summaryrefslogtreecommitdiff
path: root/modules/navigation/nav_map.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'modules/navigation/nav_map.cpp')
-rw-r--r--modules/navigation/nav_map.cpp764
1 files changed, 764 insertions, 0 deletions
diff --git a/modules/navigation/nav_map.cpp b/modules/navigation/nav_map.cpp
new file mode 100644
index 0000000000..3150ca0bc8
--- /dev/null
+++ b/modules/navigation/nav_map.cpp
@@ -0,0 +1,764 @@
+/*************************************************************************/
+/* nav_map.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "nav_map.h"
+
+#include "core/os/threaded_array_processor.h"
+#include "nav_region.h"
+#include "rvo_agent.h"
+
+#include <algorithm>
+
+/**
+ @author AndreaCatania
+*/
+
+#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
+
+void NavMap::set_up(Vector3 p_up) {
+ up = p_up;
+ regenerate_polygons = true;
+}
+
+void NavMap::set_cell_size(float p_cell_size) {
+ cell_size = p_cell_size;
+ regenerate_polygons = true;
+}
+
+void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
+ edge_connection_margin = p_edge_connection_margin;
+ regenerate_links = true;
+}
+
+gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
+ const int x = int(Math::floor(p_pos.x / cell_size));
+ const int y = int(Math::floor(p_pos.y / cell_size));
+ const int z = int(Math::floor(p_pos.z / cell_size));
+
+ gd::PointKey p;
+ p.key = 0;
+ p.x = x;
+ p.y = y;
+ p.z = z;
+ return p;
+}
+
+Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_layers) const {
+ // Find the start poly and the end poly on this map.
+ const gd::Polygon *begin_poly = nullptr;
+ const gd::Polygon *end_poly = nullptr;
+ Vector3 begin_point;
+ Vector3 end_point;
+ float begin_d = 1e20;
+ float end_d = 1e20;
+ // Find the initial poly and the end poly on this map.
+ for (size_t i(0); i < polygons.size(); i++) {
+ const gd::Polygon &p = polygons[i];
+
+ // Only consider the polygon if it in a region with compatible layers.
+ if ((p_layers & p.owner->get_layers()) == 0) {
+ continue;
+ }
+
+ // For each point cast a face and check the distance between the origin/destination
+ for (size_t point_id = 0; point_id < p.points.size(); point_id++) {
+ const Vector3 p1 = p.points[point_id].pos;
+ const Vector3 p2 = p.points[(point_id + 1) % p.points.size()].pos;
+ const Vector3 p3 = p.points[(point_id + 2) % p.points.size()].pos;
+ const Face3 face(p1, p2, p3);
+
+ Vector3 point = face.get_closest_point_to(p_origin);
+ float distance_to_point = point.distance_to(p_origin);
+ if (distance_to_point < begin_d) {
+ begin_d = distance_to_point;
+ begin_poly = &p;
+ begin_point = point;
+ }
+
+ point = face.get_closest_point_to(p_destination);
+ distance_to_point = point.distance_to(p_destination);
+ if (distance_to_point < end_d) {
+ end_d = distance_to_point;
+ end_poly = &p;
+ end_point = point;
+ }
+ }
+ }
+
+ // Check for trivial cases
+ if (!begin_poly || !end_poly) {
+ return Vector<Vector3>();
+ }
+ if (begin_poly == end_poly) {
+ Vector<Vector3> path;
+ path.resize(2);
+ path.write[0] = begin_point;
+ path.write[1] = end_point;
+ return path;
+ }
+
+ // List of all reachable navigation polys.
+ std::vector<gd::NavigationPoly> navigation_polys;
+ navigation_polys.reserve(polygons.size() * 0.75);
+
+ // Add the start polygon to the reachable navigation polygons.
+ gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
+ begin_navigation_poly.self_id = 0;
+ begin_navigation_poly.entry = begin_point;
+ begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
+ begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
+ navigation_polys.push_back(begin_navigation_poly);
+
+ // List of polygon IDs to visit.
+ List<uint32_t> to_visit;
+ to_visit.push_back(0);
+
+ // This is an implementation of the A* algorithm.
+ int least_cost_id = 0;
+ bool found_route = false;
+
+ const gd::Polygon *reachable_end = nullptr;
+ float reachable_d = 1e30;
+ bool is_reachable = true;
+
+ while (true) {
+ gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id];
+
+ // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
+ for (size_t i = 0; i < least_cost_poly->poly->edges.size(); i++) {
+ const gd::Edge &edge = least_cost_poly->poly->edges[i];
+
+ // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
+ for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
+ const gd::Edge::Connection &connection = edge.connections[connection_index];
+
+ // Only consider the connection to another polygon if this polygon is in a region with compatible layers.
+ if ((p_layers & connection.polygon->owner->get_layers()) == 0) {
+ continue;
+ }
+
+ Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
+ const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly->entry, pathway);
+ const float new_distance = least_cost_poly->entry.distance_to(new_entry) + least_cost_poly->traveled_distance;
+
+ const std::vector<gd::NavigationPoly>::iterator it = std::find(
+ navigation_polys.begin(),
+ navigation_polys.end(),
+ gd::NavigationPoly(connection.polygon));
+
+ if (it != navigation_polys.end()) {
+ // Polygon already visited, check if we can reduce the travel cost.
+ if (new_distance < it->traveled_distance) {
+ it->back_navigation_poly_id = least_cost_id;
+ it->back_navigation_edge = connection.edge;
+ it->back_navigation_edge_pathway_start = connection.pathway_start;
+ it->back_navigation_edge_pathway_end = connection.pathway_end;
+ it->traveled_distance = new_distance;
+ it->entry = new_entry;
+ }
+ } else {
+ // Add the neighbour polygon to the reachable ones.
+ gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
+ new_navigation_poly.self_id = navigation_polys.size();
+ new_navigation_poly.back_navigation_poly_id = least_cost_id;
+ new_navigation_poly.back_navigation_edge = connection.edge;
+ new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
+ new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
+ new_navigation_poly.traveled_distance = new_distance;
+ new_navigation_poly.entry = new_entry;
+ navigation_polys.push_back(new_navigation_poly);
+
+ // Add the neighbour polygon to the polygons to visit.
+ to_visit.push_back(navigation_polys.size() - 1);
+ }
+ }
+ }
+
+ // Removes the least cost polygon from the list of polygons to visit so we can advance.
+ to_visit.erase(least_cost_id);
+
+ // When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
+ if (to_visit.size() == 0) {
+ // Thus use the further reachable polygon
+ ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
+ is_reachable = false;
+ if (reachable_end == nullptr) {
+ // The path is not found and there is not a way out.
+ break;
+ }
+
+ // Set as end point the furthest reachable point.
+ end_poly = reachable_end;
+ end_d = 1e20;
+ for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
+ Face3 f(end_poly->points[point_id - 2].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
+ Vector3 spoint = f.get_closest_point_to(p_destination);
+ float dpoint = spoint.distance_to(p_destination);
+ if (dpoint < end_d) {
+ end_point = spoint;
+ end_d = dpoint;
+ }
+ }
+
+ // Reset open and navigation_polys
+ gd::NavigationPoly np = navigation_polys[0];
+ navigation_polys.clear();
+ navigation_polys.push_back(np);
+ to_visit.clear();
+ to_visit.push_back(0);
+
+ reachable_end = nullptr;
+
+ continue;
+ }
+
+ // Find the polygon with the minimum cost from the list of polygons to visit.
+ least_cost_id = -1;
+ float least_cost = 1e30;
+ for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
+ gd::NavigationPoly *np = &navigation_polys[element->get()];
+ float cost = np->traveled_distance;
+ cost += np->entry.distance_to(end_point);
+ if (cost < least_cost) {
+ least_cost_id = np->self_id;
+ least_cost = cost;
+ }
+ }
+
+ // Stores the further reachable end polygon, in case our goal is not reachable.
+ if (is_reachable) {
+ float d = navigation_polys[least_cost_id].entry.distance_to(p_destination);
+ if (reachable_d > d) {
+ reachable_d = d;
+ reachable_end = navigation_polys[least_cost_id].poly;
+ }
+ }
+
+ ERR_BREAK(least_cost_id == -1);
+
+ // Check if we reached the end
+ if (navigation_polys[least_cost_id].poly == end_poly) {
+ found_route = true;
+ break;
+ }
+ }
+
+ // If we did not find a route, return an empty path.
+ if (!found_route) {
+ return Vector<Vector3>();
+ }
+
+ Vector<Vector3> path;
+ // Optimize the path.
+ if (p_optimize) {
+ // Set the apex poly/point to the end point
+ gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
+ Vector3 apex_point = end_point;
+
+ gd::NavigationPoly *left_poly = apex_poly;
+ Vector3 left_portal = apex_point;
+ gd::NavigationPoly *right_poly = apex_poly;
+ Vector3 right_portal = apex_point;
+
+ gd::NavigationPoly *p = apex_poly;
+
+ path.push_back(end_point);
+
+ while (p) {
+ // Set left and right points of the pathway between polygons.
+ Vector3 left = p->back_navigation_edge_pathway_start;
+ Vector3 right = p->back_navigation_edge_pathway_end;
+ if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
+ SWAP(left, right);
+ }
+
+ bool skip = false;
+ if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
+ //process
+ if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
+ left_poly = p;
+ left_portal = left;
+ } else {
+ clip_path(navigation_polys, path, apex_poly, right_portal, right_poly);
+
+ apex_point = right_portal;
+ p = right_poly;
+ left_poly = p;
+ apex_poly = p;
+ left_portal = apex_point;
+ right_portal = apex_point;
+ path.push_back(apex_point);
+ skip = true;
+ }
+ }
+
+ if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
+ //process
+ if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
+ right_poly = p;
+ right_portal = right;
+ } else {
+ clip_path(navigation_polys, path, apex_poly, left_portal, left_poly);
+
+ apex_point = left_portal;
+ p = left_poly;
+ right_poly = p;
+ apex_poly = p;
+ right_portal = apex_point;
+ left_portal = apex_point;
+ path.push_back(apex_point);
+ }
+ }
+
+ // Go to the previous polygon.
+ if (p->back_navigation_poly_id != -1) {
+ p = &navigation_polys[p->back_navigation_poly_id];
+ } else {
+ // The end
+ p = nullptr;
+ }
+ }
+
+ // If the last point is not the begin point, add it to the list.
+ if (path[path.size() - 1] != begin_point) {
+ path.push_back(begin_point);
+ }
+
+ path.reverse();
+
+ } else {
+ path.push_back(end_point);
+
+ // Add mid points
+ int np_id = least_cost_id;
+ while (np_id != -1) {
+ path.push_back(navigation_polys[np_id].entry);
+ np_id = navigation_polys[np_id].back_navigation_poly_id;
+ }
+
+ path.reverse();
+ }
+
+ return path;
+}
+
+Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
+ bool use_collision = p_use_collision;
+ Vector3 closest_point;
+ real_t closest_point_d = 1e20;
+
+ // Find the initial poly and the end poly on this map.
+ for (size_t i(0); i < polygons.size(); i++) {
+ const gd::Polygon &p = polygons[i];
+
+ // For each point cast a face and check the distance to the segment
+ for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
+ const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
+ Vector3 inters;
+ if (f.intersects_segment(p_from, p_to, &inters)) {
+ const real_t d = closest_point_d = p_from.distance_to(inters);
+ if (use_collision == false) {
+ closest_point = inters;
+ use_collision = true;
+ closest_point_d = d;
+ } else if (closest_point_d > d) {
+ closest_point = inters;
+ closest_point_d = d;
+ }
+ }
+ }
+
+ if (use_collision == false) {
+ for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
+ Vector3 a, b;
+
+ Geometry3D::get_closest_points_between_segments(
+ p_from,
+ p_to,
+ p.points[point_id].pos,
+ p.points[(point_id + 1) % p.points.size()].pos,
+ a,
+ b);
+
+ const real_t d = a.distance_to(b);
+ if (d < closest_point_d) {
+ closest_point_d = d;
+ closest_point = b;
+ }
+ }
+ }
+ }
+
+ return closest_point;
+}
+
+Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
+ // TODO this is really not optimal, please redesign the API to directly return all this data
+
+ Vector3 closest_point;
+ real_t closest_point_d = 1e20;
+
+ // Find the initial poly and the end poly on this map.
+ for (size_t i(0); i < polygons.size(); i++) {
+ const gd::Polygon &p = polygons[i];
+
+ // For each point cast a face and check the distance to the point
+ for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
+ const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
+ const Vector3 inters = f.get_closest_point_to(p_point);
+ const real_t d = inters.distance_to(p_point);
+ if (d < closest_point_d) {
+ closest_point = inters;
+ closest_point_d = d;
+ }
+ }
+ }
+
+ return closest_point;
+}
+
+Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
+ // TODO this is really not optimal, please redesign the API to directly return all this data
+
+ Vector3 closest_point;
+ Vector3 closest_point_normal;
+ real_t closest_point_d = 1e20;
+
+ // Find the initial poly and the end poly on this map.
+ for (size_t i(0); i < polygons.size(); i++) {
+ const gd::Polygon &p = polygons[i];
+
+ // For each point cast a face and check the distance to the point
+ for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
+ const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
+ const Vector3 inters = f.get_closest_point_to(p_point);
+ const real_t d = inters.distance_to(p_point);
+ if (d < closest_point_d) {
+ closest_point = inters;
+ closest_point_normal = f.get_plane().normal;
+ closest_point_d = d;
+ }
+ }
+ }
+
+ return closest_point_normal;
+}
+
+RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
+ // TODO this is really not optimal, please redesign the API to directly return all this data
+
+ Vector3 closest_point;
+ RID closest_point_owner;
+ real_t closest_point_d = 1e20;
+
+ // Find the initial poly and the end poly on this map.
+ for (size_t i(0); i < polygons.size(); i++) {
+ const gd::Polygon &p = polygons[i];
+
+ // For each point cast a face and check the distance to the point
+ for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
+ const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
+ const Vector3 inters = f.get_closest_point_to(p_point);
+ const real_t d = inters.distance_to(p_point);
+ if (d < closest_point_d) {
+ closest_point = inters;
+ closest_point_owner = p.owner->get_self();
+ closest_point_d = d;
+ }
+ }
+ }
+
+ return closest_point_owner;
+}
+
+void NavMap::add_region(NavRegion *p_region) {
+ regions.push_back(p_region);
+ regenerate_links = true;
+}
+
+void NavMap::remove_region(NavRegion *p_region) {
+ const std::vector<NavRegion *>::iterator it = std::find(regions.begin(), regions.end(), p_region);
+ if (it != regions.end()) {
+ regions.erase(it);
+ regenerate_links = true;
+ }
+}
+
+bool NavMap::has_agent(RvoAgent *agent) const {
+ return std::find(agents.begin(), agents.end(), agent) != agents.end();
+}
+
+void NavMap::add_agent(RvoAgent *agent) {
+ if (!has_agent(agent)) {
+ agents.push_back(agent);
+ agents_dirty = true;
+ }
+}
+
+void NavMap::remove_agent(RvoAgent *agent) {
+ remove_agent_as_controlled(agent);
+ const std::vector<RvoAgent *>::iterator it = std::find(agents.begin(), agents.end(), agent);
+ if (it != agents.end()) {
+ agents.erase(it);
+ agents_dirty = true;
+ }
+}
+
+void NavMap::set_agent_as_controlled(RvoAgent *agent) {
+ const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end();
+ if (!exist) {
+ ERR_FAIL_COND(!has_agent(agent));
+ controlled_agents.push_back(agent);
+ }
+}
+
+void NavMap::remove_agent_as_controlled(RvoAgent *agent) {
+ const std::vector<RvoAgent *>::iterator it = std::find(controlled_agents.begin(), controlled_agents.end(), agent);
+ if (it != controlled_agents.end()) {
+ controlled_agents.erase(it);
+ }
+}
+
+void NavMap::sync() {
+ // Check if we need to update the links.
+ if (regenerate_polygons) {
+ for (size_t r(0); r < regions.size(); r++) {
+ regions[r]->scratch_polygons();
+ }
+ regenerate_links = true;
+ }
+
+ for (size_t r(0); r < regions.size(); r++) {
+ if (regions[r]->sync()) {
+ regenerate_links = true;
+ }
+ }
+
+ if (regenerate_links) {
+ // Remove regions connections.
+ for (size_t r(0); r < regions.size(); r++) {
+ regions[r]->get_connections().clear();
+ }
+
+ // Resize the polygon count.
+ int count = 0;
+ for (size_t r(0); r < regions.size(); r++) {
+ count += regions[r]->get_polygons().size();
+ }
+ polygons.resize(count);
+
+ // Copy all region polygons in the map.
+ count = 0;
+ for (size_t r(0); r < regions.size(); r++) {
+ std::copy(
+ regions[r]->get_polygons().data(),
+ regions[r]->get_polygons().data() + regions[r]->get_polygons().size(),
+ polygons.begin() + count);
+ count += regions[r]->get_polygons().size();
+ }
+
+ // Group all edges per key.
+ Map<gd::EdgeKey, Vector<gd::Edge::Connection>> connections;
+ for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) {
+ gd::Polygon &poly(polygons[poly_id]);
+
+ for (size_t p(0); p < poly.points.size(); p++) {
+ int next_point = (p + 1) % poly.points.size();
+ gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
+
+ Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *connection = connections.find(ek);
+ if (!connection) {
+ connections[ek] = Vector<gd::Edge::Connection>();
+ }
+ if (connections[ek].size() <= 1) {
+ // Add the polygon/edge tuple to this key.
+ gd::Edge::Connection new_connection;
+ new_connection.polygon = &poly;
+ new_connection.edge = p;
+ new_connection.pathway_start = poly.points[p].pos;
+ new_connection.pathway_end = poly.points[next_point].pos;
+ connections[ek].push_back(new_connection);
+ } else {
+ // The edge is already connected with another edge, skip.
+ ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem.");
+ }
+ }
+ }
+
+ Vector<gd::Edge::Connection> free_edges;
+ for (Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *E = connections.front(); E; E = E->next()) {
+ if (E->get().size() == 2) {
+ // Connect edge that are shared in different polygons.
+ gd::Edge::Connection &c1 = E->get().write[0];
+ gd::Edge::Connection &c2 = E->get().write[1];
+ c1.polygon->edges[c1.edge].connections.push_back(c2);
+ c2.polygon->edges[c2.edge].connections.push_back(c1);
+ // Note: The pathway_start/end are full for those connection and do not need to be modified.
+ } else {
+ CRASH_COND_MSG(E->get().size() != 1, vformat("Number of connection != 1. Found: %d", E->get().size()));
+ free_edges.push_back(E->get()[0]);
+ }
+ }
+
+ // Find the compatible near edges.
+ //
+ // Note:
+ // Considering that the edges must be compatible (for obvious reasons)
+ // to be connected, create new polygons to remove that small gap is
+ // not really useful and would result in wasteful computation during
+ // connection, integration and path finding.
+ for (int i = 0; i < free_edges.size(); i++) {
+ const gd::Edge::Connection &free_edge = free_edges[i];
+ Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
+ Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
+
+ for (int j = 0; j < free_edges.size(); j++) {
+ const gd::Edge::Connection &other_edge = free_edges[j];
+ if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
+ continue;
+ }
+
+ Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
+ Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
+
+ // Compute the projection of the opposite edge on the current one
+ Vector3 edge_vector = edge_p2 - edge_p1;
+ float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
+ float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
+ if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
+ continue;
+ }
+
+ // Check if the two edges are close to each other enough and compute a pathway between the two regions.
+ Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
+ Vector3 other1;
+ if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
+ other1 = other_edge_p1;
+ } else {
+ other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
+ }
+ if ((self1 - other1).length() > edge_connection_margin) {
+ continue;
+ }
+
+ Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
+ Vector3 other2;
+ if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
+ other2 = other_edge_p2;
+ } else {
+ other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
+ }
+ if ((self2 - other2).length() > edge_connection_margin) {
+ continue;
+ }
+
+ // The edges can now be connected.
+ gd::Edge::Connection new_connection = other_edge;
+ new_connection.pathway_start = (self1 + other1) / 2.0;
+ new_connection.pathway_end = (self2 + other2) / 2.0;
+ free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
+
+ // Add the connection to the region_connection map.
+ free_edge.polygon->owner->get_connections().push_back(new_connection);
+ }
+ }
+
+ // Update the update ID.
+ map_update_id = (map_update_id + 1) % 9999999;
+ }
+
+ // Update agents tree.
+ if (agents_dirty) {
+ std::vector<RVO::Agent *> raw_agents;
+ raw_agents.reserve(agents.size());
+ for (size_t i(0); i < agents.size(); i++) {
+ raw_agents.push_back(agents[i]->get_agent());
+ }
+ rvo.buildAgentTree(raw_agents);
+ }
+
+ regenerate_polygons = false;
+ regenerate_links = false;
+ agents_dirty = false;
+}
+
+void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) {
+ (*(agent + index))->get_agent()->computeNeighbors(&rvo);
+ (*(agent + index))->get_agent()->computeNewVelocity(deltatime);
+}
+
+void NavMap::step(real_t p_deltatime) {
+ deltatime = p_deltatime;
+ if (controlled_agents.size() > 0) {
+ thread_process_array(
+ controlled_agents.size(),
+ this,
+ &NavMap::compute_single_step,
+ controlled_agents.data());
+ }
+}
+
+void NavMap::dispatch_callbacks() {
+ for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
+ controlled_agents[i]->dispatch_callback();
+ }
+}
+
+void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const {
+ Vector3 from = path[path.size() - 1];
+
+ if (from.is_equal_approx(p_to_point)) {
+ return;
+ }
+ Plane cut_plane;
+ cut_plane.normal = (from - p_to_point).cross(up);
+ if (cut_plane.normal == Vector3()) {
+ return;
+ }
+ cut_plane.normal.normalize();
+ cut_plane.d = cut_plane.normal.dot(from);
+
+ while (from_poly != p_to_poly) {
+ Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
+ Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
+
+ ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
+ from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
+
+ if (!pathway_start.is_equal_approx(pathway_end)) {
+ Vector3 inters;
+ if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
+ if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
+ path.push_back(inters);
+ }
+ }
+ }
+ }
+}