diff options
Diffstat (limited to 'modules/navigation/nav_map.cpp')
-rw-r--r-- | modules/navigation/nav_map.cpp | 764 |
1 files changed, 764 insertions, 0 deletions
diff --git a/modules/navigation/nav_map.cpp b/modules/navigation/nav_map.cpp new file mode 100644 index 0000000000..3150ca0bc8 --- /dev/null +++ b/modules/navigation/nav_map.cpp @@ -0,0 +1,764 @@ +/*************************************************************************/ +/* nav_map.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "nav_map.h" + +#include "core/os/threaded_array_processor.h" +#include "nav_region.h" +#include "rvo_agent.h" + +#include <algorithm> + +/** + @author AndreaCatania +*/ + +#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a))) + +void NavMap::set_up(Vector3 p_up) { + up = p_up; + regenerate_polygons = true; +} + +void NavMap::set_cell_size(float p_cell_size) { + cell_size = p_cell_size; + regenerate_polygons = true; +} + +void NavMap::set_edge_connection_margin(float p_edge_connection_margin) { + edge_connection_margin = p_edge_connection_margin; + regenerate_links = true; +} + +gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const { + const int x = int(Math::floor(p_pos.x / cell_size)); + const int y = int(Math::floor(p_pos.y / cell_size)); + const int z = int(Math::floor(p_pos.z / cell_size)); + + gd::PointKey p; + p.key = 0; + p.x = x; + p.y = y; + p.z = z; + return p; +} + +Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_layers) const { + // Find the start poly and the end poly on this map. + const gd::Polygon *begin_poly = nullptr; + const gd::Polygon *end_poly = nullptr; + Vector3 begin_point; + Vector3 end_point; + float begin_d = 1e20; + float end_d = 1e20; + // Find the initial poly and the end poly on this map. + for (size_t i(0); i < polygons.size(); i++) { + const gd::Polygon &p = polygons[i]; + + // Only consider the polygon if it in a region with compatible layers. + if ((p_layers & p.owner->get_layers()) == 0) { + continue; + } + + // For each point cast a face and check the distance between the origin/destination + for (size_t point_id = 0; point_id < p.points.size(); point_id++) { + const Vector3 p1 = p.points[point_id].pos; + const Vector3 p2 = p.points[(point_id + 1) % p.points.size()].pos; + const Vector3 p3 = p.points[(point_id + 2) % p.points.size()].pos; + const Face3 face(p1, p2, p3); + + Vector3 point = face.get_closest_point_to(p_origin); + float distance_to_point = point.distance_to(p_origin); + if (distance_to_point < begin_d) { + begin_d = distance_to_point; + begin_poly = &p; + begin_point = point; + } + + point = face.get_closest_point_to(p_destination); + distance_to_point = point.distance_to(p_destination); + if (distance_to_point < end_d) { + end_d = distance_to_point; + end_poly = &p; + end_point = point; + } + } + } + + // Check for trivial cases + if (!begin_poly || !end_poly) { + return Vector<Vector3>(); + } + if (begin_poly == end_poly) { + Vector<Vector3> path; + path.resize(2); + path.write[0] = begin_point; + path.write[1] = end_point; + return path; + } + + // List of all reachable navigation polys. + std::vector<gd::NavigationPoly> navigation_polys; + navigation_polys.reserve(polygons.size() * 0.75); + + // Add the start polygon to the reachable navigation polygons. + gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly); + begin_navigation_poly.self_id = 0; + begin_navigation_poly.entry = begin_point; + begin_navigation_poly.back_navigation_edge_pathway_start = begin_point; + begin_navigation_poly.back_navigation_edge_pathway_end = begin_point; + navigation_polys.push_back(begin_navigation_poly); + + // List of polygon IDs to visit. + List<uint32_t> to_visit; + to_visit.push_back(0); + + // This is an implementation of the A* algorithm. + int least_cost_id = 0; + bool found_route = false; + + const gd::Polygon *reachable_end = nullptr; + float reachable_d = 1e30; + bool is_reachable = true; + + while (true) { + gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; + + // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance. + for (size_t i = 0; i < least_cost_poly->poly->edges.size(); i++) { + const gd::Edge &edge = least_cost_poly->poly->edges[i]; + + // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon. + for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) { + const gd::Edge::Connection &connection = edge.connections[connection_index]; + + // Only consider the connection to another polygon if this polygon is in a region with compatible layers. + if ((p_layers & connection.polygon->owner->get_layers()) == 0) { + continue; + } + + Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end }; + const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly->entry, pathway); + const float new_distance = least_cost_poly->entry.distance_to(new_entry) + least_cost_poly->traveled_distance; + + const std::vector<gd::NavigationPoly>::iterator it = std::find( + navigation_polys.begin(), + navigation_polys.end(), + gd::NavigationPoly(connection.polygon)); + + if (it != navigation_polys.end()) { + // Polygon already visited, check if we can reduce the travel cost. + if (new_distance < it->traveled_distance) { + it->back_navigation_poly_id = least_cost_id; + it->back_navigation_edge = connection.edge; + it->back_navigation_edge_pathway_start = connection.pathway_start; + it->back_navigation_edge_pathway_end = connection.pathway_end; + it->traveled_distance = new_distance; + it->entry = new_entry; + } + } else { + // Add the neighbour polygon to the reachable ones. + gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon); + new_navigation_poly.self_id = navigation_polys.size(); + new_navigation_poly.back_navigation_poly_id = least_cost_id; + new_navigation_poly.back_navigation_edge = connection.edge; + new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start; + new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end; + new_navigation_poly.traveled_distance = new_distance; + new_navigation_poly.entry = new_entry; + navigation_polys.push_back(new_navigation_poly); + + // Add the neighbour polygon to the polygons to visit. + to_visit.push_back(navigation_polys.size() - 1); + } + } + } + + // Removes the least cost polygon from the list of polygons to visit so we can advance. + to_visit.erase(least_cost_id); + + // When the list of polygons to visit is empty at this point it means the End Polygon is not reachable + if (to_visit.size() == 0) { + // Thus use the further reachable polygon + ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons"); + is_reachable = false; + if (reachable_end == nullptr) { + // The path is not found and there is not a way out. + break; + } + + // Set as end point the furthest reachable point. + end_poly = reachable_end; + end_d = 1e20; + for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) { + Face3 f(end_poly->points[point_id - 2].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos); + Vector3 spoint = f.get_closest_point_to(p_destination); + float dpoint = spoint.distance_to(p_destination); + if (dpoint < end_d) { + end_point = spoint; + end_d = dpoint; + } + } + + // Reset open and navigation_polys + gd::NavigationPoly np = navigation_polys[0]; + navigation_polys.clear(); + navigation_polys.push_back(np); + to_visit.clear(); + to_visit.push_back(0); + + reachable_end = nullptr; + + continue; + } + + // Find the polygon with the minimum cost from the list of polygons to visit. + least_cost_id = -1; + float least_cost = 1e30; + for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) { + gd::NavigationPoly *np = &navigation_polys[element->get()]; + float cost = np->traveled_distance; + cost += np->entry.distance_to(end_point); + if (cost < least_cost) { + least_cost_id = np->self_id; + least_cost = cost; + } + } + + // Stores the further reachable end polygon, in case our goal is not reachable. + if (is_reachable) { + float d = navigation_polys[least_cost_id].entry.distance_to(p_destination); + if (reachable_d > d) { + reachable_d = d; + reachable_end = navigation_polys[least_cost_id].poly; + } + } + + ERR_BREAK(least_cost_id == -1); + + // Check if we reached the end + if (navigation_polys[least_cost_id].poly == end_poly) { + found_route = true; + break; + } + } + + // If we did not find a route, return an empty path. + if (!found_route) { + return Vector<Vector3>(); + } + + Vector<Vector3> path; + // Optimize the path. + if (p_optimize) { + // Set the apex poly/point to the end point + gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; + Vector3 apex_point = end_point; + + gd::NavigationPoly *left_poly = apex_poly; + Vector3 left_portal = apex_point; + gd::NavigationPoly *right_poly = apex_poly; + Vector3 right_portal = apex_point; + + gd::NavigationPoly *p = apex_poly; + + path.push_back(end_point); + + while (p) { + // Set left and right points of the pathway between polygons. + Vector3 left = p->back_navigation_edge_pathway_start; + Vector3 right = p->back_navigation_edge_pathway_end; + if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) { + SWAP(left, right); + } + + bool skip = false; + if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) { + //process + if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) { + left_poly = p; + left_portal = left; + } else { + clip_path(navigation_polys, path, apex_poly, right_portal, right_poly); + + apex_point = right_portal; + p = right_poly; + left_poly = p; + apex_poly = p; + left_portal = apex_point; + right_portal = apex_point; + path.push_back(apex_point); + skip = true; + } + } + + if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) { + //process + if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) { + right_poly = p; + right_portal = right; + } else { + clip_path(navigation_polys, path, apex_poly, left_portal, left_poly); + + apex_point = left_portal; + p = left_poly; + right_poly = p; + apex_poly = p; + right_portal = apex_point; + left_portal = apex_point; + path.push_back(apex_point); + } + } + + // Go to the previous polygon. + if (p->back_navigation_poly_id != -1) { + p = &navigation_polys[p->back_navigation_poly_id]; + } else { + // The end + p = nullptr; + } + } + + // If the last point is not the begin point, add it to the list. + if (path[path.size() - 1] != begin_point) { + path.push_back(begin_point); + } + + path.reverse(); + + } else { + path.push_back(end_point); + + // Add mid points + int np_id = least_cost_id; + while (np_id != -1) { + path.push_back(navigation_polys[np_id].entry); + np_id = navigation_polys[np_id].back_navigation_poly_id; + } + + path.reverse(); + } + + return path; +} + +Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const { + bool use_collision = p_use_collision; + Vector3 closest_point; + real_t closest_point_d = 1e20; + + // Find the initial poly and the end poly on this map. + for (size_t i(0); i < polygons.size(); i++) { + const gd::Polygon &p = polygons[i]; + + // For each point cast a face and check the distance to the segment + for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { + const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos); + Vector3 inters; + if (f.intersects_segment(p_from, p_to, &inters)) { + const real_t d = closest_point_d = p_from.distance_to(inters); + if (use_collision == false) { + closest_point = inters; + use_collision = true; + closest_point_d = d; + } else if (closest_point_d > d) { + closest_point = inters; + closest_point_d = d; + } + } + } + + if (use_collision == false) { + for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) { + Vector3 a, b; + + Geometry3D::get_closest_points_between_segments( + p_from, + p_to, + p.points[point_id].pos, + p.points[(point_id + 1) % p.points.size()].pos, + a, + b); + + const real_t d = a.distance_to(b); + if (d < closest_point_d) { + closest_point_d = d; + closest_point = b; + } + } + } + } + + return closest_point; +} + +Vector3 NavMap::get_closest_point(const Vector3 &p_point) const { + // TODO this is really not optimal, please redesign the API to directly return all this data + + Vector3 closest_point; + real_t closest_point_d = 1e20; + + // Find the initial poly and the end poly on this map. + for (size_t i(0); i < polygons.size(); i++) { + const gd::Polygon &p = polygons[i]; + + // For each point cast a face and check the distance to the point + for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { + const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos); + const Vector3 inters = f.get_closest_point_to(p_point); + const real_t d = inters.distance_to(p_point); + if (d < closest_point_d) { + closest_point = inters; + closest_point_d = d; + } + } + } + + return closest_point; +} + +Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const { + // TODO this is really not optimal, please redesign the API to directly return all this data + + Vector3 closest_point; + Vector3 closest_point_normal; + real_t closest_point_d = 1e20; + + // Find the initial poly and the end poly on this map. + for (size_t i(0); i < polygons.size(); i++) { + const gd::Polygon &p = polygons[i]; + + // For each point cast a face and check the distance to the point + for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { + const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos); + const Vector3 inters = f.get_closest_point_to(p_point); + const real_t d = inters.distance_to(p_point); + if (d < closest_point_d) { + closest_point = inters; + closest_point_normal = f.get_plane().normal; + closest_point_d = d; + } + } + } + + return closest_point_normal; +} + +RID NavMap::get_closest_point_owner(const Vector3 &p_point) const { + // TODO this is really not optimal, please redesign the API to directly return all this data + + Vector3 closest_point; + RID closest_point_owner; + real_t closest_point_d = 1e20; + + // Find the initial poly and the end poly on this map. + for (size_t i(0); i < polygons.size(); i++) { + const gd::Polygon &p = polygons[i]; + + // For each point cast a face and check the distance to the point + for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { + const Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos); + const Vector3 inters = f.get_closest_point_to(p_point); + const real_t d = inters.distance_to(p_point); + if (d < closest_point_d) { + closest_point = inters; + closest_point_owner = p.owner->get_self(); + closest_point_d = d; + } + } + } + + return closest_point_owner; +} + +void NavMap::add_region(NavRegion *p_region) { + regions.push_back(p_region); + regenerate_links = true; +} + +void NavMap::remove_region(NavRegion *p_region) { + const std::vector<NavRegion *>::iterator it = std::find(regions.begin(), regions.end(), p_region); + if (it != regions.end()) { + regions.erase(it); + regenerate_links = true; + } +} + +bool NavMap::has_agent(RvoAgent *agent) const { + return std::find(agents.begin(), agents.end(), agent) != agents.end(); +} + +void NavMap::add_agent(RvoAgent *agent) { + if (!has_agent(agent)) { + agents.push_back(agent); + agents_dirty = true; + } +} + +void NavMap::remove_agent(RvoAgent *agent) { + remove_agent_as_controlled(agent); + const std::vector<RvoAgent *>::iterator it = std::find(agents.begin(), agents.end(), agent); + if (it != agents.end()) { + agents.erase(it); + agents_dirty = true; + } +} + +void NavMap::set_agent_as_controlled(RvoAgent *agent) { + const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end(); + if (!exist) { + ERR_FAIL_COND(!has_agent(agent)); + controlled_agents.push_back(agent); + } +} + +void NavMap::remove_agent_as_controlled(RvoAgent *agent) { + const std::vector<RvoAgent *>::iterator it = std::find(controlled_agents.begin(), controlled_agents.end(), agent); + if (it != controlled_agents.end()) { + controlled_agents.erase(it); + } +} + +void NavMap::sync() { + // Check if we need to update the links. + if (regenerate_polygons) { + for (size_t r(0); r < regions.size(); r++) { + regions[r]->scratch_polygons(); + } + regenerate_links = true; + } + + for (size_t r(0); r < regions.size(); r++) { + if (regions[r]->sync()) { + regenerate_links = true; + } + } + + if (regenerate_links) { + // Remove regions connections. + for (size_t r(0); r < regions.size(); r++) { + regions[r]->get_connections().clear(); + } + + // Resize the polygon count. + int count = 0; + for (size_t r(0); r < regions.size(); r++) { + count += regions[r]->get_polygons().size(); + } + polygons.resize(count); + + // Copy all region polygons in the map. + count = 0; + for (size_t r(0); r < regions.size(); r++) { + std::copy( + regions[r]->get_polygons().data(), + regions[r]->get_polygons().data() + regions[r]->get_polygons().size(), + polygons.begin() + count); + count += regions[r]->get_polygons().size(); + } + + // Group all edges per key. + Map<gd::EdgeKey, Vector<gd::Edge::Connection>> connections; + for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) { + gd::Polygon &poly(polygons[poly_id]); + + for (size_t p(0); p < poly.points.size(); p++) { + int next_point = (p + 1) % poly.points.size(); + gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key); + + Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *connection = connections.find(ek); + if (!connection) { + connections[ek] = Vector<gd::Edge::Connection>(); + } + if (connections[ek].size() <= 1) { + // Add the polygon/edge tuple to this key. + gd::Edge::Connection new_connection; + new_connection.polygon = &poly; + new_connection.edge = p; + new_connection.pathway_start = poly.points[p].pos; + new_connection.pathway_end = poly.points[next_point].pos; + connections[ek].push_back(new_connection); + } else { + // The edge is already connected with another edge, skip. + ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem."); + } + } + } + + Vector<gd::Edge::Connection> free_edges; + for (Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *E = connections.front(); E; E = E->next()) { + if (E->get().size() == 2) { + // Connect edge that are shared in different polygons. + gd::Edge::Connection &c1 = E->get().write[0]; + gd::Edge::Connection &c2 = E->get().write[1]; + c1.polygon->edges[c1.edge].connections.push_back(c2); + c2.polygon->edges[c2.edge].connections.push_back(c1); + // Note: The pathway_start/end are full for those connection and do not need to be modified. + } else { + CRASH_COND_MSG(E->get().size() != 1, vformat("Number of connection != 1. Found: %d", E->get().size())); + free_edges.push_back(E->get()[0]); + } + } + + // Find the compatible near edges. + // + // Note: + // Considering that the edges must be compatible (for obvious reasons) + // to be connected, create new polygons to remove that small gap is + // not really useful and would result in wasteful computation during + // connection, integration and path finding. + for (int i = 0; i < free_edges.size(); i++) { + const gd::Edge::Connection &free_edge = free_edges[i]; + Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos; + Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos; + + for (int j = 0; j < free_edges.size(); j++) { + const gd::Edge::Connection &other_edge = free_edges[j]; + if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) { + continue; + } + + Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos; + Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos; + + // Compute the projection of the opposite edge on the current one + Vector3 edge_vector = edge_p2 - edge_p1; + float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared()); + float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared()); + if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) { + continue; + } + + // Check if the two edges are close to each other enough and compute a pathway between the two regions. + Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1; + Vector3 other1; + if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) { + other1 = other_edge_p1; + } else { + other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); + } + if ((self1 - other1).length() > edge_connection_margin) { + continue; + } + + Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1; + Vector3 other2; + if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) { + other2 = other_edge_p2; + } else { + other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); + } + if ((self2 - other2).length() > edge_connection_margin) { + continue; + } + + // The edges can now be connected. + gd::Edge::Connection new_connection = other_edge; + new_connection.pathway_start = (self1 + other1) / 2.0; + new_connection.pathway_end = (self2 + other2) / 2.0; + free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection); + + // Add the connection to the region_connection map. + free_edge.polygon->owner->get_connections().push_back(new_connection); + } + } + + // Update the update ID. + map_update_id = (map_update_id + 1) % 9999999; + } + + // Update agents tree. + if (agents_dirty) { + std::vector<RVO::Agent *> raw_agents; + raw_agents.reserve(agents.size()); + for (size_t i(0); i < agents.size(); i++) { + raw_agents.push_back(agents[i]->get_agent()); + } + rvo.buildAgentTree(raw_agents); + } + + regenerate_polygons = false; + regenerate_links = false; + agents_dirty = false; +} + +void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) { + (*(agent + index))->get_agent()->computeNeighbors(&rvo); + (*(agent + index))->get_agent()->computeNewVelocity(deltatime); +} + +void NavMap::step(real_t p_deltatime) { + deltatime = p_deltatime; + if (controlled_agents.size() > 0) { + thread_process_array( + controlled_agents.size(), + this, + &NavMap::compute_single_step, + controlled_agents.data()); + } +} + +void NavMap::dispatch_callbacks() { + for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) { + controlled_agents[i]->dispatch_callback(); + } +} + +void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const { + Vector3 from = path[path.size() - 1]; + + if (from.is_equal_approx(p_to_point)) { + return; + } + Plane cut_plane; + cut_plane.normal = (from - p_to_point).cross(up); + if (cut_plane.normal == Vector3()) { + return; + } + cut_plane.normal.normalize(); + cut_plane.d = cut_plane.normal.dot(from); + + while (from_poly != p_to_poly) { + Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start; + Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end; + + ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1); + from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id]; + + if (!pathway_start.is_equal_approx(pathway_end)) { + Vector3 inters; + if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) { + if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) { + path.push_back(inters); + } + } + } + } +} |