summaryrefslogtreecommitdiff
path: root/modules
diff options
context:
space:
mode:
Diffstat (limited to 'modules')
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs9
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs90
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs185
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs48
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs23
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs24
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs25
7 files changed, 371 insertions, 33 deletions
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
index 87adf9efe5..ed20067a92 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
@@ -498,6 +498,15 @@ namespace Godot
);
}
+ internal Basis Lerp(Basis to, real_t weight)
+ {
+ Basis b = this;
+ b.Row0 = Row0.Lerp(to.Row0, weight);
+ b.Row1 = Row1.Lerp(to.Row1, weight);
+ b.Row2 = Row2.Lerp(to.Row2, weight);
+ return b;
+ }
+
/// <summary>
/// Returns the orthonormalized version of the basis matrix (useful to
/// call occasionally to avoid rounding errors for orthogonal matrices).
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
index 00e775e6ad..b30012d214 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
@@ -175,7 +175,8 @@ namespace Godot
}
/// <summary>
- /// Cubic interpolates between two values by a normalized value with pre and post values.
+ /// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
+ /// with pre and post values.
/// </summary>
/// <param name="from">The start value for interpolation.</param>
/// <param name="to">The destination value for interpolation.</param>
@@ -193,6 +194,93 @@ namespace Godot
}
/// <summary>
+ /// Cubic interpolates between two rotation values with shortest path
+ /// by the factor defined in <paramref name="weight"/> with pre and post values.
+ /// See also <see cref="LerpAngle"/>.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static real_t CubicInterpolateAngle(real_t from, real_t to, real_t pre, real_t post, real_t weight)
+ {
+ real_t fromRot = from % Mathf.Tau;
+
+ real_t preDiff = (pre - fromRot) % Mathf.Tau;
+ real_t preRot = fromRot + (2.0f * preDiff) % Mathf.Tau - preDiff;
+
+ real_t toDiff = (to - fromRot) % Mathf.Tau;
+ real_t toRot = fromRot + (2.0f * toDiff) % Mathf.Tau - toDiff;
+
+ real_t postDiff = (post - toRot) % Mathf.Tau;
+ real_t postRot = toRot + (2.0f * postDiff) % Mathf.Tau - postDiff;
+
+ return CubicInterpolate(fromRot, toRot, preRot, postRot, weight);
+ }
+
+ /// <summary>
+ /// Cubic interpolates between two values by the factor defined in <paramref name="weight"/>
+ /// with pre and post values.
+ /// It can perform smoother interpolation than <see cref="CubicInterpolate"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="toT"></param>
+ /// <param name="preT"></param>
+ /// <param name="postT"></param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static real_t CubicInterpolateInTime(real_t from, real_t to, real_t pre, real_t post, real_t weight, real_t toT, real_t preT, real_t postT)
+ {
+ /* Barry-Goldman method */
+ real_t t = Lerp(0.0f, toT, weight);
+ real_t a1 = Lerp(pre, from, preT == 0 ? 0.0f : (t - preT) / -preT);
+ real_t a2 = Lerp(from, to, toT == 0 ? 0.5f : t / toT);
+ real_t a3 = Lerp(to, post, postT - toT == 0 ? 1.0f : (t - toT) / (postT - toT));
+ real_t b1 = Lerp(a1, a2, toT - preT == 0 ? 0.0f : (t - preT) / (toT - preT));
+ real_t b2 = Lerp(a2, a3, postT == 0 ? 1.0f : t / postT);
+ return Lerp(b1, b2, toT == 0 ? 0.5f : t / toT);
+ }
+
+ /// <summary>
+ /// Cubic interpolates between two rotation values with shortest path
+ /// by the factor defined in <paramref name="weight"/> with pre and post values.
+ /// See also <see cref="LerpAngle"/>.
+ /// It can perform smoother interpolation than <see cref="CubicInterpolateAngle"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="from">The start value for interpolation.</param>
+ /// <param name="to">The destination value for interpolation.</param>
+ /// <param name="pre">The value which before "from" value for interpolation.</param>
+ /// <param name="post">The value which after "to" value for interpolation.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="toT"></param>
+ /// <param name="preT"></param>
+ /// <param name="postT"></param>
+ /// <returns>The resulting value of the interpolation.</returns>
+ public static real_t CubicInterpolateAngleInTime(real_t from, real_t to, real_t pre, real_t post, real_t weight,
+ real_t toT, real_t preT, real_t postT)
+ {
+ real_t fromRot = from % Mathf.Tau;
+
+ real_t preDiff = (pre - fromRot) % Mathf.Tau;
+ real_t preRot = fromRot + (2.0f * preDiff) % Mathf.Tau - preDiff;
+
+ real_t toDiff = (to - fromRot) % Mathf.Tau;
+ real_t toRot = fromRot + (2.0f * toDiff) % Mathf.Tau - toDiff;
+
+ real_t postDiff = (post - toRot) % Mathf.Tau;
+ real_t postRot = toRot + (2.0f * postDiff) % Mathf.Tau - postDiff;
+
+ return CubicInterpolateInTime(fromRot, toRot, preRot, postRot, weight, toT, preT, postT);
+ }
+
+ /// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/> and <paramref name="end"/> points.
/// </summary>
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
index 999500ca13..5cc478ca71 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
@@ -132,7 +132,7 @@ namespace Godot
}
/// <summary>
- /// Performs a cubic spherical interpolation between quaternions <paramref name="preA"/>, this quaternion,
+ /// Performs a spherical cubic interpolation between quaternions <paramref name="preA"/>, this quaternion,
/// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
/// </summary>
/// <param name="b">The destination quaternion.</param>
@@ -140,12 +140,128 @@ namespace Godot
/// <param name="postB">A quaternion after <paramref name="b"/>.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The interpolated quaternion.</returns>
- public Quaternion CubicSlerp(Quaternion b, Quaternion preA, Quaternion postB, real_t weight)
+ public Quaternion SphericalCubicInterpolate(Quaternion b, Quaternion preA, Quaternion postB, real_t weight)
{
- real_t t2 = (1.0f - weight) * weight * 2f;
- Quaternion sp = Slerp(b, weight);
- Quaternion sq = preA.Slerpni(postB, weight);
- return sp.Slerpni(sq, t2);
+#if DEBUG
+ if (!IsNormalized())
+ {
+ throw new InvalidOperationException("Quaternion is not normalized");
+ }
+ if (!b.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(b));
+ }
+#endif
+
+ // Align flip phases.
+ Quaternion fromQ = new Basis(this).GetRotationQuaternion();
+ Quaternion preQ = new Basis(preA).GetRotationQuaternion();
+ Quaternion toQ = new Basis(b).GetRotationQuaternion();
+ Quaternion postQ = new Basis(postB).GetRotationQuaternion();
+
+ // Flip quaternions to shortest path if necessary.
+ bool flip1 = Math.Sign(fromQ.Dot(preQ)) < 0;
+ preQ = flip1 ? -preQ : preQ;
+ bool flip2 = Math.Sign(fromQ.Dot(toQ)) < 0;
+ toQ = flip2 ? -toQ : toQ;
+ bool flip3 = flip2 ? toQ.Dot(postQ) <= 0 : Math.Sign(toQ.Dot(postQ)) < 0;
+ postQ = flip3 ? -postQ : postQ;
+
+ // Calc by Expmap in fromQ space.
+ Quaternion lnFrom = new Quaternion(0, 0, 0, 0);
+ Quaternion lnTo = (fromQ.Inverse() * toQ).Log();
+ Quaternion lnPre = (fromQ.Inverse() * preQ).Log();
+ Quaternion lnPost = (fromQ.Inverse() * postQ).Log();
+ Quaternion ln = new Quaternion(
+ Mathf.CubicInterpolate(lnFrom.x, lnTo.x, lnPre.x, lnPost.x, weight),
+ Mathf.CubicInterpolate(lnFrom.y, lnTo.y, lnPre.y, lnPost.y, weight),
+ Mathf.CubicInterpolate(lnFrom.z, lnTo.z, lnPre.z, lnPost.z, weight),
+ 0);
+ Quaternion q1 = fromQ * ln.Exp();
+
+ // Calc by Expmap in toQ space.
+ lnFrom = (toQ.Inverse() * fromQ).Log();
+ lnTo = new Quaternion(0, 0, 0, 0);
+ lnPre = (toQ.Inverse() * preQ).Log();
+ lnPost = (toQ.Inverse() * postQ).Log();
+ ln = new Quaternion(
+ Mathf.CubicInterpolate(lnFrom.x, lnTo.x, lnPre.x, lnPost.x, weight),
+ Mathf.CubicInterpolate(lnFrom.y, lnTo.y, lnPre.y, lnPost.y, weight),
+ Mathf.CubicInterpolate(lnFrom.z, lnTo.z, lnPre.z, lnPost.z, weight),
+ 0);
+ Quaternion q2 = toQ * ln.Exp();
+
+ // To cancel error made by Expmap ambiguity, do blends.
+ return q1.Slerp(q2, weight);
+ }
+
+ /// <summary>
+ /// Performs a spherical cubic interpolation between quaternions <paramref name="preA"/>, this quaternion,
+ /// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
+ /// It can perform smoother interpolation than <see cref="SphericalCubicInterpolate"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="b">The destination quaternion.</param>
+ /// <param name="preA">A quaternion before this quaternion.</param>
+ /// <param name="postB">A quaternion after <paramref name="b"/>.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="bT"></param>
+ /// <param name="preAT"></param>
+ /// <param name="postBT"></param>
+ /// <returns>The interpolated quaternion.</returns>
+ public Quaternion SphericalCubicInterpolateInTime(Quaternion b, Quaternion preA, Quaternion postB, real_t weight, real_t bT, real_t preAT, real_t postBT)
+ {
+#if DEBUG
+ if (!IsNormalized())
+ {
+ throw new InvalidOperationException("Quaternion is not normalized");
+ }
+ if (!b.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(b));
+ }
+#endif
+
+ // Align flip phases.
+ Quaternion fromQ = new Basis(this).GetRotationQuaternion();
+ Quaternion preQ = new Basis(preA).GetRotationQuaternion();
+ Quaternion toQ = new Basis(b).GetRotationQuaternion();
+ Quaternion postQ = new Basis(postB).GetRotationQuaternion();
+
+ // Flip quaternions to shortest path if necessary.
+ bool flip1 = Math.Sign(fromQ.Dot(preQ)) < 0;
+ preQ = flip1 ? -preQ : preQ;
+ bool flip2 = Math.Sign(fromQ.Dot(toQ)) < 0;
+ toQ = flip2 ? -toQ : toQ;
+ bool flip3 = flip2 ? toQ.Dot(postQ) <= 0 : Math.Sign(toQ.Dot(postQ)) < 0;
+ postQ = flip3 ? -postQ : postQ;
+
+ // Calc by Expmap in fromQ space.
+ Quaternion lnFrom = new Quaternion(0, 0, 0, 0);
+ Quaternion lnTo = (fromQ.Inverse() * toQ).Log();
+ Quaternion lnPre = (fromQ.Inverse() * preQ).Log();
+ Quaternion lnPost = (fromQ.Inverse() * postQ).Log();
+ Quaternion ln = new Quaternion(
+ Mathf.CubicInterpolateInTime(lnFrom.x, lnTo.x, lnPre.x, lnPost.x, weight, bT, preAT, postBT),
+ Mathf.CubicInterpolateInTime(lnFrom.y, lnTo.y, lnPre.y, lnPost.y, weight, bT, preAT, postBT),
+ Mathf.CubicInterpolateInTime(lnFrom.z, lnTo.z, lnPre.z, lnPost.z, weight, bT, preAT, postBT),
+ 0);
+ Quaternion q1 = fromQ * ln.Exp();
+
+ // Calc by Expmap in toQ space.
+ lnFrom = (toQ.Inverse() * fromQ).Log();
+ lnTo = new Quaternion(0, 0, 0, 0);
+ lnPre = (toQ.Inverse() * preQ).Log();
+ lnPost = (toQ.Inverse() * postQ).Log();
+ ln = new Quaternion(
+ Mathf.CubicInterpolateInTime(lnFrom.x, lnTo.x, lnPre.x, lnPost.x, weight, bT, preAT, postBT),
+ Mathf.CubicInterpolateInTime(lnFrom.y, lnTo.y, lnPre.y, lnPost.y, weight, bT, preAT, postBT),
+ Mathf.CubicInterpolateInTime(lnFrom.z, lnTo.z, lnPre.z, lnPost.z, weight, bT, preAT, postBT),
+ 0);
+ Quaternion q2 = toQ * ln.Exp();
+
+ // To cancel error made by Expmap ambiguity, do blends.
+ return q1.Slerp(q2, weight);
}
/// <summary>
@@ -158,6 +274,34 @@ namespace Godot
return (x * b.x) + (y * b.y) + (z * b.z) + (w * b.w);
}
+ public Quaternion Exp()
+ {
+ Vector3 v = new Vector3(x, y, z);
+ real_t theta = v.Length();
+ v = v.Normalized();
+ if (theta < Mathf.Epsilon || !v.IsNormalized())
+ {
+ return new Quaternion(0, 0, 0, 1);
+ }
+ return new Quaternion(v, theta);
+ }
+
+ public real_t GetAngle()
+ {
+ return 2 * Mathf.Acos(w);
+ }
+
+ public Vector3 GetAxis()
+ {
+ if (Mathf.Abs(w) > 1 - Mathf.Epsilon)
+ {
+ return new Vector3(x, y, z);
+ }
+
+ real_t r = 1 / Mathf.Sqrt(1 - w * w);
+ return new Vector3(x * r, y * r, z * r);
+ }
+
/// <summary>
/// Returns Euler angles (in the YXZ convention: when decomposing,
/// first Z, then X, and Y last) corresponding to the rotation
@@ -201,6 +345,12 @@ namespace Godot
return Mathf.Abs(LengthSquared - 1) <= Mathf.Epsilon;
}
+ public Quaternion Log()
+ {
+ Vector3 v = GetAxis() * GetAngle();
+ return new Quaternion(v.x, v.y, v.z, 0);
+ }
+
/// <summary>
/// Returns a copy of the quaternion, normalized to unit length.
/// </summary>
@@ -233,7 +383,7 @@ namespace Godot
#endif
// Calculate cosine.
- real_t cosom = x * to.x + y * to.y + z * to.z + w * to.w;
+ real_t cosom = Dot(to);
var to1 = new Quaternion();
@@ -241,17 +391,11 @@ namespace Godot
if (cosom < 0.0)
{
cosom = -cosom;
- to1.x = -to.x;
- to1.y = -to.y;
- to1.z = -to.z;
- to1.w = -to.w;
+ to1 = -to;
}
else
{
- to1.x = to.x;
- to1.y = to.y;
- to1.z = to.z;
- to1.w = to.w;
+ to1 = to;
}
real_t sinom, scale0, scale1;
@@ -292,6 +436,17 @@ namespace Godot
/// <returns>The resulting quaternion of the interpolation.</returns>
public Quaternion Slerpni(Quaternion to, real_t weight)
{
+#if DEBUG
+ if (!IsNormalized())
+ {
+ throw new InvalidOperationException("Quaternion is not normalized");
+ }
+ if (!to.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(to));
+ }
+#endif
+
real_t dot = Dot(to);
if (Mathf.Abs(dot) > 0.9999f)
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs
index 4b739bb86b..3c017ecc9f 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs
@@ -119,23 +119,9 @@ namespace Godot
/// <returns>The interpolated transform.</returns>
public Transform3D InterpolateWith(Transform3D transform, real_t weight)
{
- /* not sure if very "efficient" but good enough? */
-
- Vector3 sourceScale = basis.Scale;
- Quaternion sourceRotation = basis.GetRotationQuaternion();
- Vector3 sourceLocation = origin;
-
- Vector3 destinationScale = transform.basis.Scale;
- Quaternion destinationRotation = transform.basis.GetRotationQuaternion();
- Vector3 destinationLocation = transform.origin;
-
- var interpolated = new Transform3D();
- Quaternion quaternion = sourceRotation.Slerp(destinationRotation, weight).Normalized();
- Vector3 scale = sourceScale.Lerp(destinationScale, weight);
- interpolated.basis.SetQuaternionScale(quaternion, scale);
- interpolated.origin = sourceLocation.Lerp(destinationLocation, weight);
-
- return interpolated;
+ Basis retBasis = basis.Lerp(transform.basis, weight);
+ Vector3 retOrigin = origin.Lerp(transform.origin, weight);
+ return new Transform3D(retBasis, retOrigin);
}
/// <summary>
@@ -234,6 +220,34 @@ namespace Godot
return new Transform3D(basis * tmpBasis, origin);
}
+ /// <summary>
+ /// Returns a transform spherically interpolated between this transform and
+ /// another <paramref name="transform"/> by <paramref name="weight"/>.
+ /// </summary>
+ /// <param name="transform">The other transform.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <returns>The interpolated transform.</returns>
+ public Transform3D SphericalInterpolateWith(Transform3D transform, real_t weight)
+ {
+ /* not sure if very "efficient" but good enough? */
+
+ Vector3 sourceScale = basis.Scale;
+ Quaternion sourceRotation = basis.GetRotationQuaternion();
+ Vector3 sourceLocation = origin;
+
+ Vector3 destinationScale = transform.basis.Scale;
+ Quaternion destinationRotation = transform.basis.GetRotationQuaternion();
+ Vector3 destinationLocation = transform.origin;
+
+ var interpolated = new Transform3D();
+ Quaternion quaternion = sourceRotation.Slerp(destinationRotation, weight).Normalized();
+ Vector3 scale = sourceScale.Lerp(destinationScale, weight);
+ interpolated.basis.SetQuaternionScale(quaternion, scale);
+ interpolated.origin = sourceLocation.Lerp(destinationLocation, weight);
+
+ return interpolated;
+ }
+
private void SetLookAt(Vector3 eye, Vector3 target, Vector3 up)
{
// Make rotation matrix
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs
index 03ee12884b..b2964db8cd 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs
@@ -216,6 +216,29 @@ namespace Godot
}
/// <summary>
+ /// Performs a cubic interpolation between vectors <paramref name="preA"/>, this vector,
+ /// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
+ /// It can perform smoother interpolation than <see cref="CubicInterpolate"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="b">The destination vector.</param>
+ /// <param name="preA">A vector before this vector.</param>
+ /// <param name="postB">A vector after <paramref name="b"/>.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="t"></param>
+ /// <param name="preAT"></param>
+ /// <param name="postBT"></param>
+ /// <returns>The interpolated vector.</returns>
+ public Vector2 CubicInterpolateInTime(Vector2 b, Vector2 preA, Vector2 postB, real_t weight, real_t t, real_t preAT, real_t postBT)
+ {
+ return new Vector2
+ (
+ Mathf.CubicInterpolateInTime(x, b.x, preA.x, postB.x, weight, t, preAT, postBT),
+ Mathf.CubicInterpolateInTime(y, b.y, preA.y, postB.y, weight, t, preAT, postBT)
+ );
+ }
+
+ /// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by this vector
/// and the given <paramref name="control1"/>, <paramref name="control2"/> and <paramref name="end"/> points.
/// </summary>
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
index cdba06c089..b53ca5e45a 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
@@ -209,6 +209,30 @@ namespace Godot
}
/// <summary>
+ /// Performs a cubic interpolation between vectors <paramref name="preA"/>, this vector,
+ /// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
+ /// It can perform smoother interpolation than <see cref="CubicInterpolate"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="b">The destination vector.</param>
+ /// <param name="preA">A vector before this vector.</param>
+ /// <param name="postB">A vector after <paramref name="b"/>.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="t"></param>
+ /// <param name="preAT"></param>
+ /// <param name="postBT"></param>
+ /// <returns>The interpolated vector.</returns>
+ public Vector3 CubicInterpolateInTime(Vector3 b, Vector3 preA, Vector3 postB, real_t weight, real_t t, real_t preAT, real_t postBT)
+ {
+ return new Vector3
+ (
+ Mathf.CubicInterpolateInTime(x, b.x, preA.x, postB.x, weight, t, preAT, postBT),
+ Mathf.CubicInterpolateInTime(y, b.y, preA.y, postB.y, weight, t, preAT, postBT),
+ Mathf.CubicInterpolateInTime(z, b.z, preA.z, postB.z, weight, t, preAT, postBT)
+ );
+ }
+
+ /// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by this vector
/// and the given <paramref name="control1"/>, <paramref name="control2"/> and <paramref name="end"/> points.
/// </summary>
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs
index 705da04692..b6f243dfb4 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs
@@ -193,6 +193,31 @@ namespace Godot
}
/// <summary>
+ /// Performs a cubic interpolation between vectors <paramref name="preA"/>, this vector,
+ /// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
+ /// It can perform smoother interpolation than <see cref="CubicInterpolate"/>
+ /// by the time values.
+ /// </summary>
+ /// <param name="b">The destination vector.</param>
+ /// <param name="preA">A vector before this vector.</param>
+ /// <param name="postB">A vector after <paramref name="b"/>.</param>
+ /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
+ /// <param name="t"></param>
+ /// <param name="preAT"></param>
+ /// <param name="postBT"></param>
+ /// <returns>The interpolated vector.</returns>
+ public Vector4 CubicInterpolateInTime(Vector4 b, Vector4 preA, Vector4 postB, real_t weight, real_t t, real_t preAT, real_t postBT)
+ {
+ return new Vector4
+ (
+ Mathf.CubicInterpolateInTime(x, b.x, preA.x, postB.x, weight, t, preAT, postBT),
+ Mathf.CubicInterpolateInTime(y, b.y, preA.y, postB.y, weight, t, preAT, postBT),
+ Mathf.CubicInterpolateInTime(y, b.z, preA.z, postB.z, weight, t, preAT, postBT),
+ Mathf.CubicInterpolateInTime(w, b.w, preA.w, postB.w, weight, t, preAT, postBT)
+ );
+ }
+
+ /// <summary>
/// Returns the normalized vector pointing from this vector to <paramref name="to"/>.
/// </summary>
/// <param name="to">The other vector to point towards.</param>