summaryrefslogtreecommitdiff
path: root/modules/lightmapper_rd
diff options
context:
space:
mode:
Diffstat (limited to 'modules/lightmapper_rd')
-rw-r--r--modules/lightmapper_rd/SCsub12
-rw-r--r--modules/lightmapper_rd/config.py6
-rw-r--r--modules/lightmapper_rd/lightmapper_rd.cpp1752
-rw-r--r--modules/lightmapper_rd/lightmapper_rd.h258
-rw-r--r--modules/lightmapper_rd/lm_blendseams.glsl108
-rw-r--r--modules/lightmapper_rd/lm_common_inc.glsl92
-rw-r--r--modules/lightmapper_rd/lm_compute.glsl644
-rw-r--r--modules/lightmapper_rd/lm_raster.glsl157
-rw-r--r--modules/lightmapper_rd/register_types.cpp63
-rw-r--r--modules/lightmapper_rd/register_types.h37
10 files changed, 3129 insertions, 0 deletions
diff --git a/modules/lightmapper_rd/SCsub b/modules/lightmapper_rd/SCsub
new file mode 100644
index 0000000000..2f04f1833e
--- /dev/null
+++ b/modules/lightmapper_rd/SCsub
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+
+Import("env")
+Import("env_modules")
+
+env_lightmapper_rd = env_modules.Clone()
+env_lightmapper_rd.GLSL_HEADER("lm_raster.glsl")
+env_lightmapper_rd.GLSL_HEADER("lm_compute.glsl")
+env_lightmapper_rd.GLSL_HEADER("lm_blendseams.glsl")
+
+# Godot source files
+env_lightmapper_rd.add_source_files(env.modules_sources, "*.cpp")
diff --git a/modules/lightmapper_rd/config.py b/modules/lightmapper_rd/config.py
new file mode 100644
index 0000000000..d22f9454ed
--- /dev/null
+++ b/modules/lightmapper_rd/config.py
@@ -0,0 +1,6 @@
+def can_build(env, platform):
+ return True
+
+
+def configure(env):
+ pass
diff --git a/modules/lightmapper_rd/lightmapper_rd.cpp b/modules/lightmapper_rd/lightmapper_rd.cpp
new file mode 100644
index 0000000000..4de523baa0
--- /dev/null
+++ b/modules/lightmapper_rd/lightmapper_rd.cpp
@@ -0,0 +1,1752 @@
+/*************************************************************************/
+/* lightmapper_rd.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "lightmapper_rd.h"
+#include "core/math/geometry_2d.h"
+#include "core/project_settings.h"
+#include "lm_blendseams.glsl.gen.h"
+#include "lm_compute.glsl.gen.h"
+#include "lm_raster.glsl.gen.h"
+#include "servers/rendering/rendering_device_binds.h"
+
+//uncomment this if you want to see textures from all the process saved
+//#define DEBUG_TEXTURES
+
+void LightmapperRD::add_mesh(const MeshData &p_mesh) {
+ ERR_FAIL_COND(p_mesh.albedo_on_uv2.is_null() || p_mesh.albedo_on_uv2->empty());
+ ERR_FAIL_COND(p_mesh.emission_on_uv2.is_null() || p_mesh.emission_on_uv2->empty());
+ ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_width() != p_mesh.emission_on_uv2->get_width());
+ ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_height() != p_mesh.emission_on_uv2->get_height());
+ ERR_FAIL_COND(p_mesh.points.size() == 0);
+ MeshInstance mi;
+ mi.data = p_mesh;
+ mesh_instances.push_back(mi);
+}
+
+void LightmapperRD::add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_angular_distance) {
+ Light l;
+ l.type = LIGHT_TYPE_DIRECTIONAL;
+ l.direction[0] = p_direction.x;
+ l.direction[1] = p_direction.y;
+ l.direction[2] = p_direction.z;
+ l.color[0] = p_color.r;
+ l.color[1] = p_color.g;
+ l.color[2] = p_color.b;
+ l.energy = p_energy;
+ l.static_bake = p_static;
+ l.size = p_angular_distance;
+ lights.push_back(l);
+}
+
+void LightmapperRD::add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_size) {
+ Light l;
+ l.type = LIGHT_TYPE_OMNI;
+ l.position[0] = p_position.x;
+ l.position[1] = p_position.y;
+ l.position[2] = p_position.z;
+ l.range = p_range;
+ l.attenuation = p_attenuation;
+ l.color[0] = p_color.r;
+ l.color[1] = p_color.g;
+ l.color[2] = p_color.b;
+ l.energy = p_energy;
+ l.static_bake = p_static;
+ l.size = p_size;
+ lights.push_back(l);
+}
+
+void LightmapperRD::add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size) {
+ Light l;
+ l.type = LIGHT_TYPE_SPOT;
+ l.position[0] = p_position.x;
+ l.position[1] = p_position.y;
+ l.position[2] = p_position.z;
+ l.direction[0] = p_direction.x;
+ l.direction[1] = p_direction.y;
+ l.direction[2] = p_direction.z;
+ l.range = p_range;
+ l.attenuation = p_attenuation;
+ l.spot_angle = Math::deg2rad(p_spot_angle);
+ l.spot_attenuation = p_spot_attenuation;
+ l.color[0] = p_color.r;
+ l.color[1] = p_color.g;
+ l.color[2] = p_color.b;
+ l.energy = p_energy;
+ l.static_bake = p_static;
+ l.size = p_size;
+ lights.push_back(l);
+}
+
+void LightmapperRD::add_probe(const Vector3 &p_position) {
+ Probe probe;
+ probe.position[0] = p_position.x;
+ probe.position[1] = p_position.y;
+ probe.position[2] = p_position.z;
+ probe.position[3] = 0;
+ probe_positions.push_back(probe);
+}
+
+void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &triangles, uint32_t p_grid_size) {
+ int half_size = p_size / 2;
+
+ for (int i = 0; i < 8; i++) {
+ AABB aabb = p_bounds;
+ aabb.size *= 0.5;
+ Vector3i n = p_ofs;
+
+ if (i & 1) {
+ aabb.position.x += aabb.size.x;
+ n.x += half_size;
+ }
+ if (i & 2) {
+ aabb.position.y += aabb.size.y;
+ n.y += half_size;
+ }
+ if (i & 4) {
+ aabb.position.z += aabb.size.z;
+ n.z += half_size;
+ }
+
+ {
+ Vector3 qsize = aabb.size * 0.5; //quarter size, for fast aabb test
+
+ if (!Geometry3D::triangle_box_overlap(aabb.position + qsize, qsize, p_points)) {
+ //does not fit in child, go on
+ continue;
+ }
+ }
+
+ if (half_size == 1) {
+ //got to the end
+ TriangleSort ts;
+ ts.cell_index = n.x + (n.y * p_grid_size) + (n.z * p_grid_size * p_grid_size);
+ ts.triangle_index = p_triangle_index;
+ triangles.push_back(ts);
+ } else {
+ _plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, triangles, p_grid_size);
+ }
+ }
+}
+
+Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_size, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata) {
+ Vector<Size2i> sizes;
+
+ for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
+ MeshInstance &mi = mesh_instances.write[m_i];
+ Size2i s = Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height());
+ sizes.push_back(s);
+ atlas_size.width = MAX(atlas_size.width, s.width);
+ atlas_size.height = MAX(atlas_size.height, s.height);
+ }
+
+ int max = nearest_power_of_2_templated(atlas_size.width);
+ max = MAX(max, nearest_power_of_2_templated(atlas_size.height));
+
+ if (max > p_max_texture_size) {
+ return BAKE_ERROR_LIGHTMAP_TOO_SMALL;
+ }
+
+ if (p_step_function) {
+ p_step_function(0.1, TTR("Determining optimal atlas size"), p_bake_userdata, true);
+ }
+
+ atlas_size = Size2i(max, max);
+
+ Size2i best_atlas_size;
+ int best_atlas_slices = 0;
+ int best_atlas_memory = 0x7FFFFFFF;
+ Vector<Vector3i> best_atlas_offsets;
+
+ //determine best texture array atlas size by bruteforce fitting
+ while (atlas_size.x <= p_max_texture_size && atlas_size.y <= p_max_texture_size) {
+ Vector<Vector2i> source_sizes = sizes;
+ Vector<int> source_indices;
+ source_indices.resize(source_sizes.size());
+ for (int i = 0; i < source_indices.size(); i++) {
+ source_indices.write[i] = i;
+ }
+ Vector<Vector3i> atlas_offsets;
+ atlas_offsets.resize(source_sizes.size());
+
+ int slices = 0;
+
+ while (source_sizes.size() > 0) {
+ Vector<Vector3i> offsets = Geometry2D::partial_pack_rects(source_sizes, atlas_size);
+ Vector<int> new_indices;
+ Vector<Vector2i> new_sources;
+ for (int i = 0; i < offsets.size(); i++) {
+ Vector3i ofs = offsets[i];
+ int sidx = source_indices[i];
+ if (ofs.z > 0) {
+ //valid
+ ofs.z = slices;
+ atlas_offsets.write[sidx] = ofs;
+ } else {
+ new_indices.push_back(sidx);
+ new_sources.push_back(source_sizes[i]);
+ }
+ }
+
+ source_sizes = new_sources;
+ source_indices = new_indices;
+ slices++;
+ }
+
+ int mem_used = atlas_size.x * atlas_size.y * slices;
+ if (mem_used < best_atlas_memory) {
+ best_atlas_size = atlas_size;
+ best_atlas_offsets = atlas_offsets;
+ best_atlas_slices = slices;
+ best_atlas_memory = mem_used;
+ }
+
+ if (atlas_size.width == atlas_size.height) {
+ atlas_size.width *= 2;
+ } else {
+ atlas_size.height *= 2;
+ }
+ }
+ atlas_size = best_atlas_size;
+ atlas_slices = best_atlas_slices;
+
+ // apply the offsets and slice to all images, and also blit albedo and emission
+ albedo_images.resize(atlas_slices);
+ emission_images.resize(atlas_slices);
+
+ if (p_step_function) {
+ p_step_function(0.2, TTR("Blitting albedo and emission"), p_bake_userdata, true);
+ }
+
+ for (int i = 0; i < atlas_slices; i++) {
+ Ref<Image> albedo;
+ albedo.instance();
+ albedo->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8);
+ albedo->set_as_black();
+ albedo_images.write[i] = albedo;
+
+ Ref<Image> emission;
+ emission.instance();
+ emission->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH);
+ emission->set_as_black();
+ emission_images.write[i] = emission;
+ }
+
+ //assign uv positions
+
+ for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
+ MeshInstance &mi = mesh_instances.write[m_i];
+ mi.offset.x = best_atlas_offsets[m_i].x;
+ mi.offset.y = best_atlas_offsets[m_i].y;
+ mi.slice = best_atlas_offsets[m_i].z;
+ albedo_images.write[mi.slice]->blit_rect(mi.data.albedo_on_uv2, Rect2(Vector2(), Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height())), mi.offset);
+ emission_images.write[mi.slice]->blit_rect(mi.data.emission_on_uv2, Rect2(Vector2(), Size2i(mi.data.emission_on_uv2->get_width(), mi.data.emission_on_uv2->get_height())), mi.offset);
+ }
+
+ return BAKE_OK;
+}
+
+void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, Vector<Probe> &probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &box_buffer, RID &lights_buffer, RID &triangle_cell_indices_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &grid_texture_sdf, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) {
+ HashMap<Vertex, uint32_t, VertexHash> vertex_map;
+
+ //fill triangles array and vertex array
+ LocalVector<Triangle> triangles;
+ LocalVector<Vertex> vertex_array;
+ LocalVector<Box> box_array;
+ LocalVector<Seam> seams;
+
+ slice_triangle_count.resize(atlas_slices);
+ slice_seam_count.resize(atlas_slices);
+
+ for (int i = 0; i < atlas_slices; i++) {
+ slice_triangle_count.write[i] = 0;
+ slice_seam_count.write[i] = 0;
+ }
+
+ bounds = AABB();
+
+ for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
+ if (p_step_function) {
+ float p = float(m_i + 1) / mesh_instances.size() * 0.1;
+ p_step_function(0.3 + p, vformat(TTR("Plotting mesh into acceleration structure %d/%d"), m_i + 1, mesh_instances.size()), p_bake_userdata, false);
+ }
+
+ HashMap<Edge, EdgeUV2, EdgeHash> edges;
+
+ MeshInstance &mi = mesh_instances.write[m_i];
+
+ Vector2 uv_scale = Vector2(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()) / Vector2(atlas_size);
+ Vector2 uv_offset = Vector2(mi.offset) / Vector2(atlas_size);
+ if (m_i == 0) {
+ bounds.position = mi.data.points[0];
+ }
+
+ for (int i = 0; i < mi.data.points.size(); i += 3) {
+ Vector3 vtxs[3] = { mi.data.points[i + 0], mi.data.points[i + 1], mi.data.points[i + 2] };
+ Vector2 uvs[3] = { mi.data.uv2[i + 0] * uv_scale + uv_offset, mi.data.uv2[i + 1] * uv_scale + uv_offset, mi.data.uv2[i + 2] * uv_scale + uv_offset };
+ Vector3 normal[3] = { mi.data.normal[i + 0], mi.data.normal[i + 1], mi.data.normal[i + 2] };
+
+ AABB taabb;
+ Triangle t;
+ t.slice = mi.slice;
+ for (int k = 0; k < 3; k++) {
+ bounds.expand_to(vtxs[k]);
+
+ Vertex v;
+ v.position[0] = vtxs[k].x;
+ v.position[1] = vtxs[k].y;
+ v.position[2] = vtxs[k].z;
+ v.uv[0] = uvs[k].x;
+ v.uv[1] = uvs[k].y;
+ v.normal_xy[0] = normal[k].x;
+ v.normal_xy[1] = normal[k].y;
+ v.normal_z = normal[k].z;
+
+ uint32_t *indexptr = vertex_map.getptr(v);
+
+ if (indexptr) {
+ t.indices[k] = *indexptr;
+ } else {
+ uint32_t new_index = vertex_map.size();
+ t.indices[k] = new_index;
+ vertex_map[v] = new_index;
+ vertex_array.push_back(v);
+ }
+
+ if (k == 0) {
+ taabb.position = vtxs[k];
+ } else {
+ taabb.expand_to(vtxs[k]);
+ }
+ }
+
+ //compute seams that will need to be blended later
+ for (int k = 0; k < 3; k++) {
+ int n = (k + 1) % 3;
+
+ Edge edge(vtxs[k], vtxs[n], normal[k], normal[n]);
+ Vector2i edge_indices(t.indices[k], t.indices[n]);
+ EdgeUV2 uv2(uvs[k], uvs[n], edge_indices);
+
+ if (edge.b == edge.a) {
+ continue; //degenerate, somehow
+ }
+ if (edge.b < edge.a) {
+ SWAP(edge.a, edge.b);
+ SWAP(edge.na, edge.nb);
+ SWAP(uv2.a, uv2.b);
+ SWAP(edge_indices.x, edge_indices.y);
+ }
+
+ EdgeUV2 *euv2 = edges.getptr(edge);
+ if (!euv2) {
+ edges[edge] = uv2;
+ } else {
+ if (*euv2 == uv2) {
+ continue; // seam shared UV space, no need to blend
+ }
+ if (euv2->seam_found) {
+ continue; //bad geometry
+ }
+
+ Seam seam;
+ seam.a = edge_indices;
+ seam.b = euv2->indices;
+ seam.slice = mi.slice;
+ seams.push_back(seam);
+ slice_seam_count.write[mi.slice]++;
+ euv2->seam_found = true;
+ }
+ }
+
+ Box box;
+ box.min_bounds[0] = taabb.position.x;
+ box.min_bounds[1] = taabb.position.y;
+ box.min_bounds[2] = taabb.position.z;
+ box.max_bounds[0] = taabb.position.x + MAX(taabb.size.x, 0.0001);
+ box.max_bounds[1] = taabb.position.y + MAX(taabb.size.y, 0.0001);
+ box.max_bounds[2] = taabb.position.z + MAX(taabb.size.z, 0.0001);
+ box.pad0 = box.pad1 = 0; //make valgrind not complain
+ box_array.push_back(box);
+
+ triangles.push_back(t);
+ slice_triangle_count.write[t.slice]++;
+ }
+ }
+
+ //also consider probe positions for bounds
+ for (int i = 0; i < probe_positions.size(); i++) {
+ Vector3 pp(probe_positions[i].position[0], probe_positions[i].position[1], probe_positions[i].position[2]);
+ bounds.expand_to(pp);
+ }
+ bounds.grow_by(0.1); //grow a bit to avoid numerical error
+
+ triangles.sort(); //sort by slice
+ seams.sort();
+
+ if (p_step_function) {
+ p_step_function(0.4, TTR("Optimizing acceleration structure"), p_bake_userdata, true);
+ }
+
+ //fill list of triangles in grid
+ LocalVector<TriangleSort> triangle_sort;
+ for (uint32_t i = 0; i < triangles.size(); i++) {
+ const Triangle &t = triangles[i];
+ Vector3 face[3] = {
+ Vector3(vertex_array[t.indices[0]].position[0], vertex_array[t.indices[0]].position[1], vertex_array[t.indices[0]].position[2]),
+ Vector3(vertex_array[t.indices[1]].position[0], vertex_array[t.indices[1]].position[1], vertex_array[t.indices[1]].position[2]),
+ Vector3(vertex_array[t.indices[2]].position[0], vertex_array[t.indices[2]].position[1], vertex_array[t.indices[2]].position[2])
+ };
+ _plot_triangle_into_triangle_index_list(grid_size, Vector3i(), bounds, face, i, triangle_sort, grid_size);
+ }
+ //sort it
+ triangle_sort.sort();
+
+ Vector<uint32_t> triangle_indices;
+ triangle_indices.resize(triangle_sort.size());
+ Vector<uint32_t> grid_indices;
+ grid_indices.resize(grid_size * grid_size * grid_size * 2);
+ zeromem(grid_indices.ptrw(), grid_indices.size() * sizeof(uint32_t));
+ Vector<bool> solid;
+ solid.resize(grid_size * grid_size * grid_size);
+ zeromem(solid.ptrw(), solid.size() * sizeof(bool));
+
+ {
+ uint32_t *tiw = triangle_indices.ptrw();
+ uint32_t last_cell = 0xFFFFFFFF;
+ uint32_t *giw = grid_indices.ptrw();
+ bool *solidw = solid.ptrw();
+ for (uint32_t i = 0; i < triangle_sort.size(); i++) {
+ uint32_t cell = triangle_sort[i].cell_index;
+ if (cell != last_cell) {
+ //cell changed, update pointer to indices
+ giw[cell * 2 + 1] = i;
+ last_cell = cell;
+ solidw[cell] = true;
+ }
+ tiw[i] = triangle_sort[i].triangle_index;
+ giw[cell * 2]++; //update counter
+ last_cell = cell;
+ }
+ }
+#if 0
+ for (int i = 0; i < grid_size; i++) {
+ for (int j = 0; j < grid_size; j++) {
+ for (int k = 0; k < grid_size; k++) {
+ uint32_t index = i * (grid_size * grid_size) + j * grid_size + k;
+ grid_indices.write[index * 2] = float(i) / grid_size * 255;
+ grid_indices.write[index * 2 + 1] = float(j) / grid_size * 255;
+ }
+ }
+ }
+#endif
+
+#if 0
+ for (int i = 0; i < grid_size; i++) {
+ Vector<uint8_t> grid_usage;
+ grid_usage.resize(grid_size * grid_size);
+ for (int j = 0; j < grid_usage.size(); j++) {
+ uint32_t ofs = i * grid_size * grid_size + j;
+ uint32_t count = grid_indices[ofs * 2];
+ grid_usage.write[j] = count > 0 ? 255 : 0;
+ }
+
+ Ref<Image> img;
+ img.instance();
+ img->create(grid_size, grid_size, false, Image::FORMAT_L8, grid_usage);
+ img->save_png("res://grid_layer_" + itos(1000 + i).substr(1, 3) + ".png");
+ }
+#endif
+ if (p_step_function) {
+ p_step_function(0.45, TTR("Generating Signed Distance Field"), p_bake_userdata, true);
+ }
+
+ //generate SDF for raytracing
+ Vector<uint32_t> euclidean_pos = Geometry3D::generate_edf(solid, Vector3i(grid_size, grid_size, grid_size), false);
+ Vector<uint32_t> euclidean_neg = Geometry3D::generate_edf(solid, Vector3i(grid_size, grid_size, grid_size), true);
+ Vector<int8_t> sdf8 = Geometry3D::generate_sdf8(euclidean_pos, euclidean_neg);
+
+ /*****************************/
+ /*** CREATE GPU STRUCTURES ***/
+ /*****************************/
+
+ lights.sort();
+
+ Vector<Vector2i> seam_buffer_vec;
+ seam_buffer_vec.resize(seams.size() * 2);
+ for (uint32_t i = 0; i < seams.size(); i++) {
+ seam_buffer_vec.write[i * 2 + 0] = seams[i].a;
+ seam_buffer_vec.write[i * 2 + 1] = seams[i].b;
+ }
+
+ { //buffers
+ Vector<uint8_t> vb = vertex_array.to_byte_array();
+ vertex_buffer = rd->storage_buffer_create(vb.size(), vb);
+
+ Vector<uint8_t> tb = triangles.to_byte_array();
+ triangle_buffer = rd->storage_buffer_create(tb.size(), tb);
+
+ Vector<uint8_t> bb = box_array.to_byte_array();
+ box_buffer = rd->storage_buffer_create(bb.size(), bb);
+
+ Vector<uint8_t> tib = triangle_indices.to_byte_array();
+ triangle_cell_indices_buffer = rd->storage_buffer_create(tib.size(), tib);
+
+ Vector<uint8_t> lb = lights.to_byte_array();
+ if (lb.size() == 0) {
+ lb.resize(sizeof(Light)); //even if no lights, the buffer must exist
+ }
+ lights_buffer = rd->storage_buffer_create(lb.size(), lb);
+
+ Vector<uint8_t> sb = seam_buffer_vec.to_byte_array();
+ if (sb.size() == 0) {
+ sb.resize(sizeof(Vector2i) * 2); //even if no seams, the buffer must exist
+ }
+ seams_buffer = rd->storage_buffer_create(sb.size(), sb);
+
+ Vector<uint8_t> pb = probe_positions.to_byte_array();
+ if (pb.size() == 0) {
+ pb.resize(sizeof(Probe));
+ }
+ probe_positions_buffer = rd->storage_buffer_create(pb.size(), pb);
+ }
+
+ { //grid
+
+ RD::TextureFormat tf;
+ tf.width = grid_size;
+ tf.height = grid_size;
+ tf.depth = grid_size;
+ tf.type = RD::TEXTURE_TYPE_3D;
+ tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
+
+ Vector<Vector<uint8_t>> texdata;
+ texdata.resize(1);
+ //grid and indices
+ tf.format = RD::DATA_FORMAT_R32G32_UINT;
+ texdata.write[0] = grid_indices.to_byte_array();
+ grid_texture = rd->texture_create(tf, RD::TextureView(), texdata);
+ //sdf
+ tf.format = RD::DATA_FORMAT_R8_SNORM;
+ texdata.write[0] = sdf8.to_byte_array();
+ grid_texture_sdf = rd->texture_create(tf, RD::TextureView(), texdata);
+ }
+}
+
+void LightmapperRD::_raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform) {
+ Vector<RID> framebuffers;
+
+ for (int i = 0; i < atlas_slices; i++) {
+ RID slice_pos_tex = rd->texture_create_shared_from_slice(RD::TextureView(), position_tex, i, 0);
+ RID slice_unoc_tex = rd->texture_create_shared_from_slice(RD::TextureView(), unocclude_tex, i, 0);
+ RID slice_norm_tex = rd->texture_create_shared_from_slice(RD::TextureView(), normal_tex, i, 0);
+ Vector<RID> fb;
+ fb.push_back(slice_pos_tex);
+ fb.push_back(slice_norm_tex);
+ fb.push_back(slice_unoc_tex);
+ fb.push_back(raster_depth_buffer);
+ framebuffers.push_back(rd->framebuffer_create(fb));
+ }
+
+ RD::PipelineDepthStencilState ds;
+ ds.enable_depth_test = true;
+ ds.enable_depth_write = true;
+ ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does render same pixel twice
+
+ RID raster_pipeline = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0);
+ RID raster_pipeline_wire;
+ {
+ RD::PipelineRasterizationState rw;
+ rw.wireframe = true;
+ raster_pipeline_wire = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, rw, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0);
+ }
+
+ uint32_t triangle_offset = 0;
+ Vector<Color> clear_colors;
+ clear_colors.push_back(Color(0, 0, 0, 0));
+ clear_colors.push_back(Color(0, 0, 0, 0));
+ clear_colors.push_back(Color(0, 0, 0, 0));
+
+ for (int i = 0; i < atlas_slices; i++) {
+ RasterPushConstant raster_push_constant;
+ raster_push_constant.atlas_size[0] = atlas_size.x;
+ raster_push_constant.atlas_size[1] = atlas_size.y;
+ raster_push_constant.base_triangle = triangle_offset;
+ raster_push_constant.to_cell_offset[0] = bounds.position.x;
+ raster_push_constant.to_cell_offset[1] = bounds.position.y;
+ raster_push_constant.to_cell_offset[2] = bounds.position.z;
+ raster_push_constant.bias = p_bias;
+ raster_push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size);
+ raster_push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size);
+ raster_push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size);
+ raster_push_constant.grid_size[0] = grid_size;
+ raster_push_constant.grid_size[1] = grid_size;
+ raster_push_constant.grid_size[2] = grid_size;
+ raster_push_constant.uv_offset[0] = 0;
+ raster_push_constant.uv_offset[1] = 0;
+
+ RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
+ //draw opaque
+ rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline);
+ rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
+ rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant));
+ rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
+ //draw wire
+ rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline_wire);
+ rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
+ rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant));
+ rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
+
+ rd->draw_list_end();
+
+ triangle_offset += slice_triangle_count[i];
+ }
+}
+
+LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, int p_bounces, float p_bias, int p_max_texture_size, bool p_bake_sh, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata) {
+ if (p_step_function) {
+ p_step_function(0.0, TTR("Begin Bake"), p_bake_userdata, true);
+ }
+ bake_textures.clear();
+ int grid_size = 128;
+
+ /* STEP 1: Fetch material textures and compute the bounds */
+
+ AABB bounds;
+ Size2i atlas_size;
+ int atlas_slices;
+ Vector<Ref<Image>> albedo_images;
+ Vector<Ref<Image>> emission_images;
+
+ BakeError bake_error = _blit_meshes_into_atlas(p_max_texture_size, albedo_images, emission_images, bounds, atlas_size, atlas_slices, p_step_function, p_bake_userdata);
+ if (bake_error != BAKE_OK) {
+ return bake_error;
+ }
+
+#ifdef DEBUG_TEXTURES
+ for (int i = 0; i < atlas_slices; i++) {
+ albedo_images[i]->save_png("res://0_albedo_" + itos(i) + ".png");
+ emission_images[i]->save_png("res://0_emission_" + itos(i) + ".png");
+ }
+#endif
+
+ RenderingDevice *rd = RenderingDevice::get_singleton()->create_local_device();
+
+ RID albedo_array_tex;
+ RID emission_array_tex;
+ RID normal_tex;
+ RID position_tex;
+ RID unocclude_tex;
+ RID light_source_tex;
+ RID light_dest_tex;
+ RID light_accum_tex;
+ RID light_accum_tex2;
+ RID light_primary_dynamic_tex;
+ RID light_environment_tex;
+
+#define FREE_TEXTURES \
+ rd->free(albedo_array_tex); \
+ rd->free(emission_array_tex); \
+ rd->free(normal_tex); \
+ rd->free(position_tex); \
+ rd->free(unocclude_tex); \
+ rd->free(light_source_tex); \
+ rd->free(light_accum_tex2); \
+ rd->free(light_accum_tex); \
+ rd->free(light_primary_dynamic_tex); \
+ rd->free(light_environment_tex);
+
+ { // create all textures
+
+ Vector<Vector<uint8_t>> albedo_data;
+ Vector<Vector<uint8_t>> emission_data;
+ for (int i = 0; i < atlas_slices; i++) {
+ albedo_data.push_back(albedo_images[i]->get_data());
+ emission_data.push_back(emission_images[i]->get_data());
+ }
+
+ RD::TextureFormat tf;
+ tf.width = atlas_size.width;
+ tf.height = atlas_size.height;
+ tf.array_layers = atlas_slices;
+ tf.type = RD::TEXTURE_TYPE_2D_ARRAY;
+ tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
+ tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
+
+ albedo_array_tex = rd->texture_create(tf, RD::TextureView(), albedo_data);
+
+ tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
+
+ emission_array_tex = rd->texture_create(tf, RD::TextureView(), emission_data);
+
+ //this will be rastered to
+ tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
+ normal_tex = rd->texture_create(tf, RD::TextureView());
+ tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
+ position_tex = rd->texture_create(tf, RD::TextureView());
+ unocclude_tex = rd->texture_create(tf, RD::TextureView());
+
+ tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
+ tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
+
+ light_source_tex = rd->texture_create(tf, RD::TextureView());
+ rd->texture_clear(light_source_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
+ light_primary_dynamic_tex = rd->texture_create(tf, RD::TextureView());
+ rd->texture_clear(light_primary_dynamic_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
+
+ if (p_bake_sh) {
+ tf.array_layers *= 4;
+ }
+ light_accum_tex = rd->texture_create(tf, RD::TextureView());
+ rd->texture_clear(light_accum_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers);
+ light_dest_tex = rd->texture_create(tf, RD::TextureView());
+ rd->texture_clear(light_dest_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers);
+ light_accum_tex2 = light_dest_tex;
+
+ //env
+ {
+ Ref<Image> panorama_tex;
+ if (p_environment_panorama.is_valid()) {
+ panorama_tex = p_environment_panorama;
+ panorama_tex->convert(Image::FORMAT_RGBAF);
+ } else {
+ panorama_tex.instance();
+ panorama_tex->create(8, 8, false, Image::FORMAT_RGBAF);
+ for (int i = 0; i < 8; i++) {
+ for (int j = 0; j < 8; j++) {
+ panorama_tex->set_pixel(i, j, Color(0, 0, 0, 1));
+ }
+ }
+ }
+
+ RD::TextureFormat tfp;
+ tfp.width = panorama_tex->get_width();
+ tfp.height = panorama_tex->get_height();
+ tfp.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
+ tfp.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
+
+ Vector<Vector<uint8_t>> tdata;
+ tdata.push_back(panorama_tex->get_data());
+ light_environment_tex = rd->texture_create(tfp, RD::TextureView(), tdata);
+
+#ifdef DEBUG_TEXTURES
+ panorama_tex->convert(Image::FORMAT_RGB8);
+ panorama_tex->save_png("res://0_panorama.png");
+#endif
+ }
+ }
+
+ /* STEP 2: create the acceleration structure for the GPU*/
+
+ Vector<int> slice_triangle_count;
+ RID vertex_buffer;
+ RID triangle_buffer;
+ RID box_buffer;
+ RID lights_buffer;
+ RID triangle_cell_indices_buffer;
+ RID grid_texture;
+ RID grid_texture_sdf;
+ RID seams_buffer;
+ RID probe_positions_buffer;
+
+ Vector<int> slice_seam_count;
+
+#define FREE_BUFFERS \
+ rd->free(vertex_buffer); \
+ rd->free(triangle_buffer); \
+ rd->free(box_buffer); \
+ rd->free(lights_buffer); \
+ rd->free(triangle_cell_indices_buffer); \
+ rd->free(grid_texture); \
+ rd->free(grid_texture_sdf); \
+ rd->free(seams_buffer); \
+ rd->free(probe_positions_buffer);
+
+ _create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, box_buffer, lights_buffer, triangle_cell_indices_buffer, probe_positions_buffer, grid_texture, grid_texture_sdf, seams_buffer, p_step_function, p_bake_userdata);
+
+ if (p_step_function) {
+ p_step_function(0.47, TTR("Preparing shaders"), p_bake_userdata, true);
+ }
+
+ //shaders
+ Ref<RDShaderFile> raster_shader;
+ raster_shader.instance();
+ Error err = raster_shader->parse_versions_from_text(lm_raster_shader_glsl);
+ if (err != OK) {
+ raster_shader->print_errors("raster_shader");
+
+ FREE_TEXTURES
+ FREE_BUFFERS
+
+ memdelete(rd);
+ }
+ ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
+
+ RID rasterize_shader = rd->shader_create_from_bytecode(raster_shader->get_bytecode());
+
+ ERR_FAIL_COND_V(rasterize_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //this is a bug check, though, should not happen
+
+ RID sampler;
+ {
+ RD::SamplerState s;
+ s.mag_filter = RD::SAMPLER_FILTER_LINEAR;
+ s.min_filter = RD::SAMPLER_FILTER_LINEAR;
+ s.max_lod = 0;
+
+ sampler = rd->sampler_create(s);
+ }
+
+ Vector<RD::Uniform> base_uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 1;
+ u.ids.push_back(vertex_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 2;
+ u.ids.push_back(triangle_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 3;
+ u.ids.push_back(box_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 4;
+ u.ids.push_back(triangle_cell_indices_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 5;
+ u.ids.push_back(lights_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 6;
+ u.ids.push_back(seams_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 7;
+ u.ids.push_back(probe_positions_buffer);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 8;
+ u.ids.push_back(grid_texture);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 9;
+ u.ids.push_back(grid_texture_sdf);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 10;
+ u.ids.push_back(albedo_array_tex);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 11;
+ u.ids.push_back(emission_array_tex);
+ base_uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_SAMPLER;
+ u.binding = 12;
+ u.ids.push_back(sampler);
+ base_uniforms.push_back(u);
+ }
+ }
+
+ RID raster_base_uniform = rd->uniform_set_create(base_uniforms, rasterize_shader, 0);
+ RID raster_depth_buffer;
+ {
+ RD::TextureFormat tf;
+ tf.width = atlas_size.width;
+ tf.height = atlas_size.height;
+ tf.depth = 1;
+ tf.type = RD::TEXTURE_TYPE_2D;
+ tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
+ tf.format = RD::DATA_FORMAT_D32_SFLOAT;
+
+ raster_depth_buffer = rd->texture_create(tf, RD::TextureView());
+ }
+
+ rd->submit();
+ rd->sync();
+
+ /* STEP 3: Raster the geometry to UV2 coords in the atlas textures GPU*/
+
+ _raster_geometry(rd, atlas_size, atlas_slices, grid_size, bounds, p_bias, slice_triangle_count, position_tex, unocclude_tex, normal_tex, raster_depth_buffer, rasterize_shader, raster_base_uniform);
+
+#ifdef DEBUG_TEXTURES
+
+ for (int i = 0; i < atlas_slices; i++) {
+ Vector<uint8_t> s = rd->texture_get_data(position_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAF, s);
+ img->convert(Image::FORMAT_RGBA8);
+ img->save_png("res://1_position_" + itos(i) + ".png");
+
+ s = rd->texture_get_data(normal_tex, i);
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+ img->convert(Image::FORMAT_RGBA8);
+ img->save_png("res://1_normal_" + itos(i) + ".png");
+ }
+#endif
+
+#define FREE_RASTER_RESOURCES \
+ rd->free(rasterize_shader); \
+ rd->free(sampler); \
+ rd->free(raster_depth_buffer);
+
+ /* Plot direct light */
+
+ Ref<RDShaderFile> compute_shader;
+ compute_shader.instance();
+ err = compute_shader->parse_versions_from_text(lm_compute_shader_glsl, p_bake_sh ? "\n#define USE_SH_LIGHTMAPS\n" : "");
+ if (err != OK) {
+ FREE_TEXTURES
+ FREE_BUFFERS
+ FREE_RASTER_RESOURCES
+ memdelete(rd);
+ compute_shader->print_errors("compute_shader");
+ }
+ ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
+
+ //unoccluder
+ RID compute_shader_unocclude = rd->shader_create_from_bytecode(compute_shader->get_bytecode("unocclude"));
+ ERR_FAIL_COND_V(compute_shader_unocclude.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen
+ RID compute_shader_unocclude_pipeline = rd->compute_pipeline_create(compute_shader_unocclude);
+
+ //direct light
+ RID compute_shader_primary = rd->shader_create_from_bytecode(compute_shader->get_bytecode("primary"));
+ ERR_FAIL_COND_V(compute_shader_primary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen
+ RID compute_shader_primary_pipeline = rd->compute_pipeline_create(compute_shader_primary);
+
+ //indirect light
+ RID compute_shader_secondary = rd->shader_create_from_bytecode(compute_shader->get_bytecode("secondary"));
+ ERR_FAIL_COND_V(compute_shader_secondary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
+ RID compute_shader_secondary_pipeline = rd->compute_pipeline_create(compute_shader_secondary);
+
+ //dilate
+ RID compute_shader_dilate = rd->shader_create_from_bytecode(compute_shader->get_bytecode("dilate"));
+ ERR_FAIL_COND_V(compute_shader_dilate.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
+ RID compute_shader_dilate_pipeline = rd->compute_pipeline_create(compute_shader_dilate);
+
+ //dilate
+ RID compute_shader_light_probes = rd->shader_create_from_bytecode(compute_shader->get_bytecode("light_probes"));
+ ERR_FAIL_COND_V(compute_shader_light_probes.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
+ RID compute_shader_light_probes_pipeline = rd->compute_pipeline_create(compute_shader_light_probes);
+
+ RID compute_base_uniform_set = rd->uniform_set_create(base_uniforms, compute_shader_primary, 0);
+
+#define FREE_COMPUTE_RESOURCES \
+ rd->free(compute_shader_unocclude); \
+ rd->free(compute_shader_primary); \
+ rd->free(compute_shader_secondary); \
+ rd->free(compute_shader_dilate); \
+ rd->free(compute_shader_light_probes);
+
+ PushConstant push_constant;
+ {
+ //set defaults
+ push_constant.atlas_size[0] = atlas_size.width;
+ push_constant.atlas_size[1] = atlas_size.height;
+ push_constant.world_size[0] = bounds.size.x;
+ push_constant.world_size[1] = bounds.size.y;
+ push_constant.world_size[2] = bounds.size.z;
+ push_constant.to_cell_offset[0] = bounds.position.x;
+ push_constant.to_cell_offset[1] = bounds.position.y;
+ push_constant.to_cell_offset[2] = bounds.position.z;
+ push_constant.bias = p_bias;
+ push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size);
+ push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size);
+ push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size);
+ push_constant.light_count = lights.size();
+ push_constant.grid_size = grid_size;
+ push_constant.atlas_slice = 0;
+ push_constant.region_ofs[0] = 0;
+ push_constant.region_ofs[1] = 0;
+ push_constant.environment_xform[0] = p_environment_transform.elements[0][0];
+ push_constant.environment_xform[1] = p_environment_transform.elements[1][0];
+ push_constant.environment_xform[2] = p_environment_transform.elements[2][0];
+ push_constant.environment_xform[3] = 0;
+ push_constant.environment_xform[4] = p_environment_transform.elements[0][1];
+ push_constant.environment_xform[5] = p_environment_transform.elements[1][1];
+ push_constant.environment_xform[6] = p_environment_transform.elements[2][1];
+ push_constant.environment_xform[7] = 0;
+ push_constant.environment_xform[8] = p_environment_transform.elements[0][2];
+ push_constant.environment_xform[9] = p_environment_transform.elements[1][2];
+ push_constant.environment_xform[10] = p_environment_transform.elements[2][2];
+ push_constant.environment_xform[11] = 0;
+ }
+
+ Vector3i group_size((atlas_size.x - 1) / 8 + 1, (atlas_size.y - 1) / 8 + 1, 1);
+ rd->submit();
+ rd->sync();
+
+ if (p_step_function) {
+ p_step_function(0.49, TTR("Un-occluding geometry"), p_bake_userdata, true);
+ }
+
+ /* UNOCCLUDE */
+ {
+ Vector<RD::Uniform> uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 0;
+ u.ids.push_back(position_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 1;
+ u.ids.push_back(unocclude_tex); //will be unused
+ uniforms.push_back(u);
+ }
+ }
+
+ RID unocclude_uniform_set = rd->uniform_set_create(uniforms, compute_shader_unocclude, 1);
+
+ RD::ComputeListID compute_list = rd->compute_list_begin();
+ rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_unocclude_pipeline);
+ rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
+ rd->compute_list_bind_uniform_set(compute_list, unocclude_uniform_set, 1);
+
+ for (int i = 0; i < atlas_slices; i++) {
+ push_constant.atlas_slice = i;
+ rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
+ rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
+ //no barrier, let them run all together
+ }
+ rd->compute_list_end(); //done
+ }
+
+ if (p_step_function) {
+ p_step_function(0.5, TTR("Plot direct lighting"), p_bake_userdata, true);
+ }
+
+ /* PRIMARY (direct) LIGHT PASS */
+ {
+ Vector<RD::Uniform> uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 0;
+ u.ids.push_back(light_source_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 1;
+ u.ids.push_back(light_dest_tex); //will be unused
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 2;
+ u.ids.push_back(position_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 3;
+ u.ids.push_back(normal_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 4;
+ u.ids.push_back(light_accum_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 5;
+ u.ids.push_back(light_primary_dynamic_tex);
+ uniforms.push_back(u);
+ }
+ }
+
+ RID light_uniform_set = rd->uniform_set_create(uniforms, compute_shader_primary, 1);
+
+ RD::ComputeListID compute_list = rd->compute_list_begin();
+ rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_primary_pipeline);
+ rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
+ rd->compute_list_bind_uniform_set(compute_list, light_uniform_set, 1);
+
+ for (int i = 0; i < atlas_slices; i++) {
+ push_constant.atlas_slice = i;
+ rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
+ rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
+ //no barrier, let them run all together
+ }
+ rd->compute_list_end(); //done
+ }
+
+#ifdef DEBUG_TEXTURES
+
+ for (int i = 0; i < atlas_slices; i++) {
+ Vector<uint8_t> s = rd->texture_get_data(light_source_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+ img->convert(Image::FORMAT_RGBA8);
+ img->save_png("res://2_light_primary_" + itos(i) + ".png");
+ }
+#endif
+
+ /* SECONDARY (indirect) LIGHT PASS(ES) */
+ if (p_step_function) {
+ p_step_function(0.6, TTR("Integrate indirect lighting"), p_bake_userdata, true);
+ }
+
+ if (p_bounces > 0) {
+ Vector<RD::Uniform> uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 0;
+ u.ids.push_back(light_dest_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 1;
+ u.ids.push_back(light_source_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 2;
+ u.ids.push_back(position_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 3;
+ u.ids.push_back(normal_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 4;
+ u.ids.push_back(light_accum_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 5;
+ u.ids.push_back(unocclude_tex); //reuse unocclude tex
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 6;
+ u.ids.push_back(light_environment_tex); //reuse unocclude tex
+ uniforms.push_back(u);
+ }
+ }
+
+ RID secondary_uniform_set[2];
+ secondary_uniform_set[0] = rd->uniform_set_create(uniforms, compute_shader_secondary, 1);
+ uniforms.write[0].ids.write[0] = light_source_tex;
+ uniforms.write[1].ids.write[0] = light_dest_tex;
+ secondary_uniform_set[1] = rd->uniform_set_create(uniforms, compute_shader_secondary, 1);
+
+ switch (p_quality) {
+ case BAKE_QUALITY_LOW: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/low_quality_ray_count");
+ } break;
+ case BAKE_QUALITY_MEDIUM: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/medium_quality_ray_count");
+ } break;
+ case BAKE_QUALITY_HIGH: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/high_quality_ray_count");
+ } break;
+ case BAKE_QUALITY_ULTRA: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/ultra_quality_ray_count");
+ } break;
+ }
+
+ push_constant.ray_count = CLAMP(push_constant.ray_count, 16, 8192);
+
+ int max_region_size = nearest_power_of_2_templated(int(GLOBAL_GET("rendering/gpu_lightmapper/performance/region_size")));
+ int max_rays = GLOBAL_GET("rendering/gpu_lightmapper/performance/max_rays_per_pass");
+
+ int x_regions = (atlas_size.width - 1) / max_region_size + 1;
+ int y_regions = (atlas_size.height - 1) / max_region_size + 1;
+ int ray_iterations = (push_constant.ray_count - 1) / max_rays + 1;
+
+ rd->submit();
+ rd->sync();
+
+ for (int b = 0; b < p_bounces; b++) {
+ int count = 0;
+ if (b > 0) {
+ SWAP(light_source_tex, light_dest_tex);
+ SWAP(secondary_uniform_set[0], secondary_uniform_set[1]);
+ }
+
+ for (int s = 0; s < atlas_slices; s++) {
+ push_constant.atlas_slice = s;
+
+ for (int i = 0; i < x_regions; i++) {
+ for (int j = 0; j < y_regions; j++) {
+ int x = i * max_region_size;
+ int y = j * max_region_size;
+ int w = MIN((i + 1) * max_region_size, atlas_size.width) - x;
+ int h = MIN((j + 1) * max_region_size, atlas_size.height) - y;
+
+ push_constant.region_ofs[0] = x;
+ push_constant.region_ofs[1] = y;
+
+ group_size = Vector3i((w - 1) / 8 + 1, (h - 1) / 8 + 1, 1);
+
+ for (int k = 0; k < ray_iterations; k++) {
+ RD::ComputeListID compute_list = rd->compute_list_begin();
+ rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_secondary_pipeline);
+ rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
+ rd->compute_list_bind_uniform_set(compute_list, secondary_uniform_set[0], 1);
+
+ push_constant.ray_from = k * max_rays;
+ push_constant.ray_to = MIN((k + 1) * max_rays, int32_t(push_constant.ray_count));
+ rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
+ rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
+
+ rd->compute_list_end(); //done
+ rd->submit();
+ rd->sync();
+
+ count++;
+ if (p_step_function) {
+ int total = (atlas_slices * x_regions * y_regions * ray_iterations);
+ int percent = count * 100 / total;
+ float p = float(count) / total * 0.1;
+ p_step_function(0.6 + p, vformat(TTR("Bounce %d/%d: Integrate indirect lighting %d%%"), b + 1, p_bounces, percent), p_bake_userdata, false);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* LIGHPROBES */
+
+ RID light_probe_buffer;
+
+ if (probe_positions.size()) {
+ light_probe_buffer = rd->storage_buffer_create(sizeof(float) * 4 * 9 * probe_positions.size());
+
+ if (p_step_function) {
+ p_step_function(0.7, TTR("Baking lightprobes"), p_bake_userdata, true);
+ }
+
+ Vector<RD::Uniform> uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
+ u.binding = 0;
+ u.ids.push_back(light_probe_buffer);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 1;
+ u.ids.push_back(light_dest_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 2;
+ u.ids.push_back(light_primary_dynamic_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 3;
+ u.ids.push_back(light_environment_tex);
+ uniforms.push_back(u);
+ }
+ }
+ RID light_probe_uniform_set = rd->uniform_set_create(uniforms, compute_shader_light_probes, 1);
+
+ switch (p_quality) {
+ case BAKE_QUALITY_LOW: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/low_quality_probe_ray_count");
+ } break;
+ case BAKE_QUALITY_MEDIUM: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/medium_quality_probe_ray_count");
+ } break;
+ case BAKE_QUALITY_HIGH: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/high_quality_probe_ray_count");
+ } break;
+ case BAKE_QUALITY_ULTRA: {
+ push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/ultra_quality_probe_ray_count");
+ } break;
+ }
+
+ push_constant.atlas_size[0] = probe_positions.size();
+ push_constant.ray_count = CLAMP(push_constant.ray_count, 16, 8192);
+
+ int max_rays = GLOBAL_GET("rendering/gpu_lightmapper/performance/max_rays_per_probe_pass");
+ int ray_iterations = (push_constant.ray_count - 1) / max_rays + 1;
+
+ for (int i = 0; i < ray_iterations; i++) {
+ RD::ComputeListID compute_list = rd->compute_list_begin();
+ rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_light_probes_pipeline);
+ rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
+ rd->compute_list_bind_uniform_set(compute_list, light_probe_uniform_set, 1);
+
+ push_constant.ray_from = i * max_rays;
+ push_constant.ray_to = MIN((i + 1) * max_rays, int32_t(push_constant.ray_count));
+ rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
+ rd->compute_list_dispatch(compute_list, (probe_positions.size() - 1) / 64 + 1, 1, 1);
+
+ rd->compute_list_end(); //done
+ rd->submit();
+ rd->sync();
+
+ if (p_step_function) {
+ int percent = i * 100 / ray_iterations;
+ float p = float(i) / ray_iterations * 0.1;
+ p_step_function(0.7 + p, vformat(TTR("Integrating light probes %d%%"), percent), p_bake_userdata, false);
+ }
+ }
+
+ push_constant.atlas_size[0] = atlas_size.x; //restore
+ }
+
+#if 0
+ for (int i = 0; i < probe_positions.size(); i++) {
+ Ref<Image> img;
+ img.instance();
+ img->create(6, 4, false, Image::FORMAT_RGB8);
+ for (int j = 0; j < 6; j++) {
+ Vector<uint8_t> s = rd->texture_get_data(lightprobe_tex, i * 6 + j);
+ Ref<Image> img2;
+ img2.instance();
+ img2->create(2, 2, false, Image::FORMAT_RGBAF, s);
+ img2->convert(Image::FORMAT_RGB8);
+ img->blit_rect(img2, Rect2(0, 0, 2, 2), Point2((j % 3) * 2, (j / 3) * 2));
+ }
+ img->save_png("res://3_light_probe_" + itos(i) + ".png");
+ }
+#endif
+
+ /* DENOISE */
+
+ if (p_use_denoiser) {
+ if (p_step_function) {
+ p_step_function(0.8, TTR("Denoising"), p_bake_userdata, true);
+ }
+
+ Ref<LightmapDenoiser> denoiser = LightmapDenoiser::create();
+ if (denoiser.is_valid()) {
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+
+ Ref<Image> denoised = denoiser->denoise_image(img);
+ if (denoised != img) {
+ denoised->convert(Image::FORMAT_RGBAH);
+ Vector<uint8_t> ds = denoised->get_data();
+ denoised.unref(); //avoid copy on write
+ { //restore alpha
+ uint32_t count = s.size() / 2; //uint16s
+ const uint16_t *src = (const uint16_t *)s.ptr();
+ uint16_t *dst = (uint16_t *)ds.ptrw();
+ for (uint32_t j = 0; j < count; j += 4) {
+ dst[j + 3] = src[j + 3];
+ }
+ }
+ rd->texture_update(light_accum_tex, i, ds, true);
+ }
+ }
+ }
+ }
+
+#ifdef DEBUG_TEXTURES
+
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+ img->convert(Image::FORMAT_RGBA8);
+ img->save_png("res://4_light_secondary_" + itos(i) + ".png");
+ }
+#endif
+
+ /* DILATE LIGHTMAP */
+ {
+ SWAP(light_accum_tex, light_accum_tex2);
+
+ Vector<RD::Uniform> uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_IMAGE;
+ u.binding = 0;
+ u.ids.push_back(light_accum_tex);
+ uniforms.push_back(u);
+ }
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 1;
+ u.ids.push_back(light_accum_tex2);
+ uniforms.push_back(u);
+ }
+ }
+
+ RID dilate_uniform_set = rd->uniform_set_create(uniforms, compute_shader_dilate, 1);
+
+ RD::ComputeListID compute_list = rd->compute_list_begin();
+ rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_dilate_pipeline);
+ rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
+ rd->compute_list_bind_uniform_set(compute_list, dilate_uniform_set, 1);
+ push_constant.region_ofs[0] = 0;
+ push_constant.region_ofs[1] = 0;
+ group_size = Vector3i((atlas_size.x - 1) / 8 + 1, (atlas_size.y - 1) / 8 + 1, 1); //restore group size
+
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ push_constant.atlas_slice = i;
+ rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
+ rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
+ //no barrier, let them run all together
+ }
+ rd->compute_list_end();
+ }
+
+#ifdef DEBUG_TEXTURES
+
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+ img->convert(Image::FORMAT_RGBA8);
+ img->save_png("res://5_dilated_" + itos(i) + ".png");
+ }
+#endif
+
+ /* BLEND SEAMS */
+ //shaders
+ Ref<RDShaderFile> blendseams_shader;
+ blendseams_shader.instance();
+ err = blendseams_shader->parse_versions_from_text(lm_blendseams_shader_glsl);
+ if (err != OK) {
+ FREE_TEXTURES
+ FREE_BUFFERS
+ FREE_RASTER_RESOURCES
+ FREE_COMPUTE_RESOURCES
+ memdelete(rd);
+ blendseams_shader->print_errors("blendseams_shader");
+ }
+ ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
+
+ RID blendseams_line_raster_shader = rd->shader_create_from_bytecode(blendseams_shader->get_bytecode("lines"));
+
+ ERR_FAIL_COND_V(blendseams_line_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
+
+ RID blendseams_triangle_raster_shader = rd->shader_create_from_bytecode(blendseams_shader->get_bytecode("triangles"));
+
+ ERR_FAIL_COND_V(blendseams_triangle_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
+
+#define FREE_BLENDSEAMS_RESOURCES \
+ rd->free(blendseams_line_raster_shader); \
+ rd->free(blendseams_triangle_raster_shader);
+
+ {
+ //pre copy
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ rd->texture_copy(light_accum_tex, light_accum_tex2, Vector3(), Vector3(), Vector3(atlas_size.width, atlas_size.height, 1), 0, 0, i, i, true);
+ }
+
+ Vector<RID> framebuffers;
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ RID slice_tex = rd->texture_create_shared_from_slice(RD::TextureView(), light_accum_tex, i, 0);
+ Vector<RID> fb;
+ fb.push_back(slice_tex);
+ fb.push_back(raster_depth_buffer);
+ framebuffers.push_back(rd->framebuffer_create(fb));
+ }
+
+ Vector<RD::Uniform> uniforms;
+ {
+ {
+ RD::Uniform u;
+ u.type = RD::UNIFORM_TYPE_TEXTURE;
+ u.binding = 0;
+ u.ids.push_back(light_accum_tex2);
+ uniforms.push_back(u);
+ }
+ }
+
+ RID blendseams_raster_uniform = rd->uniform_set_create(uniforms, blendseams_line_raster_shader, 1);
+
+ bool debug = false;
+ RD::PipelineColorBlendState bs = RD::PipelineColorBlendState::create_blend(1);
+ bs.attachments.write[0].src_alpha_blend_factor = RD::BLEND_FACTOR_ZERO;
+ bs.attachments.write[0].dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
+
+ RD::PipelineDepthStencilState ds;
+ ds.enable_depth_test = true;
+ ds.enable_depth_write = true;
+ ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does not render same pixel twice, this avoids wrong blending
+
+ RID blendseams_line_raster_pipeline = rd->render_pipeline_create(blendseams_line_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0);
+ RID blendseams_triangle_raster_pipeline = rd->render_pipeline_create(blendseams_triangle_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0);
+
+ uint32_t seam_offset = 0;
+ uint32_t triangle_offset = 0;
+
+ Vector<Color> clear_colors;
+ clear_colors.push_back(Color(0, 0, 0, 1));
+ for (int i = 0; i < atlas_slices; i++) {
+ int subslices = (p_bake_sh ? 4 : 1);
+ for (int k = 0; k < subslices; k++) {
+ RasterSeamsPushConstant seams_push_constant;
+ seams_push_constant.slice = uint32_t(i * subslices + k);
+ seams_push_constant.debug = debug;
+
+ RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
+
+ rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
+ rd->draw_list_bind_uniform_set(draw_list, blendseams_raster_uniform, 1);
+
+ const int uv_offset_count = 9;
+ static const Vector3 uv_offsets[uv_offset_count] = {
+ Vector3(0, 0, 0.5), //using zbuffer, so go inwards-outwards
+ Vector3(0, 1, 0.2),
+ Vector3(0, -1, 0.2),
+ Vector3(1, 0, 0.2),
+ Vector3(-1, 0, 0.2),
+ Vector3(-1, -1, 0.1),
+ Vector3(1, -1, 0.1),
+ Vector3(1, 1, 0.1),
+ Vector3(-1, 1, 0.1),
+ };
+
+ /* step 1 use lines to blend the edges */
+ {
+ seams_push_constant.base_index = seam_offset;
+ rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline);
+ seams_push_constant.uv_offset[0] = uv_offsets[0].x / float(atlas_size.width);
+ seams_push_constant.uv_offset[1] = uv_offsets[0].y / float(atlas_size.height);
+ seams_push_constant.blend = uv_offsets[0].z;
+
+ rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
+ rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4);
+ }
+
+ /* step 2 use triangles to mask the interior */
+
+ {
+ seams_push_constant.base_index = triangle_offset;
+ rd->draw_list_bind_render_pipeline(draw_list, blendseams_triangle_raster_pipeline);
+ seams_push_constant.blend = 0; //do not draw them, just fill the z-buffer so its used as a mask
+
+ rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
+ rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
+ }
+ /* step 3 blend around the triangle */
+
+ rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline);
+
+ for (int j = 1; j < uv_offset_count; j++) {
+ seams_push_constant.base_index = seam_offset;
+ seams_push_constant.uv_offset[0] = uv_offsets[j].x / float(atlas_size.width);
+ seams_push_constant.uv_offset[1] = uv_offsets[j].y / float(atlas_size.height);
+ seams_push_constant.blend = uv_offsets[0].z;
+
+ rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
+ rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4);
+ }
+ rd->draw_list_end();
+ }
+ seam_offset += slice_seam_count[i];
+ triangle_offset += slice_triangle_count[i];
+ }
+ }
+
+#ifdef DEBUG_TEXTURES
+
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+ img->convert(Image::FORMAT_RGBA8);
+ img->save_png("res://5_blendseams" + itos(i) + ".png");
+ }
+#endif
+ if (p_step_function) {
+ p_step_function(0.9, TTR("Retrieving textures"), p_bake_userdata, true);
+ }
+
+ for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
+ Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
+ Ref<Image> img;
+ img.instance();
+ img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
+ img->convert(Image::FORMAT_RGBH); //remove alpha
+ bake_textures.push_back(img);
+ }
+
+ if (probe_positions.size() > 0) {
+ probe_values.resize(probe_positions.size() * 9);
+ Vector<uint8_t> probe_data = rd->buffer_get_data(light_probe_buffer);
+ copymem(probe_values.ptrw(), probe_data.ptr(), probe_data.size());
+ rd->free(light_probe_buffer);
+
+#ifdef DEBUG_TEXTURES
+ {
+ Ref<Image> img2;
+ img2.instance();
+ img2->create(probe_values.size(), 1, false, Image::FORMAT_RGBAF, probe_data);
+ img2->save_png("res://6_lightprobes.png");
+ }
+#endif
+ }
+
+ FREE_TEXTURES
+ FREE_BUFFERS
+ FREE_RASTER_RESOURCES
+ FREE_COMPUTE_RESOURCES
+ FREE_BLENDSEAMS_RESOURCES
+
+ memdelete(rd);
+
+ return BAKE_OK;
+}
+
+int LightmapperRD::get_bake_texture_count() const {
+ return bake_textures.size();
+}
+
+Ref<Image> LightmapperRD::get_bake_texture(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, bake_textures.size(), Ref<Image>());
+ return bake_textures[p_index];
+}
+
+int LightmapperRD::get_bake_mesh_count() const {
+ return mesh_instances.size();
+}
+
+Variant LightmapperRD::get_bake_mesh_userdata(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant());
+ return mesh_instances[p_index].data.userdata;
+}
+
+Rect2 LightmapperRD::get_bake_mesh_uv_scale(int p_index) const {
+ ERR_FAIL_COND_V(bake_textures.size() == 0, Rect2());
+ Rect2 uv_ofs;
+ Vector2 atlas_size = Vector2(bake_textures[0]->get_width(), bake_textures[0]->get_height());
+ uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size;
+ uv_ofs.size = Vector2(mesh_instances[p_index].data.albedo_on_uv2->get_width(), mesh_instances[p_index].data.albedo_on_uv2->get_height()) / atlas_size;
+ return uv_ofs;
+}
+
+int LightmapperRD::get_bake_mesh_texture_slice(int p_index) const {
+ ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant());
+ return mesh_instances[p_index].slice;
+}
+
+int LightmapperRD::get_bake_probe_count() const {
+ return probe_positions.size();
+}
+
+Vector3 LightmapperRD::get_bake_probe_point(int p_probe) const {
+ ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Variant());
+ return Vector3(probe_positions[p_probe].position[0], probe_positions[p_probe].position[1], probe_positions[p_probe].position[2]);
+}
+
+Vector<Color> LightmapperRD::get_bake_probe_sh(int p_probe) const {
+ ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Vector<Color>());
+ Vector<Color> ret;
+ ret.resize(9);
+ copymem(ret.ptrw(), &probe_values[p_probe * 9], sizeof(Color) * 9);
+ return ret;
+}
+
+LightmapperRD::LightmapperRD() {
+}
diff --git a/modules/lightmapper_rd/lightmapper_rd.h b/modules/lightmapper_rd/lightmapper_rd.h
new file mode 100644
index 0000000000..cd000414cf
--- /dev/null
+++ b/modules/lightmapper_rd/lightmapper_rd.h
@@ -0,0 +1,258 @@
+/*************************************************************************/
+/* lightmapper_rd.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef LIGHTMAPPER_RD_H
+#define LIGHTMAPPER_RD_H
+
+#include "core/local_vector.h"
+#include "scene/3d/lightmapper.h"
+#include "scene/resources/mesh.h"
+#include "servers/rendering/rendering_device.h"
+
+class LightmapperRD : public Lightmapper {
+ GDCLASS(LightmapperRD, Lightmapper)
+
+ struct MeshInstance {
+ MeshData data;
+ int slice = 0;
+ Vector2i offset;
+ };
+
+ struct Light {
+ float position[3];
+ uint32_t type = LIGHT_TYPE_DIRECTIONAL;
+ float direction[3];
+ float energy;
+ float color[3];
+ float size;
+ float range;
+ float attenuation;
+ float spot_angle;
+ float spot_attenuation;
+ uint32_t static_bake;
+ uint32_t pad[3];
+
+ bool operator<(const Light &p_light) const {
+ return type < p_light.type;
+ }
+ };
+
+ struct Vertex {
+ float position[3];
+ float normal_z;
+ float uv[2];
+ float normal_xy[2];
+
+ bool operator==(const Vertex &p_vtx) const {
+ return (position[0] == p_vtx.position[0]) &&
+ (position[1] == p_vtx.position[1]) &&
+ (position[2] == p_vtx.position[2]) &&
+ (uv[0] == p_vtx.uv[0]) &&
+ (uv[1] == p_vtx.uv[1]) &&
+ (normal_xy[0] == p_vtx.normal_xy[0]) &&
+ (normal_xy[1] == p_vtx.normal_xy[1]) &&
+ (normal_z == p_vtx.normal_z);
+ }
+ };
+
+ struct Edge {
+ Vector3 a;
+ Vector3 b;
+ Vector3 na;
+ Vector3 nb;
+ bool operator==(const Edge &p_seam) const {
+ return a == p_seam.a && b == p_seam.b && na == p_seam.na && nb == p_seam.nb;
+ }
+ Edge() {
+ }
+
+ Edge(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_na, const Vector3 &p_nb) {
+ a = p_a;
+ b = p_b;
+ na = p_na;
+ nb = p_nb;
+ }
+ };
+
+ struct Probe {
+ float position[4];
+ };
+
+ Vector<Probe> probe_positions;
+
+ struct EdgeHash {
+ _FORCE_INLINE_ static uint32_t hash(const Edge &p_edge) {
+ uint32_t h = hash_djb2_one_float(p_edge.a.x);
+ h = hash_djb2_one_float(p_edge.a.y, h);
+ h = hash_djb2_one_float(p_edge.a.z, h);
+ h = hash_djb2_one_float(p_edge.b.x, h);
+ h = hash_djb2_one_float(p_edge.b.y, h);
+ h = hash_djb2_one_float(p_edge.b.z, h);
+ return h;
+ }
+ };
+ struct EdgeUV2 {
+ Vector2 a;
+ Vector2 b;
+ Vector2i indices;
+ bool operator==(const EdgeUV2 &p_uv2) const {
+ return a == p_uv2.a && b == p_uv2.b;
+ }
+ bool seam_found = false;
+ EdgeUV2(Vector2 p_a, Vector2 p_b, Vector2i p_indices) {
+ a = p_a;
+ b = p_b;
+ indices = p_indices;
+ }
+ EdgeUV2() {}
+ };
+
+ struct Seam {
+ Vector2i a;
+ Vector2i b;
+ uint32_t slice;
+ bool operator<(const Seam &p_seam) const {
+ return slice < p_seam.slice;
+ }
+ };
+
+ struct VertexHash {
+ _FORCE_INLINE_ static uint32_t hash(const Vertex &p_vtx) {
+ uint32_t h = hash_djb2_one_float(p_vtx.position[0]);
+ h = hash_djb2_one_float(p_vtx.position[1], h);
+ h = hash_djb2_one_float(p_vtx.position[2], h);
+ h = hash_djb2_one_float(p_vtx.uv[0], h);
+ h = hash_djb2_one_float(p_vtx.uv[1], h);
+ h = hash_djb2_one_float(p_vtx.normal_xy[0], h);
+ h = hash_djb2_one_float(p_vtx.normal_xy[1], h);
+ h = hash_djb2_one_float(p_vtx.normal_z, h);
+ return h;
+ }
+ };
+
+ struct Box {
+ float min_bounds[3];
+ float pad0;
+ float max_bounds[3];
+ float pad1;
+ };
+
+ struct Triangle {
+ uint32_t indices[3];
+ uint32_t slice;
+ bool operator<(const Triangle &p_triangle) const {
+ return slice < p_triangle.slice;
+ }
+ };
+
+ Vector<MeshInstance> mesh_instances;
+
+ Vector<Light> lights;
+
+ struct TriangleSort {
+ uint32_t cell_index;
+ uint32_t triangle_index;
+ bool operator<(const TriangleSort &p_triangle_sort) const {
+ return cell_index < p_triangle_sort.cell_index; //sorting by triangle index in this case makes no sense
+ }
+ };
+
+ void _plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[], uint32_t p_triangle_index, LocalVector<TriangleSort> &triangles, uint32_t p_grid_size);
+
+ struct RasterPushConstant {
+ float atlas_size[2];
+ float uv_offset[2];
+ float to_cell_size[3];
+ uint32_t base_triangle;
+ float to_cell_offset[3];
+ float bias;
+ int32_t grid_size[3];
+ uint32_t pad2;
+ };
+
+ struct RasterSeamsPushConstant {
+ uint32_t base_index;
+ uint32_t slice;
+ float uv_offset[2];
+ uint32_t debug;
+ float blend;
+ uint32_t pad[2];
+ };
+
+ struct PushConstant {
+ int32_t atlas_size[2];
+ uint32_t ray_count;
+ uint32_t ray_to;
+
+ float world_size[3];
+ float bias;
+
+ float to_cell_offset[3];
+ uint32_t ray_from;
+
+ float to_cell_size[3];
+ uint32_t light_count;
+
+ int32_t grid_size;
+ int32_t atlas_slice;
+ int32_t region_ofs[2];
+
+ float environment_xform[12];
+ };
+
+ Vector<Ref<Image>> bake_textures;
+ Vector<Color> probe_values;
+
+ BakeError _blit_meshes_into_atlas(int p_max_texture_size, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata);
+ void _create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, Vector<Probe> &probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &box_buffer, RID &lights_buffer, RID &triangle_cell_indices_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &grid_texture_sdf, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata);
+ void _raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform);
+
+public:
+ virtual void add_mesh(const MeshData &p_mesh) override;
+ virtual void add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_angular_distance) override;
+ virtual void add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_size) override;
+ virtual void add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size) override;
+ virtual void add_probe(const Vector3 &p_position) override;
+ virtual BakeError bake(BakeQuality p_quality, bool p_use_denoiser, int p_bounces, float p_bias, int p_max_texture_size, bool p_bake_sh, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function = nullptr, void *p_bake_userdata = nullptr) override;
+
+ int get_bake_texture_count() const override;
+ Ref<Image> get_bake_texture(int p_index) const override;
+ int get_bake_mesh_count() const override;
+ Variant get_bake_mesh_userdata(int p_index) const override;
+ Rect2 get_bake_mesh_uv_scale(int p_index) const override;
+ int get_bake_mesh_texture_slice(int p_index) const override;
+ int get_bake_probe_count() const override;
+ Vector3 get_bake_probe_point(int p_probe) const override;
+ Vector<Color> get_bake_probe_sh(int p_probe) const override;
+
+ LightmapperRD();
+};
+
+#endif // LIGHTMAPPER_H
diff --git a/modules/lightmapper_rd/lm_blendseams.glsl b/modules/lightmapper_rd/lm_blendseams.glsl
new file mode 100644
index 0000000000..e47e5fcc51
--- /dev/null
+++ b/modules/lightmapper_rd/lm_blendseams.glsl
@@ -0,0 +1,108 @@
+#[versions]
+
+lines = "#define MODE_LINES";
+triangles = "#define MODE_TRIANGLES";
+
+#[vertex]
+
+#version 450
+
+VERSION_DEFINES
+
+#include "lm_common_inc.glsl"
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ uint base_index;
+ uint slice;
+ vec2 uv_offset;
+ bool debug;
+ float blend;
+ uint pad[2];
+}
+params;
+
+layout(location = 0) out vec3 uv_interp;
+
+void main() {
+#ifdef MODE_TRIANGLES
+ uint triangle_idx = params.base_index + gl_VertexIndex / 3;
+ uint triangle_subidx = gl_VertexIndex % 3;
+
+ vec2 uv;
+ if (triangle_subidx == 0) {
+ uv = vertices.data[triangles.data[triangle_idx].indices.x].uv;
+ } else if (triangle_subidx == 1) {
+ uv = vertices.data[triangles.data[triangle_idx].indices.y].uv;
+ } else {
+ uv = vertices.data[triangles.data[triangle_idx].indices.z].uv;
+ }
+
+ uv_interp = vec3(uv, float(params.slice));
+ gl_Position = vec4((uv + params.uv_offset) * 2.0 - 1.0, 0.0001, 1.0);
+#endif
+
+#ifdef MODE_LINES
+ uint seam_idx = params.base_index + gl_VertexIndex / 4;
+ uint seam_subidx = gl_VertexIndex % 4;
+
+ uint src_idx;
+ uint dst_idx;
+
+ if (seam_subidx == 0) {
+ src_idx = seams.data[seam_idx].b.x;
+ dst_idx = seams.data[seam_idx].a.x;
+ } else if (seam_subidx == 1) {
+ src_idx = seams.data[seam_idx].b.y;
+ dst_idx = seams.data[seam_idx].a.y;
+ } else if (seam_subidx == 2) {
+ src_idx = seams.data[seam_idx].a.x;
+ dst_idx = seams.data[seam_idx].b.x;
+ } else if (seam_subidx == 3) {
+ src_idx = seams.data[seam_idx].a.y;
+ dst_idx = seams.data[seam_idx].b.y;
+ }
+
+ vec2 src_uv = vertices.data[src_idx].uv;
+ vec2 dst_uv = vertices.data[dst_idx].uv + params.uv_offset;
+
+ uv_interp = vec3(src_uv, float(params.slice));
+ gl_Position = vec4(dst_uv * 2.0 - 1.0, 0.0001, 1.0);
+#endif
+}
+
+#[fragment]
+
+#version 450
+
+VERSION_DEFINES
+
+#include "lm_common_inc.glsl"
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ uint base_index;
+ uint slice;
+ vec2 uv_offset;
+ bool debug;
+ float blend;
+ uint pad[2];
+}
+params;
+
+layout(location = 0) in vec3 uv_interp;
+
+layout(location = 0) out vec4 dst_color;
+
+layout(set = 1, binding = 0) uniform texture2DArray src_color_tex;
+
+void main() {
+ if (params.debug) {
+#ifdef MODE_TRIANGLES
+ dst_color = vec4(1, 0, 1, 1);
+#else
+ dst_color = vec4(1, 1, 0, 1);
+#endif
+ } else {
+ vec4 src_color = textureLod(sampler2DArray(src_color_tex, linear_sampler), uv_interp, 0.0);
+ dst_color = vec4(src_color.rgb, params.blend); //mix
+ }
+}
diff --git a/modules/lightmapper_rd/lm_common_inc.glsl b/modules/lightmapper_rd/lm_common_inc.glsl
new file mode 100644
index 0000000000..0ff455936e
--- /dev/null
+++ b/modules/lightmapper_rd/lm_common_inc.glsl
@@ -0,0 +1,92 @@
+
+/* SET 0, static data that does not change between any call */
+
+struct Vertex {
+ vec3 position;
+ float normal_z;
+ vec2 uv;
+ vec2 normal_xy;
+};
+
+layout(set = 0, binding = 1, std430) restrict readonly buffer Vertices {
+ Vertex data[];
+}
+vertices;
+
+struct Triangle {
+ uvec3 indices;
+ uint slice;
+};
+
+layout(set = 0, binding = 2, std430) restrict readonly buffer Triangles {
+ Triangle data[];
+}
+triangles;
+
+struct Box {
+ vec3 min_bounds;
+ uint pad0;
+ vec3 max_bounds;
+ uint pad1;
+};
+
+layout(set = 0, binding = 3, std430) restrict readonly buffer Boxes {
+ Box data[];
+}
+boxes;
+
+layout(set = 0, binding = 4, std430) restrict readonly buffer GridIndices {
+ uint data[];
+}
+grid_indices;
+
+#define LIGHT_TYPE_DIRECTIONAL 0
+#define LIGHT_TYPE_OMNI 1
+#define LIGHT_TYPE_SPOT 2
+
+struct Light {
+ vec3 position;
+ uint type;
+
+ vec3 direction;
+ float energy;
+
+ vec3 color;
+ float size;
+
+ float range;
+ float attenuation;
+ float spot_angle;
+ float spot_attenuation;
+
+ bool static_bake;
+ uint pad[3];
+};
+
+layout(set = 0, binding = 5, std430) restrict readonly buffer Lights {
+ Light data[];
+}
+lights;
+
+struct Seam {
+ uvec2 a;
+ uvec2 b;
+};
+
+layout(set = 0, binding = 6, std430) restrict readonly buffer Seams {
+ Seam data[];
+}
+seams;
+
+layout(set = 0, binding = 7, std430) restrict readonly buffer Probes {
+ vec4 data[];
+}
+probe_positions;
+
+layout(set = 0, binding = 8) uniform utexture3D grid;
+layout(set = 0, binding = 9) uniform texture3D grid_sdf;
+
+layout(set = 0, binding = 10) uniform texture2DArray albedo_tex;
+layout(set = 0, binding = 11) uniform texture2DArray emission_tex;
+
+layout(set = 0, binding = 12) uniform sampler linear_sampler;
diff --git a/modules/lightmapper_rd/lm_compute.glsl b/modules/lightmapper_rd/lm_compute.glsl
new file mode 100644
index 0000000000..56976bd623
--- /dev/null
+++ b/modules/lightmapper_rd/lm_compute.glsl
@@ -0,0 +1,644 @@
+#[versions]
+
+primary = "#define MODE_DIRECT_LIGHT";
+secondary = "#define MODE_BOUNCE_LIGHT";
+dilate = "#define MODE_DILATE";
+unocclude = "#define MODE_UNOCCLUDE";
+light_probes = "#define MODE_LIGHT_PROBES";
+
+#[compute]
+
+#version 450
+
+VERSION_DEFINES
+
+// One 2D local group focusing in one layer at a time, though all
+// in parallel (no barriers) makes more sense than a 3D local group
+// as this can take more advantage of the cache for each group.
+
+#ifdef MODE_LIGHT_PROBES
+
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+
+#else
+
+layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
+
+#endif
+
+#include "lm_common_inc.glsl"
+
+#ifdef MODE_LIGHT_PROBES
+
+layout(set = 1, binding = 0, std430) restrict buffer LightProbeData {
+ vec4 data[];
+}
+light_probes;
+
+layout(set = 1, binding = 1) uniform texture2DArray source_light;
+layout(set = 1, binding = 2) uniform texture2DArray source_direct_light; //also need the direct light, which was omitted
+layout(set = 1, binding = 3) uniform texture2D environment;
+#endif
+
+#ifdef MODE_UNOCCLUDE
+
+layout(rgba32f, set = 1, binding = 0) uniform restrict image2DArray position;
+layout(rgba32f, set = 1, binding = 1) uniform restrict readonly image2DArray unocclude;
+
+#endif
+
+#if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT)
+
+layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
+layout(set = 1, binding = 1) uniform texture2DArray source_light;
+layout(set = 1, binding = 2) uniform texture2DArray source_position;
+layout(set = 1, binding = 3) uniform texture2DArray source_normal;
+layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light;
+
+#endif
+
+#ifdef MODE_BOUNCE_LIGHT
+layout(rgba32f, set = 1, binding = 5) uniform restrict image2DArray bounce_accum;
+layout(set = 1, binding = 6) uniform texture2D environment;
+#endif
+#ifdef MODE_DIRECT_LIGHT
+layout(rgba32f, set = 1, binding = 5) uniform restrict writeonly image2DArray primary_dynamic;
+#endif
+
+#ifdef MODE_DILATE
+layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
+layout(set = 1, binding = 1) uniform texture2DArray source_light;
+#endif
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ ivec2 atlas_size; // x used for light probe mode total probes
+ uint ray_count;
+ uint ray_to;
+
+ vec3 world_size;
+ float bias;
+
+ vec3 to_cell_offset;
+ uint ray_from;
+
+ vec3 to_cell_size;
+ uint light_count;
+
+ int grid_size;
+ int atlas_slice;
+ ivec2 region_ofs;
+
+ mat3x4 env_transform;
+}
+params;
+
+//check it, but also return distance and barycentric coords (for uv lookup)
+bool ray_hits_triangle(vec3 from, vec3 dir, float max_dist, vec3 p0, vec3 p1, vec3 p2, out float r_distance, out vec3 r_barycentric) {
+ const vec3 e0 = p1 - p0;
+ const vec3 e1 = p0 - p2;
+ vec3 triangleNormal = cross(e1, e0);
+
+ const vec3 e2 = (1.0 / dot(triangleNormal, dir)) * (p0 - from);
+ const vec3 i = cross(dir, e2);
+
+ r_barycentric.y = dot(i, e1);
+ r_barycentric.z = dot(i, e0);
+ r_barycentric.x = 1.0 - (r_barycentric.z + r_barycentric.y);
+ r_distance = dot(triangleNormal, e2);
+ return (r_distance > params.bias) && (r_distance < max_dist) && all(greaterThanEqual(r_barycentric, vec3(0.0)));
+}
+
+bool trace_ray(vec3 p_from, vec3 p_to
+#if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
+ ,
+ out uint r_triangle, out vec3 r_barycentric
+#endif
+#if defined(MODE_UNOCCLUDE)
+ ,
+ out float r_distance, out vec3 r_normal
+#endif
+) {
+ /* world coords */
+
+ vec3 rel = p_to - p_from;
+ float rel_len = length(rel);
+ vec3 dir = normalize(rel);
+ vec3 inv_dir = 1.0 / dir;
+
+ /* cell coords */
+
+ vec3 from_cell = (p_from - params.to_cell_offset) * params.to_cell_size;
+ vec3 to_cell = (p_to - params.to_cell_offset) * params.to_cell_size;
+
+ //prepare DDA
+ vec3 rel_cell = to_cell - from_cell;
+ ivec3 icell = ivec3(from_cell);
+ ivec3 iendcell = ivec3(to_cell);
+ vec3 dir_cell = normalize(rel_cell);
+ vec3 delta = abs(1.0 / dir_cell); //vec3(length(rel_cell)) / rel_cell);
+ ivec3 step = ivec3(sign(rel_cell));
+ vec3 side = (sign(rel_cell) * (vec3(icell) - from_cell) + (sign(rel_cell) * 0.5) + 0.5) * delta;
+
+ uint iters = 0;
+ while (all(greaterThanEqual(icell, ivec3(0))) && all(lessThan(icell, ivec3(params.grid_size))) && iters < 1000) {
+ uvec2 cell_data = texelFetch(usampler3D(grid, linear_sampler), icell, 0).xy;
+ if (cell_data.x > 0) { //triangles here
+ bool hit = false;
+#if defined(MODE_UNOCCLUDE)
+ bool hit_backface = false;
+#endif
+ float best_distance = 1e20;
+
+ for (uint i = 0; i < cell_data.x; i++) {
+ uint tidx = grid_indices.data[cell_data.y + i];
+
+ //Ray-Box test
+ vec3 t0 = (boxes.data[tidx].min_bounds - p_from) * inv_dir;
+ vec3 t1 = (boxes.data[tidx].max_bounds - p_from) * inv_dir;
+ vec3 tmin = min(t0, t1), tmax = max(t0, t1);
+
+ if (max(tmin.x, max(tmin.y, tmin.z)) <= min(tmax.x, min(tmax.y, tmax.z))) {
+ continue; //ray box failed
+ }
+
+ //prepare triangle vertices
+ vec3 vtx0 = vertices.data[triangles.data[tidx].indices.x].position;
+ vec3 vtx1 = vertices.data[triangles.data[tidx].indices.y].position;
+ vec3 vtx2 = vertices.data[triangles.data[tidx].indices.z].position;
+#if defined(MODE_UNOCCLUDE)
+ vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2)));
+
+ bool backface = dot(normal, dir) >= 0.0;
+#endif
+ float distance;
+ vec3 barycentric;
+
+ if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) {
+#ifdef MODE_DIRECT_LIGHT
+ return true; //any hit good
+#endif
+
+#if defined(MODE_UNOCCLUDE)
+ if (!backface) {
+ // the case of meshes having both a front and back face in the same plane is more common than
+ // expected, so if this is a front-face, bias it closer to the ray origin, so it always wins over the back-face
+ distance = max(params.bias, distance - params.bias);
+ }
+
+ hit = true;
+
+ if (distance < best_distance) {
+ hit_backface = backface;
+ best_distance = distance;
+ r_distance = distance;
+ r_normal = normal;
+ }
+
+#endif
+
+#if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
+
+ hit = true;
+ if (distance < best_distance) {
+ best_distance = distance;
+ r_triangle = tidx;
+ r_barycentric = barycentric;
+ }
+#endif
+ }
+ }
+#if defined(MODE_UNOCCLUDE)
+
+ if (hit) {
+ return hit_backface;
+ }
+#endif
+#if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
+ if (hit) {
+ return true;
+ }
+#endif
+ }
+
+ if (icell == iendcell) {
+ break;
+ }
+
+ bvec3 mask = lessThanEqual(side.xyz, min(side.yzx, side.zxy));
+ side += vec3(mask) * delta;
+ icell += ivec3(vec3(mask)) * step;
+
+ iters++;
+ }
+
+ return false;
+}
+
+const float PI = 3.14159265f;
+const float GOLDEN_ANGLE = PI * (3.0 - sqrt(5.0));
+
+vec3 vogel_hemisphere(uint p_index, uint p_count, float p_offset) {
+ float r = sqrt(float(p_index) + 0.5f) / sqrt(float(p_count));
+ float theta = float(p_index) * GOLDEN_ANGLE + p_offset;
+ float y = cos(r * PI * 0.5);
+ float l = sin(r * PI * 0.5);
+ return vec3(l * cos(theta), l * sin(theta), y);
+}
+
+float quick_hash(vec2 pos) {
+ return fract(sin(dot(pos * 19.19, vec2(49.5791, 97.413))) * 49831.189237);
+}
+
+void main() {
+#ifdef MODE_LIGHT_PROBES
+ int probe_index = int(gl_GlobalInvocationID.x);
+ if (probe_index >= params.atlas_size.x) { //too large, do nothing
+ return;
+ }
+
+#else
+ ivec2 atlas_pos = ivec2(gl_GlobalInvocationID.xy) + params.region_ofs;
+ if (any(greaterThanEqual(atlas_pos, params.atlas_size))) { //too large, do nothing
+ return;
+ }
+#endif
+
+#ifdef MODE_DIRECT_LIGHT
+
+ vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
+ if (length(normal) < 0.5) {
+ return; //empty texel, no process
+ }
+ vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
+
+ //go through all lights
+ //start by own light (emissive)
+ vec3 static_light = vec3(0.0);
+ vec3 dynamic_light = vec3(0.0);
+
+#ifdef USE_SH_LIGHTMAPS
+ vec4 sh_accum[4] = vec4[](
+ vec4(0.0, 0.0, 0.0, 1.0),
+ vec4(0.0, 0.0, 0.0, 1.0),
+ vec4(0.0, 0.0, 0.0, 1.0),
+ vec4(0.0, 0.0, 0.0, 1.0));
+#endif
+
+ for (uint i = 0; i < params.light_count; i++) {
+ vec3 light_pos;
+ float attenuation;
+ if (lights.data[i].type == LIGHT_TYPE_DIRECTIONAL) {
+ vec3 light_vec = lights.data[i].direction;
+ light_pos = position - light_vec * length(params.world_size);
+ attenuation = 1.0;
+ } else {
+ light_pos = lights.data[i].position;
+ float d = distance(position, light_pos);
+ if (d > lights.data[i].range) {
+ continue;
+ }
+
+ d /= lights.data[i].range;
+
+ attenuation = pow(max(1.0 - d, 0.0), lights.data[i].attenuation);
+
+ if (lights.data[i].type == LIGHT_TYPE_SPOT) {
+ vec3 rel = normalize(position - light_pos);
+ float angle = acos(dot(rel, lights.data[i].direction));
+ if (angle > lights.data[i].spot_angle) {
+ continue; //invisible, dont try
+ }
+
+ float d = clamp(angle / lights.data[i].spot_angle, 0, 1);
+ attenuation *= pow(1.0 - d, lights.data[i].spot_attenuation);
+ }
+ }
+
+ vec3 light_dir = normalize(light_pos - position);
+ attenuation *= max(0.0, dot(normal, light_dir));
+
+ if (attenuation <= 0.0001) {
+ continue; //no need to do anything
+ }
+
+ if (!trace_ray(position + light_dir * params.bias, light_pos)) {
+ vec3 light = lights.data[i].color * lights.data[i].energy * attenuation;
+ if (lights.data[i].static_bake) {
+ static_light += light;
+#ifdef USE_SH_LIGHTMAPS
+
+ float c[4] = float[](
+ 0.282095, //l0
+ 0.488603 * light_dir.y, //l1n1
+ 0.488603 * light_dir.z, //l1n0
+ 0.488603 * light_dir.x //l1p1
+ );
+
+ for (uint j = 0; j < 4; j++) {
+ sh_accum[j].rgb += light * c[j] * (1.0 / 3.0);
+ }
+#endif
+
+ } else {
+ dynamic_light += light;
+ }
+ }
+ }
+
+ vec3 albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb;
+ vec3 emissive = texelFetch(sampler2DArray(emission_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb;
+
+ dynamic_light *= albedo; //if it will bounce, must multiply by albedo
+ dynamic_light += emissive;
+
+ //keep for lightprobes
+ imageStore(primary_dynamic, ivec3(atlas_pos, params.atlas_slice), vec4(dynamic_light, 1.0));
+
+ dynamic_light += static_light * albedo; //send for bounces
+ imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(dynamic_light, 1.0));
+
+#ifdef USE_SH_LIGHTMAPS
+ //keep for adding at the end
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 0), sh_accum[0]);
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 1), sh_accum[1]);
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 2), sh_accum[2]);
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 3), sh_accum[3]);
+
+#else
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), vec4(static_light, 1.0));
+#endif
+
+#endif
+
+#ifdef MODE_BOUNCE_LIGHT
+
+ vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
+ if (length(normal) < 0.5) {
+ return; //empty texel, no process
+ }
+
+ vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
+
+ vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
+ vec3 tangent = normalize(cross(v0, normal));
+ vec3 bitangent = normalize(cross(tangent, normal));
+ mat3 normal_mat = mat3(tangent, bitangent, normal);
+
+#ifdef USE_SH_LIGHTMAPS
+ vec4 sh_accum[4] = vec4[](
+ vec4(0.0, 0.0, 0.0, 1.0),
+ vec4(0.0, 0.0, 0.0, 1.0),
+ vec4(0.0, 0.0, 0.0, 1.0),
+ vec4(0.0, 0.0, 0.0, 1.0));
+#endif
+ vec3 light_average = vec3(0.0);
+ for (uint i = params.ray_from; i < params.ray_to; i++) {
+ vec3 ray_dir = normal_mat * vogel_hemisphere(i, params.ray_count, quick_hash(vec2(atlas_pos)));
+
+ uint tidx;
+ vec3 barycentric;
+
+ vec3 light;
+ if (trace_ray(position + ray_dir * params.bias, position + ray_dir * length(params.world_size), tidx, barycentric)) {
+ //hit a triangle
+ vec2 uv0 = vertices.data[triangles.data[tidx].indices.x].uv;
+ vec2 uv1 = vertices.data[triangles.data[tidx].indices.y].uv;
+ vec2 uv2 = vertices.data[triangles.data[tidx].indices.z].uv;
+ vec3 uvw = vec3(barycentric.x * uv0 + barycentric.y * uv1 + barycentric.z * uv2, float(triangles.data[tidx].slice));
+
+ light = textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb;
+ } else {
+ //did not hit a triangle, reach out for the sky
+ vec3 sky_dir = normalize(mat3(params.env_transform) * ray_dir);
+
+ vec2 st = vec2(
+ atan(sky_dir.x, sky_dir.z),
+ acos(sky_dir.y));
+
+ if (st.x < 0.0)
+ st.x += PI * 2.0;
+
+ st /= vec2(PI * 2.0, PI);
+
+ light = textureLod(sampler2D(environment, linear_sampler), st, 0.0).rgb;
+ }
+
+ light_average += light;
+
+#ifdef USE_SH_LIGHTMAPS
+
+ float c[4] = float[](
+ 0.282095, //l0
+ 0.488603 * ray_dir.y, //l1n1
+ 0.488603 * ray_dir.z, //l1n0
+ 0.488603 * ray_dir.x //l1p1
+ );
+
+ for (uint j = 0; j < 4; j++) {
+ sh_accum[j].rgb += light * c[j] * (8.0 / float(params.ray_count));
+ }
+#endif
+ }
+
+ vec3 light_total;
+ if (params.ray_from == 0) {
+ light_total = vec3(0.0);
+ } else {
+ light_total = imageLoad(bounce_accum, ivec3(atlas_pos, params.atlas_slice)).rgb;
+ }
+
+ light_total += light_average;
+
+#ifdef USE_SH_LIGHTMAPS
+
+ for (int i = 0; i < 4; i++) {
+ vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i));
+ accum.rgb += sh_accum[i].rgb;
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), accum);
+ }
+
+#endif
+ if (params.ray_to == params.ray_count) {
+ light_total /= float(params.ray_count);
+ imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_total, 1.0));
+#ifndef USE_SH_LIGHTMAPS
+ vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice));
+ accum.rgb += light_total;
+ imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), accum);
+#endif
+ } else {
+ imageStore(bounce_accum, ivec3(atlas_pos, params.atlas_slice), vec4(light_total, 1.0));
+ }
+
+#endif
+
+#ifdef MODE_UNOCCLUDE
+
+ //texel_size = 0.5;
+ //compute tangents
+
+ vec4 position_alpha = imageLoad(position, ivec3(atlas_pos, params.atlas_slice));
+ if (position_alpha.a < 0.5) {
+ return;
+ }
+
+ vec3 vertex_pos = position_alpha.xyz;
+ vec4 normal_tsize = imageLoad(unocclude, ivec3(atlas_pos, params.atlas_slice));
+
+ vec3 face_normal = normal_tsize.xyz;
+ float texel_size = normal_tsize.w;
+
+ vec3 v0 = abs(face_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
+ vec3 tangent = normalize(cross(v0, face_normal));
+ vec3 bitangent = normalize(cross(tangent, face_normal));
+ vec3 base_pos = vertex_pos + face_normal * params.bias; //raise a bit
+
+ vec3 rays[4] = vec3[](tangent, bitangent, -tangent, -bitangent);
+ float min_d = 1e20;
+ for (int i = 0; i < 4; i++) {
+ vec3 ray_to = base_pos + rays[i] * texel_size;
+ float d;
+ vec3 norm;
+
+ if (trace_ray(base_pos, ray_to, d, norm)) {
+ if (d < min_d) {
+ vertex_pos = base_pos + rays[i] * d + norm * params.bias * 10.0; //this bias needs to be greater than the regular bias, because otherwise later, rays will go the other side when pointing back.
+ min_d = d;
+ }
+ }
+ }
+
+ position_alpha.xyz = vertex_pos;
+
+ imageStore(position, ivec3(atlas_pos, params.atlas_slice), position_alpha);
+
+#endif
+
+#ifdef MODE_LIGHT_PROBES
+
+ vec3 position = probe_positions.data[probe_index].xyz;
+
+ vec4 probe_sh_accum[9] = vec4[](
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0),
+ vec4(0.0));
+
+ for (uint i = params.ray_from; i < params.ray_to; i++) {
+ vec3 ray_dir = vogel_hemisphere(i, params.ray_count, quick_hash(vec2(float(probe_index), 0.0)));
+ if (bool(i & 1)) {
+ //throw to both sides, so alternate them
+ ray_dir.z *= -1.0;
+ }
+
+ uint tidx;
+ vec3 barycentric;
+ vec3 light;
+
+ if (trace_ray(position + ray_dir * params.bias, position + ray_dir * length(params.world_size), tidx, barycentric)) {
+ vec2 uv0 = vertices.data[triangles.data[tidx].indices.x].uv;
+ vec2 uv1 = vertices.data[triangles.data[tidx].indices.y].uv;
+ vec2 uv2 = vertices.data[triangles.data[tidx].indices.z].uv;
+ vec3 uvw = vec3(barycentric.x * uv0 + barycentric.y * uv1 + barycentric.z * uv2, float(triangles.data[tidx].slice));
+
+ light = textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb;
+ light += textureLod(sampler2DArray(source_direct_light, linear_sampler), uvw, 0.0).rgb;
+ } else {
+ //did not hit a triangle, reach out for the sky
+ vec3 sky_dir = normalize(mat3(params.env_transform) * ray_dir);
+
+ vec2 st = vec2(
+ atan(sky_dir.x, sky_dir.z),
+ acos(sky_dir.y));
+
+ if (st.x < 0.0)
+ st.x += PI * 2.0;
+
+ st /= vec2(PI * 2.0, PI);
+
+ light = textureLod(sampler2D(environment, linear_sampler), st, 0.0).rgb;
+ }
+
+ {
+ float c[9] = float[](
+ 0.282095, //l0
+ 0.488603 * ray_dir.y, //l1n1
+ 0.488603 * ray_dir.z, //l1n0
+ 0.488603 * ray_dir.x, //l1p1
+ 1.092548 * ray_dir.x * ray_dir.y, //l2n2
+ 1.092548 * ray_dir.y * ray_dir.z, //l2n1
+ //0.315392 * (ray_dir.x * ray_dir.x + ray_dir.y * ray_dir.y + 2.0 * ray_dir.z * ray_dir.z), //l20
+ 0.315392 * (3.0 * ray_dir.z * ray_dir.z - 1.0), //l20
+ 1.092548 * ray_dir.x * ray_dir.z, //l2p1
+ 0.546274 * (ray_dir.x * ray_dir.x - ray_dir.y * ray_dir.y) //l2p2
+ );
+
+ for (uint j = 0; j < 9; j++) {
+ probe_sh_accum[j].rgb += light * c[j];
+ }
+ }
+ }
+
+ if (params.ray_from > 0) {
+ for (uint j = 0; j < 9; j++) { //accum from existing
+ probe_sh_accum[j] += light_probes.data[probe_index * 9 + j];
+ }
+ }
+
+ if (params.ray_to == params.ray_count) {
+ for (uint j = 0; j < 9; j++) { //accum from existing
+ probe_sh_accum[j] *= 4.0 / float(params.ray_count);
+ }
+ }
+
+ for (uint j = 0; j < 9; j++) { //accum from existing
+ light_probes.data[probe_index * 9 + j] = probe_sh_accum[j];
+ }
+
+#endif
+
+#ifdef MODE_DILATE
+
+ vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0);
+ //sides first, as they are closer
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -1), params.atlas_slice), 0);
+ //endpoints second
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 1), params.atlas_slice), 0);
+
+ //far sides third
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 0), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 0), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -2), params.atlas_slice), 0);
+
+ //far-mid endpoints
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -1), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 1), params.atlas_slice), 0);
+
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 2), params.atlas_slice), 0);
+ //far endpoints
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -2), params.atlas_slice), 0);
+ c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 2), params.atlas_slice), 0);
+
+ imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), c);
+
+#endif
+}
diff --git a/modules/lightmapper_rd/lm_raster.glsl b/modules/lightmapper_rd/lm_raster.glsl
new file mode 100644
index 0000000000..6c2904192b
--- /dev/null
+++ b/modules/lightmapper_rd/lm_raster.glsl
@@ -0,0 +1,157 @@
+#[vertex]
+
+#version 450
+
+VERSION_DEFINES
+
+#include "lm_common_inc.glsl"
+
+layout(location = 0) out vec3 vertex_interp;
+layout(location = 1) out vec3 normal_interp;
+layout(location = 2) out vec2 uv_interp;
+layout(location = 3) out vec3 barycentric;
+layout(location = 4) flat out uvec3 vertex_indices;
+layout(location = 5) flat out vec3 face_normal;
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ vec2 atlas_size;
+ vec2 uv_offset;
+ vec3 to_cell_size;
+ uint base_triangle;
+ vec3 to_cell_offset;
+ float bias;
+ ivec3 grid_size;
+ uint pad2;
+}
+params;
+
+void main() {
+ uint triangle_idx = params.base_triangle + gl_VertexIndex / 3;
+ uint triangle_subidx = gl_VertexIndex % 3;
+
+ vertex_indices = triangles.data[triangle_idx].indices;
+
+ uint vertex_idx;
+ if (triangle_subidx == 0) {
+ vertex_idx = vertex_indices.x;
+ barycentric = vec3(1, 0, 0);
+ } else if (triangle_subidx == 1) {
+ vertex_idx = vertex_indices.y;
+ barycentric = vec3(0, 1, 0);
+ } else {
+ vertex_idx = vertex_indices.z;
+ barycentric = vec3(0, 0, 1);
+ }
+
+ vertex_interp = vertices.data[vertex_idx].position;
+ uv_interp = vertices.data[vertex_idx].uv;
+ normal_interp = vec3(vertices.data[vertex_idx].normal_xy, vertices.data[vertex_idx].normal_z);
+
+ face_normal = -normalize(cross((vertices.data[vertex_indices.x].position - vertices.data[vertex_indices.y].position), (vertices.data[vertex_indices.x].position - vertices.data[vertex_indices.z].position)));
+
+ gl_Position = vec4((uv_interp + params.uv_offset) * 2.0 - 1.0, 0.0001, 1.0);
+}
+
+#[fragment]
+
+#version 450
+
+VERSION_DEFINES
+
+#include "lm_common_inc.glsl"
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ vec2 atlas_size;
+ vec2 uv_offset;
+ vec3 to_cell_size;
+ uint base_triangle;
+ vec3 to_cell_offset;
+ float bias;
+ ivec3 grid_size;
+ uint pad2;
+}
+params;
+
+layout(location = 0) in vec3 vertex_interp;
+layout(location = 1) in vec3 normal_interp;
+layout(location = 2) in vec2 uv_interp;
+layout(location = 3) in vec3 barycentric;
+layout(location = 4) in flat uvec3 vertex_indices;
+layout(location = 5) in flat vec3 face_normal;
+
+layout(location = 0) out vec4 position;
+layout(location = 1) out vec4 normal;
+layout(location = 2) out vec4 unocclude;
+
+void main() {
+ vec3 vertex_pos = vertex_interp;
+
+ {
+ // smooth out vertex position by interpolating its projection in the 3 normal planes (normal plane is created by vertex pos and normal)
+ // because we don't want to interpolate inwards, normals found pointing inwards are pushed out.
+ vec3 pos_a = vertices.data[vertex_indices.x].position;
+ vec3 pos_b = vertices.data[vertex_indices.y].position;
+ vec3 pos_c = vertices.data[vertex_indices.z].position;
+ vec3 center = (pos_a + pos_b + pos_c) * 0.3333333;
+ vec3 norm_a = vec3(vertices.data[vertex_indices.x].normal_xy, vertices.data[vertex_indices.x].normal_z);
+ vec3 norm_b = vec3(vertices.data[vertex_indices.y].normal_xy, vertices.data[vertex_indices.y].normal_z);
+ vec3 norm_c = vec3(vertices.data[vertex_indices.z].normal_xy, vertices.data[vertex_indices.z].normal_z);
+
+ {
+ vec3 dir_a = normalize(pos_a - center);
+ float d_a = dot(dir_a, norm_a);
+ if (d_a < 0) {
+ //pointing inwards
+ norm_a = normalize(norm_a - dir_a * d_a);
+ }
+ }
+ {
+ vec3 dir_b = normalize(pos_b - center);
+ float d_b = dot(dir_b, norm_b);
+ if (d_b < 0) {
+ //pointing inwards
+ norm_b = normalize(norm_b - dir_b * d_b);
+ }
+ }
+ {
+ vec3 dir_c = normalize(pos_c - center);
+ float d_c = dot(dir_c, norm_c);
+ if (d_c < 0) {
+ //pointing inwards
+ norm_c = normalize(norm_c - dir_c * d_c);
+ }
+ }
+
+ float d_a = dot(norm_a, pos_a);
+ float d_b = dot(norm_b, pos_b);
+ float d_c = dot(norm_c, pos_c);
+
+ vec3 proj_a = vertex_pos - norm_a * (dot(norm_a, vertex_pos) - d_a);
+ vec3 proj_b = vertex_pos - norm_b * (dot(norm_b, vertex_pos) - d_b);
+ vec3 proj_c = vertex_pos - norm_c * (dot(norm_c, vertex_pos) - d_c);
+
+ vec3 smooth_position = proj_a * barycentric.x + proj_b * barycentric.y + proj_c * barycentric.z;
+
+ if (dot(face_normal, smooth_position) > dot(face_normal, vertex_pos)) { //only project outwards
+ vertex_pos = smooth_position;
+ }
+ }
+
+ {
+ // unocclusion technique based on:
+ // https://ndotl.wordpress.com/2018/08/29/baking-artifact-free-lightmaps/
+
+ /* compute texel size */
+ vec3 delta_uv = max(abs(dFdx(vertex_interp)), abs(dFdy(vertex_interp)));
+ float texel_size = max(delta_uv.x, max(delta_uv.y, delta_uv.z));
+ texel_size *= sqrt(2.0); //expand to unit box edge length (again, worst case)
+
+ unocclude.xyz = face_normal;
+ unocclude.w = texel_size;
+
+ //continued on lm_compute.glsl
+ }
+
+ position = vec4(vertex_pos, 1.0);
+ normal = vec4(normalize(normal_interp), 1.0);
+}
diff --git a/modules/lightmapper_rd/register_types.cpp b/modules/lightmapper_rd/register_types.cpp
new file mode 100644
index 0000000000..0e6d7590cc
--- /dev/null
+++ b/modules/lightmapper_rd/register_types.cpp
@@ -0,0 +1,63 @@
+/*************************************************************************/
+/* register_types.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "register_types.h"
+
+#include "core/project_settings.h"
+#include "lightmapper_rd.h"
+#include "scene/3d/lightmapper.h"
+
+#ifndef _3D_DISABLED
+static Lightmapper *create_lightmapper_rd() {
+ return memnew(LightmapperRD);
+}
+#endif
+
+void register_lightmapper_rd_types() {
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/low_quality_ray_count", 16);
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/medium_quality_ray_count", 64);
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/high_quality_ray_count", 256);
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/ultra_quality_ray_count", 1024);
+ GLOBAL_DEF("rendering/gpu_lightmapper/performance/max_rays_per_pass", 32);
+ GLOBAL_DEF("rendering/gpu_lightmapper/performance/region_size", 512);
+
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/low_quality_probe_ray_count", 64);
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/medium_quality_probe_ray_count", 256);
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/high_quality_probe_ray_count", 512);
+ GLOBAL_DEF("rendering/gpu_lightmapper/quality/ultra_quality_probe_ray_count", 2048);
+ GLOBAL_DEF("rendering/gpu_lightmapper/performance/max_rays_per_probe_pass", 64);
+#ifndef _3D_DISABLED
+ ClassDB::register_class<LightmapperRD>();
+ Lightmapper::create_gpu = create_lightmapper_rd;
+#endif
+}
+
+void unregister_lightmapper_rd_types() {
+}
diff --git a/modules/lightmapper_rd/register_types.h b/modules/lightmapper_rd/register_types.h
new file mode 100644
index 0000000000..b0e15a927f
--- /dev/null
+++ b/modules/lightmapper_rd/register_types.h
@@ -0,0 +1,37 @@
+/*************************************************************************/
+/* register_types.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef LIGHTMAPPER_RD_REGISTER_TYPES_H
+#define LIGHTMAPPER_RD_REGISTER_TYPES_H
+
+void register_lightmapper_rd_types();
+void unregister_lightmapper_rd_types();
+
+#endif // XATLAS_UNWRAP_REGISTER_TYPES_H