summaryrefslogtreecommitdiff
path: root/modules
diff options
context:
space:
mode:
Diffstat (limited to 'modules')
-rw-r--r--modules/gltf/gltf_document.cpp2
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs60
2 files changed, 32 insertions, 30 deletions
diff --git a/modules/gltf/gltf_document.cpp b/modules/gltf/gltf_document.cpp
index cb148463a7..99803ed05d 100644
--- a/modules/gltf/gltf_document.cpp
+++ b/modules/gltf/gltf_document.cpp
@@ -6289,7 +6289,7 @@ GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Vector3 rotation_radian = p_animation->track_get_key_value(p_track_i, key_i);
- p_track.rotation_track.values.write[key_i] = Quaternion(rotation_radian);
+ p_track.rotation_track.values.write[key_i] = Quaternion::from_euler(rotation_radian);
}
} else if (path.contains(":scale")) {
p_track.scale_track.times = times;
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
index a80963a37e..5dd629aeb0 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
@@ -507,35 +507,6 @@ namespace Godot
}
/// <summary>
- /// Constructs a <see cref="Quaternion"/> that will perform a rotation specified by
- /// Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last),
- /// given in the vector format as (X angle, Y angle, Z angle).
- /// </summary>
- /// <param name="eulerYXZ">Euler angles that the quaternion will be rotated by.</param>
- public Quaternion(Vector3 eulerYXZ)
- {
- real_t halfA1 = eulerYXZ.y * 0.5f;
- real_t halfA2 = eulerYXZ.x * 0.5f;
- real_t halfA3 = eulerYXZ.z * 0.5f;
-
- // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
- // a3 is the angle of the first rotation, following the notation in this reference.
-
- real_t cosA1 = Mathf.Cos(halfA1);
- real_t sinA1 = Mathf.Sin(halfA1);
- real_t cosA2 = Mathf.Cos(halfA2);
- real_t sinA2 = Mathf.Sin(halfA2);
- real_t cosA3 = Mathf.Cos(halfA3);
- real_t sinA3 = Mathf.Sin(halfA3);
-
- x = (sinA1 * cosA2 * sinA3) + (cosA1 * sinA2 * cosA3);
- y = (sinA1 * cosA2 * cosA3) - (cosA1 * sinA2 * sinA3);
- z = (cosA1 * cosA2 * sinA3) - (sinA1 * sinA2 * cosA3);
- w = (sinA1 * sinA2 * sinA3) + (cosA1 * cosA2 * cosA3);
- }
-
- /// <summary>
/// Constructs a <see cref="Quaternion"/> that will rotate around the given axis
/// by the specified angle. The axis must be a normalized vector.
/// </summary>
@@ -597,6 +568,37 @@ namespace Godot
}
/// <summary>
+ /// Constructs a <see cref="Quaternion"/> that will perform a rotation specified by
+ /// Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last),
+ /// given in the vector format as (X angle, Y angle, Z angle).
+ /// </summary>
+ /// <param name="eulerYXZ">Euler angles that the quaternion will be rotated by.</param>
+ public static Quaternion FromEuler(Vector3 eulerYXZ)
+ {
+ real_t halfA1 = eulerYXZ.y * 0.5f;
+ real_t halfA2 = eulerYXZ.x * 0.5f;
+ real_t halfA3 = eulerYXZ.z * 0.5f;
+
+ // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
+ // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
+ // a3 is the angle of the first rotation, following the notation in this reference.
+
+ real_t cosA1 = Mathf.Cos(halfA1);
+ real_t sinA1 = Mathf.Sin(halfA1);
+ real_t cosA2 = Mathf.Cos(halfA2);
+ real_t sinA2 = Mathf.Sin(halfA2);
+ real_t cosA3 = Mathf.Cos(halfA3);
+ real_t sinA3 = Mathf.Sin(halfA3);
+
+ return new Quaternion(
+ (sinA1 * cosA2 * sinA3) + (cosA1 * sinA2 * cosA3),
+ (sinA1 * cosA2 * cosA3) - (cosA1 * sinA2 * sinA3),
+ (cosA1 * cosA2 * sinA3) - (sinA1 * sinA2 * cosA3),
+ (sinA1 * sinA2 * sinA3) + (cosA1 * cosA2 * cosA3)
+ );
+ }
+
+ /// <summary>
/// Composes these two quaternions by multiplying them together.
/// This has the effect of rotating the second quaternion
/// (the child) by the first quaternion (the parent).