - - int facecount = vertices.size() / 3; - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[j * 3 + k]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[j * 3 + k]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) - continue; - //plot face - _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); - } - } - } -} - -void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { +void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) { MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node); if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) { @@ -1088,14 +342,14 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { - Baker::PlotMesh pm; + PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; for (int i = 0; i < mesh->get_surface_count(); i++) { pm.instance_materials.push_back(mi->get_surface_material(i)); } pm.override_material = mi->get_material_override(); - p_baker->mesh_list.push_back(pm); + plot_meshes.push_back(pm); } } } @@ -1118,10 +372,10 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf); if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { - Baker::PlotMesh pm; + PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; - p_baker->mesh_list.push_back(pm); + plot_meshes.push_back(pm); } } } @@ -1133,7 +387,7 @@ void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { if (!child->get_owner()) continue; //maybe a helper - _find_meshes(child, p_baker); + _find_meshes(child, plot_meshes); } } @@ -1143,145 +397,56 @@ GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL; void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { - Baker baker; - static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 }; - baker.cell_subdiv = subdiv_value[subdiv]; - baker.bake_cells.resize(1); - - //find out the actual real bounds, power of 2, which gets the highest subdivision - baker.po2_bounds = AABB(-extents, extents * 2.0); - int longest_axis = baker.po2_bounds.get_longest_axis_index(); - baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1)); - baker.leaf_voxel_count = 0; - - for (int i = 0; i < 3; i++) { - - if (i == longest_axis) - continue; + VoxelLightBaker baker; - baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis]; - float axis_size = baker.po2_bounds.size[longest_axis]; + baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0)); - //shrink until fit subdiv - while (axis_size / 2.0 >= baker.po2_bounds.size[i]) { - axis_size /= 2.0; - baker.axis_cell_size[i] >>= 1; - } - - baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis]; - } - - Transform to_bounds; - to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis])); - to_bounds.origin = baker.po2_bounds.position; - - Transform to_grid; - to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis])); + List<PlotMesh> mesh_list; - baker.to_cell_space = to_grid * to_bounds.affine_inverse(); - - _find_meshes(p_from_node ? p_from_node : get_parent(), &baker); + _find_meshes(p_from_node ? p_from_node : get_parent(), mesh_list); if (bake_begin_function) { - bake_begin_function(baker.mesh_list.size() + 1); + bake_begin_function(mesh_list.size() + 1); } int pmc = 0; - for (List<Baker::PlotMesh>::Element *E = baker.mesh_list.front(); E; E = E->next()) { + for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { if (bake_step_function) { - bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(baker.mesh_list.size())); + bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(mesh_list.size())); } pmc++; - _plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material); + baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material); } if (bake_step_function) { bake_step_function(pmc++, RTR("Finishing Plot")); } - _fixup_plot(0, 0, 0, 0, 0, &baker); + baker.end_bake(); //create the data for visual server - PoolVector<int> data; - - data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest. - - { - PoolVector<int>::Write w = data.write(); - - uint32_t *w32 = (uint32_t *)w.ptr(); + PoolVector<int> data = baker.create_gi_probe_data(); - w32[0] = 0; //version - w32[1] = baker.cell_subdiv; //subdiv - w32[2] = baker.axis_cell_size[0]; - w32[3] = baker.axis_cell_size[1]; - w32[4] = baker.axis_cell_size[2]; - w32[5] = baker.bake_cells.size(); - w32[6] = baker.leaf_voxel_count; - - int ofs = 16; - - for (int i = 0; i < baker.bake_cells.size(); i++) { - - for (int j = 0; j < 8; j++) { - w32[ofs++] = baker.bake_cells[i].childs[j]; - } - - { //albedo - uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; - rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; - rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; - - w32[ofs++] = rgba; - } - { //emission - - Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]); - float l = e.length(); - if (l > 0) { - e.normalize(); - l = CLAMP(l / 8.0, 0, 1.0); - } - - uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; - em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; - em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; - em |= uint32_t(CLAMP(l * 255, 0, 255)); - - w32[ofs++] = em; - } - - //w32[ofs++]=baker.bake_cells[i].used_sides; - { //normal - - Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]); - n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); - uint32_t norm = 0; - - norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; - norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; - norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; - - w32[ofs++] = norm; - } - - { - uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535); - uint16_t level = baker.bake_cells[i].level; - - w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); - } + if (p_create_visual_debug) { + MultiMeshInstance *mmi = memnew(MultiMeshInstance); + mmi->set_multimesh(baker.create_debug_multimesh()); + add_child(mmi); +#ifdef TOOLS_ENABLED + if (get_tree()->get_edited_scene_root() == this) { + mmi->set_owner(this); + } else { + mmi->set_owner(get_owner()); } - } +#else + mmi->set_owner(get_owner()); +#endif - if (p_create_visual_debug) { - _create_debug_mesh(&baker); } else { Ref<GIProbeData> probe_data = get_probe_data(); @@ -1290,7 +455,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { probe_data.instance(); probe_data->set_bounds(AABB(-extents, extents * 2.0)); - probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]); + probe_data->set_cell_size(baker.get_cell_size()); probe_data->set_dynamic_data(data); probe_data->set_dynamic_range(dynamic_range); probe_data->set_energy(energy); @@ -1299,7 +464,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { probe_data->set_propagation(propagation); probe_data->set_interior(interior); probe_data->set_compress(compress); - probe_data->set_to_cell_xform(baker.to_cell_space); + probe_data->set_to_cell_xform(baker.get_to_cell_space_xform()); set_probe_data(probe_data); } @@ -1309,135 +474,6 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { } } -void GIProbe::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker) { - - if (p_level == p_baker->cell_subdiv - 1) { - - Vector3 center = p_aabb.position + p_aabb.size * 0.5; - Transform xform; - xform.origin = center; - xform.basis.scale(p_aabb.size * 0.5); - p_multimesh->set_instance_transform(idx, xform); - Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]); - //Color col = Color(p_baker->bake_cells[p_idx].emission[0], p_baker->bake_cells[p_idx].emission[1], p_baker->bake_cells[p_idx].emission[2]); - p_multimesh->set_instance_color(idx, col); - - idx++; - - } else { - - for (int i = 0; i < 8; i++) { - - if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) - continue; - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - if (i & 1) - aabb.position.x += aabb.size.x; - if (i & 2) - aabb.position.y += aabb.size.y; - if (i & 4) - aabb.position.z += aabb.size.z; - - _debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker); - } - } -} - -void GIProbe::_create_debug_mesh(Baker *p_baker) { - - Ref<MultiMesh> mm; - mm.instance(); - - mm->set_transform_format(MultiMesh::TRANSFORM_3D); - mm->set_color_format(MultiMesh::COLOR_8BIT); - print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count)); - mm->set_instance_count(p_baker->leaf_voxel_count); - - Ref<ArrayMesh> mesh; - mesh.instance(); - - { - Array arr; - arr.resize(Mesh::ARRAY_MAX); - - PoolVector<Vector3> vertices; - PoolVector<Color> colors; - - int vtx_idx = 0; -#define ADD_VTX(m_idx) \ - ; \ - vertices.push_back(face_points[m_idx]); \ - colors.push_back(Color(1, 1, 1, 1)); \ - vtx_idx++; - - for (int i = 0; i < 6; i++) { - - Vector3 face_points[4]; - - for (int j = 0; j < 4; j++) { - - float v[3]; - v[0] = 1.0; - v[1] = 1 - 2 * ((j >> 1) & 1); - v[2] = v[1] * (1 - 2 * (j & 1)); - - for (int k = 0; k < 3; k++) { - - if (i < 3) - face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); - else - face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); - } - } - - //tri 1 - ADD_VTX(0); - ADD_VTX(1); - ADD_VTX(2); - //tri 2 - ADD_VTX(2); - ADD_VTX(3); - ADD_VTX(0); - } - - arr[Mesh::ARRAY_VERTEX] = vertices; - arr[Mesh::ARRAY_COLOR] = colors; - mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); - } - - { - Ref<SpatialMaterial> fsm; - fsm.instance(); - fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); - fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); - fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true); - fsm->set_albedo(Color(1, 1, 1, 1)); - - mesh->surface_set_material(0, fsm); - } - - mm->set_mesh(mesh); - - int idx = 0; - _debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker); - - MultiMeshInstance *mmi = memnew(MultiMeshInstance); - mmi->set_multimesh(mm); - add_child(mmi); -#ifdef TOOLS_ENABLED - if (get_tree()->get_edited_scene_root() == this) { - mmi->set_owner(this); - } else { - mmi->set_owner(get_owner()); - } -#else - mmi->set_owner(get_owner()); -#endif -} - void GIProbe::_debug_bake() { bake(NULL, true); @@ -1516,8 +552,6 @@ GIProbe::GIProbe() { normal_bias = 0.0; propagation = 0.7; extents = Vector3(10, 10, 10); - color_scan_cell_width = 4; - bake_texture_size = 128; interior = false; compress = false; |