diff options
Diffstat (limited to 'scene/3d/cpu_particles_3d.cpp')
-rw-r--r-- | scene/3d/cpu_particles_3d.cpp | 138 |
1 files changed, 69 insertions, 69 deletions
diff --git a/scene/3d/cpu_particles_3d.cpp b/scene/3d/cpu_particles_3d.cpp index 60f8ad8f36..56e013a6a0 100644 --- a/scene/3d/cpu_particles_3d.cpp +++ b/scene/3d/cpu_particles_3d.cpp @@ -91,11 +91,11 @@ void CPUParticles3D::set_pre_process_time(float p_time) { pre_process_time = p_time; } -void CPUParticles3D::set_explosiveness_ratio(float p_ratio) { +void CPUParticles3D::set_explosiveness_ratio(real_t p_ratio) { explosiveness_ratio = p_ratio; } -void CPUParticles3D::set_randomness_ratio(float p_ratio) { +void CPUParticles3D::set_randomness_ratio(real_t p_ratio) { randomness_ratio = p_ratio; } @@ -107,7 +107,7 @@ void CPUParticles3D::set_use_local_coordinates(bool p_enable) { local_coords = p_enable; } -void CPUParticles3D::set_speed_scale(float p_scale) { +void CPUParticles3D::set_speed_scale(real_t p_scale) { speed_scale = p_scale; } @@ -131,11 +131,11 @@ float CPUParticles3D::get_pre_process_time() const { return pre_process_time; } -float CPUParticles3D::get_explosiveness_ratio() const { +real_t CPUParticles3D::get_explosiveness_ratio() const { return explosiveness_ratio; } -float CPUParticles3D::get_randomness_ratio() const { +real_t CPUParticles3D::get_randomness_ratio() const { return randomness_ratio; } @@ -147,7 +147,7 @@ bool CPUParticles3D::get_use_local_coordinates() const { return local_coords; } -float CPUParticles3D::get_speed_scale() const { +real_t CPUParticles3D::get_speed_scale() const { return speed_scale; } @@ -247,47 +247,47 @@ Vector3 CPUParticles3D::get_direction() const { return direction; } -void CPUParticles3D::set_spread(float p_spread) { +void CPUParticles3D::set_spread(real_t p_spread) { spread = p_spread; } -float CPUParticles3D::get_spread() const { +real_t CPUParticles3D::get_spread() const { return spread; } -void CPUParticles3D::set_flatness(float p_flatness) { +void CPUParticles3D::set_flatness(real_t p_flatness) { flatness = p_flatness; } -float CPUParticles3D::get_flatness() const { +real_t CPUParticles3D::get_flatness() const { return flatness; } -void CPUParticles3D::set_param(Parameter p_param, float p_value) { +void CPUParticles3D::set_param(Parameter p_param, real_t p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); parameters[p_param] = p_value; } -float CPUParticles3D::get_param(Parameter p_param) const { +real_t CPUParticles3D::get_param(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return parameters[p_param]; } -void CPUParticles3D::set_param_randomness(Parameter p_param, float p_value) { +void CPUParticles3D::set_param_randomness(Parameter p_param, real_t p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); randomness[p_param] = p_value; } -float CPUParticles3D::get_param_randomness(Parameter p_param) const { +real_t CPUParticles3D::get_param_randomness(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return randomness[p_param]; } -static void _adjust_curve_range(const Ref<Curve> &p_curve, float p_min, float p_max) { +static void _adjust_curve_range(const Ref<Curve> &p_curve, real_t p_min, real_t p_max) { Ref<Curve> curve = p_curve; if (!curve.is_valid()) { return; @@ -381,7 +381,7 @@ void CPUParticles3D::set_emission_shape(EmissionShape p_shape) { emission_shape = p_shape; } -void CPUParticles3D::set_emission_sphere_radius(float p_radius) { +void CPUParticles3D::set_emission_sphere_radius(real_t p_radius) { emission_sphere_radius = p_radius; } @@ -405,19 +405,19 @@ void CPUParticles3D::set_emission_ring_axis(Vector3 p_axis) { emission_ring_axis = p_axis; } -void CPUParticles3D::set_emission_ring_height(float p_height) { +void CPUParticles3D::set_emission_ring_height(real_t p_height) { emission_ring_height = p_height; } -void CPUParticles3D::set_emission_ring_radius(float p_radius) { +void CPUParticles3D::set_emission_ring_radius(real_t p_radius) { emission_ring_radius = p_radius; } -void CPUParticles3D::set_emission_ring_inner_radius(float p_radius) { +void CPUParticles3D::set_emission_ring_inner_radius(real_t p_radius) { emission_ring_inner_radius = p_radius; } -float CPUParticles3D::get_emission_sphere_radius() const { +real_t CPUParticles3D::get_emission_sphere_radius() const { return emission_sphere_radius; } @@ -441,15 +441,15 @@ Vector3 CPUParticles3D::get_emission_ring_axis() const { return emission_ring_axis; } -float CPUParticles3D::get_emission_ring_height() const { +real_t CPUParticles3D::get_emission_ring_height() const { return emission_ring_height; } -float CPUParticles3D::get_emission_ring_radius() const { +real_t CPUParticles3D::get_emission_ring_radius() const { return emission_ring_radius; } -float CPUParticles3D::get_emission_ring_inner_radius() const { +real_t CPUParticles3D::get_emission_ring_inner_radius() const { return emission_ring_inner_radius; } @@ -498,7 +498,7 @@ static uint32_t idhash(uint32_t x) { return x; } -static float rand_from_seed(uint32_t &seed) { +static real_t rand_from_seed(uint32_t &seed) { int k; int s = int(seed); if (s == 0) { @@ -510,7 +510,7 @@ static float rand_from_seed(uint32_t &seed) { s += 2147483647; } seed = uint32_t(s); - return float(seed % uint32_t(65536)) / 65535.0; + return (seed % uint32_t(65536)) / 65535.0; } void CPUParticles3D::_update_internal() { @@ -627,7 +627,7 @@ void CPUParticles3D::_particles_process(float p_delta) { // The phase is a ratio between 0 (birth) and 1 (end of life) for each particle. // While we use time in tests later on, for randomness we use the phase as done in the // original shader code, and we later multiply by lifetime to get the time. - float restart_phase = float(i) / float(pcount); + real_t restart_phase = real_t(i) / real_t(pcount); if (randomness_ratio > 0.0) { uint32_t seed = cycle; @@ -636,8 +636,8 @@ void CPUParticles3D::_particles_process(float p_delta) { } seed *= uint32_t(pcount); seed += uint32_t(i); - float random = float(idhash(seed) % uint32_t(65536)) / 65536.0; - restart_phase += randomness_ratio * random * 1.0 / float(pcount); + real_t random = (idhash(seed) % uint32_t(65536)) / real_t(65536.0); + restart_phase += randomness_ratio * random * 1.0 / pcount; } restart_phase *= (1.0 - explosiveness_ratio); @@ -682,17 +682,17 @@ void CPUParticles3D::_particles_process(float p_delta) { } p.active = true; - /*float tex_linear_velocity = 0; + /*real_t tex_linear_velocity = 0; if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) { tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(0); }*/ - float tex_angle = 0.0; + real_t tex_angle = 0.0; if (curve_parameters[PARAM_ANGLE].is_valid()) { tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(tv); } - float tex_anim_offset = 0.0; + real_t tex_anim_offset = 0.0; if (curve_parameters[PARAM_ANGLE].is_valid()) { tex_anim_offset = curve_parameters[PARAM_ANGLE]->interpolate(tv); } @@ -705,26 +705,26 @@ void CPUParticles3D::_particles_process(float p_delta) { p.anim_offset_rand = Math::randf(); if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { - float angle1_rad = Math::atan2(direction.y, direction.x) + Math::deg2rad((Math::randf() * 2.0 - 1.0) * spread); + real_t angle1_rad = Math::atan2(direction.y, direction.x) + Math::deg2rad((Math::randf() * 2.0 - 1.0) * spread); Vector3 rot = Vector3(Math::cos(angle1_rad), Math::sin(angle1_rad), 0.0); - p.velocity = rot * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]); + p.velocity = rot * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp((real_t)1.0, real_t(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]); } else { //initiate velocity spread in 3D - float angle1_rad = Math::atan2(direction.x, direction.z) + Math::deg2rad((Math::randf() * 2.0 - 1.0) * spread); - float angle2_rad = Math::atan2(direction.y, Math::abs(direction.z)) + Math::deg2rad((Math::randf() * 2.0 - 1.0) * (1.0 - flatness) * spread); + real_t angle1_rad = Math::atan2(direction.x, direction.z) + Math::deg2rad((Math::randf() * 2.0 - 1.0) * spread); + real_t angle2_rad = Math::atan2(direction.y, Math::abs(direction.z)) + Math::deg2rad((Math::randf() * 2.0 - 1.0) * (1.0 - flatness) * spread); Vector3 direction_xz = Vector3(Math::sin(angle1_rad), 0, Math::cos(angle1_rad)); Vector3 direction_yz = Vector3(0, Math::sin(angle2_rad), Math::cos(angle2_rad)); direction_yz.z = direction_yz.z / MAX(0.0001, Math::sqrt(ABS(direction_yz.z))); //better uniform distribution Vector3 direction = Vector3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z); direction.normalize(); - p.velocity = direction * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]); + p.velocity = direction * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp((real_t)1.0, real_t(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]); } - float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]); + real_t base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp((real_t)1.0, p.angle_rand, randomness[PARAM_ANGLE]); p.custom[0] = Math::deg2rad(base_angle); //angle p.custom[1] = 0.0; //phase - p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]); //animation offset (0-1) + p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp((real_t)1.0, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]); //animation offset (0-1) p.transform = Transform3D(); p.time = 0; p.lifetime = lifetime * (1.0 - Math::randf() * lifetime_randomness); @@ -783,8 +783,8 @@ void CPUParticles3D::_particles_process(float p_delta) { } } break; case EMISSION_SHAPE_RING: { - float ring_random_angle = Math::randf() * 2.0 * Math_PI; - float ring_random_radius = Math::randf() * (emission_ring_radius - emission_ring_inner_radius) + emission_ring_inner_radius; + real_t ring_random_angle = Math::randf() * Math_TAU; + real_t ring_random_radius = Math::randf() * (emission_ring_radius - emission_ring_inner_radius) + emission_ring_inner_radius; Vector3 axis = emission_ring_axis.normalized(); Vector3 ortho_axis = Vector3(); if (axis == Vector3(1.0, 0.0, 0.0)) { @@ -824,53 +824,53 @@ void CPUParticles3D::_particles_process(float p_delta) { p.custom[1] = p.time / lifetime; tv = p.time / p.lifetime; - float tex_linear_velocity = 0.0; + real_t tex_linear_velocity = 0.0; if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) { tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(tv); } - float tex_orbit_velocity = 0.0; + real_t tex_orbit_velocity = 0.0; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) { tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->interpolate(tv); } } - float tex_angular_velocity = 0.0; + real_t tex_angular_velocity = 0.0; if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) { tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->interpolate(tv); } - float tex_linear_accel = 0.0; + real_t tex_linear_accel = 0.0; if (curve_parameters[PARAM_LINEAR_ACCEL].is_valid()) { tex_linear_accel = curve_parameters[PARAM_LINEAR_ACCEL]->interpolate(tv); } - float tex_tangential_accel = 0.0; + real_t tex_tangential_accel = 0.0; if (curve_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) { tex_tangential_accel = curve_parameters[PARAM_TANGENTIAL_ACCEL]->interpolate(tv); } - float tex_radial_accel = 0.0; + real_t tex_radial_accel = 0.0; if (curve_parameters[PARAM_RADIAL_ACCEL].is_valid()) { tex_radial_accel = curve_parameters[PARAM_RADIAL_ACCEL]->interpolate(tv); } - float tex_damping = 0.0; + real_t tex_damping = 0.0; if (curve_parameters[PARAM_DAMPING].is_valid()) { tex_damping = curve_parameters[PARAM_DAMPING]->interpolate(tv); } - float tex_angle = 0.0; + real_t tex_angle = 0.0; if (curve_parameters[PARAM_ANGLE].is_valid()) { tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(tv); } - float tex_anim_speed = 0.0; + real_t tex_anim_speed = 0.0; if (curve_parameters[PARAM_ANIM_SPEED].is_valid()) { tex_anim_speed = curve_parameters[PARAM_ANIM_SPEED]->interpolate(tv); } - float tex_anim_offset = 0.0; + real_t tex_anim_offset = 0.0; if (curve_parameters[PARAM_ANIM_OFFSET].is_valid()) { tex_anim_offset = curve_parameters[PARAM_ANIM_OFFSET]->interpolate(tv); } @@ -881,28 +881,28 @@ void CPUParticles3D::_particles_process(float p_delta) { position.z = 0.0; } //apply linear acceleration - force += p.velocity.length() > 0.0 ? p.velocity.normalized() * (parameters[PARAM_LINEAR_ACCEL] + tex_linear_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_LINEAR_ACCEL]) : Vector3(); + force += p.velocity.length() > 0.0 ? p.velocity.normalized() * (parameters[PARAM_LINEAR_ACCEL] + tex_linear_accel) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_LINEAR_ACCEL]) : Vector3(); //apply radial acceleration Vector3 org = emission_xform.origin; Vector3 diff = position - org; - force += diff.length() > 0.0 ? diff.normalized() * (parameters[PARAM_RADIAL_ACCEL] + tex_radial_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_RADIAL_ACCEL]) : Vector3(); + force += diff.length() > 0.0 ? diff.normalized() * (parameters[PARAM_RADIAL_ACCEL] + tex_radial_accel) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_RADIAL_ACCEL]) : Vector3(); //apply tangential acceleration; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { Vector2 yx = Vector2(diff.y, diff.x); Vector2 yx2 = (yx * Vector2(-1.0, 1.0)).normalized(); - force += yx.length() > 0.0 ? Vector3(yx2.x, yx2.y, 0.0) * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3(); + force += yx.length() > 0.0 ? Vector3(yx2.x, yx2.y, 0.0) * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3(); } else { Vector3 crossDiff = diff.normalized().cross(gravity.normalized()); - force += crossDiff.length() > 0.0 ? crossDiff.normalized() * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3(); + force += crossDiff.length() > 0.0 ? crossDiff.normalized() * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3(); } //apply attractor forces p.velocity += force * local_delta; //orbit velocity if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { - float orbit_amount = (parameters[PARAM_ORBIT_VELOCITY] + tex_orbit_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ORBIT_VELOCITY]); + real_t orbit_amount = (parameters[PARAM_ORBIT_VELOCITY] + tex_orbit_velocity) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_ORBIT_VELOCITY]); if (orbit_amount != 0.0) { - float ang = orbit_amount * local_delta * Math_TAU; + real_t ang = orbit_amount * local_delta * Math_TAU; // Not sure why the ParticlesMaterial code uses a clockwise rotation matrix, // but we use -ang here to reproduce its behavior. Transform2D rot = Transform2D(-ang, Vector2()); @@ -915,8 +915,8 @@ void CPUParticles3D::_particles_process(float p_delta) { p.velocity = p.velocity.normalized() * tex_linear_velocity; } if (parameters[PARAM_DAMPING] + tex_damping > 0.0) { - float v = p.velocity.length(); - float damp = (parameters[PARAM_DAMPING] + tex_damping) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_DAMPING]); + real_t v = p.velocity.length(); + real_t damp = (parameters[PARAM_DAMPING] + tex_damping) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_DAMPING]); v -= damp * local_delta; if (v < 0.0) { p.velocity = Vector3(); @@ -924,27 +924,27 @@ void CPUParticles3D::_particles_process(float p_delta) { p.velocity = p.velocity.normalized() * v; } } - float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]); - base_angle += p.custom[1] * lifetime * (parameters[PARAM_ANGULAR_VELOCITY] + tex_angular_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed) * 2.0f - 1.0f, randomness[PARAM_ANGULAR_VELOCITY]); + real_t base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp((real_t)1.0, p.angle_rand, randomness[PARAM_ANGLE]); + base_angle += p.custom[1] * lifetime * (parameters[PARAM_ANGULAR_VELOCITY] + tex_angular_velocity) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed) * 2.0f - 1.0f, randomness[PARAM_ANGULAR_VELOCITY]); p.custom[0] = Math::deg2rad(base_angle); //angle - p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]) + p.custom[1] * (parameters[PARAM_ANIM_SPEED] + tex_anim_speed) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ANIM_SPEED]); //angle + p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp((real_t)1.0, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]) + p.custom[1] * (parameters[PARAM_ANIM_SPEED] + tex_anim_speed) * Math::lerp((real_t)1.0, rand_from_seed(alt_seed), randomness[PARAM_ANIM_SPEED]); //angle } //apply color //apply hue rotation - float tex_scale = 1.0; + real_t tex_scale = 1.0; if (curve_parameters[PARAM_SCALE].is_valid()) { tex_scale = curve_parameters[PARAM_SCALE]->interpolate(tv); } - float tex_hue_variation = 0.0; + real_t tex_hue_variation = 0.0; if (curve_parameters[PARAM_HUE_VARIATION].is_valid()) { tex_hue_variation = curve_parameters[PARAM_HUE_VARIATION]->interpolate(tv); } - float hue_rot_angle = (parameters[PARAM_HUE_VARIATION] + tex_hue_variation) * Math_TAU * Math::lerp(1.0f, p.hue_rot_rand * 2.0f - 1.0f, randomness[PARAM_HUE_VARIATION]); - float hue_rot_c = Math::cos(hue_rot_angle); - float hue_rot_s = Math::sin(hue_rot_angle); + real_t hue_rot_angle = (parameters[PARAM_HUE_VARIATION] + tex_hue_variation) * Math_TAU * Math::lerp(1.0f, p.hue_rot_rand * 2.0f - 1.0f, randomness[PARAM_HUE_VARIATION]); + real_t hue_rot_c = Math::cos(hue_rot_angle); + real_t hue_rot_s = Math::sin(hue_rot_angle); Basis hue_rot_mat; { @@ -1013,9 +1013,9 @@ void CPUParticles3D::_particles_process(float p_delta) { } //scale by scale - float base_scale = tex_scale * Math::lerp(parameters[PARAM_SCALE], 1.0f, p.scale_rand * randomness[PARAM_SCALE]); - if (base_scale < 0.000001) { - base_scale = 0.000001; + real_t base_scale = tex_scale * Math::lerp(parameters[PARAM_SCALE], (real_t)1.0, p.scale_rand * randomness[PARAM_SCALE]); + if (base_scale < CMP_EPSILON) { + base_scale = CMP_EPSILON; } p.transform.basis.scale(Vector3(1, 1, 1) * base_scale); |