summaryrefslogtreecommitdiff
path: root/modules
diff options
context:
space:
mode:
Diffstat (limited to 'modules')
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs1109
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs112
2 files changed, 1049 insertions, 172 deletions
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
index 137a42a6de..ca0032df73 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
@@ -1,4 +1,5 @@
using System;
+using System.Runtime.CompilerServices;
namespace Godot
{
@@ -35,15 +36,18 @@ namespace Godot
public const real_t NaN = real_t.NaN;
// 0.0174532924f and 0.0174532925199433
- private const real_t _degToRadConst = (real_t)0.0174532925199432957692369077M;
+ private const float _degToRadConstF = (float)0.0174532925199432957692369077M;
+ private const double _degToRadConstD = (double)0.0174532925199432957692369077M;
// 57.29578f and 57.2957795130823
- private const real_t _radToDegConst = (real_t)57.295779513082320876798154814M;
+ private const float _radToDegConstF = (float)57.295779513082320876798154814M;
+ private const double _radToDegConstD = (double)57.295779513082320876798154814M;
/// <summary>
/// Returns the absolute value of <paramref name="s"/> (i.e. positive value).
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>The absolute value of <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Abs(int s)
{
return Math.Abs(s);
@@ -54,7 +58,19 @@ namespace Godot
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>The absolute value of <paramref name="s"/>.</returns>
- public static real_t Abs(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Abs(float s)
+ {
+ return Math.Abs(s);
+ }
+
+ /// <summary>
+ /// Returns the absolute value of <paramref name="s"/> (i.e. positive value).
+ /// </summary>
+ /// <param name="s">The input number.</param>
+ /// <returns>The absolute value of <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Abs(double s)
{
return Math.Abs(s);
}
@@ -67,9 +83,38 @@ namespace Godot
/// <returns>
/// An angle that would result in the given cosine value. On the range <c>0</c> to <c>Tau/2</c>.
/// </returns>
- public static real_t Acos(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Acos(float s)
{
- return (real_t)Math.Acos(s);
+ return MathF.Acos(s);
+ }
+
+ /// <summary>
+ /// Returns the arc cosine of <paramref name="s"/> in radians.
+ /// Use to get the angle of cosine <paramref name="s"/>.
+ /// </summary>
+ /// <param name="s">The input cosine value. Must be on the range of -1.0 to 1.0.</param>
+ /// <returns>
+ /// An angle that would result in the given cosine value. On the range <c>0</c> to <c>Tau/2</c>.
+ /// </returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Acos(double s)
+ {
+ return Math.Acos(s);
+ }
+
+ /// <summary>
+ /// Returns the arc sine of <paramref name="s"/> in radians.
+ /// Use to get the angle of sine <paramref name="s"/>.
+ /// </summary>
+ /// <param name="s">The input sine value. Must be on the range of -1.0 to 1.0.</param>
+ /// <returns>
+ /// An angle that would result in the given sine value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
+ /// </returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Asin(float s)
+ {
+ return MathF.Asin(s);
}
/// <summary>
@@ -80,9 +125,10 @@ namespace Godot
/// <returns>
/// An angle that would result in the given sine value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
/// </returns>
- public static real_t Asin(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Asin(double s)
{
- return (real_t)Math.Asin(s);
+ return Math.Asin(s);
}
/// <summary>
@@ -90,15 +136,51 @@ namespace Godot
/// Use to get the angle of tangent <paramref name="s"/>.
///
/// The method cannot know in which quadrant the angle should fall.
- /// See <see cref="Atan2(real_t, real_t)"/> if you have both <c>y</c> and <c>x</c>.
+ /// See <see cref="Atan2(float, float)"/> if you have both <c>y</c> and <c>x</c>.
/// </summary>
/// <param name="s">The input tangent value.</param>
/// <returns>
/// An angle that would result in the given tangent value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
/// </returns>
- public static real_t Atan(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Atan(float s)
{
- return (real_t)Math.Atan(s);
+ return MathF.Atan(s);
+ }
+
+ /// <summary>
+ /// Returns the arc tangent of <paramref name="s"/> in radians.
+ /// Use to get the angle of tangent <paramref name="s"/>.
+ ///
+ /// The method cannot know in which quadrant the angle should fall.
+ /// See <see cref="Atan2(double, double)"/> if you have both <c>y</c> and <c>x</c>.
+ /// </summary>
+ /// <param name="s">The input tangent value.</param>
+ /// <returns>
+ /// An angle that would result in the given tangent value. On the range <c>-Tau/4</c> to <c>Tau/4</c>.
+ /// </returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Atan(double s)
+ {
+ return Math.Atan(s);
+ }
+
+ /// <summary>
+ /// Returns the arc tangent of <paramref name="y"/> and <paramref name="x"/> in radians.
+ /// Use to get the angle of the tangent of <c>y/x</c>. To compute the value, the method takes into
+ /// account the sign of both arguments in order to determine the quadrant.
+ ///
+ /// Important note: The Y coordinate comes first, by convention.
+ /// </summary>
+ /// <param name="y">The Y coordinate of the point to find the angle to.</param>
+ /// <param name="x">The X coordinate of the point to find the angle to.</param>
+ /// <returns>
+ /// An angle that would result in the given tangent value. On the range <c>-Tau/2</c> to <c>Tau/2</c>.
+ /// </returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Atan2(float y, float x)
+ {
+ return MathF.Atan2(y, x);
}
/// <summary>
@@ -113,9 +195,21 @@ namespace Godot
/// <returns>
/// An angle that would result in the given tangent value. On the range <c>-Tau/2</c> to <c>Tau/2</c>.
/// </returns>
- public static real_t Atan2(real_t y, real_t x)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Atan2(double y, double x)
+ {
+ return Math.Atan2(y, x);
+ }
+
+ /// <summary>
+ /// Rounds <paramref name="s"/> upward (towards positive infinity).
+ /// </summary>
+ /// <param name="s">The number to ceil.</param>
+ /// <returns>The smallest whole number that is not less than <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Ceil(float s)
{
- return (real_t)Math.Atan2(y, x);
+ return MathF.Ceiling(s);
}
/// <summary>
@@ -123,9 +217,10 @@ namespace Godot
/// </summary>
/// <param name="s">The number to ceil.</param>
/// <returns>The smallest whole number that is not less than <paramref name="s"/>.</returns>
- public static real_t Ceil(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Ceil(double s)
{
- return (real_t)Math.Ceiling(s);
+ return Math.Ceiling(s);
}
/// <summary>
@@ -136,9 +231,24 @@ namespace Godot
/// <param name="min">The minimum allowed value.</param>
/// <param name="max">The maximum allowed value.</param>
/// <returns>The clamped value.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Clamp(int value, int min, int max)
{
- return value < min ? min : value > max ? max : value;
+ return Math.Clamp(value, min, max);
+ }
+
+ /// <summary>
+ /// Clamps a <paramref name="value"/> so that it is not less than <paramref name="min"/>
+ /// and not more than <paramref name="max"/>.
+ /// </summary>
+ /// <param name="value">The value to clamp.</param>
+ /// <param name="min">The minimum allowed value.</param>
+ /// <param name="max">The maximum allowed value.</param>
+ /// <returns>The clamped value.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Clamp(float value, float min, float max)
+ {
+ return Math.Clamp(value, min, max);
}
/// <summary>
@@ -149,9 +259,10 @@ namespace Godot
/// <param name="min">The minimum allowed value.</param>
/// <param name="max">The maximum allowed value.</param>
/// <returns>The clamped value.</returns>
- public static real_t Clamp(real_t value, real_t min, real_t max)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Clamp(double value, double min, double max)
{
- return value < min ? min : value > max ? max : value;
+ return Math.Clamp(value, min, max);
}
/// <summary>
@@ -159,9 +270,21 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The cosine of that angle.</returns>
- public static real_t Cos(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Cos(float s)
{
- return (real_t)Math.Cos(s);
+ return MathF.Cos(s);
+ }
+
+ /// <summary>
+ /// Returns the cosine of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The cosine of that angle.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Cos(double s)
+ {
+ return Math.Cos(s);
}
/// <summary>
@@ -169,9 +292,21 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic cosine of that angle.</returns>
- public static real_t Cosh(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Cosh(float s)
{
- return (real_t)Math.Cosh(s);
+ return MathF.Cosh(s);
+ }
+
+ /// <summary>
+ /// Returns the hyperbolic cosine of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The hyperbolic cosine of that angle.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Cosh(double s)
+ {
+ return Math.Cosh(s);
}
/// <summary>
@@ -184,7 +319,7 @@ namespace Godot
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t CubicInterpolate(real_t from, real_t to, real_t pre, real_t post, real_t weight)
+ public static float CubicInterpolate(float from, float to, float pre, float post, float weight)
{
return 0.5f *
((from * 2.0f) +
@@ -194,9 +329,28 @@ namespace Godot
}
/// <summary>
+ /// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
+ /// with pre and post values.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static double CubicInterpolate(double from, double to, double pre, double post, double weight)
+ {
+ return 0.5 *
+ ((from * 2.0) +
+ (-pre + to) * weight +
+ (2.0 * pre - 5.0 * from + 4.0 * to - post) * (weight * weight) +
+ (-pre + 3.0 * from - 3.0 * to + post) * (weight * weight * weight));
+ }
+
+ /// <summary>
/// Cubic interpolates between two rotation values with shortest path
/// by the factor defined in <paramref name="weight"/> with pre and post values.
- /// See also <see cref="LerpAngle"/>.
+ /// See also <see cref="LerpAngle(float, float, float)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
@@ -204,18 +358,45 @@ namespace Godot
/// <param name="post">The value which after "to" value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t CubicInterpolateAngle(real_t from, real_t to, real_t pre, real_t post, real_t weight)
+ public static float CubicInterpolateAngle(float from, float to, float pre, float post, float weight)
{
- real_t fromRot = from % Mathf.Tau;
+ float fromRot = from % MathF.Tau;
- real_t preDiff = (pre - fromRot) % Mathf.Tau;
- real_t preRot = fromRot + (2.0f * preDiff) % Mathf.Tau - preDiff;
+ float preDiff = (pre - fromRot) % MathF.Tau;
+ float preRot = fromRot + (2.0f * preDiff) % MathF.Tau - preDiff;
- real_t toDiff = (to - fromRot) % Mathf.Tau;
- real_t toRot = fromRot + (2.0f * toDiff) % Mathf.Tau - toDiff;
+ float toDiff = (to - fromRot) % MathF.Tau;
+ float toRot = fromRot + (2.0f * toDiff) % MathF.Tau - toDiff;
- real_t postDiff = (post - toRot) % Mathf.Tau;
- real_t postRot = toRot + (2.0f * postDiff) % Mathf.Tau - postDiff;
+ float postDiff = (post - toRot) % MathF.Tau;
+ float postRot = toRot + (2.0f * postDiff) % MathF.Tau - postDiff;
+
+ return CubicInterpolate(fromRot, toRot, preRot, postRot, weight);
+ }
+
+ /// <summary>
+ /// Cubic interpolates between two rotation values with shortest path
+ /// by the factor defined in <paramref name="weight"/> with pre and post values.
+ /// See also <see cref="LerpAngle(double, double, double)"/>.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static double CubicInterpolateAngle(double from, double to, double pre, double post, double weight)
+ {
+ double fromRot = from % Math.Tau;
+
+ double preDiff = (pre - fromRot) % Math.Tau;
+ double preRot = fromRot + (2.0 * preDiff) % Math.Tau - preDiff;
+
+ double toDiff = (to - fromRot) % Math.Tau;
+ double toRot = fromRot + (2.0 * toDiff) % Math.Tau - toDiff;
+
+ double postDiff = (post - toRot) % Math.Tau;
+ double postRot = toRot + (2.0 * postDiff) % Math.Tau - postDiff;
return CubicInterpolate(fromRot, toRot, preRot, postRot, weight);
}
@@ -223,7 +404,8 @@ namespace Godot
/// <summary>
/// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
/// with pre and post values.
- /// It can perform smoother interpolation than <see cref="CubicInterpolate"/>
+ /// It can perform smoother interpolation than
+ /// <see cref="CubicInterpolate(float, float, float, float, float)"/>
/// by the time values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
@@ -235,23 +417,52 @@ namespace Godot
/// <param name="preT"></param>
/// <param name="postT"></param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t CubicInterpolateInTime(real_t from, real_t to, real_t pre, real_t post, real_t weight, real_t toT, real_t preT, real_t postT)
+ public static float CubicInterpolateInTime(float from, float to, float pre, float post, float weight, float toT, float preT, float postT)
{
/* Barry-Goldman method */
- real_t t = Lerp(0.0f, toT, weight);
- real_t a1 = Lerp(pre, from, preT == 0 ? 0.0f : (t - preT) / -preT);
- real_t a2 = Lerp(from, to, toT == 0 ? 0.5f : t / toT);
- real_t a3 = Lerp(to, post, postT - toT == 0 ? 1.0f : (t - toT) / (postT - toT));
- real_t b1 = Lerp(a1, a2, toT - preT == 0 ? 0.0f : (t - preT) / (toT - preT));
- real_t b2 = Lerp(a2, a3, postT == 0 ? 1.0f : t / postT);
+ float t = Lerp(0.0f, toT, weight);
+ float a1 = Lerp(pre, from, preT == 0 ? 0.0f : (t - preT) / -preT);
+ float a2 = Lerp(from, to, toT == 0 ? 0.5f : t / toT);
+ float a3 = Lerp(to, post, postT - toT == 0 ? 1.0f : (t - toT) / (postT - toT));
+ float b1 = Lerp(a1, a2, toT - preT == 0 ? 0.0f : (t - preT) / (toT - preT));
+ float b2 = Lerp(a2, a3, postT == 0 ? 1.0f : t / postT);
return Lerp(b1, b2, toT == 0 ? 0.5f : t / toT);
}
/// <summary>
+ /// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
+ /// with pre and post values.
+ /// It can perform smoother interpolation than
+ /// <see cref="CubicInterpolate(double, double, double, double, double)"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="toT"></param>
+ /// <param name="preT"></param>
+ /// <param name="postT"></param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static double CubicInterpolateInTime(double from, double to, double pre, double post, double weight, double toT, double preT, double postT)
+ {
+ /* Barry-Goldman method */
+ double t = Lerp(0.0, toT, weight);
+ double a1 = Lerp(pre, from, preT == 0 ? 0.0 : (t - preT) / -preT);
+ double a2 = Lerp(from, to, toT == 0 ? 0.5 : t / toT);
+ double a3 = Lerp(to, post, postT - toT == 0 ? 1.0 : (t - toT) / (postT - toT));
+ double b1 = Lerp(a1, a2, toT - preT == 0 ? 0.0 : (t - preT) / (toT - preT));
+ double b2 = Lerp(a2, a3, postT == 0 ? 1.0 : t / postT);
+ return Lerp(b1, b2, toT == 0 ? 0.5 : t / toT);
+ }
+
+ /// <summary>
/// Cubic interpolates between two rotation values with shortest path
/// by the factor defined in <paramref name="weight"/> with pre and post values.
- /// See also <see cref="LerpAngle"/>.
- /// It can perform smoother interpolation than <see cref="CubicInterpolateAngle"/>
+ /// See also <see cref="LerpAngle(float, float, float)"/>.
+ /// It can perform smoother interpolation than
+ /// <see cref="CubicInterpolateAngle(float, float, float, float, float)"/>
/// by the time values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
@@ -263,24 +474,78 @@ namespace Godot
/// <param name="preT"></param>
/// <param name="postT"></param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t CubicInterpolateAngleInTime(real_t from, real_t to, real_t pre, real_t post, real_t weight,
- real_t toT, real_t preT, real_t postT)
+ public static float CubicInterpolateAngleInTime(float from, float to, float pre, float post, float weight, float toT, float preT, float postT)
{
- real_t fromRot = from % Mathf.Tau;
+ float fromRot = from % MathF.Tau;
- real_t preDiff = (pre - fromRot) % Mathf.Tau;
- real_t preRot = fromRot + (2.0f * preDiff) % Mathf.Tau - preDiff;
+ float preDiff = (pre - fromRot) % MathF.Tau;
+ float preRot = fromRot + (2.0f * preDiff) % MathF.Tau - preDiff;
- real_t toDiff = (to - fromRot) % Mathf.Tau;
- real_t toRot = fromRot + (2.0f * toDiff) % Mathf.Tau - toDiff;
+ float toDiff = (to - fromRot) % MathF.Tau;
+ float toRot = fromRot + (2.0f * toDiff) % MathF.Tau - toDiff;
- real_t postDiff = (post - toRot) % Mathf.Tau;
- real_t postRot = toRot + (2.0f * postDiff) % Mathf.Tau - postDiff;
+ float postDiff = (post - toRot) % MathF.Tau;
+ float postRot = toRot + (2.0f * postDiff) % MathF.Tau - postDiff;
return CubicInterpolateInTime(fromRot, toRot, preRot, postRot, weight, toT, preT, postT);
}
/// <summary>
+ /// Cubic interpolates between two rotation values with shortest path
+ /// by the factor defined in <paramref name="weight"/> with pre and post values.
+ /// See also <see cref="LerpAngle(double, double, double)"/>.
+ /// It can perform smoother interpolation than
+ /// <see cref="CubicInterpolateAngle(double, double, double, double, double)"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="toT"></param>
+ /// <param name="preT"></param>
+ /// <param name="postT"></param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static double CubicInterpolateAngleInTime(double from, double to, double pre, double post, double weight, double toT, double preT, double postT)
+ {
+ double fromRot = from % Math.Tau;
+
+ double preDiff = (pre - fromRot) % Math.Tau;
+ double preRot = fromRot + (2.0 * preDiff) % Math.Tau - preDiff;
+
+ double toDiff = (to - fromRot) % Math.Tau;
+ double toRot = fromRot + (2.0 * toDiff) % Math.Tau - toDiff;
+
+ double postDiff = (post - toRot) % Math.Tau;
+ double postRot = toRot + (2.0 * postDiff) % Math.Tau - postDiff;
+
+ return CubicInterpolateInTime(fromRot, toRot, preRot, postRot, weight, toT, preT, postT);
+ }
+
+ /// <summary>
+ /// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by
+ /// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
+ /// </summary>
+ /// <param name="start">The start value for the interpolation.</param>
+ /// <param name="control1">Control point that defines the bezier curve.</param>
+ /// <param name="control2">Control point that defines the bezier curve.</param>
+ /// <param name="end">The destination value for the interpolation.</param>
+ /// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static float BezierInterpolate(float start, float control1, float control2, float end, float t)
+ {
+ // Formula from Wikipedia article on Bezier curves
+ float omt = 1.0f - t;
+ float omt2 = omt * omt;
+ float omt3 = omt2 * omt;
+ float t2 = t * t;
+ float t3 = t2 * t;
+
+ return start * omt3 + control1 * omt2 * t * 3.0f + control2 * omt * t2 * 3.0f + end * t3;
+ }
+
+ /// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
@@ -290,16 +555,16 @@ namespace Godot
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t BezierInterpolate(real_t start, real_t control1, real_t control2, real_t end, real_t t)
+ public static double BezierInterpolate(double start, double control1, double control2, double end, double t)
{
// Formula from Wikipedia article on Bezier curves
- real_t omt = 1 - t;
- real_t omt2 = omt * omt;
- real_t omt3 = omt2 * omt;
- real_t t2 = t * t;
- real_t t3 = t2 * t;
+ double omt = 1.0 - t;
+ double omt2 = omt * omt;
+ double omt3 = omt2 * omt;
+ double t2 = t * t;
+ double t3 = t2 * t;
- return start * omt3 + control1 * omt2 * t * 3 + control2 * omt * t2 * 3 + end * t3;
+ return start * omt3 + control1 * omt2 * t * 3.0 + control2 * omt * t2 * 3.0 + end * t3;
}
/// <summary>
@@ -312,26 +577,68 @@ namespace Godot
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t BezierDerivative(real_t start, real_t control1, real_t control2, real_t end, real_t t)
+ public static float BezierDerivative(float start, float control1, float control2, float end, float t)
{
// Formula from Wikipedia article on Bezier curves
- real_t omt = 1 - t;
- real_t omt2 = omt * omt;
- real_t t2 = t * t;
+ float omt = 1.0f - t;
+ float omt2 = omt * omt;
+ float t2 = t * t;
- real_t d = (control1 - start) * 3 * omt2 + (control2 - control1) * 6 * omt * t + (end - control2) * 3 * t2;
+ float d = (control1 - start) * 3.0f * omt2 + (control2 - control1) * 6.0f * omt * t + (end - control2) * 3.0f * t2;
return d;
}
/// <summary>
+ /// Returns the derivative at the given <paramref name="t"/> on a one dimensional Bezier curve defined by
+ /// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
+ /// </summary>
+ /// <param name="start">The start value for the interpolation.</param>
+ /// <param name="control1">Control point that defines the bezier curve.</param>
+ /// <param name="control2">Control point that defines the bezier curve.</param>
+ /// <param name="end">The destination value for the interpolation.</param>
+ /// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static double BezierDerivative(double start, double control1, double control2, double end, double t)
+ {
+ // Formula from Wikipedia article on Bezier curves
+ double omt = 1.0 - t;
+ double omt2 = omt * omt;
+ double t2 = t * t;
+
+ double d = (control1 - start) * 3.0 * omt2 + (control2 - control1) * 6.0 * omt * t + (end - control2) * 3.0 * t2;
+ return d;
+ }
+
+ /// <summary>
+ /// Converts from decibels to linear energy (audio).
+ /// </summary>
+ /// <seealso cref="LinearToDb(float)"/>
+ /// <param name="db">Decibels to convert.</param>
+ /// <returns>Audio volume as linear energy.</returns>
+ public static float DbToLinear(float db)
+ {
+ return MathF.Exp(db * 0.11512925464970228420089957273422f);
+ }
+
+ /// <summary>
/// Converts from decibels to linear energy (audio).
/// </summary>
- /// <seealso cref="LinearToDb(real_t)"/>
+ /// <seealso cref="LinearToDb(double)"/>
/// <param name="db">Decibels to convert.</param>
/// <returns>Audio volume as linear energy.</returns>
- public static real_t DbToLinear(real_t db)
+ public static double DbToLinear(double db)
+ {
+ return Math.Exp(db * 0.11512925464970228420089957273422);
+ }
+
+ /// <summary>
+ /// Converts an angle expressed in degrees to radians.
+ /// </summary>
+ /// <param name="deg">An angle expressed in degrees.</param>
+ /// <returns>The same angle expressed in radians.</returns>
+ public static float DegToRad(float deg)
{
- return (real_t)Math.Exp(db * 0.11512925464970228420089957273422);
+ return deg * _degToRadConstF;
}
/// <summary>
@@ -339,9 +646,9 @@ namespace Godot
/// </summary>
/// <param name="deg">An angle expressed in degrees.</param>
/// <returns>The same angle expressed in radians.</returns>
- public static real_t DegToRad(real_t deg)
+ public static double DegToRad(double deg)
{
- return deg * _degToRadConst;
+ return deg * _degToRadConstD;
}
/// <summary>
@@ -354,38 +661,94 @@ namespace Godot
/// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
/// </param>
/// <returns>The eased value.</returns>
- public static real_t Ease(real_t s, real_t curve)
+ public static float Ease(float s, float curve)
{
- if (s < 0f)
+ if (s < 0.0f)
{
- s = 0f;
+ s = 0.0f;
}
else if (s > 1.0f)
{
s = 1.0f;
}
- if (curve > 0f)
+ if (curve > 0.0f)
{
if (curve < 1.0f)
{
- return 1.0f - Pow(1.0f - s, 1.0f / curve);
+ return 1.0f - MathF.Pow(1.0f - s, 1.0f / curve);
}
- return Pow(s, curve);
+ return MathF.Pow(s, curve);
}
- if (curve < 0f)
+ if (curve < 0.0f)
{
if (s < 0.5f)
{
- return Pow(s * 2.0f, -curve) * 0.5f;
+ return MathF.Pow(s * 2.0f, -curve) * 0.5f;
}
- return ((1.0f - Pow(1.0f - ((s - 0.5f) * 2.0f), -curve)) * 0.5f) + 0.5f;
+ return ((1.0f - MathF.Pow(1.0f - ((s - 0.5f) * 2.0f), -curve)) * 0.5f) + 0.5f;
}
- return 0f;
+ return 0.0f;
+ }
+
+ /// <summary>
+ /// Easing function, based on exponent. The <paramref name="curve"/> values are:
+ /// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
+ /// Negative values are in-out/out-in.
+ /// </summary>
+ /// <param name="s">The value to ease.</param>
+ /// <param name="curve">
+ /// <c>0</c> is constant, <c>1</c> is linear, <c>0</c> to <c>1</c> is ease-in, <c>1</c> or more is ease-out.
+ /// </param>
+ /// <returns>The eased value.</returns>
+ public static double Ease(double s, double curve)
+ {
+ if (s < 0.0)
+ {
+ s = 0.0;
+ }
+ else if (s > 1.0)
+ {
+ s = 1.0;
+ }
+
+ if (curve > 0)
+ {
+ if (curve < 1.0)
+ {
+ return 1.0 - Math.Pow(1.0 - s, 1.0 / curve);
+ }
+
+ return Math.Pow(s, curve);
+ }
+
+ if (curve < 0.0)
+ {
+ if (s < 0.5)
+ {
+ return Math.Pow(s * 2.0, -curve) * 0.5;
+ }
+
+ return ((1.0 - Math.Pow(1.0 - ((s - 0.5) * 2.0), -curve)) * 0.5) + 0.5;
+ }
+
+ return 0.0;
+ }
+
+ /// <summary>
+ /// The natural exponential function. It raises the mathematical
+ /// constant <c>e</c> to the power of <paramref name="s"/> and returns it.
+ /// </summary>
+ /// <param name="s">The exponent to raise <c>e</c> to.</param>
+ /// <returns><c>e</c> raised to the power of <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Exp(float s)
+ {
+ return MathF.Exp(s);
}
/// <summary>
@@ -394,9 +757,21 @@ namespace Godot
/// </summary>
/// <param name="s">The exponent to raise <c>e</c> to.</param>
/// <returns><c>e</c> raised to the power of <paramref name="s"/>.</returns>
- public static real_t Exp(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Exp(double s)
+ {
+ return Math.Exp(s);
+ }
+
+ /// <summary>
+ /// Rounds <paramref name="s"/> downward (towards negative infinity).
+ /// </summary>
+ /// <param name="s">The number to floor.</param>
+ /// <returns>The largest whole number that is not more than <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Floor(float s)
{
- return (real_t)Math.Exp(s);
+ return MathF.Floor(s);
}
/// <summary>
@@ -404,14 +779,32 @@ namespace Godot
/// </summary>
/// <param name="s">The number to floor.</param>
/// <returns>The largest whole number that is not more than <paramref name="s"/>.</returns>
- public static real_t Floor(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Floor(double s)
+ {
+ return Math.Floor(s);
+ }
+
+ /// <summary>
+ /// Returns a normalized value considering the given range.
+ /// This is the opposite of <see cref="Lerp(float, float, float)"/>.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="weight">The interpolated value.</param>
+ /// <returns>
+ /// The resulting value of the inverse interpolation.
+ /// The returned value will be between 0.0 and 1.0 if <paramref name="weight"/> is
+ /// between <paramref name="from"/> and <paramref name="to"/> (inclusive).
+ /// </returns>
+ public static float InverseLerp(float from, float to, float weight)
{
- return (real_t)Math.Floor(s);
+ return (weight - from) / (to - from);
}
/// <summary>
/// Returns a normalized value considering the given range.
- /// This is the opposite of <see cref="Lerp(real_t, real_t, real_t)"/>.
+ /// This is the opposite of <see cref="Lerp(double, double, double)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
@@ -421,7 +814,7 @@ namespace Godot
/// The returned value will be between 0.0 and 1.0 if <paramref name="weight"/> is
/// between <paramref name="from"/> and <paramref name="to"/> (inclusive).
/// </returns>
- public static real_t InverseLerp(real_t from, real_t to, real_t weight)
+ public static double InverseLerp(double from, double to, double weight)
{
return (weight - from) / (to - from);
}
@@ -434,7 +827,7 @@ namespace Godot
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>A <see langword="bool"/> for whether or not the two values are approximately equal.</returns>
- public static bool IsEqualApprox(real_t a, real_t b)
+ public static bool IsEqualApprox(float a, float b)
{
// Check for exact equality first, required to handle "infinity" values.
if (a == b)
@@ -442,12 +835,36 @@ namespace Godot
return true;
}
// Then check for approximate equality.
- real_t tolerance = Epsilon * Abs(a);
- if (tolerance < Epsilon)
+ float tolerance = _epsilonF * Math.Abs(a);
+ if (tolerance < _epsilonF)
{
- tolerance = Epsilon;
+ tolerance = _epsilonF;
}
- return Abs(a - b) < tolerance;
+ return Math.Abs(a - b) < tolerance;
+ }
+
+ /// <summary>
+ /// Returns <see langword="true"/> if <paramref name="a"/> and <paramref name="b"/> are approximately equal
+ /// to each other.
+ /// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
+ /// </summary>
+ /// <param name="a">One of the values.</param>
+ /// <param name="b">The other value.</param>
+ /// <returns>A <see langword="bool"/> for whether or not the two values are approximately equal.</returns>
+ public static bool IsEqualApprox(double a, double b)
+ {
+ // Check for exact equality first, required to handle "infinity" values.
+ if (a == b)
+ {
+ return true;
+ }
+ // Then check for approximate equality.
+ double tolerance = _epsilonD * Math.Abs(a);
+ if (tolerance < _epsilonD)
+ {
+ tolerance = _epsilonD;
+ }
+ return Math.Abs(a - b) < tolerance;
}
/// <summary>
@@ -456,9 +873,22 @@ namespace Godot
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is a finite value.</returns>
- public static bool IsFinite(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsFinite(float s)
{
- return real_t.IsFinite(s);
+ return float.IsFinite(s);
+ }
+
+ /// <summary>
+ /// Returns whether <paramref name="s"/> is a finite value, i.e. it is not
+ /// <see cref="NaN"/>, positive infinite, or negative infinity.
+ /// </summary>
+ /// <param name="s">The value to check.</param>
+ /// <returns>A <see langword="bool"/> for whether or not the value is a finite value.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsFinite(double s)
+ {
+ return double.IsFinite(s);
}
/// <summary>
@@ -466,9 +896,32 @@ namespace Godot
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is an infinity value.</returns>
- public static bool IsInf(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsInf(float s)
{
- return real_t.IsInfinity(s);
+ return float.IsInfinity(s);
+ }
+
+ /// <summary>
+ /// Returns whether <paramref name="s"/> is an infinity value (either positive infinity or negative infinity).
+ /// </summary>
+ /// <param name="s">The value to check.</param>
+ /// <returns>A <see langword="bool"/> for whether or not the value is an infinity value.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsInf(double s)
+ {
+ return double.IsInfinity(s);
+ }
+
+ /// <summary>
+ /// Returns whether <paramref name="s"/> is a <c>NaN</c> ("Not a Number" or invalid) value.
+ /// </summary>
+ /// <param name="s">The value to check.</param>
+ /// <returns>A <see langword="bool"/> for whether or not the value is a <c>NaN</c> value.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsNaN(float s)
+ {
+ return float.IsNaN(s);
}
/// <summary>
@@ -476,34 +929,64 @@ namespace Godot
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is a <c>NaN</c> value.</returns>
- public static bool IsNaN(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsNaN(double s)
{
- return real_t.IsNaN(s);
+ return double.IsNaN(s);
}
/// <summary>
/// Returns <see langword="true"/> if <paramref name="s"/> is zero or almost zero.
/// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
///
- /// This method is faster than using <see cref="IsEqualApprox(real_t, real_t)"/> with
+ /// This method is faster than using <see cref="IsEqualApprox(float, float)"/> with
/// one value as zero.
/// </summary>
/// <param name="s">The value to check.</param>
/// <returns>A <see langword="bool"/> for whether or not the value is nearly zero.</returns>
- public static bool IsZeroApprox(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsZeroApprox(float s)
{
- return Abs(s) < Epsilon;
+ return Math.Abs(s) < _epsilonF;
+ }
+
+ /// <summary>
+ /// Returns <see langword="true"/> if <paramref name="s"/> is zero or almost zero.
+ /// The comparison is done using a tolerance calculation with <see cref="Epsilon"/>.
+ ///
+ /// This method is faster than using <see cref="IsEqualApprox(double, double)"/> with
+ /// one value as zero.
+ /// </summary>
+ /// <param name="s">The value to check.</param>
+ /// <returns>A <see langword="bool"/> for whether or not the value is nearly zero.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static bool IsZeroApprox(double s)
+ {
+ return Math.Abs(s) < _epsilonD;
+ }
+
+ /// <summary>
+ /// Linearly interpolates between two values by a normalized value.
+ /// This is the opposite <see cref="InverseLerp(float, float, float)"/>.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static float Lerp(float from, float to, float weight)
+ {
+ return from + ((to - from) * weight);
}
/// <summary>
/// Linearly interpolates between two values by a normalized value.
- /// This is the opposite <see cref="InverseLerp(real_t, real_t, real_t)"/>.
+ /// This is the opposite <see cref="InverseLerp(double, double, double)"/>.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t Lerp(real_t from, real_t to, real_t weight)
+ public static double Lerp(double from, double to, double weight)
{
return from + ((to - from) * weight);
}
@@ -511,17 +994,34 @@ namespace Godot
/// <summary>
/// Linearly interpolates between two angles (in radians) by a normalized value.
///
- /// Similar to <see cref="Lerp(real_t, real_t, real_t)"/>,
+ /// Similar to <see cref="Lerp(float, float, float)"/>,
+ /// but interpolates correctly when the angles wrap around <see cref="Tau"/>.
+ /// </summary>
+ /// <param name="from">The start angle for interpolation.</param>
+ /// <param name="to">The destination angle for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting angle of the interpolation.</returns>
+ public static float LerpAngle(float from, float to, float weight)
+ {
+ float difference = (to - from) % MathF.Tau;
+ float distance = ((2 * difference) % MathF.Tau) - difference;
+ return from + (distance * weight);
+ }
+
+ /// <summary>
+ /// Linearly interpolates between two angles (in radians) by a normalized value.
+ ///
+ /// Similar to <see cref="Lerp(double, double, double)"/>,
/// but interpolates correctly when the angles wrap around <see cref="Tau"/>.
/// </summary>
/// <param name="from">The start angle for interpolation.</param>
/// <param name="to">The destination angle for interpolation.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting angle of the interpolation.</returns>
- public static real_t LerpAngle(real_t from, real_t to, real_t weight)
+ public static double LerpAngle(double from, double to, double weight)
{
- real_t difference = (to - from) % Mathf.Tau;
- real_t distance = ((2 * difference) % Mathf.Tau) - difference;
+ double difference = (to - from) % Math.Tau;
+ double distance = ((2 * difference) % Math.Tau) - difference;
return from + (distance * weight);
}
@@ -529,7 +1029,7 @@ namespace Godot
/// Converts from linear energy to decibels (audio).
/// This can be used to implement volume sliders that behave as expected (since volume isn't linear).
/// </summary>
- /// <seealso cref="DbToLinear(real_t)"/>
+ /// <seealso cref="DbToLinear(float)"/>
/// <example>
/// <code>
/// // "slider" refers to a node that inherits Range such as HSlider or VSlider.
@@ -540,9 +1040,42 @@ namespace Godot
/// </example>
/// <param name="linear">The linear energy to convert.</param>
/// <returns>Audio as decibels.</returns>
- public static real_t LinearToDb(real_t linear)
+ public static float LinearToDb(float linear)
{
- return (real_t)(Math.Log(linear) * 8.6858896380650365530225783783321);
+ return MathF.Log(linear) * 8.6858896380650365530225783783321f;
+ }
+
+ /// <summary>
+ /// Converts from linear energy to decibels (audio).
+ /// This can be used to implement volume sliders that behave as expected (since volume isn't linear).
+ /// </summary>
+ /// <seealso cref="DbToLinear(double)"/>
+ /// <example>
+ /// <code>
+ /// // "slider" refers to a node that inherits Range such as HSlider or VSlider.
+ /// // Its range must be configured to go from 0 to 1.
+ /// // Change the bus name if you'd like to change the volume of a specific bus only.
+ /// AudioServer.SetBusVolumeDb(AudioServer.GetBusIndex("Master"), GD.LinearToDb(slider.value));
+ /// </code>
+ /// </example>
+ /// <param name="linear">The linear energy to convert.</param>
+ /// <returns>Audio as decibels.</returns>
+ public static double LinearToDb(double linear)
+ {
+ return Math.Log(linear) * 8.6858896380650365530225783783321;
+ }
+
+ /// <summary>
+ /// Natural logarithm. The amount of time needed to reach a certain level of continuous growth.
+ ///
+ /// Note: This is not the same as the "log" function on most calculators, which uses a base 10 logarithm.
+ /// </summary>
+ /// <param name="s">The input value.</param>
+ /// <returns>The natural log of <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Log(float s)
+ {
+ return MathF.Log(s);
}
/// <summary>
@@ -552,9 +1085,10 @@ namespace Godot
/// </summary>
/// <param name="s">The input value.</param>
/// <returns>The natural log of <paramref name="s"/>.</returns>
- public static real_t Log(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Log(double s)
{
- return (real_t)Math.Log(s);
+ return Math.Log(s);
}
/// <summary>
@@ -563,9 +1097,22 @@ namespace Godot
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is higher.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Max(int a, int b)
{
- return a > b ? a : b;
+ return Math.Max(a, b);
+ }
+
+ /// <summary>
+ /// Returns the maximum of two values.
+ /// </summary>
+ /// <param name="a">One of the values.</param>
+ /// <param name="b">The other value.</param>
+ /// <returns>Whichever of the two values is higher.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Max(float a, float b)
+ {
+ return Math.Max(a, b);
}
/// <summary>
@@ -574,9 +1121,10 @@ namespace Godot
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is higher.</returns>
- public static real_t Max(real_t a, real_t b)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Max(double a, double b)
{
- return a > b ? a : b;
+ return Math.Max(a, b);
}
/// <summary>
@@ -585,9 +1133,22 @@ namespace Godot
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is lower.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Min(int a, int b)
{
- return a < b ? a : b;
+ return Math.Min(a, b);
+ }
+
+ /// <summary>
+ /// Returns the minimum of two values.
+ /// </summary>
+ /// <param name="a">One of the values.</param>
+ /// <param name="b">The other value.</param>
+ /// <returns>Whichever of the two values is lower.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Min(float a, float b)
+ {
+ return Math.Min(a, b);
}
/// <summary>
@@ -596,9 +1157,27 @@ namespace Godot
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <returns>Whichever of the two values is lower.</returns>
- public static real_t Min(real_t a, real_t b)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Min(double a, double b)
+ {
+ return Math.Min(a, b);
+ }
+
+ /// <summary>
+ /// Moves <paramref name="from"/> toward <paramref name="to"/> by the <paramref name="delta"/> value.
+ ///
+ /// Use a negative <paramref name="delta"/> value to move away.
+ /// </summary>
+ /// <param name="from">The start value.</param>
+ /// <param name="to">The value to move towards.</param>
+ /// <param name="delta">The amount to move by.</param>
+ /// <returns>The value after moving.</returns>
+ public static float MoveToward(float from, float to, float delta)
{
- return a < b ? a : b;
+ if (Math.Abs(to - from) <= delta)
+ return to;
+
+ return from + (Math.Sign(to - from) * delta);
}
/// <summary>
@@ -610,12 +1189,12 @@ namespace Godot
/// <param name="to">The value to move towards.</param>
/// <param name="delta">The amount to move by.</param>
/// <returns>The value after moving.</returns>
- public static real_t MoveToward(real_t from, real_t to, real_t delta)
+ public static double MoveToward(double from, double to, double delta)
{
- if (Abs(to - from) <= delta)
+ if (Math.Abs(to - from) <= delta)
return to;
- return from + (Sign(to - from) * delta);
+ return from + (Math.Sign(to - from) * delta);
}
/// <summary>
@@ -657,9 +1236,25 @@ namespace Godot
/// <param name="a">The dividend, the primary input.</param>
/// <param name="b">The divisor. The output is on the range [0, <paramref name="b"/>).</param>
/// <returns>The resulting output.</returns>
- public static real_t PosMod(real_t a, real_t b)
+ public static float PosMod(float a, float b)
+ {
+ float c = a % b;
+ if ((c < 0 && b > 0) || (c > 0 && b < 0))
+ {
+ c += b;
+ }
+ return c;
+ }
+
+ /// <summary>
+ /// Performs a canonical Modulus operation, where the output is on the range [0, <paramref name="b"/>).
+ /// </summary>
+ /// <param name="a">The dividend, the primary input.</param>
+ /// <param name="b">The divisor. The output is on the range [0, <paramref name="b"/>).</param>
+ /// <returns>The resulting output.</returns>
+ public static double PosMod(double a, double b)
{
- real_t c = a % b;
+ double c = a % b;
if ((c < 0 && b > 0) || (c > 0 && b < 0))
{
c += b;
@@ -673,9 +1268,22 @@ namespace Godot
/// <param name="x">The base.</param>
/// <param name="y">The exponent.</param>
/// <returns><paramref name="x"/> raised to the power of <paramref name="y"/>.</returns>
- public static real_t Pow(real_t x, real_t y)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Pow(float x, float y)
+ {
+ return MathF.Pow(x, y);
+ }
+
+ /// <summary>
+ /// Returns the result of <paramref name="x"/> raised to the power of <paramref name="y"/>.
+ /// </summary>
+ /// <param name="x">The base.</param>
+ /// <param name="y">The exponent.</param>
+ /// <returns><paramref name="x"/> raised to the power of <paramref name="y"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Pow(double x, double y)
{
- return (real_t)Math.Pow(x, y);
+ return Math.Pow(x, y);
}
/// <summary>
@@ -683,9 +1291,21 @@ namespace Godot
/// </summary>
/// <param name="rad">An angle expressed in radians.</param>
/// <returns>The same angle expressed in degrees.</returns>
- public static real_t RadToDeg(real_t rad)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float RadToDeg(float rad)
{
- return rad * _radToDegConst;
+ return rad * _radToDegConstF;
+ }
+
+ /// <summary>
+ /// Converts an angle expressed in radians to degrees.
+ /// </summary>
+ /// <param name="rad">An angle expressed in radians.</param>
+ /// <returns>The same angle expressed in degrees.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double RadToDeg(double rad)
+ {
+ return rad * _radToDegConstD;
}
/// <summary>
@@ -698,20 +1318,48 @@ namespace Godot
/// <param name="outFrom">The start value for the output interpolation.</param>
/// <param name="outTo">The destination value for the output interpolation.</param>
/// <returns>The resulting mapped value mapped.</returns>
- public static real_t Remap(real_t value, real_t inFrom, real_t inTo, real_t outFrom, real_t outTo)
+ public static float Remap(float value, float inFrom, float inTo, float outFrom, float outTo)
{
return Lerp(outFrom, outTo, InverseLerp(inFrom, inTo, value));
}
/// <summary>
+ /// Maps a <paramref name="value"/> from [<paramref name="inFrom"/>, <paramref name="inTo"/>]
+ /// to [<paramref name="outFrom"/>, <paramref name="outTo"/>].
+ /// </summary>
+ /// <param name="value">The value to map.</param>
+ /// <param name="inFrom">The start value for the input interpolation.</param>
+ /// <param name="inTo">The destination value for the input interpolation.</param>
+ /// <param name="outFrom">The start value for the output interpolation.</param>
+ /// <param name="outTo">The destination value for the output interpolation.</param>
+ /// <returns>The resulting mapped value mapped.</returns>
+ public static double Remap(double value, double inFrom, double inTo, double outFrom, double outTo)
+ {
+ return Lerp(outFrom, outTo, InverseLerp(inFrom, inTo, value));
+ }
+
+ /// <summary>
+ /// Rounds <paramref name="s"/> to the nearest whole number,
+ /// with halfway cases rounded towards the nearest multiple of two.
+ /// </summary>
+ /// <param name="s">The number to round.</param>
+ /// <returns>The rounded number.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Round(float s)
+ {
+ return MathF.Round(s);
+ }
+
+ /// <summary>
/// Rounds <paramref name="s"/> to the nearest whole number,
/// with halfway cases rounded towards the nearest multiple of two.
/// </summary>
/// <param name="s">The number to round.</param>
/// <returns>The rounded number.</returns>
- public static real_t Round(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Round(double s)
{
- return (real_t)Math.Round(s);
+ return Math.Round(s);
}
/// <summary>
@@ -720,11 +1368,10 @@ namespace Godot
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>One of three possible values: <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Sign(int s)
{
- if (s == 0)
- return 0;
- return s < 0 ? -1 : 1;
+ return Math.Sign(s);
}
/// <summary>
@@ -733,11 +1380,33 @@ namespace Godot
/// </summary>
/// <param name="s">The input number.</param>
/// <returns>One of three possible values: <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
- public static int Sign(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int Sign(float s)
{
- if (s == 0)
- return 0;
- return s < 0 ? -1 : 1;
+ return Math.Sign(s);
+ }
+
+ /// <summary>
+ /// Returns the sign of <paramref name="s"/>: <c>-1</c> or <c>1</c>.
+ /// Returns <c>0</c> if <paramref name="s"/> is <c>0</c>.
+ /// </summary>
+ /// <param name="s">The input number.</param>
+ /// <returns>One of three possible values: <c>1</c>, <c>-1</c>, or <c>0</c>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int Sign(double s)
+ {
+ return Math.Sign(s);
+ }
+
+ /// <summary>
+ /// Returns the sine of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The sine of that angle.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Sin(float s)
+ {
+ return MathF.Sin(s);
}
/// <summary>
@@ -745,9 +1414,21 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The sine of that angle.</returns>
- public static real_t Sin(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Sin(double s)
+ {
+ return Math.Sin(s);
+ }
+
+ /// <summary>
+ /// Returns the hyperbolic sine of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The hyperbolic sine of that angle.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Sinh(float s)
{
- return (real_t)Math.Sin(s);
+ return MathF.Sinh(s);
}
/// <summary>
@@ -755,27 +1436,47 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic sine of that angle.</returns>
- public static real_t Sinh(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Sinh(double s)
+ {
+ return Math.Sinh(s);
+ }
+
+ /// <summary>
+ /// Returns a number smoothly interpolated between <paramref name="from"/> and <paramref name="to"/>,
+ /// based on the <paramref name="weight"/>. Similar to <see cref="Lerp(float, float, float)"/>,
+ /// but interpolates faster at the beginning and slower at the end.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="weight">A value representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static float SmoothStep(float from, float to, float weight)
{
- return (real_t)Math.Sinh(s);
+ if (IsEqualApprox(from, to))
+ {
+ return from;
+ }
+ float x = Math.Clamp((weight - from) / (to - from), 0.0f, 1.0f);
+ return x * x * (3 - (2 * x));
}
/// <summary>
/// Returns a number smoothly interpolated between <paramref name="from"/> and <paramref name="to"/>,
- /// based on the <paramref name="weight"/>. Similar to <see cref="Lerp(real_t, real_t, real_t)"/>,
+ /// based on the <paramref name="weight"/>. Similar to <see cref="Lerp(double, double, double)"/>,
/// but interpolates faster at the beginning and slower at the end.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
/// <param name="weight">A value representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
- public static real_t SmoothStep(real_t from, real_t to, real_t weight)
+ public static double SmoothStep(double from, double to, double weight)
{
if (IsEqualApprox(from, to))
{
return from;
}
- real_t x = Clamp((weight - from) / (to - from), (real_t)0.0, (real_t)1.0);
+ double x = Math.Clamp((weight - from) / (to - from), 0.0, 1.0);
return x * x * (3 - (2 * x));
}
@@ -786,9 +1487,23 @@ namespace Godot
/// </summary>
/// <param name="s">The input number. Must not be negative.</param>
/// <returns>The square root of <paramref name="s"/>.</returns>
- public static real_t Sqrt(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Sqrt(float s)
{
- return (real_t)Math.Sqrt(s);
+ return MathF.Sqrt(s);
+ }
+
+ /// <summary>
+ /// Returns the square root of <paramref name="s"/>, where <paramref name="s"/> is a non-negative number.
+ ///
+ /// If you need negative inputs, use <see cref="System.Numerics.Complex"/>.
+ /// </summary>
+ /// <param name="s">The input number. Must not be negative.</param>
+ /// <returns>The square root of <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Sqrt(double s)
+ {
+ return Math.Sqrt(s);
}
/// <summary>
@@ -798,7 +1513,7 @@ namespace Godot
/// </summary>
/// <param name="step">The input value.</param>
/// <returns>The position of the first non-zero digit.</returns>
- public static int StepDecimals(real_t step)
+ public static int StepDecimals(double step)
{
double[] sd = new double[]
{
@@ -812,7 +1527,7 @@ namespace Godot
0.00000009999,
0.000000009999,
};
- double abs = Abs(step);
+ double abs = Math.Abs(step);
double decs = abs - (int)abs; // Strip away integer part
for (int i = 0; i < sd.Length; i++)
{
@@ -831,11 +1546,28 @@ namespace Godot
/// <param name="s">The value to snap.</param>
/// <param name="step">The step size to snap to.</param>
/// <returns>The snapped value.</returns>
- public static real_t Snapped(real_t s, real_t step)
+ public static float Snapped(float s, float step)
+ {
+ if (step != 0f)
+ {
+ return MathF.Floor((s / step) + 0.5f) * step;
+ }
+
+ return s;
+ }
+
+ /// <summary>
+ /// Snaps float value <paramref name="s"/> to a given <paramref name="step"/>.
+ /// This can also be used to round a floating point number to an arbitrary number of decimals.
+ /// </summary>
+ /// <param name="s">The value to snap.</param>
+ /// <param name="step">The step size to snap to.</param>
+ /// <returns>The snapped value.</returns>
+ public static double Snapped(double s, double step)
{
if (step != 0f)
{
- return Floor((s / step) + 0.5f) * step;
+ return Math.Floor((s / step) + 0.5f) * step;
}
return s;
@@ -846,9 +1578,32 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The tangent of that angle.</returns>
- public static real_t Tan(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Tan(float s)
+ {
+ return MathF.Tan(s);
+ }
+
+ /// <summary>
+ /// Returns the tangent of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The tangent of that angle.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Tan(double s)
+ {
+ return Math.Tan(s);
+ }
+
+ /// <summary>
+ /// Returns the hyperbolic tangent of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The hyperbolic tangent of that angle.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static float Tanh(float s)
{
- return (real_t)Math.Tan(s);
+ return MathF.Tanh(s);
}
/// <summary>
@@ -856,9 +1611,10 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The hyperbolic tangent of that angle.</returns>
- public static real_t Tanh(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static double Tanh(double s)
{
- return (real_t)Math.Tanh(s);
+ return Math.Tanh(s);
}
/// <summary>
@@ -884,15 +1640,35 @@ namespace Godot
/// Wraps <paramref name="value"/> between <paramref name="min"/> and <paramref name="max"/>.
/// Usable for creating loop-alike behavior or infinite surfaces.
/// If <paramref name="min"/> is <c>0</c>, this is equivalent
- /// to <see cref="PosMod(real_t, real_t)"/>, so prefer using that instead.
+ /// to <see cref="PosMod(float, float)"/>, so prefer using that instead.
+ /// </summary>
+ /// <param name="value">The value to wrap.</param>
+ /// <param name="min">The minimum allowed value and lower bound of the range.</param>
+ /// <param name="max">The maximum allowed value and upper bound of the range.</param>
+ /// <returns>The wrapped value.</returns>
+ public static float Wrap(float value, float min, float max)
+ {
+ float range = max - min;
+ if (IsZeroApprox(range))
+ {
+ return min;
+ }
+ return min + ((((value - min) % range) + range) % range);
+ }
+
+ /// <summary>
+ /// Wraps <paramref name="value"/> between <paramref name="min"/> and <paramref name="max"/>.
+ /// Usable for creating loop-alike behavior or infinite surfaces.
+ /// If <paramref name="min"/> is <c>0</c>, this is equivalent
+ /// to <see cref="PosMod(double, double)"/>, so prefer using that instead.
/// </summary>
/// <param name="value">The value to wrap.</param>
/// <param name="min">The minimum allowed value and lower bound of the range.</param>
/// <param name="max">The maximum allowed value and upper bound of the range.</param>
/// <returns>The wrapped value.</returns>
- public static real_t Wrap(real_t value, real_t min, real_t max)
+ public static double Wrap(double value, double min, double max)
{
- real_t range = max - min;
+ double range = max - min;
if (IsZeroApprox(range))
{
return min;
@@ -900,9 +1676,23 @@ namespace Godot
return min + ((((value - min) % range) + range) % range);
}
- private static real_t Fract(real_t value)
+ /// <summary>
+ /// Returns the <paramref name="value"/> wrapped between <c>0</c> and the <paramref name="length"/>.
+ /// If the limit is reached, the next value the function returned is decreased to the <c>0</c> side
+ /// or increased to the <paramref name="length"/> side (like a triangle wave).
+ /// If <paramref name="length"/> is less than zero, it becomes positive.
+ /// </summary>
+ /// <param name="value">The value to pingpong.</param>
+ /// <param name="length">The maximum value of the function.</param>
+ /// <returns>The ping-ponged value.</returns>
+ public static float PingPong(float value, float length)
{
- return value - (real_t)Math.Floor(value);
+ return (length != 0.0f) ? Math.Abs(Fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
+
+ static float Fract(float value)
+ {
+ return value - MathF.Floor(value);
+ }
}
/// <summary>
@@ -914,9 +1704,14 @@ namespace Godot
/// <param name="value">The value to pingpong.</param>
/// <param name="length">The maximum value of the function.</param>
/// <returns>The ping-ponged value.</returns>
- public static real_t PingPong(real_t value, real_t length)
+ public static double PingPong(double value, double length)
{
- return (length != (real_t)0.0) ? Abs(Fract((value - length) / (length * (real_t)2.0)) * length * (real_t)2.0 - length) : (real_t)0.0;
+ return (length != 0.0) ? Math.Abs(Fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
+
+ static double Fract(double value)
+ {
+ return value - Math.Floor(value);
+ }
}
}
}
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs
index 72a1868964..cc2d61f58d 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs
@@ -1,4 +1,8 @@
using System;
+using System.Runtime.CompilerServices;
+
+// This file contains extra members for the Mathf class that aren't part of Godot's Core API.
+// Math API that is also part of Core should go into Mathf.cs.
namespace Godot
{
@@ -16,14 +20,18 @@ namespace Godot
/// </summary>
public const real_t Sqrt2 = (real_t)1.4142135623730950488016887242M; // 1.4142136f and 1.414213562373095
+ // Epsilon size should depend on the precision used.
+ private const float _epsilonF = 1e-06f;
+ private const double _epsilonD = 1e-14;
+
/// <summary>
/// A very small number used for float comparison with error tolerance.
/// 1e-06 with single-precision floats, but 1e-14 if <c>REAL_T_IS_DOUBLE</c>.
/// </summary>
#if REAL_T_IS_DOUBLE
- public const real_t Epsilon = 1e-14; // Epsilon size should depend on the precision used.
+ public const real_t Epsilon = _epsilonD;
#else
- public const real_t Epsilon = 1e-06f;
+ public const real_t Epsilon = _epsilonF;
#endif
/// <summary>
@@ -31,7 +39,8 @@ namespace Godot
/// </summary>
/// <param name="s">The input value.</param>
/// <returns>The amount of digits.</returns>
- public static int DecimalCount(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int DecimalCount(double s)
{
return DecimalCount((decimal)s);
}
@@ -41,6 +50,7 @@ namespace Godot
/// </summary>
/// <param name="s">The input <see langword="decimal"/> value.</param>
/// <returns>The amount of digits.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int DecimalCount(decimal s)
{
return BitConverter.GetBytes(decimal.GetBits(s)[3])[2];
@@ -49,11 +59,25 @@ namespace Godot
/// <summary>
/// Rounds <paramref name="s"/> upward (towards positive infinity).
///
- /// This is the same as <see cref="Ceil(real_t)"/>, but returns an <see langword="int"/>.
+ /// This is the same as <see cref="Ceil(float)"/>, but returns an <see langword="int"/>.
+ /// </summary>
+ /// <param name="s">The number to ceil.</param>
+ /// <returns>The smallest whole number that is not less than <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int CeilToInt(float s)
+ {
+ return (int)MathF.Ceiling(s);
+ }
+
+ /// <summary>
+ /// Rounds <paramref name="s"/> upward (towards positive infinity).
+ ///
+ /// This is the same as <see cref="Ceil(double)"/>, but returns an <see langword="int"/>.
/// </summary>
/// <param name="s">The number to ceil.</param>
/// <returns>The smallest whole number that is not less than <paramref name="s"/>.</returns>
- public static int CeilToInt(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int CeilToInt(double s)
{
return (int)Math.Ceiling(s);
}
@@ -61,11 +85,25 @@ namespace Godot
/// <summary>
/// Rounds <paramref name="s"/> downward (towards negative infinity).
///
- /// This is the same as <see cref="Floor(real_t)"/>, but returns an <see langword="int"/>.
+ /// This is the same as <see cref="Floor(float)"/>, but returns an <see langword="int"/>.
+ /// </summary>
+ /// <param name="s">The number to floor.</param>
+ /// <returns>The largest whole number that is not more than <paramref name="s"/>.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int FloorToInt(float s)
+ {
+ return (int)MathF.Floor(s);
+ }
+
+ /// <summary>
+ /// Rounds <paramref name="s"/> downward (towards negative infinity).
+ ///
+ /// This is the same as <see cref="Floor(double)"/>, but returns an <see langword="int"/>.
/// </summary>
/// <param name="s">The number to floor.</param>
/// <returns>The largest whole number that is not more than <paramref name="s"/>.</returns>
- public static int FloorToInt(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int FloorToInt(double s)
{
return (int)Math.Floor(s);
}
@@ -73,11 +111,25 @@ namespace Godot
/// <summary>
/// Rounds <paramref name="s"/> to the nearest whole number.
///
- /// This is the same as <see cref="Round(real_t)"/>, but returns an <see langword="int"/>.
+ /// This is the same as <see cref="Round(float)"/>, but returns an <see langword="int"/>.
/// </summary>
/// <param name="s">The number to round.</param>
/// <returns>The rounded number.</returns>
- public static int RoundToInt(real_t s)
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int RoundToInt(float s)
+ {
+ return (int)MathF.Round(s);
+ }
+
+ /// <summary>
+ /// Rounds <paramref name="s"/> to the nearest whole number.
+ ///
+ /// This is the same as <see cref="Round(double)"/>, but returns an <see langword="int"/>.
+ /// </summary>
+ /// <param name="s">The number to round.</param>
+ /// <returns>The rounded number.</returns>
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ public static int RoundToInt(double s)
{
return (int)Math.Round(s);
}
@@ -87,23 +139,53 @@ namespace Godot
/// </summary>
/// <param name="s">The angle in radians.</param>
/// <returns>The sine and cosine of that angle.</returns>
- public static (real_t Sin, real_t Cos) SinCos(real_t s)
+ public static (float Sin, float Cos) SinCos(float s)
+ {
+ return MathF.SinCos(s);
+ }
+
+ /// <summary>
+ /// Returns the sine and cosine of angle <paramref name="s"/> in radians.
+ /// </summary>
+ /// <param name="s">The angle in radians.</param>
+ /// <returns>The sine and cosine of that angle.</returns>
+ public static (double Sin, double Cos) SinCos(double s)
{
- (double sin, double cos) = Math.SinCos(s);
- return ((real_t)sin, (real_t)cos);
+ return Math.SinCos(s);
+ }
+
+ /// <summary>
+ /// Returns <see langword="true"/> if <paramref name="a"/> and <paramref name="b"/> are approximately
+ /// equal to each other.
+ /// The comparison is done using the provided tolerance value.
+ /// If you want the tolerance to be calculated for you, use <see cref="IsEqualApprox(float, float)"/>.
+ /// </summary>
+ /// <param name="a">One of the values.</param>
+ /// <param name="b">The other value.</param>
+ /// <param name="tolerance">The pre-calculated tolerance value.</param>
+ /// <returns>A <see langword="bool"/> for whether or not the two values are equal.</returns>
+ public static bool IsEqualApprox(float a, float b, float tolerance)
+ {
+ // Check for exact equality first, required to handle "infinity" values.
+ if (a == b)
+ {
+ return true;
+ }
+ // Then check for approximate equality.
+ return Math.Abs(a - b) < tolerance;
}
/// <summary>
/// Returns <see langword="true"/> if <paramref name="a"/> and <paramref name="b"/> are approximately
/// equal to each other.
/// The comparison is done using the provided tolerance value.
- /// If you want the tolerance to be calculated for you, use <see cref="IsEqualApprox(real_t, real_t)"/>.
+ /// If you want the tolerance to be calculated for you, use <see cref="IsEqualApprox(double, double)"/>.
/// </summary>
/// <param name="a">One of the values.</param>
/// <param name="b">The other value.</param>
/// <param name="tolerance">The pre-calculated tolerance value.</param>
/// <returns>A <see langword="bool"/> for whether or not the two values are equal.</returns>
- public static bool IsEqualApprox(real_t a, real_t b, real_t tolerance)
+ public static bool IsEqualApprox(double a, double b, double tolerance)
{
// Check for exact equality first, required to handle "infinity" values.
if (a == b)
@@ -111,7 +193,7 @@ namespace Godot
return true;
}
// Then check for approximate equality.
- return Abs(a - b) < tolerance;
+ return Math.Abs(a - b) < tolerance;
}
}
}