summaryrefslogtreecommitdiff
path: root/modules/gltf/gltf_document.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'modules/gltf/gltf_document.cpp')
-rw-r--r--modules/gltf/gltf_document.cpp6536
1 files changed, 6536 insertions, 0 deletions
diff --git a/modules/gltf/gltf_document.cpp b/modules/gltf/gltf_document.cpp
new file mode 100644
index 0000000000..580bc006f5
--- /dev/null
+++ b/modules/gltf/gltf_document.cpp
@@ -0,0 +1,6536 @@
+/*************************************************************************/
+/* gltf_document.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "gltf_document.h"
+#include "core/error/error_list.h"
+#include "core/error/error_macros.h"
+#include "core/variant/variant.h"
+#include "gltf_accessor.h"
+#include "gltf_animation.h"
+#include "gltf_camera.h"
+#include "gltf_light.h"
+#include "gltf_mesh.h"
+#include "gltf_node.h"
+#include "gltf_skeleton.h"
+#include "gltf_skin.h"
+#include "gltf_spec_gloss.h"
+#include "gltf_state.h"
+#include "gltf_texture.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "core/core_bind.h"
+#include "core/crypto/crypto_core.h"
+#include "core/io/json.h"
+#include "core/math/disjoint_set.h"
+#include "core/os/file_access.h"
+#include "core/variant/typed_array.h"
+#include "core/version.h"
+#include "core/version_hash.gen.h"
+#include "drivers/png/png_driver_common.h"
+#include "editor/import/resource_importer_scene.h"
+#include "modules/csg/csg_shape.h"
+#include "modules/gridmap/grid_map.h"
+#include "modules/regex/regex.h"
+#include "scene/2d/node_2d.h"
+#include "scene/3d/bone_attachment_3d.h"
+#include "scene/3d/camera_3d.h"
+#include "scene/3d/mesh_instance_3d.h"
+#include "scene/3d/multimesh_instance_3d.h"
+#include "scene/3d/node_3d.h"
+#include "scene/3d/skeleton_3d.h"
+#include "scene/animation/animation_player.h"
+#include "scene/resources/surface_tool.h"
+#include <limits>
+
+Error GLTFDocument::serialize(Ref<GLTFState> state, Node *p_root, const String &p_path) {
+ uint64_t begin_time = OS::get_singleton()->get_ticks_usec();
+
+ _convert_scene_node(state, p_root, p_root, -1, -1);
+ if (!state->buffers.size()) {
+ state->buffers.push_back(Vector<uint8_t>());
+ }
+
+ /* STEP 1 CONVERT MESH INSTANCES */
+ _convert_mesh_instances(state);
+
+ /* STEP 2 SERIALIZE CAMERAS */
+ Error err = _serialize_cameras(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 3 CREATE SKINS */
+ err = _serialize_skins(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+ /* STEP 4 CREATE BONE ATTACHMENTS */
+ err = _serialize_bone_attachment(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+ /* STEP 5 SERIALIZE MESHES (we have enough info now) */
+ err = _serialize_meshes(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 6 SERIALIZE TEXTURES */
+ err = _serialize_materials(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 7 SERIALIZE IMAGES */
+ err = _serialize_images(state, p_path);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 8 SERIALIZE TEXTURES */
+ err = _serialize_textures(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ // /* STEP 9 SERIALIZE ANIMATIONS */
+ err = _serialize_animations(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 10 SERIALIZE ACCESSORS */
+ err = _encode_accessors(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) {
+ state->buffer_views.write[i]->buffer = 0;
+ }
+
+ /* STEP 11 SERIALIZE BUFFER VIEWS */
+ err = _encode_buffer_views(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 12 SERIALIZE NODES */
+ err = _serialize_nodes(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 13 SERIALIZE SCENE */
+ err = _serialize_scenes(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 14 SERIALIZE SCENE */
+ err = _serialize_lights(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 15 SERIALIZE EXTENSIONS */
+ err = _serialize_extensions(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 16 SERIALIZE VERSION */
+ err = _serialize_version(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 17 SERIALIZE FILE */
+ err = _serialize_file(state, p_path);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+ uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time;
+ float elapsed_sec = double(elapsed) / 1000000.0;
+ elapsed_sec = Math::snapped(elapsed_sec, 0.01f);
+ print_line("glTF: Export time elapsed seconds " + rtos(elapsed_sec).pad_decimals(2));
+
+ return OK;
+}
+
+Error GLTFDocument::_serialize_extensions(Ref<GLTFState> state) const {
+ const String texture_transform = "KHR_texture_transform";
+ const String punctual_lights = "KHR_lights_punctual";
+ Array extensions_used;
+ extensions_used.push_back(punctual_lights);
+ extensions_used.push_back(texture_transform);
+ state->json["extensionsUsed"] = extensions_used;
+ Array extensions_required;
+ extensions_required.push_back(texture_transform);
+ state->json["extensionsRequired"] = extensions_required;
+ return OK;
+}
+
+Error GLTFDocument::_serialize_scenes(Ref<GLTFState> state) {
+ Array scenes;
+ const int loaded_scene = 0;
+ state->json["scene"] = loaded_scene;
+
+ if (state->nodes.size()) {
+ Dictionary s;
+ if (!state->scene_name.is_empty()) {
+ s["name"] = state->scene_name;
+ }
+
+ Array nodes;
+ nodes.push_back(0);
+ s["nodes"] = nodes;
+ scenes.push_back(s);
+ }
+ state->json["scenes"] = scenes;
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_json(const String &p_path, Ref<GLTFState> state) {
+ Error err;
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
+ if (!f) {
+ return err;
+ }
+
+ Vector<uint8_t> array;
+ array.resize(f->get_len());
+ f->get_buffer(array.ptrw(), array.size());
+ String text;
+ text.parse_utf8((const char *)array.ptr(), array.size());
+
+ String err_txt;
+ int err_line;
+ Variant v;
+ err = JSON::parse(text, v, err_txt, err_line);
+ if (err != OK) {
+ _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
+ return err;
+ }
+ state->json = v;
+
+ return OK;
+}
+
+Error GLTFDocument::_serialize_bone_attachment(Ref<GLTFState> state) {
+ for (int skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
+ for (int attachment_i = 0; attachment_i < state->skeletons[skeleton_i]->bone_attachments.size(); attachment_i++) {
+ BoneAttachment3D *bone_attachment = state->skeletons[skeleton_i]->bone_attachments[attachment_i];
+ String bone_name = bone_attachment->get_bone_name();
+ bone_name = _sanitize_bone_name(bone_name);
+ int32_t bone = state->skeletons[skeleton_i]->godot_skeleton->find_bone(bone_name);
+ ERR_CONTINUE(bone == -1);
+ for (int skin_i = 0; skin_i < state->skins.size(); skin_i++) {
+ if (state->skins[skin_i]->skeleton != skeleton_i) {
+ continue;
+ }
+
+ for (int node_i = 0; node_i < bone_attachment->get_child_count(); node_i++) {
+ ERR_CONTINUE(bone >= state->skins[skin_i]->joints.size());
+ _convert_scene_node(state, bone_attachment->get_child(node_i), bone_attachment->get_owner(), state->skins[skin_i]->joints[bone], 0);
+ }
+ break;
+ }
+ }
+ }
+ return OK;
+}
+
+Error GLTFDocument::_parse_glb(const String &p_path, Ref<GLTFState> state) {
+ Error err;
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
+ if (!f) {
+ return err;
+ }
+
+ uint32_t magic = f->get_32();
+ ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF
+ f->get_32(); // version
+ f->get_32(); // length
+
+ uint32_t chunk_length = f->get_32();
+ uint32_t chunk_type = f->get_32();
+
+ ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON
+ Vector<uint8_t> json_data;
+ json_data.resize(chunk_length);
+ uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length);
+ ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
+
+ String text;
+ text.parse_utf8((const char *)json_data.ptr(), json_data.size());
+
+ String err_txt;
+ int err_line;
+ Variant v;
+ err = JSON::parse(text, v, err_txt, err_line);
+ if (err != OK) {
+ _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
+ return err;
+ }
+
+ state->json = v;
+
+ //data?
+
+ chunk_length = f->get_32();
+ chunk_type = f->get_32();
+
+ if (f->eof_reached()) {
+ return OK; //all good
+ }
+
+ ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN
+
+ state->glb_data.resize(chunk_length);
+ len = f->get_buffer(state->glb_data.ptrw(), chunk_length);
+ ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
+
+ return OK;
+}
+
+static Array _vec3_to_arr(const Vector3 &p_vec3) {
+ Array array;
+ array.resize(3);
+ array[0] = p_vec3.x;
+ array[1] = p_vec3.y;
+ array[2] = p_vec3.z;
+ return array;
+}
+
+static Vector3 _arr_to_vec3(const Array &p_array) {
+ ERR_FAIL_COND_V(p_array.size() != 3, Vector3());
+ return Vector3(p_array[0], p_array[1], p_array[2]);
+}
+
+static Array _quat_to_array(const Quat &p_quat) {
+ Array array;
+ array.resize(4);
+ array[0] = p_quat.x;
+ array[1] = p_quat.y;
+ array[2] = p_quat.z;
+ array[3] = p_quat.w;
+ return array;
+}
+
+static Quat _arr_to_quat(const Array &p_array) {
+ ERR_FAIL_COND_V(p_array.size() != 4, Quat());
+ return Quat(p_array[0], p_array[1], p_array[2], p_array[3]);
+}
+
+static Transform _arr_to_xform(const Array &p_array) {
+ ERR_FAIL_COND_V(p_array.size() != 16, Transform());
+
+ Transform xform;
+ xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2]));
+ xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6]));
+ xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10]));
+ xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14]));
+
+ return xform;
+}
+
+static Vector<real_t> _xform_to_array(const Transform p_transform) {
+ Vector<real_t> array;
+ array.resize(16);
+ Vector3 axis_x = p_transform.get_basis().get_axis(Vector3::AXIS_X);
+ array.write[0] = axis_x.x;
+ array.write[1] = axis_x.y;
+ array.write[2] = axis_x.z;
+ array.write[3] = 0.0f;
+ Vector3 axis_y = p_transform.get_basis().get_axis(Vector3::AXIS_Y);
+ array.write[4] = axis_y.x;
+ array.write[5] = axis_y.y;
+ array.write[6] = axis_y.z;
+ array.write[7] = 0.0f;
+ Vector3 axis_z = p_transform.get_basis().get_axis(Vector3::AXIS_Z);
+ array.write[8] = axis_z.x;
+ array.write[9] = axis_z.y;
+ array.write[10] = axis_z.z;
+ array.write[11] = 0.0f;
+ Vector3 origin = p_transform.get_origin();
+ array.write[12] = origin.x;
+ array.write[13] = origin.y;
+ array.write[14] = origin.z;
+ array.write[15] = 1.0f;
+ return array;
+}
+
+Error GLTFDocument::_serialize_nodes(Ref<GLTFState> state) {
+ Array nodes;
+ for (int i = 0; i < state->nodes.size(); i++) {
+ Dictionary node;
+ Ref<GLTFNode> n = state->nodes[i];
+ Dictionary extensions;
+ node["extensions"] = extensions;
+ if (!n->get_name().is_empty()) {
+ node["name"] = n->get_name();
+ }
+ if (n->camera != -1) {
+ node["camera"] = n->camera;
+ }
+ if (n->light != -1) {
+ Dictionary lights_punctual;
+ extensions["KHR_lights_punctual"] = lights_punctual;
+ lights_punctual["light"] = n->light;
+ }
+ if (n->mesh != -1) {
+ node["mesh"] = n->mesh;
+ }
+ if (n->skin != -1) {
+ node["skin"] = n->skin;
+ }
+ if (n->skeleton != -1 && n->skin < 0) {
+ }
+ if (n->xform != Transform()) {
+ node["matrix"] = _xform_to_array(n->xform);
+ }
+
+ if (!n->rotation.is_equal_approx(Quat())) {
+ node["rotation"] = _quat_to_array(n->rotation);
+ }
+
+ if (!n->scale.is_equal_approx(Vector3(1.0f, 1.0f, 1.0f))) {
+ node["scale"] = _vec3_to_arr(n->scale);
+ }
+
+ if (!n->translation.is_equal_approx(Vector3())) {
+ node["translation"] = _vec3_to_arr(n->translation);
+ }
+ if (n->children.size()) {
+ Array children;
+ for (int j = 0; j < n->children.size(); j++) {
+ children.push_back(n->children[j]);
+ }
+ node["children"] = children;
+ }
+ nodes.push_back(node);
+ }
+ state->json["nodes"] = nodes;
+ return OK;
+}
+
+String GLTFDocument::_sanitize_scene_name(const String &name) {
+ RegEx regex("([^a-zA-Z0-9_ -]+)");
+ String p_name = regex.sub(name, "", true);
+ return p_name;
+}
+
+String GLTFDocument::_gen_unique_name(Ref<GLTFState> state, const String &p_name) {
+ const String s_name = _sanitize_scene_name(p_name);
+
+ String name;
+ int index = 1;
+ while (true) {
+ name = s_name;
+
+ if (index > 1) {
+ name += " " + itos(index);
+ }
+ if (!state->unique_names.has(name)) {
+ break;
+ }
+ index++;
+ }
+
+ state->unique_names.insert(name);
+
+ return name;
+}
+
+String GLTFDocument::_sanitize_bone_name(const String &name) {
+ String p_name = name.camelcase_to_underscore(true);
+
+ RegEx pattern_nocolon(":");
+ p_name = pattern_nocolon.sub(p_name, "_", true);
+
+ RegEx pattern_noslash("/");
+ p_name = pattern_noslash.sub(p_name, "_", true);
+
+ RegEx pattern_nospace(" +");
+ p_name = pattern_nospace.sub(p_name, "_", true);
+
+ RegEx pattern_multiple("_+");
+ p_name = pattern_multiple.sub(p_name, "_", true);
+
+ RegEx pattern_padded("0+(\\d+)");
+ p_name = pattern_padded.sub(p_name, "$1", true);
+
+ return p_name;
+}
+
+String GLTFDocument::_gen_unique_bone_name(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i, const String &p_name) {
+ String s_name = _sanitize_bone_name(p_name);
+ if (s_name.is_empty()) {
+ s_name = "bone";
+ }
+ String name;
+ int index = 1;
+ while (true) {
+ name = s_name;
+
+ if (index > 1) {
+ name += "_" + itos(index);
+ }
+ if (!state->skeletons[skel_i]->unique_names.has(name)) {
+ break;
+ }
+ index++;
+ }
+
+ state->skeletons.write[skel_i]->unique_names.insert(name);
+
+ return name;
+}
+
+Error GLTFDocument::_parse_scenes(Ref<GLTFState> state) {
+ ERR_FAIL_COND_V(!state->json.has("scenes"), ERR_FILE_CORRUPT);
+ const Array &scenes = state->json["scenes"];
+ int loaded_scene = 0;
+ if (state->json.has("scene")) {
+ loaded_scene = state->json["scene"];
+ } else {
+ WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene.");
+ }
+
+ if (scenes.size()) {
+ ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT);
+ const Dictionary &s = scenes[loaded_scene];
+ ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE);
+ const Array &nodes = s["nodes"];
+ for (int j = 0; j < nodes.size(); j++) {
+ state->root_nodes.push_back(nodes[j]);
+ }
+
+ if (s.has("name") && s["name"] != "") {
+ state->scene_name = _gen_unique_name(state, s["name"]);
+ } else {
+ state->scene_name = _gen_unique_name(state, "Scene");
+ }
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_nodes(Ref<GLTFState> state) {
+ ERR_FAIL_COND_V(!state->json.has("nodes"), ERR_FILE_CORRUPT);
+ const Array &nodes = state->json["nodes"];
+ for (int i = 0; i < nodes.size(); i++) {
+ Ref<GLTFNode> node;
+ node.instance();
+ const Dictionary &n = nodes[i];
+
+ if (n.has("name")) {
+ node->set_name(n["name"]);
+ }
+ if (n.has("camera")) {
+ node->camera = n["camera"];
+ }
+ if (n.has("mesh")) {
+ node->mesh = n["mesh"];
+ }
+ if (n.has("skin")) {
+ node->skin = n["skin"];
+ }
+ if (n.has("matrix")) {
+ node->xform = _arr_to_xform(n["matrix"]);
+ } else {
+ if (n.has("translation")) {
+ node->translation = _arr_to_vec3(n["translation"]);
+ }
+ if (n.has("rotation")) {
+ node->rotation = _arr_to_quat(n["rotation"]);
+ }
+ if (n.has("scale")) {
+ node->scale = _arr_to_vec3(n["scale"]);
+ }
+
+ node->xform.basis.set_quat_scale(node->rotation, node->scale);
+ node->xform.origin = node->translation;
+ }
+
+ if (n.has("extensions")) {
+ Dictionary extensions = n["extensions"];
+ if (extensions.has("KHR_lights_punctual")) {
+ Dictionary lights_punctual = extensions["KHR_lights_punctual"];
+ if (lights_punctual.has("light")) {
+ GLTFLightIndex light = lights_punctual["light"];
+ node->light = light;
+ }
+ }
+ }
+
+ if (n.has("children")) {
+ const Array &children = n["children"];
+ for (int j = 0; j < children.size(); j++) {
+ node->children.push_back(children[j]);
+ }
+ }
+
+ state->nodes.push_back(node);
+ }
+
+ // build the hierarchy
+ for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) {
+ for (int j = 0; j < state->nodes[node_i]->children.size(); j++) {
+ GLTFNodeIndex child_i = state->nodes[node_i]->children[j];
+
+ ERR_FAIL_INDEX_V(child_i, state->nodes.size(), ERR_FILE_CORRUPT);
+ ERR_CONTINUE(state->nodes[child_i]->parent != -1); //node already has a parent, wtf.
+
+ state->nodes.write[child_i]->parent = node_i;
+ }
+ }
+
+ _compute_node_heights(state);
+
+ return OK;
+}
+
+void GLTFDocument::_compute_node_heights(Ref<GLTFState> state) {
+ state->root_nodes.clear();
+ for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) {
+ Ref<GLTFNode> node = state->nodes[node_i];
+ node->height = 0;
+
+ GLTFNodeIndex current_i = node_i;
+ while (current_i >= 0) {
+ const GLTFNodeIndex parent_i = state->nodes[current_i]->parent;
+ if (parent_i >= 0) {
+ ++node->height;
+ }
+ current_i = parent_i;
+ }
+
+ if (node->height == 0) {
+ state->root_nodes.push_back(node_i);
+ }
+ }
+}
+
+static Vector<uint8_t> _parse_base64_uri(const String &uri) {
+ int start = uri.find(",");
+ ERR_FAIL_COND_V(start == -1, Vector<uint8_t>());
+
+ CharString substr = uri.right(start + 1).ascii();
+
+ int strlen = substr.length();
+
+ Vector<uint8_t> buf;
+ buf.resize(strlen / 4 * 3 + 1 + 1);
+
+ size_t len = 0;
+ ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector<uint8_t>());
+
+ buf.resize(len);
+
+ return buf;
+}
+Error GLTFDocument::_encode_buffer_glb(Ref<GLTFState> state, const String &p_path) {
+ print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
+
+ if (!state->buffers.size()) {
+ return OK;
+ }
+ Array buffers;
+ if (state->buffers.size()) {
+ Vector<uint8_t> buffer_data = state->buffers[0];
+ Dictionary gltf_buffer;
+
+ gltf_buffer["byteLength"] = buffer_data.size();
+ buffers.push_back(gltf_buffer);
+ }
+
+ for (GLTFBufferIndex i = 1; i < state->buffers.size() - 1; i++) {
+ Vector<uint8_t> buffer_data = state->buffers[i];
+ Dictionary gltf_buffer;
+ String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
+ String path = p_path.get_base_dir() + "/" + filename;
+ Error err;
+ FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err);
+ if (!f) {
+ return err;
+ }
+ if (buffer_data.size() == 0) {
+ return OK;
+ }
+ f->create(FileAccess::ACCESS_RESOURCES);
+ f->store_buffer(buffer_data.ptr(), buffer_data.size());
+ f->close();
+ gltf_buffer["uri"] = filename;
+ gltf_buffer["byteLength"] = buffer_data.size();
+ buffers.push_back(gltf_buffer);
+ }
+ state->json["buffers"] = buffers;
+
+ return OK;
+}
+
+Error GLTFDocument::_encode_buffer_bins(Ref<GLTFState> state, const String &p_path) {
+ print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
+
+ if (!state->buffers.size()) {
+ return OK;
+ }
+ Array buffers;
+
+ for (GLTFBufferIndex i = 0; i < state->buffers.size(); i++) {
+ Vector<uint8_t> buffer_data = state->buffers[i];
+ Dictionary gltf_buffer;
+ String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
+ String path = p_path.get_base_dir() + "/" + filename;
+ Error err;
+ FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err);
+ if (!f) {
+ return err;
+ }
+ if (buffer_data.size() == 0) {
+ return OK;
+ }
+ f->create(FileAccess::ACCESS_RESOURCES);
+ f->store_buffer(buffer_data.ptr(), buffer_data.size());
+ f->close();
+ gltf_buffer["uri"] = filename;
+ gltf_buffer["byteLength"] = buffer_data.size();
+ buffers.push_back(gltf_buffer);
+ }
+ state->json["buffers"] = buffers;
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_buffers(Ref<GLTFState> state, const String &p_base_path) {
+ if (!state->json.has("buffers")) {
+ return OK;
+ }
+
+ const Array &buffers = state->json["buffers"];
+ for (GLTFBufferIndex i = 0; i < buffers.size(); i++) {
+ if (i == 0 && state->glb_data.size()) {
+ state->buffers.push_back(state->glb_data);
+
+ } else {
+ const Dictionary &buffer = buffers[i];
+ if (buffer.has("uri")) {
+ Vector<uint8_t> buffer_data;
+ String uri = buffer["uri"];
+
+ if (uri.begins_with("data:")) { // Embedded data using base64.
+ // Validate data MIME types and throw an error if it's one we don't know/support.
+ if (!uri.begins_with("data:application/octet-stream;base64") &&
+ !uri.begins_with("data:application/gltf-buffer;base64")) {
+ ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri);
+ }
+ buffer_data = _parse_base64_uri(uri);
+ } else { // Relative path to an external image file.
+ uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows.
+ buffer_data = FileAccess::get_file_as_array(uri);
+ ERR_FAIL_COND_V_MSG(buffer.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri);
+ }
+
+ ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR);
+ int byteLength = buffer["byteLength"];
+ ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR);
+ state->buffers.push_back(buffer_data);
+ }
+ }
+ }
+
+ print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_encode_buffer_views(Ref<GLTFState> state) {
+ Array buffers;
+ for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) {
+ Dictionary d;
+
+ Ref<GLTFBufferView> buffer_view = state->buffer_views[i];
+
+ d["buffer"] = buffer_view->buffer;
+ d["byteLength"] = buffer_view->byte_length;
+
+ d["byteOffset"] = buffer_view->byte_offset;
+
+ if (buffer_view->byte_stride != -1) {
+ d["byteStride"] = buffer_view->byte_stride;
+ }
+
+ // TODO Sparse
+ // d["target"] = buffer_view->indices;
+
+ ERR_FAIL_COND_V(!d.has("buffer"), ERR_INVALID_DATA);
+ ERR_FAIL_COND_V(!d.has("byteLength"), ERR_INVALID_DATA);
+ buffers.push_back(d);
+ }
+ print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size()));
+ state->json["bufferViews"] = buffers;
+ return OK;
+}
+
+Error GLTFDocument::_parse_buffer_views(Ref<GLTFState> state) {
+ ERR_FAIL_COND_V(!state->json.has("bufferViews"), ERR_FILE_CORRUPT);
+ const Array &buffers = state->json["bufferViews"];
+ for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) {
+ const Dictionary &d = buffers[i];
+
+ Ref<GLTFBufferView> buffer_view;
+ buffer_view.instance();
+
+ ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR);
+ buffer_view->buffer = d["buffer"];
+ ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR);
+ buffer_view->byte_length = d["byteLength"];
+
+ if (d.has("byteOffset")) {
+ buffer_view->byte_offset = d["byteOffset"];
+ }
+
+ if (d.has("byteStride")) {
+ buffer_view->byte_stride = d["byteStride"];
+ }
+
+ if (d.has("target")) {
+ const int target = d["target"];
+ buffer_view->indices = target == GLTFDocument::ELEMENT_ARRAY_BUFFER;
+ }
+
+ state->buffer_views.push_back(buffer_view);
+ }
+
+ print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_encode_accessors(Ref<GLTFState> state) {
+ Array accessors;
+ for (GLTFAccessorIndex i = 0; i < state->accessors.size(); i++) {
+ Dictionary d;
+
+ Ref<GLTFAccessor> accessor = state->accessors[i];
+ d["componentType"] = accessor->component_type;
+ d["count"] = accessor->count;
+ d["type"] = _get_accessor_type_name(accessor->type);
+ d["byteOffset"] = accessor->byte_offset;
+ d["normalized"] = accessor->normalized;
+ d["max"] = accessor->max;
+ d["min"] = accessor->min;
+ d["bufferView"] = accessor->buffer_view; //optional because it may be sparse...
+
+ // Dictionary s;
+ // s["count"] = accessor->sparse_count;
+ // ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
+
+ // s["indices"] = accessor->sparse_accessors;
+ // ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
+
+ // Dictionary si;
+
+ // si["bufferView"] = accessor->sparse_indices_buffer_view;
+
+ // ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
+ // si["componentType"] = accessor->sparse_indices_component_type;
+
+ // if (si.has("byteOffset")) {
+ // si["byteOffset"] = accessor->sparse_indices_byte_offset;
+ // }
+
+ // ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
+ // s["indices"] = si;
+ // Dictionary sv;
+
+ // sv["bufferView"] = accessor->sparse_values_buffer_view;
+ // if (sv.has("byteOffset")) {
+ // sv["byteOffset"] = accessor->sparse_values_byte_offset;
+ // }
+ // ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
+ // s["values"] = sv;
+ // ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
+ // d["sparse"] = s;
+ accessors.push_back(d);
+ }
+
+ state->json["accessors"] = accessors;
+ ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT);
+ print_verbose("glTF: Total accessors: " + itos(state->accessors.size()));
+
+ return OK;
+}
+
+String GLTFDocument::_get_accessor_type_name(const GLTFDocument::GLTFType p_type) {
+ if (p_type == GLTFDocument::TYPE_SCALAR) {
+ return "SCALAR";
+ }
+ if (p_type == GLTFDocument::TYPE_VEC2) {
+ return "VEC2";
+ }
+ if (p_type == GLTFDocument::TYPE_VEC3) {
+ return "VEC3";
+ }
+ if (p_type == GLTFDocument::TYPE_VEC4) {
+ return "VEC4";
+ }
+
+ if (p_type == GLTFDocument::TYPE_MAT2) {
+ return "MAT2";
+ }
+ if (p_type == GLTFDocument::TYPE_MAT3) {
+ return "MAT3";
+ }
+ if (p_type == GLTFDocument::TYPE_MAT4) {
+ return "MAT4";
+ }
+ ERR_FAIL_V("SCALAR");
+}
+
+GLTFDocument::GLTFType GLTFDocument::_get_type_from_str(const String &p_string) {
+ if (p_string == "SCALAR")
+ return GLTFDocument::TYPE_SCALAR;
+
+ if (p_string == "VEC2")
+ return GLTFDocument::TYPE_VEC2;
+ if (p_string == "VEC3")
+ return GLTFDocument::TYPE_VEC3;
+ if (p_string == "VEC4")
+ return GLTFDocument::TYPE_VEC4;
+
+ if (p_string == "MAT2")
+ return GLTFDocument::TYPE_MAT2;
+ if (p_string == "MAT3")
+ return GLTFDocument::TYPE_MAT3;
+ if (p_string == "MAT4")
+ return GLTFDocument::TYPE_MAT4;
+
+ ERR_FAIL_V(GLTFDocument::TYPE_SCALAR);
+}
+
+Error GLTFDocument::_parse_accessors(Ref<GLTFState> state) {
+ ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT);
+ const Array &accessors = state->json["accessors"];
+ for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) {
+ const Dictionary &d = accessors[i];
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+
+ ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR);
+ accessor->component_type = d["componentType"];
+ ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
+ accessor->count = d["count"];
+ ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
+ accessor->type = _get_type_from_str(d["type"]);
+
+ if (d.has("bufferView")) {
+ accessor->buffer_view = d["bufferView"]; //optional because it may be sparse...
+ }
+
+ if (d.has("byteOffset")) {
+ accessor->byte_offset = d["byteOffset"];
+ }
+
+ if (d.has("normalized")) {
+ accessor->normalized = d["normalized"];
+ }
+
+ if (d.has("max")) {
+ accessor->max = d["max"];
+ }
+
+ if (d.has("min")) {
+ accessor->min = d["min"];
+ }
+
+ if (d.has("sparse")) {
+ //eeh..
+
+ const Dictionary &s = d["sparse"];
+
+ ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
+ accessor->sparse_count = s["count"];
+ ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
+ const Dictionary &si = s["indices"];
+
+ ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
+ accessor->sparse_indices_buffer_view = si["bufferView"];
+ ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
+ accessor->sparse_indices_component_type = si["componentType"];
+
+ if (si.has("byteOffset")) {
+ accessor->sparse_indices_byte_offset = si["byteOffset"];
+ }
+
+ ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
+ const Dictionary &sv = s["values"];
+
+ ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
+ accessor->sparse_values_buffer_view = sv["bufferView"];
+ if (sv.has("byteOffset")) {
+ accessor->sparse_values_byte_offset = sv["byteOffset"];
+ }
+ }
+
+ state->accessors.push_back(accessor);
+ }
+
+ print_verbose("glTF: Total accessors: " + itos(state->accessors.size()));
+
+ return OK;
+}
+
+double GLTFDocument::_filter_number(double p_float) {
+ if (Math::is_nan(p_float)) {
+ return 0.0f;
+ }
+ return p_float;
+}
+
+String GLTFDocument::_get_component_type_name(const uint32_t p_component) {
+ switch (p_component) {
+ case GLTFDocument::COMPONENT_TYPE_BYTE:
+ return "Byte";
+ case GLTFDocument::COMPONENT_TYPE_UNSIGNED_BYTE:
+ return "UByte";
+ case GLTFDocument::COMPONENT_TYPE_SHORT:
+ return "Short";
+ case GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT:
+ return "UShort";
+ case GLTFDocument::COMPONENT_TYPE_INT:
+ return "Int";
+ case GLTFDocument::COMPONENT_TYPE_FLOAT:
+ return "Float";
+ }
+
+ return "<Error>";
+}
+
+String GLTFDocument::_get_type_name(const GLTFType p_component) {
+ static const char *names[] = {
+ "float",
+ "vec2",
+ "vec3",
+ "vec4",
+ "mat2",
+ "mat3",
+ "mat4"
+ };
+
+ return names[p_component];
+}
+
+Error GLTFDocument::_encode_buffer_view(Ref<GLTFState> state, const double *src, const int count, const GLTFType type, const int component_type, const bool normalized, const int byte_offset, const bool for_vertex, GLTFBufferViewIndex &r_accessor) {
+ const int component_count_for_type[7] = {
+ 1, 2, 3, 4, 4, 9, 16
+ };
+
+ const int component_count = component_count_for_type[type];
+ const int component_size = _get_component_type_size(component_type);
+ ERR_FAIL_COND_V(component_size == 0, FAILED);
+
+ int skip_every = 0;
+ int skip_bytes = 0;
+ //special case of alignments, as described in spec
+ switch (component_type) {
+ case COMPONENT_TYPE_BYTE:
+ case COMPONENT_TYPE_UNSIGNED_BYTE: {
+ if (type == TYPE_MAT2) {
+ skip_every = 2;
+ skip_bytes = 2;
+ }
+ if (type == TYPE_MAT3) {
+ skip_every = 3;
+ skip_bytes = 1;
+ }
+ } break;
+ case COMPONENT_TYPE_SHORT:
+ case COMPONENT_TYPE_UNSIGNED_SHORT: {
+ if (type == TYPE_MAT3) {
+ skip_every = 6;
+ skip_bytes = 4;
+ }
+ } break;
+ default: {
+ }
+ }
+
+ Ref<GLTFBufferView> bv;
+ bv.instance();
+ const uint32_t offset = bv->byte_offset = byte_offset;
+ Vector<uint8_t> &gltf_buffer = state->buffers.write[0];
+
+ int stride = _get_component_type_size(component_type);
+ if (for_vertex && stride % 4) {
+ stride += 4 - (stride % 4); //according to spec must be multiple of 4
+ }
+ //use to debug
+ print_verbose("glTF: encoding type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
+
+ print_verbose("glTF: encoding accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(gltf_buffer.size()) + " view len " + itos(bv->byte_length));
+
+ const int buffer_end = (stride * (count - 1)) + _get_component_type_size(component_type);
+ // TODO define bv->byte_stride
+ bv->byte_offset = gltf_buffer.size();
+
+ switch (component_type) {
+ case COMPONENT_TYPE_BYTE: {
+ Vector<int8_t> buffer;
+ buffer.resize(count * component_count);
+ int32_t dst_i = 0;
+ for (int i = 0; i < count; i++) {
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ dst_i += skip_bytes;
+ }
+ double d = *src;
+ if (normalized) {
+ buffer.write[dst_i] = d * 128.0;
+ } else {
+ buffer.write[dst_i] = d;
+ }
+ src++;
+ dst_i++;
+ }
+ }
+ int64_t old_size = gltf_buffer.size();
+ gltf_buffer.resize(old_size + (buffer.size() * sizeof(int8_t)));
+ copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int8_t));
+ bv->byte_length = buffer.size() * sizeof(int8_t);
+ } break;
+ case COMPONENT_TYPE_UNSIGNED_BYTE: {
+ Vector<uint8_t> buffer;
+ buffer.resize(count * component_count);
+ int32_t dst_i = 0;
+ for (int i = 0; i < count; i++) {
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ dst_i += skip_bytes;
+ }
+ double d = *src;
+ if (normalized) {
+ buffer.write[dst_i] = d * 255.0;
+ } else {
+ buffer.write[dst_i] = d;
+ }
+ src++;
+ dst_i++;
+ }
+ }
+ gltf_buffer.append_array(buffer);
+ bv->byte_length = buffer.size() * sizeof(uint8_t);
+ } break;
+ case COMPONENT_TYPE_SHORT: {
+ Vector<int16_t> buffer;
+ buffer.resize(count * component_count);
+ int32_t dst_i = 0;
+ for (int i = 0; i < count; i++) {
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ dst_i += skip_bytes;
+ }
+ double d = *src;
+ if (normalized) {
+ buffer.write[dst_i] = d * 32768.0;
+ } else {
+ buffer.write[dst_i] = d;
+ }
+ src++;
+ dst_i++;
+ }
+ }
+ int64_t old_size = gltf_buffer.size();
+ gltf_buffer.resize(old_size + (buffer.size() * sizeof(int16_t)));
+ copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int16_t));
+ bv->byte_length = buffer.size() * sizeof(int16_t);
+ } break;
+ case COMPONENT_TYPE_UNSIGNED_SHORT: {
+ Vector<uint16_t> buffer;
+ buffer.resize(count * component_count);
+ int32_t dst_i = 0;
+ for (int i = 0; i < count; i++) {
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ dst_i += skip_bytes;
+ }
+ double d = *src;
+ if (normalized) {
+ buffer.write[dst_i] = d * 65535.0;
+ } else {
+ buffer.write[dst_i] = d;
+ }
+ src++;
+ dst_i++;
+ }
+ }
+ int64_t old_size = gltf_buffer.size();
+ gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint16_t)));
+ copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint16_t));
+ bv->byte_length = buffer.size() * sizeof(uint16_t);
+ } break;
+ case COMPONENT_TYPE_INT: {
+ Vector<int> buffer;
+ buffer.resize(count * component_count);
+ int32_t dst_i = 0;
+ for (int i = 0; i < count; i++) {
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ dst_i += skip_bytes;
+ }
+ double d = *src;
+ buffer.write[dst_i] = d;
+ src++;
+ dst_i++;
+ }
+ }
+ int64_t old_size = gltf_buffer.size();
+ gltf_buffer.resize(old_size + (buffer.size() * sizeof(int32_t)));
+ copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int32_t));
+ bv->byte_length = buffer.size() * sizeof(int32_t);
+ } break;
+ case COMPONENT_TYPE_FLOAT: {
+ Vector<float> buffer;
+ buffer.resize(count * component_count);
+ int32_t dst_i = 0;
+ for (int i = 0; i < count; i++) {
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ dst_i += skip_bytes;
+ }
+ double d = *src;
+ buffer.write[dst_i] = d;
+ src++;
+ dst_i++;
+ }
+ }
+ int64_t old_size = gltf_buffer.size();
+ gltf_buffer.resize(old_size + (buffer.size() * sizeof(float)));
+ copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(float));
+ bv->byte_length = buffer.size() * sizeof(float);
+ } break;
+ }
+ ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_INVALID_DATA);
+
+ ERR_FAIL_COND_V((int)(offset + buffer_end) > gltf_buffer.size(), ERR_INVALID_DATA);
+ r_accessor = bv->buffer = state->buffer_views.size();
+ state->buffer_views.push_back(bv);
+ return OK;
+}
+
+Error GLTFDocument::_decode_buffer_view(Ref<GLTFState> state, double *dst, const GLTFBufferViewIndex p_buffer_view, const int skip_every, const int skip_bytes, const int element_size, const int count, const GLTFType type, const int component_count, const int component_type, const int component_size, const bool normalized, const int byte_offset, const bool for_vertex) {
+ const Ref<GLTFBufferView> bv = state->buffer_views[p_buffer_view];
+
+ int stride = element_size;
+ if (bv->byte_stride != -1) {
+ stride = bv->byte_stride;
+ }
+ if (for_vertex && stride % 4) {
+ stride += 4 - (stride % 4); //according to spec must be multiple of 4
+ }
+
+ ERR_FAIL_INDEX_V(bv->buffer, state->buffers.size(), ERR_PARSE_ERROR);
+
+ const uint32_t offset = bv->byte_offset + byte_offset;
+ Vector<uint8_t> buffer = state->buffers[bv->buffer]; //copy on write, so no performance hit
+ const uint8_t *bufptr = buffer.ptr();
+
+ //use to debug
+ print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
+ print_verbose("glTF: accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv->byte_length));
+
+ const int buffer_end = (stride * (count - 1)) + element_size;
+ ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_PARSE_ERROR);
+
+ ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR);
+
+ //fill everything as doubles
+
+ for (int i = 0; i < count; i++) {
+ const uint8_t *src = &bufptr[offset + i * stride];
+
+ for (int j = 0; j < component_count; j++) {
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ src += skip_bytes;
+ }
+
+ double d = 0;
+
+ switch (component_type) {
+ case COMPONENT_TYPE_BYTE: {
+ int8_t b = int8_t(*src);
+ if (normalized) {
+ d = (double(b) / 128.0);
+ } else {
+ d = double(b);
+ }
+ } break;
+ case COMPONENT_TYPE_UNSIGNED_BYTE: {
+ uint8_t b = *src;
+ if (normalized) {
+ d = (double(b) / 255.0);
+ } else {
+ d = double(b);
+ }
+ } break;
+ case COMPONENT_TYPE_SHORT: {
+ int16_t s = *(int16_t *)src;
+ if (normalized) {
+ d = (double(s) / 32768.0);
+ } else {
+ d = double(s);
+ }
+ } break;
+ case COMPONENT_TYPE_UNSIGNED_SHORT: {
+ uint16_t s = *(uint16_t *)src;
+ if (normalized) {
+ d = (double(s) / 65535.0);
+ } else {
+ d = double(s);
+ }
+ } break;
+ case COMPONENT_TYPE_INT: {
+ d = *(int *)src;
+ } break;
+ case COMPONENT_TYPE_FLOAT: {
+ d = *(float *)src;
+ } break;
+ }
+
+ *dst++ = d;
+ src += component_size;
+ }
+ }
+
+ return OK;
+}
+
+int GLTFDocument::_get_component_type_size(const int component_type) {
+ switch (component_type) {
+ case COMPONENT_TYPE_BYTE:
+ case COMPONENT_TYPE_UNSIGNED_BYTE:
+ return 1;
+ break;
+ case COMPONENT_TYPE_SHORT:
+ case COMPONENT_TYPE_UNSIGNED_SHORT:
+ return 2;
+ break;
+ case COMPONENT_TYPE_INT:
+ case COMPONENT_TYPE_FLOAT:
+ return 4;
+ break;
+ default: {
+ ERR_FAIL_V(0);
+ }
+ }
+ return 0;
+}
+
+Vector<double> GLTFDocument::_decode_accessor(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ //spec, for reference:
+ //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
+
+ ERR_FAIL_INDEX_V(p_accessor, state->accessors.size(), Vector<double>());
+
+ const Ref<GLTFAccessor> a = state->accessors[p_accessor];
+
+ const int component_count_for_type[7] = {
+ 1, 2, 3, 4, 4, 9, 16
+ };
+
+ const int component_count = component_count_for_type[a->type];
+ const int component_size = _get_component_type_size(a->component_type);
+ ERR_FAIL_COND_V(component_size == 0, Vector<double>());
+ int element_size = component_count * component_size;
+
+ int skip_every = 0;
+ int skip_bytes = 0;
+ //special case of alignments, as described in spec
+ switch (a->component_type) {
+ case COMPONENT_TYPE_BYTE:
+ case COMPONENT_TYPE_UNSIGNED_BYTE: {
+ if (a->type == TYPE_MAT2) {
+ skip_every = 2;
+ skip_bytes = 2;
+ element_size = 8; //override for this case
+ }
+ if (a->type == TYPE_MAT3) {
+ skip_every = 3;
+ skip_bytes = 1;
+ element_size = 12; //override for this case
+ }
+ } break;
+ case COMPONENT_TYPE_SHORT:
+ case COMPONENT_TYPE_UNSIGNED_SHORT: {
+ if (a->type == TYPE_MAT3) {
+ skip_every = 6;
+ skip_bytes = 4;
+ element_size = 16; //override for this case
+ }
+ } break;
+ default: {
+ }
+ }
+
+ Vector<double> dst_buffer;
+ dst_buffer.resize(component_count * a->count);
+ double *dst = dst_buffer.ptrw();
+
+ if (a->buffer_view >= 0) {
+ ERR_FAIL_INDEX_V(a->buffer_view, state->buffer_views.size(), Vector<double>());
+
+ const Error err = _decode_buffer_view(state, dst, a->buffer_view, skip_every, skip_bytes, element_size, a->count, a->type, component_count, a->component_type, component_size, a->normalized, a->byte_offset, p_for_vertex);
+ if (err != OK)
+ return Vector<double>();
+ } else {
+ //fill with zeros, as bufferview is not defined.
+ for (int i = 0; i < (a->count * component_count); i++) {
+ dst_buffer.write[i] = 0;
+ }
+ }
+
+ if (a->sparse_count > 0) {
+ // I could not find any file using this, so this code is so far untested
+ Vector<double> indices;
+ indices.resize(a->sparse_count);
+ const int indices_component_size = _get_component_type_size(a->sparse_indices_component_type);
+
+ Error err = _decode_buffer_view(state, indices.ptrw(), a->sparse_indices_buffer_view, 0, 0, indices_component_size, a->sparse_count, TYPE_SCALAR, 1, a->sparse_indices_component_type, indices_component_size, false, a->sparse_indices_byte_offset, false);
+ if (err != OK)
+ return Vector<double>();
+
+ Vector<double> data;
+ data.resize(component_count * a->sparse_count);
+ err = _decode_buffer_view(state, data.ptrw(), a->sparse_values_buffer_view, skip_every, skip_bytes, element_size, a->sparse_count, a->type, component_count, a->component_type, component_size, a->normalized, a->sparse_values_byte_offset, p_for_vertex);
+ if (err != OK)
+ return Vector<double>();
+
+ for (int i = 0; i < indices.size(); i++) {
+ const int write_offset = int(indices[i]) * component_count;
+
+ for (int j = 0; j < component_count; j++) {
+ dst[write_offset + j] = data[i * component_count + j];
+ }
+ }
+ }
+
+ return dst_buffer;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_ints(Ref<GLTFState> state, const Vector<int32_t> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+ const int element_count = 1;
+ const int ret_size = p_attribs.size();
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ attribs.write[i] = Math::snapped(p_attribs[i], 1.0);
+ if (i == 0) {
+ for (int32_t type_i = 0; type_i < element_count; type_i++) {
+ type_max.write[type_i] = attribs[(i * element_count) + type_i];
+ type_min.write[type_i] = attribs[(i * element_count) + type_i];
+ }
+ }
+ for (int32_t type_i = 0; type_i < element_count; type_i++) {
+ type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
+ type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
+ type_max.write[type_i] = _filter_number(type_max.write[type_i]);
+ type_min.write[type_i] = _filter_number(type_min.write[type_i]);
+ }
+ }
+
+ ERR_FAIL_COND_V(attribs.size() == 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_INT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = ret_size;
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+Vector<int> GLTFDocument::_decode_accessor_as_ints(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<int> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ const double *attribs_ptr = attribs.ptr();
+ const int ret_size = attribs.size();
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret.write[i] = int(attribs_ptr[i]);
+ }
+ }
+ return ret;
+}
+
+Vector<float> GLTFDocument::_decode_accessor_as_floats(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<float> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ const double *attribs_ptr = attribs.ptr();
+ const int ret_size = attribs.size();
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret.write[i] = float(attribs_ptr[i]);
+ }
+ }
+ return ret;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec2(Ref<GLTFState> state, const Vector<Vector2> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+ const int element_count = 2;
+
+ const int ret_size = p_attribs.size() * element_count;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Vector2 attrib = p_attribs[i];
+ attribs.write[(i * element_count) + 0] = Math::snapped(attrib.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 1] = Math::snapped(attrib.y, CMP_NORMALIZE_TOLERANCE);
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC2;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_color(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+
+ const int ret_size = p_attribs.size() * 4;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ const int element_count = 4;
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Color attrib = p_attribs[i];
+ attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE);
+
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+void GLTFDocument::_calc_accessor_min_max(int i, const int element_count, Vector<double> &type_max, Vector<double> attribs, Vector<double> &type_min) {
+ if (i == 0) {
+ for (int32_t type_i = 0; type_i < element_count; type_i++) {
+ type_max.write[type_i] = attribs[(i * element_count) + type_i];
+ type_min.write[type_i] = attribs[(i * element_count) + type_i];
+ }
+ }
+ for (int32_t type_i = 0; type_i < element_count; type_i++) {
+ type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
+ type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
+ type_max.write[type_i] = _filter_number(type_max.write[type_i]);
+ type_min.write[type_i] = _filter_number(type_min.write[type_i]);
+ }
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_weights(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+
+ const int ret_size = p_attribs.size() * 4;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ const int element_count = 4;
+
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Color attrib = p_attribs[i];
+ attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE);
+
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_joints(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+
+ const int element_count = 4;
+ const int ret_size = p_attribs.size() * element_count;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Color attrib = p_attribs[i];
+ attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE);
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_quats(Ref<GLTFState> state, const Vector<Quat> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+ const int element_count = 4;
+
+ const int ret_size = p_attribs.size() * element_count;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Quat quat = p_attribs[i];
+ attribs.write[(i * element_count) + 0] = Math::snapped(quat.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 1] = Math::snapped(quat.y, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 2] = Math::snapped(quat.z, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 3] = Math::snapped(quat.w, CMP_NORMALIZE_TOLERANCE);
+
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+Vector<Vector2> GLTFDocument::_decode_accessor_as_vec2(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Vector2> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ const int ret_size = attribs.size() / 2;
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret.write[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]);
+ }
+ }
+ return ret;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_floats(Ref<GLTFState> state, const Vector<real_t> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+ const int element_count = 1;
+ const int ret_size = p_attribs.size();
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+
+ for (int i = 0; i < p_attribs.size(); i++) {
+ attribs.write[i] = Math::snapped(p_attribs[i], CMP_NORMALIZE_TOLERANCE);
+
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+
+ ERR_FAIL_COND_V(!attribs.size(), -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = ret_size;
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec3(Ref<GLTFState> state, const Vector<Vector3> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+ const int element_count = 3;
+ const int ret_size = p_attribs.size() * element_count;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Vector3 attrib = p_attribs[i];
+ attribs.write[(i * element_count) + 0] = Math::snapped(attrib.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 1] = Math::snapped(attrib.y, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[(i * element_count) + 2] = Math::snapped(attrib.z, CMP_NORMALIZE_TOLERANCE);
+
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC3;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_xform(Ref<GLTFState> state, const Vector<Transform> p_attribs, const bool p_for_vertex) {
+ if (p_attribs.size() == 0) {
+ return -1;
+ }
+ const int element_count = 16;
+ const int ret_size = p_attribs.size() * element_count;
+ Vector<double> attribs;
+ attribs.resize(ret_size);
+
+ Vector<double> type_max;
+ type_max.resize(element_count);
+ Vector<double> type_min;
+ type_min.resize(element_count);
+ for (int i = 0; i < p_attribs.size(); i++) {
+ Transform attrib = p_attribs[i];
+ Basis basis = attrib.get_basis();
+ Vector3 axis_0 = basis.get_axis(Vector3::AXIS_X);
+
+ attribs.write[i * element_count + 0] = Math::snapped(axis_0.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 1] = Math::snapped(axis_0.y, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 2] = Math::snapped(axis_0.z, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 3] = 0.0;
+
+ Vector3 axis_1 = basis.get_axis(Vector3::AXIS_Y);
+ attribs.write[i * element_count + 4] = Math::snapped(axis_1.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 5] = Math::snapped(axis_1.y, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 6] = Math::snapped(axis_1.z, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 7] = 0.0;
+
+ Vector3 axis_2 = basis.get_axis(Vector3::AXIS_Z);
+ attribs.write[i * element_count + 8] = Math::snapped(axis_2.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 9] = Math::snapped(axis_2.y, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 10] = Math::snapped(axis_2.z, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 11] = 0.0;
+
+ Vector3 origin = attrib.get_origin();
+ attribs.write[i * element_count + 12] = Math::snapped(origin.x, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 13] = Math::snapped(origin.y, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 14] = Math::snapped(origin.z, CMP_NORMALIZE_TOLERANCE);
+ attribs.write[i * element_count + 15] = 1.0;
+
+ _calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
+ }
+ ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
+
+ Ref<GLTFAccessor> accessor;
+ accessor.instance();
+ GLTFBufferIndex buffer_view_i;
+ int64_t size = state->buffers[0].size();
+ const GLTFDocument::GLTFType type = GLTFDocument::TYPE_MAT4;
+ const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
+
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->normalized = false;
+ accessor->count = p_attribs.size();
+ accessor->type = type;
+ accessor->component_type = component_type;
+ accessor->byte_offset = 0;
+ Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
+ if (err != OK) {
+ return -1;
+ }
+ accessor->buffer_view = buffer_view_i;
+ state->accessors.push_back(accessor);
+ return state->accessors.size() - 1;
+}
+
+Vector<Vector3> GLTFDocument::_decode_accessor_as_vec3(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Vector3> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ const int ret_size = attribs.size() / 3;
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret.write[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]);
+ }
+ }
+ return ret;
+}
+
+Vector<Color> GLTFDocument::_decode_accessor_as_color(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Color> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ const int type = state->accessors[p_accessor]->type;
+ ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret);
+ int vec_len = 3;
+ if (type == TYPE_VEC4) {
+ vec_len = 4;
+ }
+
+ ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ const int ret_size = attribs.size() / vec_len;
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret.write[i] = Color(attribs_ptr[i * vec_len + 0], attribs_ptr[i * vec_len + 1], attribs_ptr[i * vec_len + 2], vec_len == 4 ? attribs_ptr[i * 4 + 3] : 1.0);
+ }
+ }
+ return ret;
+}
+Vector<Quat> GLTFDocument::_decode_accessor_as_quat(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Quat> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ const int ret_size = attribs.size() / 4;
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret.write[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized();
+ }
+ }
+ return ret;
+}
+Vector<Transform2D> GLTFDocument::_decode_accessor_as_xform2d(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Transform2D> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
+ ret.resize(attribs.size() / 4);
+ for (int i = 0; i < ret.size(); i++) {
+ ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]);
+ ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]);
+ }
+ return ret;
+}
+
+Vector<Basis> GLTFDocument::_decode_accessor_as_basis(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Basis> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret);
+ ret.resize(attribs.size() / 9);
+ for (int i = 0; i < ret.size(); i++) {
+ ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2]));
+ ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5]));
+ ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8]));
+ }
+ return ret;
+}
+
+Vector<Transform> GLTFDocument::_decode_accessor_as_xform(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
+ const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Transform> ret;
+
+ if (attribs.size() == 0)
+ return ret;
+
+ ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret);
+ ret.resize(attribs.size() / 16);
+ for (int i = 0; i < ret.size(); i++) {
+ ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2]));
+ ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6]));
+ ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10]));
+ ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14]));
+ }
+ return ret;
+}
+
+Error GLTFDocument::_serialize_meshes(Ref<GLTFState> state) {
+ Array meshes;
+ for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < state->meshes.size(); gltf_mesh_i++) {
+ print_verbose("glTF: Serializing mesh: " + itos(gltf_mesh_i));
+ Ref<EditorSceneImporterMesh> import_mesh = state->meshes.write[gltf_mesh_i]->get_mesh();
+ if (import_mesh.is_null()) {
+ continue;
+ }
+ Array primitives;
+ Array targets;
+ Dictionary gltf_mesh;
+ Array target_names;
+ Array weights;
+ for (int surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) {
+ Dictionary primitive;
+ Mesh::PrimitiveType primitive_type = import_mesh->get_surface_primitive_type(surface_i);
+ switch (primitive_type) {
+ case Mesh::PRIMITIVE_POINTS: {
+ primitive["mode"] = 0;
+ break;
+ }
+ case Mesh::PRIMITIVE_LINES: {
+ primitive["mode"] = 1;
+ break;
+ }
+ // case Mesh::PRIMITIVE_LINE_LOOP: {
+ // primitive["mode"] = 2;
+ // break;
+ // }
+ case Mesh::PRIMITIVE_LINE_STRIP: {
+ primitive["mode"] = 3;
+ break;
+ }
+ case Mesh::PRIMITIVE_TRIANGLES: {
+ primitive["mode"] = 4;
+ break;
+ }
+ case Mesh::PRIMITIVE_TRIANGLE_STRIP: {
+ primitive["mode"] = 5;
+ break;
+ }
+ // case Mesh::PRIMITIVE_TRIANGLE_FAN: {
+ // primitive["mode"] = 6;
+ // break;
+ // }
+ default: {
+ ERR_FAIL_V(FAILED);
+ }
+ }
+
+ Array array = import_mesh->get_surface_arrays(surface_i);
+ Dictionary attributes;
+ {
+ Vector<Vector3> a = array[Mesh::ARRAY_VERTEX];
+ ERR_FAIL_COND_V(!a.size(), ERR_INVALID_DATA);
+ attributes["POSITION"] = _encode_accessor_as_vec3(state, a, true);
+ }
+ {
+ Vector<real_t> a = array[Mesh::ARRAY_TANGENT];
+ if (a.size()) {
+ const int ret_size = a.size() / 4;
+ Vector<Color> attribs;
+ attribs.resize(ret_size);
+ for (int i = 0; i < ret_size; i++) {
+ Color out;
+ out.r = a[(i * 4) + 0];
+ out.g = a[(i * 4) + 1];
+ out.b = a[(i * 4) + 2];
+ out.a = a[(i * 4) + 3];
+ attribs.write[i] = out;
+ }
+ attributes["TANGENT"] = _encode_accessor_as_color(state, attribs, true);
+ }
+ }
+ {
+ Vector<Vector3> a = array[Mesh::ARRAY_NORMAL];
+ if (a.size()) {
+ const int ret_size = a.size();
+ Vector<Vector3> attribs;
+ attribs.resize(ret_size);
+ for (int i = 0; i < ret_size; i++) {
+ attribs.write[i] = Vector3(a[i]).normalized();
+ }
+ attributes["NORMAL"] = _encode_accessor_as_vec3(state, attribs, true);
+ }
+ }
+ {
+ Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV];
+ if (a.size()) {
+ attributes["TEXCOORD_0"] = _encode_accessor_as_vec2(state, a, true);
+ }
+ }
+ {
+ Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV2];
+ if (a.size()) {
+ attributes["TEXCOORD_1"] = _encode_accessor_as_vec2(state, a, true);
+ }
+ }
+ {
+ Vector<Color> a = array[Mesh::ARRAY_COLOR];
+ if (a.size()) {
+ attributes["COLOR_0"] = _encode_accessor_as_color(state, a, true);
+ }
+ }
+ Map<int, int> joint_i_to_bone_i;
+ for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) {
+ GLTFSkinIndex skin_i = -1;
+ if (state->nodes[node_i]->mesh == gltf_mesh_i) {
+ skin_i = state->nodes[node_i]->skin;
+ }
+ if (skin_i != -1) {
+ joint_i_to_bone_i = state->skins[skin_i]->joint_i_to_bone_i;
+ break;
+ }
+ }
+ {
+ const Array &a = array[Mesh::ARRAY_BONES];
+ const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
+ if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
+ const int ret_size = a.size() / JOINT_GROUP_SIZE;
+ Vector<Color> attribs;
+ attribs.resize(ret_size);
+ {
+ for (int array_i = 0; array_i < attribs.size(); array_i++) {
+ int32_t joint_0 = a[(array_i * JOINT_GROUP_SIZE) + 0];
+ int32_t joint_1 = a[(array_i * JOINT_GROUP_SIZE) + 1];
+ int32_t joint_2 = a[(array_i * JOINT_GROUP_SIZE) + 2];
+ int32_t joint_3 = a[(array_i * JOINT_GROUP_SIZE) + 3];
+ attribs.write[array_i] = Color(joint_0, joint_1, joint_2, joint_3);
+ }
+ }
+ attributes["JOINTS_0"] = _encode_accessor_as_joints(state, attribs, true);
+ } else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
+ int32_t vertex_count = vertex_array.size();
+ Vector<Color> joints_0;
+ joints_0.resize(vertex_count);
+ Vector<Color> joints_1;
+ joints_1.resize(vertex_count);
+ int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
+ for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
+ Color joint_0;
+ joint_0.r = a[vertex_i * weights_8_count + 0];
+ joint_0.g = a[vertex_i * weights_8_count + 1];
+ joint_0.b = a[vertex_i * weights_8_count + 2];
+ joint_0.a = a[vertex_i * weights_8_count + 3];
+ joints_0.write[vertex_i] = joint_0;
+ Color joint_1;
+ joint_1.r = a[vertex_i * weights_8_count + 4];
+ joint_1.g = a[vertex_i * weights_8_count + 5];
+ joint_1.b = a[vertex_i * weights_8_count + 6];
+ joint_1.a = a[vertex_i * weights_8_count + 7];
+ joints_1.write[vertex_i] = joint_1;
+ }
+ attributes["JOINTS_0"] = _encode_accessor_as_joints(state, joints_0, true);
+ attributes["JOINTS_1"] = _encode_accessor_as_joints(state, joints_1, true);
+ }
+ }
+ {
+ const Array &a = array[Mesh::ARRAY_WEIGHTS];
+ const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
+ if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
+ const int ret_size = a.size() / JOINT_GROUP_SIZE;
+ Vector<Color> attribs;
+ attribs.resize(ret_size);
+ for (int i = 0; i < ret_size; i++) {
+ attribs.write[i] = Color(a[(i * JOINT_GROUP_SIZE) + 0], a[(i * JOINT_GROUP_SIZE) + 1], a[(i * JOINT_GROUP_SIZE) + 2], a[(i * JOINT_GROUP_SIZE) + 3]);
+ }
+ attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, attribs, true);
+ } else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
+ int32_t vertex_count = vertex_array.size();
+ Vector<Color> weights_0;
+ weights_0.resize(vertex_count);
+ Vector<Color> weights_1;
+ weights_1.resize(vertex_count);
+ int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
+ for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
+ Color weight_0;
+ weight_0.r = a[vertex_i * weights_8_count + 0];
+ weight_0.g = a[vertex_i * weights_8_count + 1];
+ weight_0.b = a[vertex_i * weights_8_count + 2];
+ weight_0.a = a[vertex_i * weights_8_count + 3];
+ weights_0.write[vertex_i] = weight_0;
+ Color weight_1;
+ weight_1.r = a[vertex_i * weights_8_count + 4];
+ weight_1.g = a[vertex_i * weights_8_count + 5];
+ weight_1.b = a[vertex_i * weights_8_count + 6];
+ weight_1.a = a[vertex_i * weights_8_count + 7];
+ weights_1.write[vertex_i] = weight_1;
+ }
+ attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, weights_0, true);
+ attributes["WEIGHTS_1"] = _encode_accessor_as_weights(state, weights_1, true);
+ }
+ }
+ {
+ Vector<int32_t> mesh_indices = array[Mesh::ARRAY_INDEX];
+ if (mesh_indices.size()) {
+ if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
+ //swap around indices, convert ccw to cw for front face
+ const int is = mesh_indices.size();
+ for (int k = 0; k < is; k += 3) {
+ SWAP(mesh_indices.write[k + 0], mesh_indices.write[k + 2]);
+ }
+ }
+ primitive["indices"] = _encode_accessor_as_ints(state, mesh_indices, true);
+ } else {
+ if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
+ //generate indices because they need to be swapped for CW/CCW
+ const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
+ Ref<SurfaceTool> st;
+ st.instance();
+ st->create_from_triangle_arrays(array);
+ st->index();
+ Vector<int32_t> generated_indices = st->commit_to_arrays()[Mesh::ARRAY_INDEX];
+ const int vs = vertices.size();
+ generated_indices.resize(vs);
+ {
+ for (int k = 0; k < vs; k += 3) {
+ generated_indices.write[k] = k;
+ generated_indices.write[k + 1] = k + 2;
+ generated_indices.write[k + 2] = k + 1;
+ }
+ }
+ primitive["indices"] = _encode_accessor_as_ints(state, generated_indices, true);
+ }
+ }
+ }
+
+ primitive["attributes"] = attributes;
+
+ //blend shapes
+ print_verbose("glTF: Mesh has targets");
+ if (import_mesh->get_blend_shape_count()) {
+ ArrayMesh::BlendShapeMode shape_mode = import_mesh->get_blend_shape_mode();
+ for (int morph_i = 0; morph_i < import_mesh->get_blend_shape_count(); morph_i++) {
+ Array array_morph = import_mesh->get_surface_blend_shape_arrays(surface_i, morph_i);
+ target_names.push_back(import_mesh->get_blend_shape_name(morph_i));
+ Dictionary t;
+ Vector<Vector3> varr = array_morph[Mesh::ARRAY_VERTEX];
+ Array mesh_arrays = import_mesh->get_surface_arrays(surface_i);
+ if (varr.size()) {
+ Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
+ if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) {
+ const int max_idx = src_varr.size();
+ for (int blend_i = 0; blend_i < max_idx; blend_i++) {
+ varr.write[blend_i] = Vector3(varr[blend_i]) - src_varr[blend_i];
+ }
+ }
+
+ t["POSITION"] = _encode_accessor_as_vec3(state, varr, true);
+ }
+
+ Vector<Vector3> narr = array_morph[Mesh::ARRAY_NORMAL];
+ if (varr.size()) {
+ t["NORMAL"] = _encode_accessor_as_vec3(state, narr, true);
+ }
+ Vector<real_t> tarr = array_morph[Mesh::ARRAY_TANGENT];
+ if (tarr.size()) {
+ const int ret_size = tarr.size() / 4;
+ Vector<Color> attribs;
+ attribs.resize(ret_size);
+ for (int i = 0; i < ret_size; i++) {
+ Color tangent;
+ tangent.r = tarr[(i * 4) + 0];
+ tangent.r = tarr[(i * 4) + 1];
+ tangent.r = tarr[(i * 4) + 2];
+ tangent.r = tarr[(i * 4) + 3];
+ }
+ t["TANGENT"] = _encode_accessor_as_color(state, attribs, true);
+ }
+ targets.push_back(t);
+ }
+ }
+
+ Ref<BaseMaterial3D> mat = import_mesh->get_surface_material(surface_i);
+ if (mat.is_valid()) {
+ Map<Ref<BaseMaterial3D>, GLTFMaterialIndex>::Element *material_cache_i = state->material_cache.find(mat);
+ if (material_cache_i && material_cache_i->get() != -1) {
+ primitive["material"] = material_cache_i->get();
+ } else {
+ GLTFMaterialIndex mat_i = state->materials.size();
+ state->materials.push_back(mat);
+ primitive["material"] = mat_i;
+ state->material_cache.insert(mat, mat_i);
+ }
+ }
+
+ if (targets.size()) {
+ primitive["targets"] = targets;
+ }
+
+ primitives.push_back(primitive);
+ }
+
+ Dictionary e;
+ e["targetNames"] = target_names;
+
+ for (int j = 0; j < target_names.size(); j++) {
+ real_t weight = 0;
+ if (j < state->meshes.write[gltf_mesh_i]->get_blend_weights().size()) {
+ weight = state->meshes.write[gltf_mesh_i]->get_blend_weights()[j];
+ }
+ weights.push_back(weight);
+ }
+ if (weights.size()) {
+ gltf_mesh["weights"] = weights;
+ }
+
+ ERR_FAIL_COND_V(target_names.size() != weights.size(), FAILED);
+
+ gltf_mesh["extras"] = e;
+
+ gltf_mesh["primitives"] = primitives;
+
+ meshes.push_back(gltf_mesh);
+ }
+
+ state->json["meshes"] = meshes;
+ print_verbose("glTF: Total meshes: " + itos(meshes.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_meshes(Ref<GLTFState> state) {
+ if (!state->json.has("meshes")) {
+ return OK;
+ }
+
+ Array meshes = state->json["meshes"];
+ for (GLTFMeshIndex i = 0; i < meshes.size(); i++) {
+ print_verbose("glTF: Parsing mesh: " + itos(i));
+ Dictionary d = meshes[i];
+
+ Ref<GLTFMesh> mesh;
+ mesh.instance();
+ bool has_vertex_color = false;
+
+ ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR);
+
+ Array primitives = d["primitives"];
+ const Dictionary &extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary();
+ Ref<EditorSceneImporterMesh> import_mesh;
+ import_mesh.instance();
+ for (int j = 0; j < primitives.size(); j++) {
+ Dictionary p = primitives[j];
+
+ Array array;
+ array.resize(Mesh::ARRAY_MAX);
+
+ ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR);
+
+ Dictionary a = p["attributes"];
+
+ Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
+ if (p.has("mode")) {
+ const int mode = p["mode"];
+ ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT);
+ static const Mesh::PrimitiveType primitives2[7] = {
+ Mesh::PRIMITIVE_POINTS,
+ Mesh::PRIMITIVE_LINES,
+ Mesh::PRIMITIVE_LINES, //loop not supported, should ce converted
+ Mesh::PRIMITIVE_LINES,
+ Mesh::PRIMITIVE_TRIANGLES,
+ Mesh::PRIMITIVE_TRIANGLE_STRIP,
+ Mesh::PRIMITIVE_TRIANGLES, //fan not supported, should be converted
+#ifndef _MSC_VER
+#warning line loop and triangle fan are not supported and need to be converted to lines and triangles
+#endif
+
+ };
+
+ primitive = primitives2[mode];
+ }
+
+ ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR);
+ if (a.has("POSITION")) {
+ array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true);
+ }
+ if (a.has("NORMAL")) {
+ array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true);
+ }
+ if (a.has("TANGENT")) {
+ array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true);
+ }
+ if (a.has("TEXCOORD_0")) {
+ array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true);
+ }
+ if (a.has("TEXCOORD_1")) {
+ array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true);
+ }
+ if (a.has("COLOR_0")) {
+ array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true);
+ has_vertex_color = true;
+ }
+ if (a.has("JOINTS_0") && !a.has("JOINTS_1")) {
+ array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
+ } else if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
+ PackedInt32Array joints_0 = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
+ PackedInt32Array joints_1 = _decode_accessor_as_ints(state, a["JOINTS_1"], true);
+ ERR_FAIL_COND_V(joints_0.size() != joints_0.size(), ERR_INVALID_DATA);
+ int32_t weight_8_count = JOINT_GROUP_SIZE * 2;
+ int32_t vertex_count = joints_0.size() / JOINT_GROUP_SIZE;
+ Vector<int> joints;
+ joints.resize(vertex_count * weight_8_count);
+ for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
+ joints.write[vertex_i * weight_8_count + 0] = joints_0[vertex_i * JOINT_GROUP_SIZE + 0];
+ joints.write[vertex_i * weight_8_count + 1] = joints_0[vertex_i * JOINT_GROUP_SIZE + 1];
+ joints.write[vertex_i * weight_8_count + 2] = joints_0[vertex_i * JOINT_GROUP_SIZE + 2];
+ joints.write[vertex_i * weight_8_count + 3] = joints_0[vertex_i * JOINT_GROUP_SIZE + 3];
+ joints.write[vertex_i * weight_8_count + 4] = joints_1[vertex_i * JOINT_GROUP_SIZE + 0];
+ joints.write[vertex_i * weight_8_count + 5] = joints_1[vertex_i * JOINT_GROUP_SIZE + 1];
+ joints.write[vertex_i * weight_8_count + 6] = joints_1[vertex_i * JOINT_GROUP_SIZE + 2];
+ joints.write[vertex_i * weight_8_count + 7] = joints_1[vertex_i * JOINT_GROUP_SIZE + 3];
+ }
+ array[Mesh::ARRAY_BONES] = joints;
+ }
+ if (a.has("WEIGHTS_0") && !a.has("WEIGHTS_1")) {
+ Vector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
+ { //gltf does not seem to normalize the weights for some reason..
+ int wc = weights.size();
+ float *w = weights.ptrw();
+
+ for (int k = 0; k < wc; k += 4) {
+ float total = 0.0;
+ total += w[k + 0];
+ total += w[k + 1];
+ total += w[k + 2];
+ total += w[k + 3];
+ if (total > 0.0) {
+ w[k + 0] /= total;
+ w[k + 1] /= total;
+ w[k + 2] /= total;
+ w[k + 3] /= total;
+ }
+ }
+ }
+ array[Mesh::ARRAY_WEIGHTS] = weights;
+ } else if (a.has("WEIGHTS_0") && a.has("WEIGHTS_1")) {
+ Vector<float> weights_0 = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
+ Vector<float> weights_1 = _decode_accessor_as_floats(state, a["WEIGHTS_1"], true);
+ Vector<float> weights;
+ ERR_FAIL_COND_V(weights_0.size() != weights_1.size(), ERR_INVALID_DATA);
+ int32_t weight_8_count = JOINT_GROUP_SIZE * 2;
+ int32_t vertex_count = weights_0.size() / JOINT_GROUP_SIZE;
+ weights.resize(vertex_count * weight_8_count);
+ for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
+ weights.write[vertex_i * weight_8_count + 0] = weights_0[vertex_i * JOINT_GROUP_SIZE + 0];
+ weights.write[vertex_i * weight_8_count + 1] = weights_0[vertex_i * JOINT_GROUP_SIZE + 1];
+ weights.write[vertex_i * weight_8_count + 2] = weights_0[vertex_i * JOINT_GROUP_SIZE + 2];
+ weights.write[vertex_i * weight_8_count + 3] = weights_0[vertex_i * JOINT_GROUP_SIZE + 3];
+ weights.write[vertex_i * weight_8_count + 4] = weights_1[vertex_i * JOINT_GROUP_SIZE + 0];
+ weights.write[vertex_i * weight_8_count + 5] = weights_1[vertex_i * JOINT_GROUP_SIZE + 1];
+ weights.write[vertex_i * weight_8_count + 6] = weights_1[vertex_i * JOINT_GROUP_SIZE + 2];
+ weights.write[vertex_i * weight_8_count + 7] = weights_1[vertex_i * JOINT_GROUP_SIZE + 3];
+ }
+ { //gltf does not seem to normalize the weights for some reason..
+ int wc = weights.size();
+ float *w = weights.ptrw();
+
+ for (int k = 0; k < wc; k += weight_8_count) {
+ float total = 0.0;
+ total += w[k + 0];
+ total += w[k + 1];
+ total += w[k + 2];
+ total += w[k + 3];
+ total += w[k + 4];
+ total += w[k + 5];
+ total += w[k + 6];
+ total += w[k + 7];
+ if (total > 0.0) {
+ w[k + 0] /= total;
+ w[k + 1] /= total;
+ w[k + 2] /= total;
+ w[k + 3] /= total;
+ w[k + 4] /= total;
+ w[k + 5] /= total;
+ w[k + 6] /= total;
+ w[k + 7] /= total;
+ }
+ }
+ }
+ array[Mesh::ARRAY_WEIGHTS] = weights;
+ }
+
+ if (p.has("indices")) {
+ Vector<int> indices = _decode_accessor_as_ints(state, p["indices"], false);
+
+ if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
+ //swap around indices, convert ccw to cw for front face
+
+ const int is = indices.size();
+ int *w = indices.ptrw();
+ for (int k = 0; k < is; k += 3) {
+ SWAP(w[k + 1], w[k + 2]);
+ }
+ }
+ array[Mesh::ARRAY_INDEX] = indices;
+
+ } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
+ //generate indices because they need to be swapped for CW/CCW
+ const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
+ ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR);
+ Vector<int> indices;
+ const int vs = vertices.size();
+ indices.resize(vs);
+ {
+ int *w = indices.ptrw();
+ for (int k = 0; k < vs; k += 3) {
+ w[k] = k;
+ w[k + 1] = k + 2;
+ w[k + 2] = k + 1;
+ }
+ }
+ array[Mesh::ARRAY_INDEX] = indices;
+ }
+
+ bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL"));
+
+ if (generate_tangents) {
+ //must generate mikktspace tangents.. ergh..
+ Ref<SurfaceTool> st;
+ st.instance();
+ if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
+ st->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS);
+ }
+ st->create_from_triangle_arrays(array);
+ st->generate_tangents();
+ array = st->commit_to_arrays();
+ }
+
+ Array morphs;
+ //blend shapes
+ if (p.has("targets")) {
+ print_verbose("glTF: Mesh has targets");
+ const Array &targets = p["targets"];
+
+ //ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement
+ //but it could require a larger refactor?
+ import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
+
+ if (j == 0) {
+ const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array();
+ for (int k = 0; k < targets.size(); k++) {
+ const String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k);
+ import_mesh->add_blend_shape(name);
+ }
+ }
+
+ for (int k = 0; k < targets.size(); k++) {
+ const Dictionary &t = targets[k];
+
+ Array array_copy;
+ array_copy.resize(Mesh::ARRAY_MAX);
+
+ for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
+ array_copy[l] = array[l];
+ }
+
+ array_copy[Mesh::ARRAY_INDEX] = Variant();
+
+ if (t.has("POSITION")) {
+ Vector<Vector3> varr = _decode_accessor_as_vec3(state, t["POSITION"], true);
+ const Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
+ const int size = src_varr.size();
+ ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
+ {
+ const int max_idx = varr.size();
+ varr.resize(size);
+
+ Vector3 *w_varr = varr.ptrw();
+ const Vector3 *r_varr = varr.ptr();
+ const Vector3 *r_src_varr = src_varr.ptr();
+ for (int l = 0; l < size; l++) {
+ if (l < max_idx) {
+ w_varr[l] = r_varr[l] + r_src_varr[l];
+ } else {
+ w_varr[l] = r_src_varr[l];
+ }
+ }
+ }
+ array_copy[Mesh::ARRAY_VERTEX] = varr;
+ }
+ if (t.has("NORMAL")) {
+ Vector<Vector3> narr = _decode_accessor_as_vec3(state, t["NORMAL"], true);
+ const Vector<Vector3> src_narr = array[Mesh::ARRAY_NORMAL];
+ int size = src_narr.size();
+ ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
+ {
+ int max_idx = narr.size();
+ narr.resize(size);
+
+ Vector3 *w_narr = narr.ptrw();
+ const Vector3 *r_narr = narr.ptr();
+ const Vector3 *r_src_narr = src_narr.ptr();
+ for (int l = 0; l < size; l++) {
+ if (l < max_idx) {
+ w_narr[l] = r_narr[l] + r_src_narr[l];
+ } else {
+ w_narr[l] = r_src_narr[l];
+ }
+ }
+ }
+ array_copy[Mesh::ARRAY_NORMAL] = narr;
+ }
+ if (t.has("TANGENT")) {
+ const Vector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true);
+ const Vector<float> src_tangents = array[Mesh::ARRAY_TANGENT];
+ ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR);
+
+ Vector<float> tangents_v4;
+
+ {
+ int max_idx = tangents_v3.size();
+
+ int size4 = src_tangents.size();
+ tangents_v4.resize(size4);
+ float *w4 = tangents_v4.ptrw();
+
+ const Vector3 *r3 = tangents_v3.ptr();
+ const float *r4 = src_tangents.ptr();
+
+ for (int l = 0; l < size4 / 4; l++) {
+ if (l < max_idx) {
+ w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0];
+ w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1];
+ w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2];
+ } else {
+ w4[l * 4 + 0] = r4[l * 4 + 0];
+ w4[l * 4 + 1] = r4[l * 4 + 1];
+ w4[l * 4 + 2] = r4[l * 4 + 2];
+ }
+ w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value
+ }
+ }
+
+ array_copy[Mesh::ARRAY_TANGENT] = tangents_v4;
+ }
+
+ if (generate_tangents) {
+ Ref<SurfaceTool> st;
+ st.instance();
+ if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
+ st->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS);
+ }
+ st->create_from_triangle_arrays(array_copy);
+ st->deindex();
+ st->generate_tangents();
+ array_copy = st->commit_to_arrays();
+ }
+
+ morphs.push_back(array_copy);
+ }
+ }
+
+ //just add it
+
+ Ref<BaseMaterial3D> mat;
+ if (p.has("material")) {
+ const int material = p["material"];
+ ERR_FAIL_INDEX_V(material, state->materials.size(), ERR_FILE_CORRUPT);
+ Ref<BaseMaterial3D> mat3d = state->materials[material];
+ if (has_vertex_color) {
+ mat3d->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
+ }
+ mat = mat3d;
+
+ } else if (has_vertex_color) {
+ Ref<StandardMaterial3D> mat3d;
+ mat3d.instance();
+ mat3d->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
+ mat = mat3d;
+ }
+
+ import_mesh->add_surface(primitive, array, morphs, Dictionary(), mat);
+ }
+
+ Vector<float> blend_weights;
+ blend_weights.resize(import_mesh->get_blend_shape_count());
+ for (int32_t weight_i = 0; weight_i < blend_weights.size(); weight_i++) {
+ blend_weights.write[weight_i] = 0.0f;
+ }
+
+ if (d.has("weights")) {
+ const Array &weights = d["weights"];
+ for (int j = 0; j < weights.size(); j++) {
+ if (j >= blend_weights.size()) {
+ break;
+ }
+ blend_weights.write[j] = weights[j];
+ }
+ mesh->set_blend_weights(blend_weights);
+ }
+ mesh->set_mesh(import_mesh);
+
+ state->meshes.push_back(mesh);
+ }
+
+ print_verbose("glTF: Total meshes: " + itos(state->meshes.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_serialize_images(Ref<GLTFState> state, const String &p_path) {
+ Array images;
+ for (int i = 0; i < state->images.size(); i++) {
+ Dictionary d;
+
+ ERR_CONTINUE(state->images[i].is_null());
+
+ Ref<Image> image = state->images[i]->get_data();
+ ERR_CONTINUE(image.is_null());
+
+ if (p_path.to_lower().ends_with("glb")) {
+ GLTFBufferViewIndex bvi;
+
+ Ref<GLTFBufferView> bv;
+ bv.instance();
+
+ const GLTFBufferIndex bi = 0;
+ bv->buffer = bi;
+ bv->byte_offset = state->buffers[bi].size();
+ ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
+
+ Vector<uint8_t> buffer;
+ Ref<ImageTexture> img_tex = image;
+ if (img_tex.is_valid()) {
+ image = img_tex->get_data();
+ }
+ Error err = PNGDriverCommon::image_to_png(image, buffer);
+ ERR_FAIL_COND_V_MSG(err, err, "Can't convert image to PNG.");
+
+ bv->byte_length = buffer.size();
+ state->buffers.write[bi].resize(state->buffers[bi].size() + bv->byte_length);
+ copymem(&state->buffers.write[bi].write[bv->byte_offset], buffer.ptr(), buffer.size());
+ ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT);
+
+ state->buffer_views.push_back(bv);
+ bvi = state->buffer_views.size() - 1;
+ d["bufferView"] = bvi;
+ d["mimeType"] = "image/png";
+ } else {
+ String name = state->images[i]->get_name();
+ if (name.is_empty()) {
+ name = itos(i);
+ }
+ name = _gen_unique_name(state, name);
+ name = name.pad_zeros(3);
+ Ref<_Directory> dir;
+ dir.instance();
+ String texture_dir = "textures";
+ String new_texture_dir = p_path.get_base_dir() + "/" + texture_dir;
+ dir->open(p_path.get_base_dir());
+ if (!dir->dir_exists(new_texture_dir)) {
+ dir->make_dir(new_texture_dir);
+ }
+ name = name + ".png";
+ image->save_png(new_texture_dir.plus_file(name));
+ d["uri"] = texture_dir.plus_file(name);
+ }
+ images.push_back(d);
+ }
+
+ print_verbose("Total images: " + itos(state->images.size()));
+
+ if (!images.size()) {
+ return OK;
+ }
+ state->json["images"] = images;
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_images(Ref<GLTFState> state, const String &p_base_path) {
+ if (!state->json.has("images")) {
+ return OK;
+ }
+
+ // Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images
+
+ const Array &images = state->json["images"];
+ for (int i = 0; i < images.size(); i++) {
+ const Dictionary &d = images[i];
+
+ // glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec):
+ // "- a URI to an external file in one of the supported images formats, or
+ // - a URI with embedded base64-encoded data, or
+ // - a reference to a bufferView; in that case mimeType must be defined."
+ // Since mimeType is optional for external files and base64 data, we'll have to
+ // fall back on letting Godot parse the data to figure out if it's PNG or JPEG.
+
+ // We'll assume that we use either URI or bufferView, so let's warn the user
+ // if their image somehow uses both. And fail if it has neither.
+ ERR_CONTINUE_MSG(!d.has("uri") && !d.has("bufferView"), "Invalid image definition in glTF file, it should specific an 'uri' or 'bufferView'.");
+ if (d.has("uri") && d.has("bufferView")) {
+ WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'bufferView' will take precedence.");
+ }
+
+ String mimetype;
+ if (d.has("mimeType")) { // Should be "image/png" or "image/jpeg".
+ mimetype = d["mimeType"];
+ }
+
+ Vector<uint8_t> data;
+ const uint8_t *data_ptr = nullptr;
+ int data_size = 0;
+
+ if (d.has("uri")) {
+ // Handles the first two bullet points from the spec (embedded data, or external file).
+ String uri = d["uri"];
+
+ if (uri.begins_with("data:")) { // Embedded data using base64.
+ // Validate data MIME types and throw a warning if it's one we don't know/support.
+ if (!uri.begins_with("data:application/octet-stream;base64") &&
+ !uri.begins_with("data:application/gltf-buffer;base64") &&
+ !uri.begins_with("data:image/png;base64") &&
+ !uri.begins_with("data:image/jpeg;base64")) {
+ WARN_PRINT(vformat("glTF: Image index '%d' uses an unsupported URI data type: %s. Skipping it.", i, uri));
+ state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
+ continue;
+ }
+ data = _parse_base64_uri(uri);
+ data_ptr = data.ptr();
+ data_size = data.size();
+ // mimeType is optional, but if we have it defined in the URI, let's use it.
+ if (mimetype.is_empty()) {
+ if (uri.begins_with("data:image/png;base64")) {
+ mimetype = "image/png";
+ } else if (uri.begins_with("data:image/jpeg;base64")) {
+ mimetype = "image/jpeg";
+ }
+ }
+ } else { // Relative path to an external image file.
+ uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows.
+ // ResourceLoader will rely on the file extension to use the relevant loader.
+ // The spec says that if mimeType is defined, it should take precedence (e.g.
+ // there could be a `.png` image which is actually JPEG), but there's no easy
+ // API for that in Godot, so we'd have to load as a buffer (i.e. embedded in
+ // the material), so we do this only as fallback.
+ Ref<Texture2D> texture = ResourceLoader::load(uri);
+ if (texture.is_valid()) {
+ state->images.push_back(texture);
+ continue;
+ } else if (mimetype == "image/png" || mimetype == "image/jpeg") {
+ // Fallback to loading as byte array.
+ // This enables us to support the spec's requirement that we honor mimetype
+ // regardless of file URI.
+ data = FileAccess::get_file_as_array(uri);
+ if (data.size() == 0) {
+ WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded as a buffer of MIME type '%s' from URI: %s. Skipping it.", i, mimetype, uri));
+ state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
+ continue;
+ }
+ data_ptr = data.ptr();
+ data_size = data.size();
+ } else {
+ WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded from URI: %s. Skipping it.", i, uri));
+ state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
+ continue;
+ }
+ }
+ } else if (d.has("bufferView")) {
+ // Handles the third bullet point from the spec (bufferView).
+ ERR_FAIL_COND_V_MSG(mimetype.is_empty(), ERR_FILE_CORRUPT,
+ vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i));
+
+ const GLTFBufferViewIndex bvi = d["bufferView"];
+
+ ERR_FAIL_INDEX_V(bvi, state->buffer_views.size(), ERR_PARAMETER_RANGE_ERROR);
+
+ Ref<GLTFBufferView> bv = state->buffer_views[bvi];
+
+ const GLTFBufferIndex bi = bv->buffer;
+ ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
+
+ ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT);
+
+ data_ptr = &state->buffers[bi][bv->byte_offset];
+ data_size = bv->byte_length;
+ }
+
+ Ref<Image> img;
+
+ if (mimetype == "image/png") { // Load buffer as PNG.
+ ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE);
+ img = Image::_png_mem_loader_func(data_ptr, data_size);
+ } else if (mimetype == "image/jpeg") { // Loader buffer as JPEG.
+ ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE);
+ img = Image::_jpg_mem_loader_func(data_ptr, data_size);
+ } else {
+ // We can land here if we got an URI with base64-encoded data with application/* MIME type,
+ // and the optional mimeType property was not defined to tell us how to handle this data (or was invalid).
+ // So let's try PNG first, then JPEG.
+ ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE);
+ img = Image::_png_mem_loader_func(data_ptr, data_size);
+ if (img.is_null()) {
+ ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE);
+ img = Image::_jpg_mem_loader_func(data_ptr, data_size);
+ }
+ }
+
+ ERR_FAIL_COND_V_MSG(img.is_null(), ERR_FILE_CORRUPT,
+ vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", i, mimetype));
+
+ Ref<ImageTexture> t;
+ t.instance();
+ t->create_from_image(img);
+
+ state->images.push_back(t);
+ }
+
+ print_verbose("glTF: Total images: " + itos(state->images.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_serialize_textures(Ref<GLTFState> state) {
+ if (!state->textures.size()) {
+ return OK;
+ }
+
+ Array textures;
+ for (int32_t i = 0; i < state->textures.size(); i++) {
+ Dictionary d;
+ Ref<GLTFTexture> t = state->textures[i];
+ ERR_CONTINUE(t->get_src_image() == -1);
+ d["source"] = t->get_src_image();
+ textures.push_back(d);
+ }
+ state->json["textures"] = textures;
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_textures(Ref<GLTFState> state) {
+ if (!state->json.has("textures"))
+ return OK;
+
+ const Array &textures = state->json["textures"];
+ for (GLTFTextureIndex i = 0; i < textures.size(); i++) {
+ const Dictionary &d = textures[i];
+
+ ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR);
+
+ Ref<GLTFTexture> t;
+ t.instance();
+ t->set_src_image(d["source"]);
+ state->textures.push_back(t);
+ }
+
+ return OK;
+}
+
+GLTFTextureIndex GLTFDocument::_set_texture(Ref<GLTFState> state, Ref<Texture2D> p_texture) {
+ ERR_FAIL_COND_V(p_texture.is_null(), -1);
+ Ref<GLTFTexture> gltf_texture;
+ gltf_texture.instance();
+ ERR_FAIL_COND_V(p_texture->get_data().is_null(), -1);
+ GLTFImageIndex gltf_src_image_i = state->images.size();
+ state->images.push_back(p_texture);
+ gltf_texture->set_src_image(gltf_src_image_i);
+ GLTFTextureIndex gltf_texture_i = state->textures.size();
+ state->textures.push_back(gltf_texture);
+ return gltf_texture_i;
+}
+
+Ref<Texture2D> GLTFDocument::_get_texture(Ref<GLTFState> state, const GLTFTextureIndex p_texture) {
+ ERR_FAIL_INDEX_V(p_texture, state->textures.size(), Ref<Texture2D>());
+ const GLTFImageIndex image = state->textures[p_texture]->get_src_image();
+
+ ERR_FAIL_INDEX_V(image, state->images.size(), Ref<Texture2D>());
+
+ return state->images[image];
+}
+
+Error GLTFDocument::_serialize_materials(Ref<GLTFState> state) {
+ Array materials;
+ for (int32_t i = 0; i < state->materials.size(); i++) {
+ Dictionary d;
+
+ Ref<BaseMaterial3D> material = state->materials[i];
+ if (material.is_null()) {
+ materials.push_back(d);
+ continue;
+ }
+ if (!material->get_name().is_empty()) {
+ d["name"] = _gen_unique_name(state, material->get_name());
+ }
+ {
+ Dictionary mr;
+ {
+ Array arr;
+ const Color c = material->get_albedo().to_linear();
+ arr.push_back(c.r);
+ arr.push_back(c.g);
+ arr.push_back(c.b);
+ arr.push_back(c.a);
+ mr["baseColorFactor"] = arr;
+ }
+ {
+ Dictionary bct;
+ Ref<Texture2D> albedo_texture = material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
+ GLTFTextureIndex gltf_texture_index = -1;
+
+ if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) {
+ albedo_texture->set_name(material->get_name() + "_albedo");
+ gltf_texture_index = _set_texture(state, albedo_texture);
+ }
+ if (gltf_texture_index != -1) {
+ bct["index"] = gltf_texture_index;
+ bct["extensions"] = _serialize_texture_transform_uv1(material);
+ mr["baseColorTexture"] = bct;
+ }
+ }
+
+ mr["metallicFactor"] = material->get_metallic();
+ mr["roughnessFactor"] = material->get_roughness();
+ bool has_roughness = material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS).is_valid() && material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS)->get_data().is_valid();
+ bool has_ao = material->get_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION) && material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION).is_valid();
+ bool has_metalness = material->get_texture(BaseMaterial3D::TEXTURE_METALLIC).is_valid() && material->get_texture(BaseMaterial3D::TEXTURE_METALLIC)->get_data().is_valid();
+ if (has_ao || has_roughness || has_metalness) {
+ Dictionary mrt;
+ Ref<Texture2D> roughness_texture = material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS);
+ BaseMaterial3D::TextureChannel roughness_channel = material->get_roughness_texture_channel();
+ Ref<Texture2D> metallic_texture = material->get_texture(BaseMaterial3D::TEXTURE_METALLIC);
+ BaseMaterial3D::TextureChannel metalness_channel = material->get_metallic_texture_channel();
+ Ref<Texture2D> ao_texture = material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION);
+ BaseMaterial3D::TextureChannel ao_channel = material->get_ao_texture_channel();
+ Ref<ImageTexture> orm_texture;
+ orm_texture.instance();
+ Ref<Image> orm_image;
+ orm_image.instance();
+ int32_t height = 0;
+ int32_t width = 0;
+ Ref<Image> ao_image;
+ if (has_ao) {
+ height = ao_texture->get_height();
+ width = ao_texture->get_width();
+ ao_image = ao_texture->get_data();
+ Ref<ImageTexture> img_tex = ao_image;
+ if (img_tex.is_valid()) {
+ ao_image = img_tex->get_data();
+ }
+ if (ao_image->is_compressed()) {
+ ao_image->decompress();
+ }
+ }
+ Ref<Image> roughness_image;
+ if (has_roughness) {
+ height = roughness_texture->get_height();
+ width = roughness_texture->get_width();
+ roughness_image = roughness_texture->get_data();
+ Ref<ImageTexture> img_tex = roughness_image;
+ if (img_tex.is_valid()) {
+ roughness_image = img_tex->get_data();
+ }
+ if (roughness_image->is_compressed()) {
+ roughness_image->decompress();
+ }
+ }
+ Ref<Image> metallness_image;
+ if (has_metalness) {
+ height = metallic_texture->get_height();
+ width = metallic_texture->get_width();
+ metallness_image = metallic_texture->get_data();
+ Ref<ImageTexture> img_tex = metallness_image;
+ if (img_tex.is_valid()) {
+ metallness_image = img_tex->get_data();
+ }
+ if (metallness_image->is_compressed()) {
+ metallness_image->decompress();
+ }
+ }
+ Ref<Texture2D> albedo_texture = material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
+ if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) {
+ height = albedo_texture->get_height();
+ width = albedo_texture->get_width();
+ }
+ orm_image->create(width, height, false, Image::FORMAT_RGBA8);
+ if (ao_image.is_valid() && ao_image->get_size() != Vector2(width, height)) {
+ ao_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
+ }
+ if (roughness_image.is_valid() && roughness_image->get_size() != Vector2(width, height)) {
+ roughness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
+ }
+ if (metallness_image.is_valid() && metallness_image->get_size() != Vector2(width, height)) {
+ metallness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
+ }
+ for (int32_t h = 0; h < height; h++) {
+ for (int32_t w = 0; w < width; w++) {
+ Color c = Color(1.0f, 1.0f, 1.0f);
+ if (has_ao) {
+ if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == ao_channel) {
+ c.r = ao_image->get_pixel(w, h).r;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == ao_channel) {
+ c.r = ao_image->get_pixel(w, h).g;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == ao_channel) {
+ c.r = ao_image->get_pixel(w, h).b;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == ao_channel) {
+ c.r = ao_image->get_pixel(w, h).a;
+ }
+ }
+ if (has_roughness) {
+ if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == roughness_channel) {
+ c.g = roughness_image->get_pixel(w, h).r;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == roughness_channel) {
+ c.g = roughness_image->get_pixel(w, h).g;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == roughness_channel) {
+ c.g = roughness_image->get_pixel(w, h).b;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == roughness_channel) {
+ c.g = roughness_image->get_pixel(w, h).a;
+ }
+ }
+ if (has_metalness) {
+ if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == metalness_channel) {
+ c.b = metallness_image->get_pixel(w, h).r;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == metalness_channel) {
+ c.b = metallness_image->get_pixel(w, h).g;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == metalness_channel) {
+ c.b = metallness_image->get_pixel(w, h).b;
+ } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == metalness_channel) {
+ c.b = metallness_image->get_pixel(w, h).a;
+ }
+ }
+ orm_image->set_pixel(w, h, c);
+ }
+ }
+ orm_image->generate_mipmaps();
+ orm_texture->create_from_image(orm_image);
+ GLTFTextureIndex orm_texture_index = -1;
+ if (has_ao || has_roughness || has_metalness) {
+ orm_texture->set_name(material->get_name() + "_orm");
+ orm_texture_index = _set_texture(state, orm_texture);
+ }
+ if (has_ao) {
+ Dictionary ot;
+ ot["index"] = orm_texture_index;
+ d["occlusionTexture"] = ot;
+ }
+ if (has_roughness || has_metalness) {
+ mrt["index"] = orm_texture_index;
+ mrt["extensions"] = _serialize_texture_transform_uv1(material);
+ mr["metallicRoughnessTexture"] = mrt;
+ }
+ }
+ d["pbrMetallicRoughness"] = mr;
+ }
+
+ if (material->get_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING)) {
+ Dictionary nt;
+ Ref<ImageTexture> tex;
+ tex.instance();
+ {
+ Ref<Texture2D> normal_texture = material->get_texture(BaseMaterial3D::TEXTURE_NORMAL);
+ // Code for uncompressing RG normal maps
+ Ref<Image> img = normal_texture->get_data();
+ Ref<ImageTexture> img_tex = img;
+ if (img_tex.is_valid()) {
+ img = img_tex->get_data();
+ }
+ img->decompress();
+ img->convert(Image::FORMAT_RGBA8);
+ for (int32_t y = 0; y < img->get_height(); y++) {
+ for (int32_t x = 0; x < img->get_width(); x++) {
+ Color c = img->get_pixel(x, y);
+ Vector2 red_green = Vector2(c.r, c.g);
+ red_green = red_green * Vector2(2.0f, 2.0f) - Vector2(1.0f, 1.0f);
+ float blue = 1.0f - red_green.dot(red_green);
+ blue = MAX(0.0f, blue);
+ c.b = Math::sqrt(blue);
+ img->set_pixel(x, y, c);
+ }
+ }
+ tex->create_from_image(img);
+ }
+ Ref<Texture2D> normal_texture = material->get_texture(BaseMaterial3D::TEXTURE_NORMAL);
+ GLTFTextureIndex gltf_texture_index = -1;
+ if (tex.is_valid() && tex->get_data().is_valid()) {
+ tex->set_name(material->get_name() + "_normal");
+ gltf_texture_index = _set_texture(state, tex);
+ }
+ nt["scale"] = material->get_normal_scale();
+ if (gltf_texture_index != -1) {
+ nt["index"] = gltf_texture_index;
+ d["normalTexture"] = nt;
+ }
+ }
+
+ if (material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
+ const Color c = material->get_emission().to_srgb();
+ Array arr;
+ arr.push_back(c.r);
+ arr.push_back(c.g);
+ arr.push_back(c.b);
+ d["emissiveFactor"] = arr;
+ }
+ if (material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
+ Dictionary et;
+ Ref<Texture2D> emission_texture = material->get_texture(BaseMaterial3D::TEXTURE_EMISSION);
+ GLTFTextureIndex gltf_texture_index = -1;
+ if (emission_texture.is_valid() && emission_texture->get_data().is_valid()) {
+ emission_texture->set_name(material->get_name() + "_emission");
+ gltf_texture_index = _set_texture(state, emission_texture);
+ }
+
+ if (gltf_texture_index != -1) {
+ et["index"] = gltf_texture_index;
+ d["emissiveTexture"] = et;
+ }
+ }
+ const bool ds = material->get_cull_mode() == BaseMaterial3D::CULL_DISABLED;
+ if (ds) {
+ d["doubleSided"] = ds;
+ }
+ if (material->get_transparency() == BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR) {
+ d["alphaMode"] = "MASK";
+ d["alphaCutoff"] = material->get_alpha_scissor_threshold();
+ } else if (material->get_transparency() != BaseMaterial3D::TRANSPARENCY_DISABLED) {
+ d["alphaMode"] = "BLEND";
+ }
+ materials.push_back(d);
+ }
+ state->json["materials"] = materials;
+ print_verbose("Total materials: " + itos(state->materials.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_materials(Ref<GLTFState> state) {
+ if (!state->json.has("materials"))
+ return OK;
+
+ const Array &materials = state->json["materials"];
+ for (GLTFMaterialIndex i = 0; i < materials.size(); i++) {
+ const Dictionary &d = materials[i];
+
+ Ref<StandardMaterial3D> material;
+ material.instance();
+ if (d.has("name")) {
+ material->set_name(d["name"]);
+ }
+ material->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
+ Dictionary pbr_spec_gloss_extensions;
+ if (d.has("extensions")) {
+ pbr_spec_gloss_extensions = d["extensions"];
+ }
+ if (pbr_spec_gloss_extensions.has("KHR_materials_pbrSpecularGlossiness")) {
+ WARN_PRINT("Material uses a specular and glossiness workflow. Textures will be converted to roughness and metallic workflow, which may not be 100% accurate.");
+ Dictionary sgm = pbr_spec_gloss_extensions["KHR_materials_pbrSpecularGlossiness"];
+
+ Ref<GLTFSpecGloss> spec_gloss;
+ spec_gloss.instance();
+ if (sgm.has("diffuseTexture")) {
+ const Dictionary &diffuse_texture_dict = sgm["diffuseTexture"];
+ if (diffuse_texture_dict.has("index")) {
+ Ref<Texture2D> diffuse_texture = _get_texture(state, diffuse_texture_dict["index"]);
+ if (diffuse_texture.is_valid()) {
+ spec_gloss->diffuse_img = diffuse_texture->get_data();
+ material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_texture);
+ }
+ }
+ }
+ if (sgm.has("diffuseFactor")) {
+ const Array &arr = sgm["diffuseFactor"];
+ ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
+ const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
+ spec_gloss->diffuse_factor = c;
+ material->set_albedo(spec_gloss->diffuse_factor);
+ }
+
+ if (sgm.has("specularFactor")) {
+ const Array &arr = sgm["specularFactor"];
+ ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
+ spec_gloss->specular_factor = Color(arr[0], arr[1], arr[2]);
+ }
+
+ if (sgm.has("glossinessFactor")) {
+ spec_gloss->gloss_factor = sgm["glossinessFactor"];
+ material->set_roughness(1.0f - CLAMP(spec_gloss->gloss_factor, 0.0f, 1.0f));
+ }
+ if (sgm.has("specularGlossinessTexture")) {
+ const Dictionary &spec_gloss_texture = sgm["specularGlossinessTexture"];
+ if (spec_gloss_texture.has("index")) {
+ const Ref<Texture2D> orig_texture = _get_texture(state, spec_gloss_texture["index"]);
+ if (orig_texture.is_valid()) {
+ spec_gloss->spec_gloss_img = orig_texture->get_data();
+ }
+ }
+ }
+ spec_gloss_to_rough_metal(spec_gloss, material);
+
+ } else if (d.has("pbrMetallicRoughness")) {
+ const Dictionary &mr = d["pbrMetallicRoughness"];
+ if (mr.has("baseColorFactor")) {
+ const Array &arr = mr["baseColorFactor"];
+ ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
+ const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
+ material->set_albedo(c);
+ }
+
+ if (mr.has("baseColorTexture")) {
+ const Dictionary &bct = mr["baseColorTexture"];
+ if (bct.has("index")) {
+ material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, _get_texture(state, bct["index"]));
+ }
+ if (!mr.has("baseColorFactor")) {
+ material->set_albedo(Color(1, 1, 1));
+ }
+ _set_texture_transform_uv1(bct, material);
+ }
+
+ if (mr.has("metallicFactor")) {
+ material->set_metallic(mr["metallicFactor"]);
+ } else {
+ material->set_metallic(1.0);
+ }
+
+ if (mr.has("roughnessFactor")) {
+ material->set_roughness(mr["roughnessFactor"]);
+ } else {
+ material->set_roughness(1.0);
+ }
+
+ if (mr.has("metallicRoughnessTexture")) {
+ const Dictionary &bct = mr["metallicRoughnessTexture"];
+ if (bct.has("index")) {
+ const Ref<Texture2D> t = _get_texture(state, bct["index"]);
+ material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, t);
+ material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE);
+ material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, t);
+ material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN);
+ if (!mr.has("metallicFactor")) {
+ material->set_metallic(1);
+ }
+ if (!mr.has("roughnessFactor")) {
+ material->set_roughness(1);
+ }
+ }
+ }
+ }
+
+ if (d.has("normalTexture")) {
+ const Dictionary &bct = d["normalTexture"];
+ if (bct.has("index")) {
+ material->set_texture(BaseMaterial3D::TEXTURE_NORMAL, _get_texture(state, bct["index"]));
+ material->set_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING, true);
+ }
+ if (bct.has("scale")) {
+ material->set_normal_scale(bct["scale"]);
+ }
+ }
+ if (d.has("occlusionTexture")) {
+ const Dictionary &bct = d["occlusionTexture"];
+ if (bct.has("index")) {
+ material->set_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"]));
+ material->set_ao_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED);
+ material->set_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION, true);
+ }
+ }
+
+ if (d.has("emissiveFactor")) {
+ const Array &arr = d["emissiveFactor"];
+ ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
+ const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
+ material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true);
+
+ material->set_emission(c);
+ }
+
+ if (d.has("emissiveTexture")) {
+ const Dictionary &bct = d["emissiveTexture"];
+ if (bct.has("index")) {
+ material->set_texture(BaseMaterial3D::TEXTURE_EMISSION, _get_texture(state, bct["index"]));
+ material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true);
+ material->set_emission(Color(0, 0, 0));
+ }
+ }
+
+ if (d.has("doubleSided")) {
+ const bool ds = d["doubleSided"];
+ if (ds) {
+ material->set_cull_mode(BaseMaterial3D::CULL_DISABLED);
+ }
+ }
+
+ if (d.has("alphaMode")) {
+ const String &am = d["alphaMode"];
+ if (am == "BLEND") {
+ material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS);
+ } else if (am == "MASK") {
+ material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR);
+ if (d.has("alphaCutoff")) {
+ material->set_alpha_scissor_threshold(d["alphaCutoff"]);
+ } else {
+ material->set_alpha_scissor_threshold(0.5f);
+ }
+ }
+ }
+ state->materials.push_back(material);
+ }
+
+ print_verbose("Total materials: " + itos(state->materials.size()));
+
+ return OK;
+}
+
+void GLTFDocument::_set_texture_transform_uv1(const Dictionary &d, Ref<BaseMaterial3D> material) {
+ if (d.has("extensions")) {
+ const Dictionary &extensions = d["extensions"];
+ if (extensions.has("KHR_texture_transform")) {
+ const Dictionary &texture_transform = extensions["KHR_texture_transform"];
+ const Array &offset_arr = texture_transform["offset"];
+ if (offset_arr.size() == 2) {
+ const Vector3 offset_vector3 = Vector3(offset_arr[0], offset_arr[1], 0.0f);
+ material->set_uv1_offset(offset_vector3);
+ }
+
+ const Array &scale_arr = texture_transform["scale"];
+ if (scale_arr.size() == 2) {
+ const Vector3 scale_vector3 = Vector3(scale_arr[0], scale_arr[1], 1.0f);
+ material->set_uv1_scale(scale_vector3);
+ }
+ }
+ }
+}
+
+void GLTFDocument::spec_gloss_to_rough_metal(Ref<GLTFSpecGloss> r_spec_gloss, Ref<BaseMaterial3D> p_material) {
+ if (r_spec_gloss->spec_gloss_img.is_null()) {
+ return;
+ }
+ if (r_spec_gloss->diffuse_img.is_null()) {
+ return;
+ }
+ Ref<Image> rm_img;
+ rm_img.instance();
+ bool has_roughness = false;
+ bool has_metal = false;
+ p_material->set_roughness(1.0f);
+ p_material->set_metallic(1.0f);
+ rm_img->create(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), false, Image::FORMAT_RGBA8);
+ r_spec_gloss->spec_gloss_img->decompress();
+ if (r_spec_gloss->diffuse_img.is_valid()) {
+ r_spec_gloss->diffuse_img->decompress();
+ r_spec_gloss->diffuse_img->resize(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), Image::INTERPOLATE_LANCZOS);
+ r_spec_gloss->spec_gloss_img->resize(r_spec_gloss->diffuse_img->get_width(), r_spec_gloss->diffuse_img->get_height(), Image::INTERPOLATE_LANCZOS);
+ }
+ for (int32_t y = 0; y < r_spec_gloss->spec_gloss_img->get_height(); y++) {
+ for (int32_t x = 0; x < r_spec_gloss->spec_gloss_img->get_width(); x++) {
+ const Color specular_pixel = r_spec_gloss->spec_gloss_img->get_pixel(x, y).to_linear();
+ Color specular = Color(specular_pixel.r, specular_pixel.g, specular_pixel.b);
+ specular *= r_spec_gloss->specular_factor;
+ Color diffuse = Color(1.0f, 1.0f, 1.0f);
+ diffuse *= r_spec_gloss->diffuse_img->get_pixel(x, y).to_linear();
+ float metallic = 0.0f;
+ Color base_color;
+ spec_gloss_to_metal_base_color(specular, diffuse, base_color, metallic);
+ Color mr = Color(1.0f, 1.0f, 1.0f);
+ mr.g = specular_pixel.a;
+ mr.b = metallic;
+ if (!Math::is_equal_approx(mr.g, 1.0f)) {
+ has_roughness = true;
+ }
+ if (!Math::is_equal_approx(mr.b, 0.0f)) {
+ has_metal = true;
+ }
+ mr.g *= r_spec_gloss->gloss_factor;
+ mr.g = 1.0f - mr.g;
+ rm_img->set_pixel(x, y, mr);
+ if (r_spec_gloss->diffuse_img.is_valid()) {
+ r_spec_gloss->diffuse_img->set_pixel(x, y, base_color.to_srgb());
+ }
+ }
+ }
+ rm_img->generate_mipmaps();
+ r_spec_gloss->diffuse_img->generate_mipmaps();
+ Ref<ImageTexture> diffuse_image_texture;
+ diffuse_image_texture.instance();
+ diffuse_image_texture->create_from_image(r_spec_gloss->diffuse_img);
+ p_material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_image_texture);
+ Ref<ImageTexture> rm_image_texture;
+ rm_image_texture.instance();
+ rm_image_texture->create_from_image(rm_img);
+ if (has_roughness) {
+ p_material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, rm_image_texture);
+ p_material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN);
+ }
+
+ if (has_metal) {
+ p_material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, rm_image_texture);
+ p_material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE);
+ }
+}
+
+void GLTFDocument::spec_gloss_to_metal_base_color(const Color &p_specular_factor, const Color &p_diffuse, Color &r_base_color, float &r_metallic) {
+ const Color DIELECTRIC_SPECULAR = Color(0.04f, 0.04f, 0.04f);
+ Color specular = Color(p_specular_factor.r, p_specular_factor.g, p_specular_factor.b);
+ const float one_minus_specular_strength = 1.0f - get_max_component(specular);
+ const float dielectric_specular_red = DIELECTRIC_SPECULAR.r;
+ float brightness_diffuse = get_perceived_brightness(p_diffuse);
+ const float brightness_specular = get_perceived_brightness(specular);
+ r_metallic = solve_metallic(dielectric_specular_red, brightness_diffuse, brightness_specular, one_minus_specular_strength);
+ const float one_minus_metallic = 1.0f - r_metallic;
+ const Color base_color_from_diffuse = p_diffuse * (one_minus_specular_strength / (1.0f - dielectric_specular_red) / MAX(one_minus_metallic, CMP_EPSILON));
+ const Color base_color_from_specular = (specular - (DIELECTRIC_SPECULAR * (one_minus_metallic))) * (1.0f / MAX(r_metallic, CMP_EPSILON));
+ r_base_color.r = Math::lerp(base_color_from_diffuse.r, base_color_from_specular.r, r_metallic * r_metallic);
+ r_base_color.g = Math::lerp(base_color_from_diffuse.g, base_color_from_specular.g, r_metallic * r_metallic);
+ r_base_color.b = Math::lerp(base_color_from_diffuse.b, base_color_from_specular.b, r_metallic * r_metallic);
+ r_base_color.a = p_diffuse.a;
+ r_base_color.r = CLAMP(r_base_color.r, 0.0f, 1.0f);
+ r_base_color.g = CLAMP(r_base_color.g, 0.0f, 1.0f);
+ r_base_color.b = CLAMP(r_base_color.b, 0.0f, 1.0f);
+ r_base_color.a = CLAMP(r_base_color.a, 0.0f, 1.0f);
+}
+
+GLTFNodeIndex GLTFDocument::_find_highest_node(Ref<GLTFState> state, const Vector<GLTFNodeIndex> &subset) {
+ int highest = -1;
+ GLTFNodeIndex best_node = -1;
+
+ for (int i = 0; i < subset.size(); ++i) {
+ const GLTFNodeIndex node_i = subset[i];
+ const Ref<GLTFNode> node = state->nodes[node_i];
+
+ if (highest == -1 || node->height < highest) {
+ highest = node->height;
+ best_node = node_i;
+ }
+ }
+
+ return best_node;
+}
+
+bool GLTFDocument::_capture_nodes_in_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin, const GLTFNodeIndex node_index) {
+ bool found_joint = false;
+
+ for (int i = 0; i < state->nodes[node_index]->children.size(); ++i) {
+ found_joint |= _capture_nodes_in_skin(state, skin, state->nodes[node_index]->children[i]);
+ }
+
+ if (found_joint) {
+ // Mark it if we happen to find another skins joint...
+ if (state->nodes[node_index]->joint && skin->joints.find(node_index) < 0) {
+ skin->joints.push_back(node_index);
+ } else if (skin->non_joints.find(node_index) < 0) {
+ skin->non_joints.push_back(node_index);
+ }
+ }
+
+ if (skin->joints.find(node_index) > 0) {
+ return true;
+ }
+
+ return false;
+}
+
+void GLTFDocument::_capture_nodes_for_multirooted_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
+ DisjointSet<GLTFNodeIndex> disjoint_set;
+
+ for (int i = 0; i < skin->joints.size(); ++i) {
+ const GLTFNodeIndex node_index = skin->joints[i];
+ const GLTFNodeIndex parent = state->nodes[node_index]->parent;
+ disjoint_set.insert(node_index);
+
+ if (skin->joints.find(parent) >= 0) {
+ disjoint_set.create_union(parent, node_index);
+ }
+ }
+
+ Vector<GLTFNodeIndex> roots;
+ disjoint_set.get_representatives(roots);
+
+ if (roots.size() <= 1) {
+ return;
+ }
+
+ int maxHeight = -1;
+
+ // Determine the max height rooted tree
+ for (int i = 0; i < roots.size(); ++i) {
+ const GLTFNodeIndex root = roots[i];
+
+ if (maxHeight == -1 || state->nodes[root]->height < maxHeight) {
+ maxHeight = state->nodes[root]->height;
+ }
+ }
+
+ // Go up the tree till all of the multiple roots of the skin are at the same hierarchy level.
+ // This sucks, but 99% of all game engines (not just Godot) would have this same issue.
+ for (int i = 0; i < roots.size(); ++i) {
+ GLTFNodeIndex current_node = roots[i];
+ while (state->nodes[current_node]->height > maxHeight) {
+ GLTFNodeIndex parent = state->nodes[current_node]->parent;
+
+ if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) {
+ skin->joints.push_back(parent);
+ } else if (skin->non_joints.find(parent) < 0) {
+ skin->non_joints.push_back(parent);
+ }
+
+ current_node = parent;
+ }
+
+ // replace the roots
+ roots.write[i] = current_node;
+ }
+
+ // Climb up the tree until they all have the same parent
+ bool all_same;
+
+ do {
+ all_same = true;
+ const GLTFNodeIndex first_parent = state->nodes[roots[0]]->parent;
+
+ for (int i = 1; i < roots.size(); ++i) {
+ all_same &= (first_parent == state->nodes[roots[i]]->parent);
+ }
+
+ if (!all_same) {
+ for (int i = 0; i < roots.size(); ++i) {
+ const GLTFNodeIndex current_node = roots[i];
+ const GLTFNodeIndex parent = state->nodes[current_node]->parent;
+
+ if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) {
+ skin->joints.push_back(parent);
+ } else if (skin->non_joints.find(parent) < 0) {
+ skin->non_joints.push_back(parent);
+ }
+
+ roots.write[i] = parent;
+ }
+ }
+
+ } while (!all_same);
+}
+
+Error GLTFDocument::_expand_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
+ _capture_nodes_for_multirooted_skin(state, skin);
+
+ // Grab all nodes that lay in between skin joints/nodes
+ DisjointSet<GLTFNodeIndex> disjoint_set;
+
+ Vector<GLTFNodeIndex> all_skin_nodes;
+ all_skin_nodes.append_array(skin->joints);
+ all_skin_nodes.append_array(skin->non_joints);
+
+ for (int i = 0; i < all_skin_nodes.size(); ++i) {
+ const GLTFNodeIndex node_index = all_skin_nodes[i];
+ const GLTFNodeIndex parent = state->nodes[node_index]->parent;
+ disjoint_set.insert(node_index);
+
+ if (all_skin_nodes.find(parent) >= 0) {
+ disjoint_set.create_union(parent, node_index);
+ }
+ }
+
+ Vector<GLTFNodeIndex> out_owners;
+ disjoint_set.get_representatives(out_owners);
+
+ Vector<GLTFNodeIndex> out_roots;
+
+ for (int i = 0; i < out_owners.size(); ++i) {
+ Vector<GLTFNodeIndex> set;
+ disjoint_set.get_members(set, out_owners[i]);
+
+ const GLTFNodeIndex root = _find_highest_node(state, set);
+ ERR_FAIL_COND_V(root < 0, FAILED);
+ out_roots.push_back(root);
+ }
+
+ out_roots.sort();
+
+ for (int i = 0; i < out_roots.size(); ++i) {
+ _capture_nodes_in_skin(state, skin, out_roots[i]);
+ }
+
+ skin->roots = out_roots;
+
+ return OK;
+}
+
+Error GLTFDocument::_verify_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
+ // This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is)
+ // In case additional interpolating logic is added to the skins, this will help ensure that you
+ // do not cause it to self implode into a fiery blaze
+
+ // We are going to re-calculate the root nodes and compare them to the ones saved in the skin,
+ // then ensure the multiple trees (if they exist) are on the same sublevel
+
+ // Grab all nodes that lay in between skin joints/nodes
+ DisjointSet<GLTFNodeIndex> disjoint_set;
+
+ Vector<GLTFNodeIndex> all_skin_nodes;
+ all_skin_nodes.append_array(skin->joints);
+ all_skin_nodes.append_array(skin->non_joints);
+
+ for (int i = 0; i < all_skin_nodes.size(); ++i) {
+ const GLTFNodeIndex node_index = all_skin_nodes[i];
+ const GLTFNodeIndex parent = state->nodes[node_index]->parent;
+ disjoint_set.insert(node_index);
+
+ if (all_skin_nodes.find(parent) >= 0) {
+ disjoint_set.create_union(parent, node_index);
+ }
+ }
+
+ Vector<GLTFNodeIndex> out_owners;
+ disjoint_set.get_representatives(out_owners);
+
+ Vector<GLTFNodeIndex> out_roots;
+
+ for (int i = 0; i < out_owners.size(); ++i) {
+ Vector<GLTFNodeIndex> set;
+ disjoint_set.get_members(set, out_owners[i]);
+
+ const GLTFNodeIndex root = _find_highest_node(state, set);
+ ERR_FAIL_COND_V(root < 0, FAILED);
+ out_roots.push_back(root);
+ }
+
+ out_roots.sort();
+
+ ERR_FAIL_COND_V(out_roots.size() == 0, FAILED);
+
+ // Make sure the roots are the exact same (they better be)
+ ERR_FAIL_COND_V(out_roots.size() != skin->roots.size(), FAILED);
+ for (int i = 0; i < out_roots.size(); ++i) {
+ ERR_FAIL_COND_V(out_roots[i] != skin->roots[i], FAILED);
+ }
+
+ // Single rooted skin? Perfectly ok!
+ if (out_roots.size() == 1) {
+ return OK;
+ }
+
+ // Make sure all parents of a multi-rooted skin are the SAME
+ const GLTFNodeIndex parent = state->nodes[out_roots[0]]->parent;
+ for (int i = 1; i < out_roots.size(); ++i) {
+ if (state->nodes[out_roots[i]]->parent != parent) {
+ return FAILED;
+ }
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_skins(Ref<GLTFState> state) {
+ if (!state->json.has("skins"))
+ return OK;
+
+ const Array &skins = state->json["skins"];
+
+ // Create the base skins, and mark nodes that are joints
+ for (int i = 0; i < skins.size(); i++) {
+ const Dictionary &d = skins[i];
+
+ Ref<GLTFSkin> skin;
+ skin.instance();
+
+ ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR);
+
+ const Array &joints = d["joints"];
+
+ if (d.has("inverseBindMatrices")) {
+ skin->inverse_binds = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false);
+ ERR_FAIL_COND_V(skin->inverse_binds.size() != joints.size(), ERR_PARSE_ERROR);
+ }
+
+ for (int j = 0; j < joints.size(); j++) {
+ const GLTFNodeIndex node = joints[j];
+ ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR);
+
+ skin->joints.push_back(node);
+ skin->joints_original.push_back(node);
+
+ state->nodes.write[node]->joint = true;
+ }
+
+ if (d.has("name")) {
+ skin->set_name(d["name"]);
+ }
+
+ if (d.has("skeleton")) {
+ skin->skin_root = d["skeleton"];
+ }
+
+ state->skins.push_back(skin);
+ }
+
+ for (GLTFSkinIndex i = 0; i < state->skins.size(); ++i) {
+ Ref<GLTFSkin> skin = state->skins.write[i];
+
+ // Expand the skin to capture all the extra non-joints that lie in between the actual joints,
+ // and expand the hierarchy to ensure multi-rooted trees lie on the same height level
+ ERR_FAIL_COND_V(_expand_skin(state, skin), ERR_PARSE_ERROR);
+ ERR_FAIL_COND_V(_verify_skin(state, skin), ERR_PARSE_ERROR);
+ }
+
+ print_verbose("glTF: Total skins: " + itos(state->skins.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_determine_skeletons(Ref<GLTFState> state) {
+ // Using a disjoint set, we are going to potentially combine all skins that are actually branches
+ // of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton.
+ // This is another unclear issue caused by the current glTF specification.
+
+ DisjointSet<GLTFNodeIndex> skeleton_sets;
+
+ for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
+ const Ref<GLTFSkin> skin = state->skins[skin_i];
+
+ Vector<GLTFNodeIndex> all_skin_nodes;
+ all_skin_nodes.append_array(skin->joints);
+ all_skin_nodes.append_array(skin->non_joints);
+
+ for (int i = 0; i < all_skin_nodes.size(); ++i) {
+ const GLTFNodeIndex node_index = all_skin_nodes[i];
+ const GLTFNodeIndex parent = state->nodes[node_index]->parent;
+ skeleton_sets.insert(node_index);
+
+ if (all_skin_nodes.find(parent) >= 0) {
+ skeleton_sets.create_union(parent, node_index);
+ }
+ }
+
+ // We are going to connect the separate skin subtrees in each skin together
+ // so that the final roots are entire sets of valid skin trees
+ for (int i = 1; i < skin->roots.size(); ++i) {
+ skeleton_sets.create_union(skin->roots[0], skin->roots[i]);
+ }
+ }
+
+ { // attempt to joint all touching subsets (siblings/parent are part of another skin)
+ Vector<GLTFNodeIndex> groups_representatives;
+ skeleton_sets.get_representatives(groups_representatives);
+
+ Vector<GLTFNodeIndex> highest_group_members;
+ Vector<Vector<GLTFNodeIndex>> groups;
+ for (int i = 0; i < groups_representatives.size(); ++i) {
+ Vector<GLTFNodeIndex> group;
+ skeleton_sets.get_members(group, groups_representatives[i]);
+ highest_group_members.push_back(_find_highest_node(state, group));
+ groups.push_back(group);
+ }
+
+ for (int i = 0; i < highest_group_members.size(); ++i) {
+ const GLTFNodeIndex node_i = highest_group_members[i];
+
+ // Attach any siblings together (this needs to be done n^2/2 times)
+ for (int j = i + 1; j < highest_group_members.size(); ++j) {
+ const GLTFNodeIndex node_j = highest_group_members[j];
+
+ // Even if they are siblings under the root! :)
+ if (state->nodes[node_i]->parent == state->nodes[node_j]->parent) {
+ skeleton_sets.create_union(node_i, node_j);
+ }
+ }
+
+ // Attach any parenting going on together (we need to do this n^2 times)
+ const GLTFNodeIndex node_i_parent = state->nodes[node_i]->parent;
+ if (node_i_parent >= 0) {
+ for (int j = 0; j < groups.size() && i != j; ++j) {
+ const Vector<GLTFNodeIndex> &group = groups[j];
+
+ if (group.find(node_i_parent) >= 0) {
+ const GLTFNodeIndex node_j = highest_group_members[j];
+ skeleton_sets.create_union(node_i, node_j);
+ }
+ }
+ }
+ }
+ }
+
+ // At this point, the skeleton groups should be finalized
+ Vector<GLTFNodeIndex> skeleton_owners;
+ skeleton_sets.get_representatives(skeleton_owners);
+
+ // Mark all the skins actual skeletons, after we have merged them
+ for (GLTFSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) {
+ const GLTFNodeIndex skeleton_owner = skeleton_owners[skel_i];
+ Ref<GLTFSkeleton> skeleton;
+ skeleton.instance();
+
+ Vector<GLTFNodeIndex> skeleton_nodes;
+ skeleton_sets.get_members(skeleton_nodes, skeleton_owner);
+
+ for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
+ Ref<GLTFSkin> skin = state->skins.write[skin_i];
+
+ // If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton
+ for (int i = 0; i < skeleton_nodes.size(); ++i) {
+ GLTFNodeIndex skel_node_i = skeleton_nodes[i];
+ if (skin->joints.find(skel_node_i) >= 0 || skin->non_joints.find(skel_node_i) >= 0) {
+ skin->skeleton = skel_i;
+ continue;
+ }
+ }
+ }
+
+ Vector<GLTFNodeIndex> non_joints;
+ for (int i = 0; i < skeleton_nodes.size(); ++i) {
+ const GLTFNodeIndex node_i = skeleton_nodes[i];
+
+ if (state->nodes[node_i]->joint) {
+ skeleton->joints.push_back(node_i);
+ } else {
+ non_joints.push_back(node_i);
+ }
+ }
+
+ state->skeletons.push_back(skeleton);
+
+ _reparent_non_joint_skeleton_subtrees(state, state->skeletons.write[skel_i], non_joints);
+ }
+
+ for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) {
+ Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i];
+
+ for (int i = 0; i < skeleton->joints.size(); ++i) {
+ const GLTFNodeIndex node_i = skeleton->joints[i];
+ Ref<GLTFNode> node = state->nodes[node_i];
+
+ ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR);
+ ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR);
+ node->skeleton = skel_i;
+ }
+
+ ERR_FAIL_COND_V(_determine_skeleton_roots(state, skel_i), ERR_PARSE_ERROR);
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_reparent_non_joint_skeleton_subtrees(Ref<GLTFState> state, Ref<GLTFSkeleton> skeleton, const Vector<GLTFNodeIndex> &non_joints) {
+ DisjointSet<GLTFNodeIndex> subtree_set;
+
+ // Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector)
+ // This way we can find any joints that lie in between joints, as the current glTF specification
+ // mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we
+ // can remove this code.
+
+ // skinD depicted here explains this issue:
+ // https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin
+
+ for (int i = 0; i < non_joints.size(); ++i) {
+ const GLTFNodeIndex node_i = non_joints[i];
+
+ subtree_set.insert(node_i);
+
+ const GLTFNodeIndex parent_i = state->nodes[node_i]->parent;
+ if (parent_i >= 0 && non_joints.find(parent_i) >= 0 && !state->nodes[parent_i]->joint) {
+ subtree_set.create_union(parent_i, node_i);
+ }
+ }
+
+ // Find all the non joint subtrees and re-parent them to a new "fake" joint
+
+ Vector<GLTFNodeIndex> non_joint_subtree_roots;
+ subtree_set.get_representatives(non_joint_subtree_roots);
+
+ for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) {
+ const GLTFNodeIndex subtree_root = non_joint_subtree_roots[root_i];
+
+ Vector<GLTFNodeIndex> subtree_nodes;
+ subtree_set.get_members(subtree_nodes, subtree_root);
+
+ for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) {
+ ERR_FAIL_COND_V(_reparent_to_fake_joint(state, skeleton, subtree_nodes[subtree_i]), FAILED);
+
+ // We modified the tree, recompute all the heights
+ _compute_node_heights(state);
+ }
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_reparent_to_fake_joint(Ref<GLTFState> state, Ref<GLTFSkeleton> skeleton, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> node = state->nodes[node_index];
+
+ // Can we just "steal" this joint if it is just a spatial node?
+ if (node->skin < 0 && node->mesh < 0 && node->camera < 0) {
+ node->joint = true;
+ // Add the joint to the skeletons joints
+ skeleton->joints.push_back(node_index);
+ return OK;
+ }
+
+ GLTFNode *fake_joint = memnew(GLTFNode);
+ const GLTFNodeIndex fake_joint_index = state->nodes.size();
+ state->nodes.push_back(fake_joint);
+
+ // We better not be a joint, or we messed up in our logic
+ if (node->joint)
+ return FAILED;
+
+ fake_joint->translation = node->translation;
+ fake_joint->rotation = node->rotation;
+ fake_joint->scale = node->scale;
+ fake_joint->xform = node->xform;
+ fake_joint->joint = true;
+
+ // We can use the exact same name here, because the joint will be inside a skeleton and not the scene
+ fake_joint->set_name(node->get_name());
+
+ // Clear the nodes transforms, since it will be parented to the fake joint
+ node->translation = Vector3(0, 0, 0);
+ node->rotation = Quat();
+ node->scale = Vector3(1, 1, 1);
+ node->xform = Transform();
+
+ // Transfer the node children to the fake joint
+ for (int child_i = 0; child_i < node->children.size(); ++child_i) {
+ Ref<GLTFNode> child = state->nodes[node->children[child_i]];
+ child->parent = fake_joint_index;
+ }
+
+ fake_joint->children = node->children;
+ node->children.clear();
+
+ // add the fake joint to the parent and remove the original joint
+ if (node->parent >= 0) {
+ Ref<GLTFNode> parent = state->nodes[node->parent];
+ parent->children.erase(node_index);
+ parent->children.push_back(fake_joint_index);
+ fake_joint->parent = node->parent;
+ }
+
+ // Add the node to the fake joint
+ fake_joint->children.push_back(node_index);
+ node->parent = fake_joint_index;
+ node->fake_joint_parent = fake_joint_index;
+
+ // Add the fake joint to the skeletons joints
+ skeleton->joints.push_back(fake_joint_index);
+
+ // Replace skin_skeletons with fake joints if we must.
+ for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
+ Ref<GLTFSkin> skin = state->skins.write[skin_i];
+ if (skin->skin_root == node_index) {
+ skin->skin_root = fake_joint_index;
+ }
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_determine_skeleton_roots(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i) {
+ DisjointSet<GLTFNodeIndex> disjoint_set;
+
+ for (GLTFNodeIndex i = 0; i < state->nodes.size(); ++i) {
+ const Ref<GLTFNode> node = state->nodes[i];
+
+ if (node->skeleton != skel_i) {
+ continue;
+ }
+
+ disjoint_set.insert(i);
+
+ if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) {
+ disjoint_set.create_union(node->parent, i);
+ }
+ }
+
+ Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i];
+
+ Vector<GLTFNodeIndex> owners;
+ disjoint_set.get_representatives(owners);
+
+ Vector<GLTFNodeIndex> roots;
+
+ for (int i = 0; i < owners.size(); ++i) {
+ Vector<GLTFNodeIndex> set;
+ disjoint_set.get_members(set, owners[i]);
+ const GLTFNodeIndex root = _find_highest_node(state, set);
+ ERR_FAIL_COND_V(root < 0, FAILED);
+ roots.push_back(root);
+ }
+
+ roots.sort();
+
+ skeleton->roots = roots;
+
+ if (roots.size() == 0) {
+ return FAILED;
+ } else if (roots.size() == 1) {
+ return OK;
+ }
+
+ // Check that the subtrees have the same parent root
+ const GLTFNodeIndex parent = state->nodes[roots[0]]->parent;
+ for (int i = 1; i < roots.size(); ++i) {
+ if (state->nodes[roots[i]]->parent != parent) {
+ return FAILED;
+ }
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_create_skeletons(Ref<GLTFState> state) {
+ for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) {
+ Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i];
+
+ Skeleton3D *skeleton = memnew(Skeleton3D);
+ gltf_skeleton->godot_skeleton = skeleton;
+
+ // Make a unique name, no gltf node represents this skeleton
+ skeleton->set_name(_gen_unique_name(state, "Skeleton3D"));
+
+ List<GLTFNodeIndex> bones;
+
+ for (int i = 0; i < gltf_skeleton->roots.size(); ++i) {
+ bones.push_back(gltf_skeleton->roots[i]);
+ }
+
+ // Make the skeleton creation deterministic by going through the roots in
+ // a sorted order, and DEPTH FIRST
+ bones.sort();
+
+ while (!bones.is_empty()) {
+ const GLTFNodeIndex node_i = bones.front()->get();
+ bones.pop_front();
+
+ Ref<GLTFNode> node = state->nodes[node_i];
+ ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED);
+
+ { // Add all child nodes to the stack (deterministically)
+ Vector<GLTFNodeIndex> child_nodes;
+ for (int i = 0; i < node->children.size(); ++i) {
+ const GLTFNodeIndex child_i = node->children[i];
+ if (state->nodes[child_i]->skeleton == skel_i) {
+ child_nodes.push_back(child_i);
+ }
+ }
+
+ // Depth first insertion
+ child_nodes.sort();
+ for (int i = child_nodes.size() - 1; i >= 0; --i) {
+ bones.push_front(child_nodes[i]);
+ }
+ }
+
+ const int bone_index = skeleton->get_bone_count();
+
+ if (node->get_name().is_empty()) {
+ node->set_name("bone");
+ }
+
+ node->set_name(_gen_unique_bone_name(state, skel_i, node->get_name()));
+
+ skeleton->add_bone(node->get_name());
+ skeleton->set_bone_rest(bone_index, node->xform);
+
+ if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) {
+ const int bone_parent = skeleton->find_bone(state->nodes[node->parent]->get_name());
+ ERR_FAIL_COND_V(bone_parent < 0, FAILED);
+ skeleton->set_bone_parent(bone_index, skeleton->find_bone(state->nodes[node->parent]->get_name()));
+ }
+
+ state->scene_nodes.insert(node_i, skeleton);
+ }
+ }
+
+ ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(state), ERR_PARSE_ERROR);
+
+ return OK;
+}
+
+Error GLTFDocument::_map_skin_joints_indices_to_skeleton_bone_indices(Ref<GLTFState> state) {
+ for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
+ Ref<GLTFSkin> skin = state->skins.write[skin_i];
+
+ Ref<GLTFSkeleton> skeleton = state->skeletons[skin->skeleton];
+
+ for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) {
+ const GLTFNodeIndex node_i = skin->joints_original[joint_index];
+ const Ref<GLTFNode> node = state->nodes[node_i];
+
+ const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name());
+ ERR_FAIL_COND_V(bone_index < 0, FAILED);
+
+ skin->joint_i_to_bone_i.insert(joint_index, bone_index);
+ }
+ }
+
+ return OK;
+}
+
+Error GLTFDocument::_serialize_skins(Ref<GLTFState> state) {
+ _remove_duplicate_skins(state);
+ return OK;
+}
+
+Error GLTFDocument::_create_skins(Ref<GLTFState> state) {
+ for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
+ Ref<GLTFSkin> gltf_skin = state->skins.write[skin_i];
+
+ Ref<Skin> skin;
+ skin.instance();
+
+ // Some skins don't have IBM's! What absolute monsters!
+ const bool has_ibms = !gltf_skin->inverse_binds.is_empty();
+
+ for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) {
+ GLTFNodeIndex node = gltf_skin->joints_original[joint_i];
+ String bone_name = state->nodes[node]->get_name();
+
+ Transform xform;
+ if (has_ibms) {
+ xform = gltf_skin->inverse_binds[joint_i];
+ }
+
+ if (state->use_named_skin_binds) {
+ skin->add_named_bind(bone_name, xform);
+ } else {
+ int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i];
+ skin->add_bind(bone_i, xform);
+ }
+ }
+
+ gltf_skin->godot_skin = skin;
+ }
+
+ // Purge the duplicates!
+ _remove_duplicate_skins(state);
+
+ // Create unique names now, after removing duplicates
+ for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
+ Ref<Skin> skin = state->skins.write[skin_i]->godot_skin;
+ if (skin->get_name().is_empty()) {
+ // Make a unique name, no gltf node represents this skin
+ skin->set_name(_gen_unique_name(state, "Skin"));
+ }
+ }
+
+ return OK;
+}
+
+bool GLTFDocument::_skins_are_same(const Ref<Skin> skin_a, const Ref<Skin> skin_b) {
+ if (skin_a->get_bind_count() != skin_b->get_bind_count()) {
+ return false;
+ }
+
+ for (int i = 0; i < skin_a->get_bind_count(); ++i) {
+ if (skin_a->get_bind_bone(i) != skin_b->get_bind_bone(i)) {
+ return false;
+ }
+
+ Transform a_xform = skin_a->get_bind_pose(i);
+ Transform b_xform = skin_b->get_bind_pose(i);
+
+ if (a_xform != b_xform) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void GLTFDocument::_remove_duplicate_skins(Ref<GLTFState> state) {
+ for (int i = 0; i < state->skins.size(); ++i) {
+ for (int j = i + 1; j < state->skins.size(); ++j) {
+ const Ref<Skin> skin_i = state->skins[i]->godot_skin;
+ const Ref<Skin> skin_j = state->skins[j]->godot_skin;
+
+ if (_skins_are_same(skin_i, skin_j)) {
+ // replace it and delete the old
+ state->skins.write[j]->godot_skin = skin_i;
+ }
+ }
+ }
+}
+
+Error GLTFDocument::_serialize_lights(Ref<GLTFState> state) {
+ Array lights;
+ for (GLTFLightIndex i = 0; i < state->lights.size(); i++) {
+ Dictionary d;
+ Ref<GLTFLight> light = state->lights[i];
+ Array color;
+ color.resize(3);
+ color[0] = light->color.r;
+ color[1] = light->color.g;
+ color[2] = light->color.b;
+ d["color"] = color;
+ d["type"] = light->type;
+ if (light->type == "spot") {
+ Dictionary s;
+ float inner_cone_angle = light->inner_cone_angle;
+ s["innerConeAngle"] = inner_cone_angle;
+ float outer_cone_angle = light->outer_cone_angle;
+ s["outerConeAngle"] = outer_cone_angle;
+ d["spot"] = s;
+ }
+ float intensity = light->intensity;
+ d["intensity"] = intensity;
+ float range = light->range;
+ d["range"] = range;
+ lights.push_back(d);
+ }
+
+ if (!state->lights.size()) {
+ return OK;
+ }
+
+ Dictionary extensions;
+ if (state->json.has("extensions")) {
+ extensions = state->json["extensions"];
+ } else {
+ state->json["extensions"] = extensions;
+ }
+ Dictionary lights_punctual;
+ extensions["KHR_lights_punctual"] = lights_punctual;
+ lights_punctual["lights"] = lights;
+
+ print_verbose("glTF: Total lights: " + itos(state->lights.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_serialize_cameras(Ref<GLTFState> state) {
+ Array cameras;
+ cameras.resize(state->cameras.size());
+ for (GLTFCameraIndex i = 0; i < state->cameras.size(); i++) {
+ Dictionary d;
+
+ Ref<GLTFCamera> camera = state->cameras[i];
+
+ if (camera->get_perspective() == false) {
+ Dictionary og;
+ og["ymag"] = Math::deg2rad(camera->get_fov_size());
+ og["xmag"] = Math::deg2rad(camera->get_fov_size());
+ og["zfar"] = camera->get_zfar();
+ og["znear"] = camera->get_znear();
+ d["orthographic"] = og;
+ d["type"] = "orthographic";
+ } else if (camera->get_perspective()) {
+ Dictionary ppt;
+ // GLTF spec is in radians, Godot's camera is in degrees.
+ ppt["yfov"] = Math::deg2rad(camera->get_fov_size());
+ ppt["zfar"] = camera->get_zfar();
+ ppt["znear"] = camera->get_znear();
+ d["perspective"] = ppt;
+ d["type"] = "perspective";
+ }
+ cameras[i] = d;
+ }
+
+ if (!state->cameras.size()) {
+ return OK;
+ }
+
+ state->json["cameras"] = cameras;
+
+ print_verbose("glTF: Total cameras: " + itos(state->cameras.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_lights(Ref<GLTFState> state) {
+ if (!state->json.has("extensions")) {
+ return OK;
+ }
+ Dictionary extensions = state->json["extensions"];
+ if (!extensions.has("KHR_lights_punctual")) {
+ return OK;
+ }
+ Dictionary lights_punctual = extensions["KHR_lights_punctual"];
+ if (!lights_punctual.has("lights")) {
+ return OK;
+ }
+
+ const Array &lights = lights_punctual["lights"];
+
+ for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) {
+ const Dictionary &d = lights[light_i];
+
+ Ref<GLTFLight> light;
+ light.instance();
+ ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
+ const String &type = d["type"];
+ light->type = type;
+
+ if (d.has("color")) {
+ const Array &arr = d["color"];
+ ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
+ const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
+ light->color = c;
+ }
+ if (d.has("intensity")) {
+ light->intensity = d["intensity"];
+ }
+ if (d.has("range")) {
+ light->range = d["range"];
+ }
+ if (type == "spot") {
+ const Dictionary &spot = d["spot"];
+ light->inner_cone_angle = spot["innerConeAngle"];
+ light->outer_cone_angle = spot["outerConeAngle"];
+ ERR_FAIL_COND_V_MSG(light->inner_cone_angle >= light->outer_cone_angle, ERR_PARSE_ERROR, "The inner angle must be smaller than the outer angle.");
+ } else if (type != "point" && type != "directional") {
+ ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Light type is unknown.");
+ }
+
+ state->lights.push_back(light);
+ }
+
+ print_verbose("glTF: Total lights: " + itos(state->lights.size()));
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_cameras(Ref<GLTFState> state) {
+ if (!state->json.has("cameras"))
+ return OK;
+
+ const Array cameras = state->json["cameras"];
+
+ for (GLTFCameraIndex i = 0; i < cameras.size(); i++) {
+ const Dictionary &d = cameras[i];
+
+ Ref<GLTFCamera> camera;
+ camera.instance();
+ ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
+ const String &type = d["type"];
+ if (type == "orthographic") {
+ camera->set_perspective(false);
+ if (d.has("orthographic")) {
+ const Dictionary &og = d["orthographic"];
+ // GLTF spec is in radians, Godot's camera is in degrees.
+ camera->set_fov_size(Math::rad2deg(real_t(og["ymag"])));
+ camera->set_zfar(og["zfar"]);
+ camera->set_znear(og["znear"]);
+ } else {
+ camera->set_fov_size(10);
+ }
+ } else if (type == "perspective") {
+ camera->set_perspective(true);
+ if (d.has("perspective")) {
+ const Dictionary &ppt = d["perspective"];
+ // GLTF spec is in radians, Godot's camera is in degrees.
+ camera->set_fov_size(Math::rad2deg(real_t(ppt["yfov"])));
+ camera->set_zfar(ppt["zfar"]);
+ camera->set_znear(ppt["znear"]);
+ } else {
+ camera->set_fov_size(10);
+ }
+ } else {
+ ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera3D should be in 'orthographic' or 'perspective'");
+ }
+
+ state->cameras.push_back(camera);
+ }
+
+ print_verbose("glTF: Total cameras: " + itos(state->cameras.size()));
+
+ return OK;
+}
+
+String GLTFDocument::interpolation_to_string(const GLTFAnimation::Interpolation p_interp) {
+ String interp = "LINEAR";
+ if (p_interp == GLTFAnimation::INTERP_STEP) {
+ interp = "STEP";
+ } else if (p_interp == GLTFAnimation::INTERP_LINEAR) {
+ interp = "LINEAR";
+ } else if (p_interp == GLTFAnimation::INTERP_CATMULLROMSPLINE) {
+ interp = "CATMULLROMSPLINE";
+ } else if (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE) {
+ interp = "CUBICSPLINE";
+ }
+
+ return interp;
+}
+
+Error GLTFDocument::_serialize_animations(Ref<GLTFState> state) {
+ if (!state->animation_players.size()) {
+ return OK;
+ }
+ for (int32_t player_i = 0; player_i < state->animation_players.size(); player_i++) {
+ List<StringName> animation_names;
+ AnimationPlayer *animation_player = state->animation_players[player_i];
+ animation_player->get_animation_list(&animation_names);
+ if (animation_names.size()) {
+ for (int animation_name_i = 0; animation_name_i < animation_names.size(); animation_name_i++) {
+ _convert_animation(state, animation_player, animation_names[animation_name_i]);
+ }
+ }
+ }
+ Array animations;
+ for (GLTFAnimationIndex animation_i = 0; animation_i < state->animations.size(); animation_i++) {
+ Dictionary d;
+ Ref<GLTFAnimation> gltf_animation = state->animations[animation_i];
+ if (!gltf_animation->get_tracks().size()) {
+ continue;
+ }
+
+ if (!gltf_animation->get_name().is_empty()) {
+ d["name"] = gltf_animation->get_name();
+ }
+ Array channels;
+ Array samplers;
+
+ for (Map<int, GLTFAnimation::Track>::Element *track_i = gltf_animation->get_tracks().front(); track_i; track_i = track_i->next()) {
+ GLTFAnimation::Track track = track_i->get();
+ if (track.translation_track.times.size()) {
+ Dictionary t;
+ t["sampler"] = samplers.size();
+ Dictionary s;
+
+ s["interpolation"] = interpolation_to_string(track.translation_track.interpolation);
+ Vector<real_t> times = Variant(track.translation_track.times);
+ s["input"] = _encode_accessor_as_floats(state, times, false);
+ Vector<Vector3> values = Variant(track.translation_track.values);
+ s["output"] = _encode_accessor_as_vec3(state, values, false);
+
+ samplers.push_back(s);
+
+ Dictionary target;
+ target["path"] = "translation";
+ target["node"] = track_i->key();
+
+ t["target"] = target;
+ channels.push_back(t);
+ }
+ if (track.rotation_track.times.size()) {
+ Dictionary t;
+ t["sampler"] = samplers.size();
+ Dictionary s;
+
+ s["interpolation"] = interpolation_to_string(track.rotation_track.interpolation);
+ Vector<real_t> times = Variant(track.rotation_track.times);
+ s["input"] = _encode_accessor_as_floats(state, times, false);
+ Vector<Quat> values = track.rotation_track.values;
+ s["output"] = _encode_accessor_as_quats(state, values, false);
+
+ samplers.push_back(s);
+
+ Dictionary target;
+ target["path"] = "rotation";
+ target["node"] = track_i->key();
+
+ t["target"] = target;
+ channels.push_back(t);
+ }
+ if (track.scale_track.times.size()) {
+ Dictionary t;
+ t["sampler"] = samplers.size();
+ Dictionary s;
+
+ s["interpolation"] = interpolation_to_string(track.scale_track.interpolation);
+ Vector<real_t> times = Variant(track.scale_track.times);
+ s["input"] = _encode_accessor_as_floats(state, times, false);
+ Vector<Vector3> values = Variant(track.scale_track.values);
+ s["output"] = _encode_accessor_as_vec3(state, values, false);
+
+ samplers.push_back(s);
+
+ Dictionary target;
+ target["path"] = "scale";
+ target["node"] = track_i->key();
+
+ t["target"] = target;
+ channels.push_back(t);
+ }
+ if (track.weight_tracks.size()) {
+ Dictionary t;
+ t["sampler"] = samplers.size();
+ Dictionary s;
+
+ Vector<real_t> times;
+ Vector<real_t> values;
+
+ for (int32_t times_i = 0; times_i < track.weight_tracks[0].times.size(); times_i++) {
+ real_t time = track.weight_tracks[0].times[times_i];
+ times.push_back(time);
+ }
+
+ values.resize(times.size() * track.weight_tracks.size());
+ // TODO Sort by order in blend shapes
+ for (int k = 0; k < track.weight_tracks.size(); k++) {
+ Vector<float> wdata = track.weight_tracks[k].values;
+ for (int l = 0; l < wdata.size(); l++) {
+ values.write[l * track.weight_tracks.size() + k] = wdata.write[l];
+ }
+ }
+
+ s["interpolation"] = interpolation_to_string(track.weight_tracks[track.weight_tracks.size() - 1].interpolation);
+ s["input"] = _encode_accessor_as_floats(state, times, false);
+ s["output"] = _encode_accessor_as_floats(state, values, false);
+
+ samplers.push_back(s);
+
+ Dictionary target;
+ target["path"] = "weights";
+ target["node"] = track_i->key();
+
+ t["target"] = target;
+ channels.push_back(t);
+ }
+ }
+ if (channels.size() && samplers.size()) {
+ d["channels"] = channels;
+ d["samplers"] = samplers;
+ animations.push_back(d);
+ }
+ }
+
+ state->json["animations"] = animations;
+
+ print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'.");
+
+ return OK;
+}
+
+Error GLTFDocument::_parse_animations(Ref<GLTFState> state) {
+ if (!state->json.has("animations"))
+ return OK;
+
+ const Array &animations = state->json["animations"];
+
+ for (GLTFAnimationIndex i = 0; i < animations.size(); i++) {
+ const Dictionary &d = animations[i];
+
+ Ref<GLTFAnimation> animation;
+ animation.instance();
+
+ if (!d.has("channels") || !d.has("samplers"))
+ continue;
+
+ Array channels = d["channels"];
+ Array samplers = d["samplers"];
+
+ if (d.has("name")) {
+ const String name = d["name"];
+ if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) {
+ animation->set_loop(true);
+ }
+ animation->set_name(_sanitize_scene_name(name));
+ }
+
+ for (int j = 0; j < channels.size(); j++) {
+ const Dictionary &c = channels[j];
+ if (!c.has("target"))
+ continue;
+
+ const Dictionary &t = c["target"];
+ if (!t.has("node") || !t.has("path")) {
+ continue;
+ }
+
+ ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR);
+ const int sampler = c["sampler"];
+ ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR);
+
+ GLTFNodeIndex node = t["node"];
+ String path = t["path"];
+
+ ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR);
+
+ GLTFAnimation::Track *track = nullptr;
+
+ if (!animation->get_tracks().has(node)) {
+ animation->get_tracks()[node] = GLTFAnimation::Track();
+ }
+
+ track = &animation->get_tracks()[node];
+
+ const Dictionary &s = samplers[sampler];
+
+ ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR);
+ ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR);
+
+ const int input = s["input"];
+ const int output = s["output"];
+
+ GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR;
+ int output_count = 1;
+ if (s.has("interpolation")) {
+ const String &in = s["interpolation"];
+ if (in == "STEP") {
+ interp = GLTFAnimation::INTERP_STEP;
+ } else if (in == "LINEAR") {
+ interp = GLTFAnimation::INTERP_LINEAR;
+ } else if (in == "CATMULLROMSPLINE") {
+ interp = GLTFAnimation::INTERP_CATMULLROMSPLINE;
+ output_count = 3;
+ } else if (in == "CUBICSPLINE") {
+ interp = GLTFAnimation::INTERP_CUBIC_SPLINE;
+ output_count = 3;
+ }
+ }
+
+ const Vector<float> times = _decode_accessor_as_floats(state, input, false);
+ if (path == "translation") {
+ const Vector<Vector3> translations = _decode_accessor_as_vec3(state, output, false);
+ track->translation_track.interpolation = interp;
+ track->translation_track.times = Variant(times); //convert via variant
+ track->translation_track.values = Variant(translations); //convert via variant
+ } else if (path == "rotation") {
+ const Vector<Quat> rotations = _decode_accessor_as_quat(state, output, false);
+ track->rotation_track.interpolation = interp;
+ track->rotation_track.times = Variant(times); //convert via variant
+ track->rotation_track.values = rotations;
+ } else if (path == "scale") {
+ const Vector<Vector3> scales = _decode_accessor_as_vec3(state, output, false);
+ track->scale_track.interpolation = interp;
+ track->scale_track.times = Variant(times); //convert via variant
+ track->scale_track.values = Variant(scales); //convert via variant
+ } else if (path == "weights") {
+ const Vector<float> weights = _decode_accessor_as_floats(state, output, false);
+
+ ERR_FAIL_INDEX_V(state->nodes[node]->mesh, state->meshes.size(), ERR_PARSE_ERROR);
+ Ref<GLTFMesh> mesh = state->meshes[state->nodes[node]->mesh];
+ ERR_CONTINUE(!mesh->get_blend_weights().size());
+ const int wc = mesh->get_blend_weights().size();
+
+ track->weight_tracks.resize(wc);
+
+ const int expected_value_count = times.size() * output_count * wc;
+ ERR_FAIL_COND_V_MSG(weights.size() != expected_value_count, ERR_PARSE_ERROR, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead.");
+
+ const int wlen = weights.size() / wc;
+ for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea
+ GLTFAnimation::Channel<float> cf;
+ cf.interpolation = interp;
+ cf.times = Variant(times);
+ Vector<float> wdata;
+ wdata.resize(wlen);
+ for (int l = 0; l < wlen; l++) {
+ wdata.write[l] = weights[l * wc + k];
+ }
+
+ cf.values = wdata;
+ track->weight_tracks.write[k] = cf;
+ }
+ } else {
+ WARN_PRINT("Invalid path '" + path + "'.");
+ }
+ }
+
+ state->animations.push_back(animation);
+ }
+
+ print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'.");
+
+ return OK;
+}
+
+void GLTFDocument::_assign_scene_names(Ref<GLTFState> state) {
+ for (int i = 0; i < state->nodes.size(); i++) {
+ Ref<GLTFNode> n = state->nodes[i];
+
+ // Any joints get unique names generated when the skeleton is made, unique to the skeleton
+ if (n->skeleton >= 0)
+ continue;
+
+ if (n->get_name().is_empty()) {
+ if (n->mesh >= 0) {
+ n->set_name(_gen_unique_name(state, "Mesh"));
+ } else if (n->camera >= 0) {
+ n->set_name(_gen_unique_name(state, "Camera3D"));
+ } else {
+ n->set_name(_gen_unique_name(state, "Node"));
+ }
+ }
+
+ n->set_name(_gen_unique_name(state, n->get_name()));
+ }
+}
+
+BoneAttachment3D *GLTFDocument::_generate_bone_attachment(Ref<GLTFState> state, Skeleton3D *skeleton, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> gltf_node = state->nodes[node_index];
+ Ref<GLTFNode> bone_node = state->nodes[gltf_node->parent];
+
+ BoneAttachment3D *bone_attachment = memnew(BoneAttachment3D);
+ print_verbose("glTF: Creating bone attachment for: " + gltf_node->get_name());
+
+ ERR_FAIL_COND_V(!bone_node->joint, nullptr);
+
+ bone_attachment->set_bone_name(bone_node->get_name());
+
+ return bone_attachment;
+}
+
+GLTFMeshIndex GLTFDocument::_convert_mesh_instance(Ref<GLTFState> state, MeshInstance3D *p_mesh_instance) {
+ ERR_FAIL_NULL_V(p_mesh_instance, -1);
+ if (p_mesh_instance->get_mesh().is_null()) {
+ return -1;
+ }
+ Ref<EditorSceneImporterMesh> import_mesh;
+ import_mesh.instance();
+ Ref<Mesh> godot_mesh = p_mesh_instance->get_mesh();
+ if (godot_mesh.is_null()) {
+ return -1;
+ }
+ Vector<float> blend_weights;
+ Vector<String> blend_names;
+ int32_t blend_count = godot_mesh->get_blend_shape_count();
+ blend_names.resize(blend_count);
+ blend_weights.resize(blend_count);
+ for (int32_t blend_i = 0; blend_i < godot_mesh->get_blend_shape_count(); blend_i++) {
+ String blend_name = godot_mesh->get_blend_shape_name(blend_i);
+ blend_names.write[blend_i] = blend_name;
+ import_mesh->add_blend_shape(blend_name);
+ }
+ for (int32_t surface_i = 0; surface_i < godot_mesh->get_surface_count(); surface_i++) {
+ Mesh::PrimitiveType primitive_type = godot_mesh->surface_get_primitive_type(surface_i);
+ Array arrays = godot_mesh->surface_get_arrays(surface_i);
+ Array blend_shape_arrays = godot_mesh->surface_get_blend_shape_arrays(surface_i);
+ Ref<Material> mat = godot_mesh->surface_get_material(surface_i);
+ Ref<ArrayMesh> godot_array_mesh = godot_mesh;
+ String surface_name;
+ if (godot_array_mesh.is_valid()) {
+ surface_name = godot_array_mesh->surface_get_name(surface_i);
+ }
+ if (p_mesh_instance->get_surface_material(surface_i).is_valid()) {
+ mat = p_mesh_instance->get_surface_material(surface_i);
+ }
+ if (p_mesh_instance->get_material_override().is_valid()) {
+ mat = p_mesh_instance->get_material_override();
+ }
+ import_mesh->add_surface(primitive_type, arrays, blend_shape_arrays, Dictionary(), mat, surface_name);
+ }
+ for (int32_t blend_i = 0; blend_i < blend_count; blend_i++) {
+ blend_weights.write[blend_i] = 0.0f;
+ }
+ Ref<GLTFMesh> gltf_mesh;
+ gltf_mesh.instance();
+ gltf_mesh->set_mesh(import_mesh);
+ gltf_mesh->set_blend_weights(blend_weights);
+ GLTFMeshIndex mesh_i = state->meshes.size();
+ state->meshes.push_back(gltf_mesh);
+ return mesh_i;
+}
+
+EditorSceneImporterMeshNode3D *GLTFDocument::_generate_mesh_instance(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> gltf_node = state->nodes[node_index];
+
+ ERR_FAIL_INDEX_V(gltf_node->mesh, state->meshes.size(), nullptr);
+
+ EditorSceneImporterMeshNode3D *mi = memnew(EditorSceneImporterMeshNode3D);
+ print_verbose("glTF: Creating mesh for: " + gltf_node->get_name());
+
+ Ref<GLTFMesh> mesh = state->meshes.write[gltf_node->mesh];
+ if (mesh.is_null()) {
+ return mi;
+ }
+ Ref<EditorSceneImporterMesh> import_mesh = mesh->get_mesh();
+ if (import_mesh.is_null()) {
+ return mi;
+ }
+ mi->set_mesh(import_mesh);
+ for (int i = 0; i < mesh->get_blend_weights().size(); i++) {
+ mi->set("blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i), mesh->get_blend_weights()[i]);
+ }
+ return mi;
+}
+
+Light3D *GLTFDocument::_generate_light(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> gltf_node = state->nodes[node_index];
+
+ ERR_FAIL_INDEX_V(gltf_node->light, state->lights.size(), nullptr);
+
+ print_verbose("glTF: Creating light for: " + gltf_node->get_name());
+
+ Ref<GLTFLight> l = state->lights[gltf_node->light];
+
+ float intensity = l->intensity;
+ if (intensity > 10) {
+ // GLTF spec has the default around 1, but Blender defaults lights to 100.
+ // The only sane way to handle this is to check where it came from and
+ // handle it accordingly. If it's over 10, it probably came from Blender.
+ intensity /= 100;
+ }
+
+ if (l->type == "directional") {
+ DirectionalLight3D *light = memnew(DirectionalLight3D);
+ light->set_param(Light3D::PARAM_ENERGY, intensity);
+ light->set_color(l->color);
+ return light;
+ }
+
+ const float range = CLAMP(l->range, 0, 4096);
+ // Doubling the range will double the effective brightness, so we need double attenuation (half brightness).
+ // We want to have double intensity give double brightness, so we need half the attenuation.
+ const float attenuation = range / intensity;
+ if (l->type == "point") {
+ OmniLight3D *light = memnew(OmniLight3D);
+ light->set_param(OmniLight3D::PARAM_ATTENUATION, attenuation);
+ light->set_param(OmniLight3D::PARAM_RANGE, range);
+ light->set_color(l->color);
+ return light;
+ }
+ if (l->type == "spot") {
+ SpotLight3D *light = memnew(SpotLight3D);
+ light->set_param(SpotLight3D::PARAM_ATTENUATION, attenuation);
+ light->set_param(SpotLight3D::PARAM_RANGE, range);
+ light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, Math::rad2deg(l->outer_cone_angle));
+ light->set_color(l->color);
+
+ // Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
+ // The points in desmos are not exact, except for (1, infinity).
+ float angle_ratio = l->inner_cone_angle / l->outer_cone_angle;
+ float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
+ light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation);
+ return light;
+ }
+ return nullptr;
+}
+
+Camera3D *GLTFDocument::_generate_camera(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> gltf_node = state->nodes[node_index];
+
+ ERR_FAIL_INDEX_V(gltf_node->camera, state->cameras.size(), nullptr);
+
+ Camera3D *camera = memnew(Camera3D);
+ print_verbose("glTF: Creating camera for: " + gltf_node->get_name());
+
+ Ref<GLTFCamera> c = state->cameras[gltf_node->camera];
+ if (c->get_perspective()) {
+ camera->set_perspective(c->get_fov_size(), c->get_znear(), c->get_zfar());
+ } else {
+ camera->set_orthogonal(c->get_fov_size(), c->get_znear(), c->get_zfar());
+ }
+
+ return camera;
+}
+
+GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> state, Camera3D *p_camera) {
+ print_verbose("glTF: Converting camera: " + p_camera->get_name());
+
+ Ref<GLTFCamera> c;
+ c.instance();
+
+ if (p_camera->get_projection() == Camera3D::Projection::PROJECTION_PERSPECTIVE) {
+ c->set_perspective(true);
+ c->set_fov_size(p_camera->get_fov());
+ c->set_zfar(p_camera->get_far());
+ c->set_znear(p_camera->get_near());
+ } else {
+ c->set_fov_size(p_camera->get_fov());
+ c->set_zfar(p_camera->get_far());
+ c->set_znear(p_camera->get_near());
+ }
+ GLTFCameraIndex camera_index = state->cameras.size();
+ state->cameras.push_back(c);
+ return camera_index;
+}
+
+GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> state, Light3D *p_light) {
+ print_verbose("glTF: Converting light: " + p_light->get_name());
+
+ Ref<GLTFLight> l;
+ l.instance();
+ l->color = p_light->get_color();
+ if (cast_to<DirectionalLight3D>(p_light)) {
+ l->type = "directional";
+ DirectionalLight3D *light = cast_to<DirectionalLight3D>(p_light);
+ l->intensity = light->get_param(DirectionalLight3D::PARAM_ENERGY);
+ l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
+ } else if (cast_to<OmniLight3D>(p_light)) {
+ l->type = "point";
+ OmniLight3D *light = cast_to<OmniLight3D>(p_light);
+ l->range = light->get_param(OmniLight3D::PARAM_RANGE);
+ float attenuation = p_light->get_param(OmniLight3D::PARAM_ATTENUATION);
+ l->intensity = l->range / attenuation;
+ } else if (cast_to<SpotLight3D>(p_light)) {
+ l->type = "spot";
+ SpotLight3D *light = cast_to<SpotLight3D>(p_light);
+ l->range = light->get_param(SpotLight3D::PARAM_RANGE);
+ float attenuation = light->get_param(SpotLight3D::PARAM_ATTENUATION);
+ l->intensity = l->range / attenuation;
+ l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight3D::PARAM_SPOT_ANGLE));
+
+ // This equation is the inverse of the import equation (which has a desmos link).
+ float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight3D::PARAM_SPOT_ATTENUATION)));
+ angle_ratio = MAX(0, angle_ratio);
+ l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
+ }
+
+ GLTFLightIndex light_index = state->lights.size();
+ state->lights.push_back(l);
+ return light_index;
+}
+
+GLTFSkeletonIndex GLTFDocument::_convert_skeleton(Ref<GLTFState> state, Skeleton3D *p_skeleton) {
+ print_verbose("glTF: Converting skeleton: " + p_skeleton->get_name());
+ Ref<GLTFSkeleton> gltf_skeleton;
+ gltf_skeleton.instance();
+ gltf_skeleton->set_name(_gen_unique_name(state, p_skeleton->get_name()));
+ gltf_skeleton->godot_skeleton = p_skeleton;
+ GLTFSkeletonIndex skeleton_i = state->skeletons.size();
+ state->skeletons.push_back(gltf_skeleton);
+ return skeleton_i;
+}
+
+void GLTFDocument::_convert_spatial(Ref<GLTFState> state, Node3D *p_spatial, Ref<GLTFNode> p_node) {
+ Transform xform = p_spatial->get_transform();
+ p_node->scale = xform.basis.get_scale();
+ p_node->rotation = xform.basis.get_rotation_quat();
+ p_node->translation = xform.origin;
+}
+
+Node3D *GLTFDocument::_generate_spatial(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> gltf_node = state->nodes[node_index];
+
+ Node3D *spatial = memnew(Node3D);
+ print_verbose("glTF: Converting spatial: " + gltf_node->get_name());
+
+ return spatial;
+}
+void GLTFDocument::_convert_scene_node(Ref<GLTFState> state, Node *p_current, Node *p_root, const GLTFNodeIndex p_gltf_parent, const GLTFNodeIndex p_gltf_root) {
+ bool retflag = true;
+ Node3D *spatial = cast_to<Node3D>(p_current);
+ _check_visibility(p_current, retflag);
+ if (retflag) {
+ return;
+ }
+ Ref<GLTFNode> gltf_node;
+ gltf_node.instance();
+ gltf_node->set_name(_gen_unique_name(state, p_current->get_name()));
+ if (cast_to<Node3D>(p_current)) {
+ _convert_spatial(state, spatial, gltf_node);
+ }
+ if (cast_to<MeshInstance3D>(p_current)) {
+ _convert_mesh_to_gltf(p_current, state, spatial, gltf_node);
+ } else if (cast_to<BoneAttachment3D>(p_current)) {
+ _convert_bone_attachment_to_gltf(p_current, state, gltf_node, retflag);
+ // TODO 2020-12-21 iFire Handle the case of objects under the bone attachment.
+ return;
+ } else if (cast_to<Skeleton3D>(p_current)) {
+ _convert_skeleton_to_gltf(p_current, state, p_gltf_parent, p_gltf_root, gltf_node, p_root);
+ // We ignore the Godot Engine node that is the skeleton.
+ return;
+ } else if (cast_to<MultiMeshInstance3D>(p_current)) {
+ _convert_mult_mesh_instance_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root);
+ } else if (cast_to<CSGShape3D>(p_current)) {
+ if (p_current->get_parent() && cast_to<CSGShape3D>(p_current)->is_root_shape()) {
+ _convert_csg_shape_to_gltf(p_current, p_gltf_parent, gltf_node, state);
+ }
+ } else if (cast_to<GridMap>(p_current)) {
+ _convert_grid_map_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root);
+ } else if (cast_to<Camera3D>(p_current)) {
+ Camera3D *camera = Object::cast_to<Camera3D>(p_current);
+ _convert_camera_to_gltf(camera, state, spatial, gltf_node);
+ } else if (cast_to<Light3D>(p_current)) {
+ Light3D *light = Object::cast_to<Light3D>(p_current);
+ _convert_light_to_gltf(light, state, spatial, gltf_node);
+ } else if (cast_to<AnimationPlayer>(p_current)) {
+ AnimationPlayer *animation_player = Object::cast_to<AnimationPlayer>(p_current);
+ _convert_animation_player_to_gltf(animation_player, state, p_gltf_parent, p_gltf_root, gltf_node, p_current, p_root);
+ }
+ GLTFNodeIndex current_node_i = state->nodes.size();
+ GLTFNodeIndex gltf_root = p_gltf_root;
+ if (gltf_root == -1) {
+ gltf_root = current_node_i;
+ Array scenes;
+ scenes.push_back(gltf_root);
+ state->json["scene"] = scenes;
+ }
+ _create_gltf_node(state, p_current, current_node_i, p_gltf_parent, gltf_root, gltf_node);
+ for (int node_i = 0; node_i < p_current->get_child_count(); node_i++) {
+ _convert_scene_node(state, p_current->get_child(node_i), p_root, current_node_i, gltf_root);
+ }
+}
+
+void GLTFDocument::_convert_csg_shape_to_gltf(Node *p_current, GLTFNodeIndex p_gltf_parent, Ref<GLTFNode> gltf_node, Ref<GLTFState> state) {
+ CSGShape3D *csg = Object::cast_to<CSGShape3D>(p_current);
+ csg->call("_update_shape");
+ Array meshes = csg->get_meshes();
+ if (meshes.size() != 2) {
+ return;
+ }
+ Ref<Material> mat;
+ if (csg->get_material_override().is_valid()) {
+ mat = csg->get_material_override();
+ }
+ Ref<GLTFMesh> gltf_mesh;
+ gltf_mesh.instance();
+ Ref<EditorSceneImporterMesh> import_mesh;
+ import_mesh.instance();
+ Ref<ArrayMesh> array_mesh = csg->get_meshes()[1];
+ for (int32_t surface_i = 0; surface_i < array_mesh->get_surface_count(); surface_i++) {
+ import_mesh->add_surface(Mesh::PrimitiveType::PRIMITIVE_TRIANGLES, array_mesh->surface_get_arrays(surface_i), Array(), Dictionary(), mat, array_mesh->surface_get_name(surface_i));
+ }
+ gltf_mesh->set_mesh(import_mesh);
+ GLTFMeshIndex mesh_i = state->meshes.size();
+ state->meshes.push_back(gltf_mesh);
+ gltf_node->mesh = mesh_i;
+ gltf_node->xform = csg->get_meshes()[0];
+ gltf_node->set_name(_gen_unique_name(state, csg->get_name()));
+}
+
+void GLTFDocument::_create_gltf_node(Ref<GLTFState> state, Node *p_scene_parent, GLTFNodeIndex current_node_i,
+ GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_gltf_node, Ref<GLTFNode> gltf_node) {
+ state->scene_nodes.insert(current_node_i, p_scene_parent);
+ state->nodes.push_back(gltf_node);
+ if (current_node_i == p_parent_node_index) {
+ return;
+ }
+ if (p_parent_node_index == -1) {
+ return;
+ }
+ state->nodes.write[p_parent_node_index]->children.push_back(current_node_i);
+}
+
+void GLTFDocument::_convert_animation_player_to_gltf(AnimationPlayer *animation_player, Ref<GLTFState> state, const GLTFNodeIndex &p_gltf_current, const GLTFNodeIndex &p_gltf_root_index, Ref<GLTFNode> p_gltf_node, Node *p_scene_parent, Node *p_root) {
+ ERR_FAIL_COND(!animation_player);
+ state->animation_players.push_back(animation_player);
+ print_verbose(String("glTF: Converting animation player: ") + animation_player->get_name());
+}
+
+void GLTFDocument::_check_visibility(Node *p_node, bool &retflag) {
+ retflag = true;
+ Node3D *spatial = Object::cast_to<Node3D>(p_node);
+ Node2D *node_2d = Object::cast_to<Node2D>(p_node);
+ if (node_2d && !node_2d->is_visible()) {
+ return;
+ }
+ if (spatial && !spatial->is_visible()) {
+ return;
+ }
+ retflag = false;
+}
+
+void GLTFDocument::_convert_camera_to_gltf(Camera3D *camera, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) {
+ ERR_FAIL_COND(!camera);
+ GLTFCameraIndex camera_index = _convert_camera(state, camera);
+ if (camera_index != -1) {
+ gltf_node->camera = camera_index;
+ }
+}
+
+void GLTFDocument::_convert_light_to_gltf(Light3D *light, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) {
+ ERR_FAIL_COND(!light);
+ GLTFLightIndex light_index = _convert_light(state, light);
+ if (light_index != -1) {
+ gltf_node->light = light_index;
+ }
+}
+
+void GLTFDocument::_convert_grid_map_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) {
+ GridMap *grid_map = Object::cast_to<GridMap>(p_scene_parent);
+ ERR_FAIL_COND(!grid_map);
+ Array cells = grid_map->get_used_cells();
+ for (int32_t k = 0; k < cells.size(); k++) {
+ GLTFNode *new_gltf_node = memnew(GLTFNode);
+ gltf_node->children.push_back(state->nodes.size());
+ state->nodes.push_back(new_gltf_node);
+ Vector3 cell_location = cells[k];
+ int32_t cell = grid_map->get_cell_item(
+ Vector3(cell_location.x, cell_location.y, cell_location.z));
+ EditorSceneImporterMeshNode3D *import_mesh_node = memnew(EditorSceneImporterMeshNode3D);
+ import_mesh_node->set_mesh(grid_map->get_mesh_library()->get_item_mesh(cell));
+ Transform cell_xform;
+ cell_xform.basis.set_orthogonal_index(
+ grid_map->get_cell_item_orientation(
+ Vector3(cell_location.x, cell_location.y, cell_location.z)));
+ cell_xform.basis.scale(Vector3(grid_map->get_cell_scale(),
+ grid_map->get_cell_scale(),
+ grid_map->get_cell_scale()));
+ cell_xform.set_origin(grid_map->map_to_world(
+ Vector3(cell_location.x, cell_location.y, cell_location.z)));
+ Ref<GLTFMesh> gltf_mesh;
+ gltf_mesh.instance();
+ gltf_mesh = import_mesh_node;
+ new_gltf_node->mesh = state->meshes.size();
+ state->meshes.push_back(gltf_mesh);
+ new_gltf_node->xform = cell_xform * grid_map->get_transform();
+ new_gltf_node->set_name(_gen_unique_name(state, grid_map->get_mesh_library()->get_item_name(cell)));
+ }
+}
+
+void GLTFDocument::_convert_mult_mesh_instance_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) {
+ MultiMeshInstance3D *multi_mesh_instance = Object::cast_to<MultiMeshInstance3D>(p_scene_parent);
+ ERR_FAIL_COND(!multi_mesh_instance);
+ Ref<MultiMesh> multi_mesh = multi_mesh_instance->get_multimesh();
+ if (multi_mesh.is_valid()) {
+ for (int32_t instance_i = 0; instance_i < multi_mesh->get_instance_count();
+ instance_i++) {
+ GLTFNode *new_gltf_node = memnew(GLTFNode);
+ Transform transform;
+ if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_2D) {
+ Transform2D xform_2d = multi_mesh->get_instance_transform_2d(instance_i);
+ transform.origin =
+ Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y);
+ real_t rotation = xform_2d.get_rotation();
+ Quat quat;
+ quat.set_axis_angle(Vector3(0, 1, 0), rotation);
+ Size2 scale = xform_2d.get_scale();
+ transform.basis.set_quat_scale(quat,
+ Vector3(scale.x, 0, scale.y));
+ transform =
+ multi_mesh_instance->get_transform() * transform;
+ } else if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_3D) {
+ transform = multi_mesh_instance->get_transform() *
+ multi_mesh->get_instance_transform(instance_i);
+ }
+ Ref<ArrayMesh> mm = multi_mesh->get_mesh();
+ if (mm.is_valid()) {
+ Ref<EditorSceneImporterMesh> mesh;
+ mesh.instance();
+ for (int32_t surface_i = 0; surface_i < mm->get_surface_count(); surface_i++) {
+ Array surface = mm->surface_get_arrays(surface_i);
+ mesh->add_surface(mm->surface_get_primitive_type(surface_i), surface, Array(), Dictionary(),
+ mm->surface_get_material(surface_i), mm->get_name());
+ }
+ Ref<GLTFMesh> gltf_mesh;
+ gltf_mesh.instance();
+ gltf_mesh->set_name(multi_mesh->get_name());
+ gltf_mesh->set_mesh(mesh);
+ new_gltf_node->mesh = state->meshes.size();
+ state->meshes.push_back(gltf_mesh);
+ }
+ new_gltf_node->xform = transform;
+ new_gltf_node->set_name(_gen_unique_name(state, multi_mesh_instance->get_name()));
+ gltf_node->children.push_back(state->nodes.size());
+ state->nodes.push_back(new_gltf_node);
+ }
+ }
+}
+
+void GLTFDocument::_convert_skeleton_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Node *p_root_node) {
+ Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(p_scene_parent);
+ if (skeleton) {
+ // Remove placeholder skeleton3d node by not creating the gltf node
+ // Skins are per mesh
+ for (int node_i = 0; node_i < skeleton->get_child_count(); node_i++) {
+ _convert_scene_node(state, skeleton->get_child(node_i), p_root_node, p_parent_node_index, p_root_node_index);
+ }
+ }
+}
+
+void GLTFDocument::_convert_bone_attachment_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Ref<GLTFNode> gltf_node, bool &retflag) {
+ retflag = true;
+ BoneAttachment3D *bone_attachment = Object::cast_to<BoneAttachment3D>(p_scene_parent);
+ if (bone_attachment) {
+ Node *node = bone_attachment->get_parent();
+ while (node) {
+ Skeleton3D *bone_attachment_skeleton = Object::cast_to<Skeleton3D>(node);
+ if (bone_attachment_skeleton) {
+ for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
+ if (state->skeletons[skeleton_i]->godot_skeleton != bone_attachment_skeleton) {
+ continue;
+ }
+ state->skeletons.write[skeleton_i]->bone_attachments.push_back(bone_attachment);
+ break;
+ }
+ break;
+ }
+ node = node->get_parent();
+ }
+ gltf_node.unref();
+ return;
+ }
+ retflag = false;
+}
+
+void GLTFDocument::_convert_mesh_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) {
+ MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_scene_parent);
+ if (mi) {
+ GLTFMeshIndex gltf_mesh_index = _convert_mesh_instance(state, mi);
+ if (gltf_mesh_index != -1) {
+ gltf_node->mesh = gltf_mesh_index;
+ }
+ }
+}
+
+void GLTFDocument::_generate_scene_node(Ref<GLTFState> state, Node *scene_parent, Node3D *scene_root, const GLTFNodeIndex node_index) {
+ Ref<GLTFNode> gltf_node = state->nodes[node_index];
+
+ Node3D *current_node = nullptr;
+
+ // Is our parent a skeleton
+ Skeleton3D *active_skeleton = Object::cast_to<Skeleton3D>(scene_parent);
+
+ if (gltf_node->skeleton >= 0) {
+ Skeleton3D *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton;
+
+ if (active_skeleton != skeleton) {
+ ERR_FAIL_COND_MSG(active_skeleton != nullptr, "glTF: Generating scene detected direct parented Skeletons");
+
+ // Add it to the scene if it has not already been added
+ if (skeleton->get_parent() == nullptr) {
+ scene_parent->add_child(skeleton);
+ skeleton->set_owner(scene_root);
+ }
+ }
+
+ active_skeleton = skeleton;
+ current_node = skeleton;
+ }
+
+ // If we have an active skeleton, and the node is node skinned, we need to create a bone attachment
+ if (current_node == nullptr && active_skeleton != nullptr && gltf_node->skin < 0) {
+ BoneAttachment3D *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index);
+
+ scene_parent->add_child(bone_attachment);
+ bone_attachment->set_owner(scene_root);
+
+ // There is no gltf_node that represent this, so just directly create a unique name
+ bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment3D"));
+
+ // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
+ // and attach it to the bone_attachment
+ scene_parent = bone_attachment;
+ }
+
+ // We still have not managed to make a node
+ if (current_node == nullptr) {
+ if (gltf_node->mesh >= 0) {
+ current_node = _generate_mesh_instance(state, scene_parent, node_index);
+ } else if (gltf_node->camera >= 0) {
+ current_node = _generate_camera(state, scene_parent, node_index);
+ } else if (gltf_node->light >= 0) {
+ current_node = _generate_light(state, scene_parent, node_index);
+ }
+
+ if (!current_node) {
+ current_node = _generate_spatial(state, scene_parent, node_index);
+ }
+
+ scene_parent->add_child(current_node);
+ if (current_node != scene_root) {
+ current_node->set_owner(scene_root);
+ }
+ current_node->set_transform(gltf_node->xform);
+ current_node->set_name(gltf_node->get_name());
+ }
+
+ state->scene_nodes.insert(node_index, current_node);
+
+ for (int i = 0; i < gltf_node->children.size(); ++i) {
+ _generate_scene_node(state, current_node, scene_root, gltf_node->children[i]);
+ }
+}
+
+template <class T>
+struct EditorSceneImporterGLTFInterpolate {
+ T lerp(const T &a, const T &b, float c) const {
+ return a + (b - a) * c;
+ }
+
+ T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
+ const float t2 = t * t;
+ const float t3 = t2 * t;
+
+ return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
+ }
+
+ T bezier(T start, T control_1, T control_2, T end, float t) {
+ /* Formula from Wikipedia article on Bezier curves. */
+ const real_t omt = (1.0 - t);
+ const real_t omt2 = omt * omt;
+ const real_t omt3 = omt2 * omt;
+ const real_t t2 = t * t;
+ const real_t t3 = t2 * t;
+
+ return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
+ }
+};
+
+// thank you for existing, partial specialization
+template <>
+struct EditorSceneImporterGLTFInterpolate<Quat> {
+ Quat lerp(const Quat &a, const Quat &b, const float c) const {
+ ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized.");
+ ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized.");
+
+ return a.slerp(b, c).normalized();
+ }
+
+ Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, const float c) {
+ ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized.");
+ ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized.");
+
+ return p1.slerp(p2, c).normalized();
+ }
+
+ Quat bezier(const Quat start, const Quat control_1, const Quat control_2, const Quat end, const float t) {
+ ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized.");
+
+ return start.slerp(end, t).normalized();
+ }
+};
+
+template <class T>
+T GLTFDocument::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) {
+ //could use binary search, worth it?
+ int idx = -1;
+ for (int i = 0; i < p_times.size(); i++) {
+ if (p_times[i] > p_time)
+ break;
+ idx++;
+ }
+
+ EditorSceneImporterGLTFInterpolate<T> interp;
+
+ switch (p_interp) {
+ case GLTFAnimation::INTERP_LINEAR: {
+ if (idx == -1) {
+ return p_values[0];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[p_times.size() - 1];
+ }
+
+ const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
+
+ return interp.lerp(p_values[idx], p_values[idx + 1], c);
+ } break;
+ case GLTFAnimation::INTERP_STEP: {
+ if (idx == -1) {
+ return p_values[0];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[p_times.size() - 1];
+ }
+
+ return p_values[idx];
+ } break;
+ case GLTFAnimation::INTERP_CATMULLROMSPLINE: {
+ if (idx == -1) {
+ return p_values[1];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[1 + p_times.size() - 1];
+ }
+
+ const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
+
+ return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
+ } break;
+ case GLTFAnimation::INTERP_CUBIC_SPLINE: {
+ if (idx == -1) {
+ return p_values[1];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[(p_times.size() - 1) * 3 + 1];
+ }
+
+ const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
+
+ const T from = p_values[idx * 3 + 1];
+ const T c1 = from + p_values[idx * 3 + 2];
+ const T to = p_values[idx * 3 + 4];
+ const T c2 = to + p_values[idx * 3 + 3];
+
+ return interp.bezier(from, c1, c2, to, c);
+ } break;
+ }
+
+ ERR_FAIL_V(p_values[0]);
+}
+
+void GLTFDocument::_import_animation(Ref<GLTFState> state, AnimationPlayer *ap, const GLTFAnimationIndex index, const int bake_fps) {
+ Ref<GLTFAnimation> anim = state->animations[index];
+
+ String name = anim->get_name();
+ if (name.is_empty()) {
+ // No node represent these, and they are not in the hierarchy, so just make a unique name
+ name = _gen_unique_name(state, "Animation");
+ }
+
+ Ref<Animation> animation;
+ animation.instance();
+ animation->set_name(name);
+
+ if (anim->get_loop()) {
+ animation->set_loop(true);
+ }
+
+ float length = 0;
+
+ for (Map<int, GLTFAnimation::Track>::Element *track_i = anim->get_tracks().front(); track_i; track_i = track_i->next()) {
+ const GLTFAnimation::Track &track = track_i->get();
+ //need to find the path
+ NodePath node_path;
+
+ GLTFNodeIndex node_index = track_i->key();
+ if (state->nodes[node_index]->fake_joint_parent >= 0) {
+ // Should be same as parent
+ node_index = state->nodes[node_index]->fake_joint_parent;
+ }
+
+ const Ref<GLTFNode> gltf_node = state->nodes[track_i->key()];
+
+ if (gltf_node->skeleton >= 0) {
+ const Skeleton3D *sk = Object::cast_to<Skeleton3D>(state->scene_nodes.find(node_index)->get());
+ ERR_FAIL_COND(sk == nullptr);
+
+ const String path = ap->get_parent()->get_path_to(sk);
+ const String bone = gltf_node->get_name();
+ node_path = path + ":" + bone;
+ } else {
+ Node *root = ap->get_parent();
+ Node *godot_node = state->scene_nodes.find(node_index)->get();
+ node_path = root->get_path_to(godot_node);
+ }
+
+ for (int i = 0; i < track.rotation_track.times.size(); i++) {
+ length = MAX(length, track.rotation_track.times[i]);
+ }
+ for (int i = 0; i < track.translation_track.times.size(); i++) {
+ length = MAX(length, track.translation_track.times[i]);
+ }
+ for (int i = 0; i < track.scale_track.times.size(); i++) {
+ length = MAX(length, track.scale_track.times[i]);
+ }
+
+ for (int i = 0; i < track.weight_tracks.size(); i++) {
+ for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
+ length = MAX(length, track.weight_tracks[i].times[j]);
+ }
+ }
+
+ if (track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) {
+ //make transform track
+ int track_idx = animation->get_track_count();
+ animation->add_track(Animation::TYPE_TRANSFORM);
+ animation->track_set_path(track_idx, node_path);
+ //first determine animation length
+
+ const float increment = 1.0 / float(bake_fps);
+ float time = 0.0;
+
+ Vector3 base_pos;
+ Quat base_rot;
+ Vector3 base_scale = Vector3(1, 1, 1);
+
+ if (!track.rotation_track.values.size()) {
+ base_rot = state->nodes[track_i->key()]->rotation.normalized();
+ }
+
+ if (!track.translation_track.values.size()) {
+ base_pos = state->nodes[track_i->key()]->translation;
+ }
+
+ if (!track.scale_track.values.size()) {
+ base_scale = state->nodes[track_i->key()]->scale;
+ }
+
+ bool last = false;
+ while (true) {
+ Vector3 pos = base_pos;
+ Quat rot = base_rot;
+ Vector3 scale = base_scale;
+
+ if (track.translation_track.times.size()) {
+ pos = _interpolate_track<Vector3>(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation);
+ }
+
+ if (track.rotation_track.times.size()) {
+ rot = _interpolate_track<Quat>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation);
+ }
+
+ if (track.scale_track.times.size()) {
+ scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation);
+ }
+
+ if (gltf_node->skeleton >= 0) {
+ Transform xform;
+ xform.basis.set_quat_scale(rot, scale);
+ xform.origin = pos;
+
+ const Skeleton3D *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton;
+ const int bone_idx = skeleton->find_bone(gltf_node->get_name());
+ xform = skeleton->get_bone_rest(bone_idx).affine_inverse() * xform;
+
+ rot = xform.basis.get_rotation_quat();
+ rot.normalize();
+ scale = xform.basis.get_scale();
+ pos = xform.origin;
+ }
+
+ animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
+
+ if (last) {
+ break;
+ }
+ time += increment;
+ if (time >= length) {
+ last = true;
+ time = length;
+ }
+ }
+ }
+
+ for (int i = 0; i < track.weight_tracks.size(); i++) {
+ ERR_CONTINUE(gltf_node->mesh < 0 || gltf_node->mesh >= state->meshes.size());
+ Ref<GLTFMesh> mesh = state->meshes[gltf_node->mesh];
+ ERR_CONTINUE(mesh.is_null());
+ ERR_CONTINUE(mesh->get_mesh().is_null());
+ ERR_CONTINUE(mesh->get_mesh()->get_mesh().is_null());
+ const String prop = "blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i);
+
+ const String blend_path = String(node_path) + ":" + prop;
+
+ const int track_idx = animation->get_track_count();
+ animation->add_track(Animation::TYPE_VALUE);
+ animation->track_set_path(track_idx, blend_path);
+
+ // Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation,
+ // the other modes have to be baked.
+ GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation;
+ if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) {
+ animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR);
+ for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
+ const float t = track.weight_tracks[i].times[j];
+ const float attribs = track.weight_tracks[i].values[j];
+ animation->track_insert_key(track_idx, t, attribs);
+ }
+ } else {
+ // CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
+ const float increment = 1.0 / float(bake_fps);
+ float time = 0.0;
+ bool last = false;
+ while (true) {
+ _interpolate_track<float>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp);
+ if (last) {
+ break;
+ }
+ time += increment;
+ if (time >= length) {
+ last = true;
+ time = length;
+ }
+ }
+ }
+ }
+ }
+
+ animation->set_length(length);
+
+ ap->add_animation(name, animation);
+}
+
+void GLTFDocument::_convert_mesh_instances(Ref<GLTFState> state) {
+ for (GLTFNodeIndex mi_node_i = 0; mi_node_i < state->nodes.size(); ++mi_node_i) {
+ Ref<GLTFNode> node = state->nodes[mi_node_i];
+
+ if (node->mesh < 0) {
+ continue;
+ }
+ Array json_skins;
+ if (state->json.has("skins")) {
+ json_skins = state->json["skins"];
+ }
+ Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(mi_node_i);
+ if (!mi_element) {
+ continue;
+ }
+ MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(mi_element->get());
+ ERR_CONTINUE(!mi);
+ Transform mi_xform = mi->get_transform();
+ node->scale = mi_xform.basis.get_scale();
+ node->rotation = mi_xform.basis.get_rotation_quat();
+ node->translation = mi_xform.origin;
+
+ Dictionary json_skin;
+ Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(mi->get_node(mi->get_skeleton_path()));
+ if (!skeleton) {
+ continue;
+ }
+ if (!skeleton->get_bone_count()) {
+ continue;
+ }
+ Ref<Skin> skin = mi->get_skin();
+ if (skin.is_null()) {
+ skin = skeleton->register_skin(nullptr)->get_skin();
+ }
+ Ref<GLTFSkin> gltf_skin;
+ gltf_skin.instance();
+ Array json_joints;
+ GLTFSkeletonIndex skeleton_gltf_i = -1;
+
+ NodePath skeleton_path = mi->get_skeleton_path();
+ bool is_unique = true;
+ for (int32_t skin_i = 0; skin_i < state->skins.size(); skin_i++) {
+ Ref<GLTFSkin> prev_gltf_skin = state->skins.write[skin_i];
+ if (gltf_skin.is_null()) {
+ continue;
+ }
+ GLTFSkeletonIndex prev_skeleton = prev_gltf_skin->get_skeleton();
+ if (prev_skeleton == -1 || prev_skeleton >= state->skeletons.size()) {
+ continue;
+ }
+ if (prev_gltf_skin->get_godot_skin() == skin && state->skeletons[prev_skeleton]->godot_skeleton == skeleton) {
+ node->skin = skin_i;
+ node->skeleton = prev_skeleton;
+ is_unique = false;
+ break;
+ }
+ }
+ if (!is_unique) {
+ continue;
+ }
+ GLTFSkeletonIndex skeleton_i = _convert_skeleton(state, skeleton);
+ skeleton_gltf_i = skeleton_i;
+ ERR_CONTINUE(skeleton_gltf_i == -1);
+ gltf_skin->skeleton = skeleton_gltf_i;
+ Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skeleton_gltf_i];
+ for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) {
+ String godot_bone_name = skin->get_bind_name(bind_i);
+ if (godot_bone_name.is_empty()) {
+ int32_t bone = skin->get_bind_bone(bind_i);
+ godot_bone_name = skeleton->get_bone_name(bone);
+ }
+ if (skeleton->find_bone(godot_bone_name) == -1) {
+ godot_bone_name = skeleton->get_bone_name(0);
+ }
+ BoneId bone_index = skeleton->find_bone(godot_bone_name);
+ ERR_CONTINUE(bone_index == -1);
+ Ref<GLTFNode> joint_node;
+ joint_node.instance();
+ String gltf_bone_name = _gen_unique_bone_name(state, skeleton_gltf_i, godot_bone_name);
+ joint_node->set_name(gltf_bone_name);
+
+ Transform bone_rest_xform = skeleton->get_bone_rest(bone_index);
+ joint_node->scale = bone_rest_xform.basis.get_scale();
+ joint_node->rotation = bone_rest_xform.basis.get_rotation_quat();
+ joint_node->translation = bone_rest_xform.origin;
+ joint_node->joint = true;
+
+ int32_t joint_node_i = state->nodes.size();
+ state->nodes.push_back(joint_node);
+ gltf_skeleton->godot_bone_node.insert(bone_index, joint_node_i);
+ int32_t joint_index = gltf_skin->joints.size();
+ gltf_skin->joint_i_to_bone_i.insert(joint_index, bone_index);
+ gltf_skin->joints.push_back(joint_node_i);
+ gltf_skin->joints_original.push_back(joint_node_i);
+ gltf_skin->inverse_binds.push_back(skin->get_bind_pose(bind_i));
+ json_joints.push_back(joint_node_i);
+ for (Map<GLTFNodeIndex, Node *>::Element *skin_scene_node_i = state->scene_nodes.front(); skin_scene_node_i; skin_scene_node_i = skin_scene_node_i->next()) {
+ if (skin_scene_node_i->get() == skeleton) {
+ gltf_skin->skin_root = skin_scene_node_i->key();
+ json_skin["skeleton"] = skin_scene_node_i->key();
+ }
+ }
+ gltf_skin->godot_skin = skin;
+ gltf_skin->set_name(_gen_unique_name(state, skin->get_name()));
+ }
+ for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) {
+ String bone_name = skeleton->get_bone_name(bind_i);
+ String godot_bone_name = skin->get_bind_name(bind_i);
+ int32_t bone = -1;
+ if (skin->get_bind_bone(bind_i) != -1) {
+ bone = skin->get_bind_bone(bind_i);
+ godot_bone_name = skeleton->get_bone_name(bone);
+ }
+ bone = skeleton->find_bone(godot_bone_name);
+ if (bone == -1) {
+ continue;
+ }
+ BoneId bone_parent = skeleton->get_bone_parent(bone);
+ GLTFNodeIndex joint_node_i = gltf_skeleton->godot_bone_node[bone];
+ ERR_CONTINUE(joint_node_i >= state->nodes.size());
+ if (bone_parent != -1) {
+ GLTFNodeIndex parent_joint_gltf_node = gltf_skin->joints[bone_parent];
+ Ref<GLTFNode> parent_joint_node = state->nodes.write[parent_joint_gltf_node];
+ parent_joint_node->children.push_back(joint_node_i);
+ } else {
+ Node *node_parent = skeleton->get_parent();
+ ERR_CONTINUE(!node_parent);
+ for (Map<GLTFNodeIndex, Node *>::Element *E = state->scene_nodes.front(); E; E = E->next()) {
+ if (E->get() == node_parent) {
+ GLTFNodeIndex gltf_node_i = E->key();
+ Ref<GLTFNode> gltf_node = state->nodes.write[gltf_node_i];
+ gltf_node->children.push_back(joint_node_i);
+ break;
+ }
+ }
+ }
+ }
+ _expand_skin(state, gltf_skin);
+ node->skin = state->skins.size();
+ state->skins.push_back(gltf_skin);
+
+ json_skin["inverseBindMatrices"] = _encode_accessor_as_xform(state, gltf_skin->inverse_binds, false);
+ json_skin["joints"] = json_joints;
+ json_skin["name"] = gltf_skin->get_name();
+ json_skins.push_back(json_skin);
+ state->json["skins"] = json_skins;
+ }
+}
+
+float GLTFDocument::solve_metallic(float p_dielectric_specular, float diffuse, float specular, float p_one_minus_specular_strength) {
+ if (specular <= p_dielectric_specular) {
+ return 0.0f;
+ }
+
+ const float a = p_dielectric_specular;
+ const float b = diffuse * p_one_minus_specular_strength / (1.0f - p_dielectric_specular) + specular - 2.0f * p_dielectric_specular;
+ const float c = p_dielectric_specular - specular;
+ const float D = b * b - 4.0f * a * c;
+ return CLAMP((-b + Math::sqrt(D)) / (2.0f * a), 0.0f, 1.0f);
+}
+
+float GLTFDocument::get_perceived_brightness(const Color p_color) {
+ const Color coeff = Color(R_BRIGHTNESS_COEFF, G_BRIGHTNESS_COEFF, B_BRIGHTNESS_COEFF);
+ const Color value = coeff * (p_color * p_color);
+
+ const float r = value.r;
+ const float g = value.g;
+ const float b = value.b;
+
+ return Math::sqrt(r + g + b);
+}
+
+float GLTFDocument::get_max_component(const Color &p_color) {
+ const float r = p_color.r;
+ const float g = p_color.g;
+ const float b = p_color.b;
+
+ return MAX(MAX(r, g), b);
+}
+
+void GLTFDocument::_process_mesh_instances(Ref<GLTFState> state, Node *scene_root) {
+ for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) {
+ Ref<GLTFNode> node = state->nodes[node_i];
+
+ if (node->skin >= 0 && node->mesh >= 0) {
+ const GLTFSkinIndex skin_i = node->skin;
+
+ Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(node_i);
+ EditorSceneImporterMeshNode3D *mi = Object::cast_to<EditorSceneImporterMeshNode3D>(mi_element->get());
+ ERR_FAIL_COND(mi == nullptr);
+
+ const GLTFSkeletonIndex skel_i = state->skins.write[node->skin]->skeleton;
+ Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i];
+ Skeleton3D *skeleton = gltf_skeleton->godot_skeleton;
+ ERR_FAIL_COND(skeleton == nullptr);
+
+ mi->get_parent()->remove_child(mi);
+ skeleton->add_child(mi);
+ mi->set_owner(skeleton->get_owner());
+
+ mi->set_skin(state->skins.write[skin_i]->godot_skin);
+ mi->set_skeleton_path(mi->get_path_to(skeleton));
+ mi->set_transform(Transform());
+ }
+ }
+}
+
+GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state, GLTFAnimation::Track p_track, Ref<Animation> p_animation, Transform p_bone_rest, int32_t p_track_i, GLTFNodeIndex p_node_i) {
+ Animation::InterpolationType interpolation = p_animation->track_get_interpolation_type(p_track_i);
+
+ GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
+ if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) {
+ gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
+ } else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) {
+ gltf_interpolation = GLTFAnimation::INTERP_STEP;
+ } else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) {
+ gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE;
+ }
+ Animation::TrackType track_type = p_animation->track_get_type(p_track_i);
+ int32_t key_count = p_animation->track_get_key_count(p_track_i);
+ Vector<float> times;
+ times.resize(key_count);
+ String path = p_animation->track_get_path(p_track_i);
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ times.write[key_i] = p_animation->track_get_key_time(p_track_i, key_i);
+ }
+ const float BAKE_FPS = 30.0f;
+ if (track_type == Animation::TYPE_TRANSFORM) {
+ p_track.translation_track.times = times;
+ p_track.translation_track.interpolation = gltf_interpolation;
+ p_track.rotation_track.times = times;
+ p_track.rotation_track.interpolation = gltf_interpolation;
+ p_track.scale_track.times = times;
+ p_track.scale_track.interpolation = gltf_interpolation;
+
+ p_track.scale_track.values.resize(key_count);
+ p_track.scale_track.interpolation = gltf_interpolation;
+ p_track.translation_track.values.resize(key_count);
+ p_track.translation_track.interpolation = gltf_interpolation;
+ p_track.rotation_track.values.resize(key_count);
+ p_track.rotation_track.interpolation = gltf_interpolation;
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ Vector3 translation;
+ Quat rotation;
+ Vector3 scale;
+ Error err = p_animation->transform_track_get_key(p_track_i, key_i, &translation, &rotation, &scale);
+ ERR_CONTINUE(err != OK);
+ Transform xform;
+ xform.basis.set_quat_scale(rotation, scale);
+ xform.origin = translation;
+ xform = p_bone_rest * xform;
+ p_track.translation_track.values.write[key_i] = xform.get_origin();
+ p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat();
+ p_track.scale_track.values.write[key_i] = xform.basis.get_scale();
+ }
+ } else if (path.find(":transform") != -1) {
+ p_track.translation_track.times = times;
+ p_track.translation_track.interpolation = gltf_interpolation;
+ p_track.rotation_track.times = times;
+ p_track.rotation_track.interpolation = gltf_interpolation;
+ p_track.scale_track.times = times;
+ p_track.scale_track.interpolation = gltf_interpolation;
+
+ p_track.scale_track.values.resize(key_count);
+ p_track.scale_track.interpolation = gltf_interpolation;
+ p_track.translation_track.values.resize(key_count);
+ p_track.translation_track.interpolation = gltf_interpolation;
+ p_track.rotation_track.values.resize(key_count);
+ p_track.rotation_track.interpolation = gltf_interpolation;
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ Transform xform = p_animation->track_get_key_value(p_track_i, key_i);
+ p_track.translation_track.values.write[key_i] = xform.get_origin();
+ p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat();
+ p_track.scale_track.values.write[key_i] = xform.basis.get_scale();
+ }
+ } else if (track_type == Animation::TYPE_VALUE) {
+ if (path.find("/rotation_quat") != -1) {
+ p_track.rotation_track.times = times;
+ p_track.rotation_track.interpolation = gltf_interpolation;
+
+ p_track.rotation_track.values.resize(key_count);
+ p_track.rotation_track.interpolation = gltf_interpolation;
+
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ Quat rotation_track = p_animation->track_get_key_value(p_track_i, key_i);
+ p_track.rotation_track.values.write[key_i] = rotation_track;
+ }
+ } else if (path.find(":translation") != -1) {
+ p_track.translation_track.times = times;
+ p_track.translation_track.interpolation = gltf_interpolation;
+
+ p_track.translation_track.values.resize(key_count);
+ p_track.translation_track.interpolation = gltf_interpolation;
+
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ Vector3 translation = p_animation->track_get_key_value(p_track_i, key_i);
+ p_track.translation_track.values.write[key_i] = translation;
+ }
+ } else if (path.find(":rotation_degrees") != -1) {
+ p_track.rotation_track.times = times;
+ p_track.rotation_track.interpolation = gltf_interpolation;
+
+ p_track.rotation_track.values.resize(key_count);
+ p_track.rotation_track.interpolation = gltf_interpolation;
+
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ Quat rotation;
+ Vector3 rotation_degrees = p_animation->track_get_key_value(p_track_i, key_i);
+ Vector3 rotation_radian;
+ rotation_radian.x = Math::deg2rad(rotation_degrees.x);
+ rotation_radian.y = Math::deg2rad(rotation_degrees.y);
+ rotation_radian.z = Math::deg2rad(rotation_degrees.z);
+ rotation.set_euler(rotation_radian);
+ p_track.rotation_track.values.write[key_i] = rotation;
+ }
+ } else if (path.find(":scale") != -1) {
+ p_track.scale_track.times = times;
+ p_track.scale_track.interpolation = gltf_interpolation;
+
+ p_track.scale_track.values.resize(key_count);
+ p_track.scale_track.interpolation = gltf_interpolation;
+
+ for (int32_t key_i = 0; key_i < key_count; key_i++) {
+ Vector3 scale_track = p_animation->track_get_key_value(p_track_i, key_i);
+ p_track.scale_track.values.write[key_i] = scale_track;
+ }
+ }
+ } else if (track_type == Animation::TYPE_BEZIER) {
+ if (path.find("/scale") != -1) {
+ const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS;
+ if (!p_track.scale_track.times.size()) {
+ Vector<float> new_times;
+ new_times.resize(keys);
+ for (int32_t key_i = 0; key_i < keys; key_i++) {
+ new_times.write[key_i] = key_i / BAKE_FPS;
+ }
+ p_track.scale_track.times = new_times;
+ p_track.scale_track.interpolation = gltf_interpolation;
+
+ p_track.scale_track.values.resize(keys);
+
+ for (int32_t key_i = 0; key_i < keys; key_i++) {
+ p_track.scale_track.values.write[key_i] = Vector3(1.0f, 1.0f, 1.0f);
+ }
+ p_track.scale_track.interpolation = gltf_interpolation;
+ }
+
+ for (int32_t key_i = 0; key_i < keys; key_i++) {
+ Vector3 bezier_track = p_track.scale_track.values[key_i];
+ if (path.find("/scale:x") != -1) {
+ bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
+ bezier_track.x = p_bone_rest.affine_inverse().basis.get_scale().x * bezier_track.x;
+ } else if (path.find("/scale:y") != -1) {
+ bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
+ bezier_track.y = p_bone_rest.affine_inverse().basis.get_scale().y * bezier_track.y;
+ } else if (path.find("/scale:z") != -1) {
+ bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
+ bezier_track.z = p_bone_rest.affine_inverse().basis.get_scale().z * bezier_track.z;
+ }
+ p_track.scale_track.values.write[key_i] = bezier_track;
+ }
+ } else if (path.find("/translation") != -1) {
+ const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS;
+ if (!p_track.translation_track.times.size()) {
+ Vector<float> new_times;
+ new_times.resize(keys);
+ for (int32_t key_i = 0; key_i < keys; key_i++) {
+ new_times.write[key_i] = key_i / BAKE_FPS;
+ }
+ p_track.translation_track.times = new_times;
+ p_track.translation_track.interpolation = gltf_interpolation;
+
+ p_track.translation_track.values.resize(keys);
+ p_track.translation_track.interpolation = gltf_interpolation;
+ }
+
+ for (int32_t key_i = 0; key_i < keys; key_i++) {
+ Vector3 bezier_track = p_track.translation_track.values[key_i];
+ if (path.find("/translation:x") != -1) {
+ bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
+ bezier_track.x = p_bone_rest.affine_inverse().origin.x * bezier_track.x;
+ } else if (path.find("/translation:y") != -1) {
+ bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
+ bezier_track.y = p_bone_rest.affine_inverse().origin.y * bezier_track.y;
+ } else if (path.find("/translation:z") != -1) {
+ bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
+ bezier_track.z = p_bone_rest.affine_inverse().origin.z * bezier_track.z;
+ }
+ p_track.translation_track.values.write[key_i] = bezier_track;
+ }
+ }
+ }
+
+ return p_track;
+}
+
+void GLTFDocument::_convert_animation(Ref<GLTFState> state, AnimationPlayer *ap, String p_animation_track_name) {
+ Ref<Animation> animation = ap->get_animation(p_animation_track_name);
+ Ref<GLTFAnimation> gltf_animation;
+ gltf_animation.instance();
+ gltf_animation->set_name(_gen_unique_name(state, p_animation_track_name));
+
+ for (int32_t track_i = 0; track_i < animation->get_track_count(); track_i++) {
+ if (!animation->track_is_enabled(track_i)) {
+ continue;
+ }
+ String orig_track_path = animation->track_get_path(track_i);
+ if (String(orig_track_path).find(":translation") != -1) {
+ const Vector<String> node_suffix = String(orig_track_path).split(":translation");
+ const NodePath path = node_suffix[0];
+ const Node *node = ap->get_parent()->get_node_or_null(path);
+ for (Map<GLTFNodeIndex, Node *>::Element *translation_scene_node_i = state->scene_nodes.front(); translation_scene_node_i; translation_scene_node_i = translation_scene_node_i->next()) {
+ if (translation_scene_node_i->get() == node) {
+ GLTFNodeIndex node_index = translation_scene_node_i->key();
+ Map<int, GLTFAnimation::Track>::Element *translation_track_i = gltf_animation->get_tracks().find(node_index);
+ GLTFAnimation::Track track;
+ if (translation_track_i) {
+ track = translation_track_i->get();
+ }
+ track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
+ gltf_animation->get_tracks().insert(node_index, track);
+ }
+ }
+ } else if (String(orig_track_path).find(":rotation_degrees") != -1) {
+ const Vector<String> node_suffix = String(orig_track_path).split(":rotation_degrees");
+ const NodePath path = node_suffix[0];
+ const Node *node = ap->get_parent()->get_node_or_null(path);
+ for (Map<GLTFNodeIndex, Node *>::Element *rotation_degree_scene_node_i = state->scene_nodes.front(); rotation_degree_scene_node_i; rotation_degree_scene_node_i = rotation_degree_scene_node_i->next()) {
+ if (rotation_degree_scene_node_i->get() == node) {
+ GLTFNodeIndex node_index = rotation_degree_scene_node_i->key();
+ Map<int, GLTFAnimation::Track>::Element *rotation_degree_track_i = gltf_animation->get_tracks().find(node_index);
+ GLTFAnimation::Track track;
+ if (rotation_degree_track_i) {
+ track = rotation_degree_track_i->get();
+ }
+ track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
+ gltf_animation->get_tracks().insert(node_index, track);
+ }
+ }
+ } else if (String(orig_track_path).find(":scale") != -1) {
+ const Vector<String> node_suffix = String(orig_track_path).split(":scale");
+ const NodePath path = node_suffix[0];
+ const Node *node = ap->get_parent()->get_node_or_null(path);
+ for (Map<GLTFNodeIndex, Node *>::Element *scale_scene_node_i = state->scene_nodes.front(); scale_scene_node_i; scale_scene_node_i = scale_scene_node_i->next()) {
+ if (scale_scene_node_i->get() == node) {
+ GLTFNodeIndex node_index = scale_scene_node_i->key();
+ Map<int, GLTFAnimation::Track>::Element *scale_track_i = gltf_animation->get_tracks().find(node_index);
+ GLTFAnimation::Track track;
+ if (scale_track_i) {
+ track = scale_track_i->get();
+ }
+ track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
+ gltf_animation->get_tracks().insert(node_index, track);
+ }
+ }
+ } else if (String(orig_track_path).find(":transform") != -1) {
+ const Vector<String> node_suffix = String(orig_track_path).split(":transform");
+ const NodePath path = node_suffix[0];
+ const Node *node = ap->get_parent()->get_node_or_null(path);
+ for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) {
+ if (transform_track_i->get() == node) {
+ GLTFAnimation::Track track;
+ track = _convert_animation_track(state, track, animation, Transform(), track_i, transform_track_i->key());
+ gltf_animation->get_tracks().insert(transform_track_i->key(), track);
+ }
+ }
+ } else if (String(orig_track_path).find(":blend_shapes/") != -1) {
+ const Vector<String> node_suffix = String(orig_track_path).split(":blend_shapes/");
+ const NodePath path = node_suffix[0];
+ const String suffix = node_suffix[1];
+ const Node *node = ap->get_parent()->get_node_or_null(path);
+ for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) {
+ if (transform_track_i->get() == node) {
+ const MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(node);
+ if (!mi) {
+ continue;
+ }
+ Ref<ArrayMesh> array_mesh = mi->get_mesh();
+ if (array_mesh.is_null()) {
+ continue;
+ }
+ if (node_suffix.size() != 2) {
+ continue;
+ }
+ GLTFNodeIndex mesh_index = -1;
+ for (GLTFNodeIndex node_i = 0; node_i < state->scene_nodes.size(); node_i++) {
+ if (state->scene_nodes[node_i] == node) {
+ mesh_index = node_i;
+ break;
+ }
+ }
+ ERR_CONTINUE(mesh_index == -1);
+ Ref<Mesh> mesh = mi->get_mesh();
+ ERR_CONTINUE(mesh.is_null());
+ for (int32_t shape_i = 0; shape_i < mesh->get_blend_shape_count(); shape_i++) {
+ if (mesh->get_blend_shape_name(shape_i) != suffix) {
+ continue;
+ }
+ GLTFAnimation::Track track;
+ Map<int, GLTFAnimation::Track>::Element *blend_shape_track_i = gltf_animation->get_tracks().find(mesh_index);
+ if (blend_shape_track_i) {
+ track = blend_shape_track_i->get();
+ }
+ Animation::InterpolationType interpolation = animation->track_get_interpolation_type(track_i);
+
+ GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
+ if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) {
+ gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
+ } else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) {
+ gltf_interpolation = GLTFAnimation::INTERP_STEP;
+ } else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) {
+ gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE;
+ }
+ Animation::TrackType track_type = animation->track_get_type(track_i);
+ if (track_type == Animation::TYPE_VALUE) {
+ int32_t key_count = animation->track_get_key_count(track_i);
+ GLTFAnimation::Channel<float> weight;
+ weight.interpolation = gltf_interpolation;
+ weight.times.resize(key_count);
+ for (int32_t time_i = 0; time_i < key_count; time_i++) {
+ weight.times.write[time_i] = animation->track_get_key_time(track_i, time_i);
+ }
+ weight.values.resize(key_count);
+ for (int32_t value_i = 0; value_i < key_count; value_i++) {
+ weight.values.write[value_i] = animation->track_get_key_value(track_i, value_i);
+ }
+ track.weight_tracks.push_back(weight);
+ }
+ gltf_animation->get_tracks()[mesh_index] = track;
+ }
+ }
+ }
+
+ } else if (String(orig_track_path).find(":") != -1) {
+ //Process skeleton
+ const Vector<String> node_suffix = String(orig_track_path).split(":");
+ const String node = node_suffix[0];
+ const NodePath node_path = node;
+ const String suffix = node_suffix[1];
+ Node *godot_node = ap->get_parent()->get_node_or_null(node_path);
+ Skeleton3D *skeleton = nullptr;
+ GLTFSkeletonIndex skeleton_gltf_i = -1;
+ for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
+ if (state->skeletons[skeleton_i]->godot_skeleton == cast_to<Skeleton3D>(godot_node)) {
+ skeleton = state->skeletons[skeleton_i]->godot_skeleton;
+ skeleton_gltf_i = skeleton_i;
+ ERR_CONTINUE(!skeleton);
+ Ref<GLTFSkeleton> skeleton_gltf = state->skeletons[skeleton_gltf_i];
+ int32_t bone = skeleton->find_bone(suffix);
+ ERR_CONTINUE(bone == -1);
+ Transform xform = skeleton->get_bone_rest(bone);
+ if (!skeleton_gltf->godot_bone_node.has(bone)) {
+ continue;
+ }
+ GLTFNodeIndex node_i = skeleton_gltf->godot_bone_node[bone];
+ Map<int, GLTFAnimation::Track>::Element *property_track_i = gltf_animation->get_tracks().find(node_i);
+ GLTFAnimation::Track track;
+ if (property_track_i) {
+ track = property_track_i->get();
+ }
+ track = _convert_animation_track(state, track, animation, xform, track_i, node_i);
+ gltf_animation->get_tracks()[node_i] = track;
+ }
+ }
+ } else if (String(orig_track_path).find(":") == -1) {
+ const Node *node = ap->get_parent()->get_node_or_null(orig_track_path);
+ for (Map<GLTFNodeIndex, Node *>::Element *scene_node_i = state->scene_nodes.front(); scene_node_i; scene_node_i = scene_node_i->next()) {
+ if (scene_node_i->get() == node) {
+ GLTFNodeIndex node_index = scene_node_i->key();
+ Map<int, GLTFAnimation::Track>::Element *node_track_i = gltf_animation->get_tracks().find(node_index);
+ GLTFAnimation::Track track;
+ if (node_track_i) {
+ track = node_track_i->get();
+ }
+ track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
+ gltf_animation->get_tracks().insert(node_index, track);
+ break;
+ }
+ }
+ }
+ }
+ if (gltf_animation->get_tracks().size()) {
+ state->animations.push_back(gltf_animation);
+ }
+}
+
+Error GLTFDocument::parse(Ref<GLTFState> state, String p_path, bool p_read_binary) {
+ Error err;
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
+ if (!f) {
+ return err;
+ }
+ uint32_t magic = f->get_32();
+ if (magic == 0x46546C67) {
+ //binary file
+ //text file
+ err = _parse_glb(p_path, state);
+ if (err)
+ return FAILED;
+ } else {
+ //text file
+ err = _parse_json(p_path, state);
+ if (err)
+ return FAILED;
+ }
+ f->close();
+
+ ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED);
+
+ Dictionary asset = state->json["asset"];
+
+ ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
+
+ String version = asset["version"];
+
+ state->major_version = version.get_slice(".", 0).to_int();
+ state->minor_version = version.get_slice(".", 1).to_int();
+
+ /* STEP 0 PARSE SCENE */
+ err = _parse_scenes(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 1 PARSE NODES */
+ err = _parse_nodes(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 2 PARSE BUFFERS */
+ err = _parse_buffers(state, p_path.get_base_dir());
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 3 PARSE BUFFER VIEWS */
+ err = _parse_buffer_views(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 4 PARSE ACCESSORS */
+ err = _parse_accessors(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 5 PARSE IMAGES */
+ err = _parse_images(state, p_path.get_base_dir());
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 6 PARSE TEXTURES */
+ err = _parse_textures(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 7 PARSE TEXTURES */
+ err = _parse_materials(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 9 PARSE SKINS */
+ err = _parse_skins(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 10 DETERMINE SKELETONS */
+ err = _determine_skeletons(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 11 CREATE SKELETONS */
+ err = _create_skeletons(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 12 CREATE SKINS */
+ err = _create_skins(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 13 PARSE MESHES (we have enough info now) */
+ err = _parse_meshes(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 14 PARSE LIGHTS */
+ err = _parse_lights(state);
+ if (err != OK) {
+ return Error::FAILED;
+ }
+
+ /* STEP 15 PARSE CAMERAS */
+ err = _parse_cameras(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 16 PARSE ANIMATIONS */
+ err = _parse_animations(state);
+ if (err != OK)
+ return Error::FAILED;
+
+ /* STEP 17 ASSIGN SCENE NAMES */
+ _assign_scene_names(state);
+
+ return OK;
+}
+
+Dictionary GLTFDocument::_serialize_texture_transform_uv2(Ref<BaseMaterial3D> p_material) {
+ Dictionary extension;
+ Ref<BaseMaterial3D> mat = p_material;
+ if (mat.is_valid()) {
+ Dictionary texture_transform;
+ Array offset;
+ offset.resize(2);
+ offset[0] = mat->get_uv2_offset().x;
+ offset[1] = mat->get_uv2_offset().y;
+ texture_transform["offset"] = offset;
+ Array scale;
+ scale.resize(2);
+ scale[0] = mat->get_uv2_scale().x;
+ scale[1] = mat->get_uv2_scale().y;
+ texture_transform["scale"] = scale;
+ // Godot doesn't support texture rotation
+ extension["KHR_texture_transform"] = texture_transform;
+ }
+ return extension;
+}
+
+Dictionary GLTFDocument::_serialize_texture_transform_uv1(Ref<BaseMaterial3D> p_material) {
+ Dictionary extension;
+ if (p_material.is_valid()) {
+ Dictionary texture_transform;
+ Array offset;
+ offset.resize(2);
+ offset[0] = p_material->get_uv1_offset().x;
+ offset[1] = p_material->get_uv1_offset().y;
+ texture_transform["offset"] = offset;
+ Array scale;
+ scale.resize(2);
+ scale[0] = p_material->get_uv1_scale().x;
+ scale[1] = p_material->get_uv1_scale().y;
+ texture_transform["scale"] = scale;
+ // Godot doesn't support texture rotation
+ extension["KHR_texture_transform"] = texture_transform;
+ }
+ return extension;
+}
+
+Error GLTFDocument::_serialize_version(Ref<GLTFState> state) {
+ const String version = "2.0";
+ state->major_version = version.get_slice(".", 0).to_int();
+ state->minor_version = version.get_slice(".", 1).to_int();
+ Dictionary asset;
+ asset["version"] = version;
+
+ String hash = VERSION_HASH;
+ asset["generator"] = String(VERSION_FULL_NAME) + String("@") + (hash.length() == 0 ? String("unknown") : hash);
+ state->json["asset"] = asset;
+ ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
+ ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED);
+ return OK;
+}
+
+Error GLTFDocument::_serialize_file(Ref<GLTFState> state, const String p_path) {
+ Error err = FAILED;
+ if (p_path.to_lower().ends_with("glb")) {
+ err = _encode_buffer_glb(state, p_path);
+ ERR_FAIL_COND_V(err != OK, err);
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err);
+ ERR_FAIL_COND_V(!f, FAILED);
+
+ String json = JSON::print(state->json);
+
+ const uint32_t magic = 0x46546C67; // GLTF
+ const int32_t header_size = 12;
+ const int32_t chunk_header_size = 8;
+
+ for (int32_t pad_i = 0; pad_i < (chunk_header_size + json.utf8().length()) % 4; pad_i++) {
+ json += " ";
+ }
+ CharString cs = json.utf8();
+ const uint32_t text_chunk_length = cs.length();
+
+ const uint32_t text_chunk_type = 0x4E4F534A; //JSON
+ int32_t binary_data_length = 0;
+ if (state->buffers.size()) {
+ binary_data_length = state->buffers[0].size();
+ }
+ const int32_t binary_chunk_length = binary_data_length;
+ const int32_t binary_chunk_type = 0x004E4942; //BIN
+
+ f->create(FileAccess::ACCESS_RESOURCES);
+ f->store_32(magic);
+ f->store_32(state->major_version); // version
+ f->store_32(header_size + chunk_header_size + text_chunk_length + chunk_header_size + binary_data_length); // length
+ f->store_32(text_chunk_length);
+ f->store_32(text_chunk_type);
+ f->store_buffer((uint8_t *)&cs[0], cs.length());
+ if (binary_chunk_length) {
+ f->store_32(binary_chunk_length);
+ f->store_32(binary_chunk_type);
+ f->store_buffer(state->buffers[0].ptr(), binary_data_length);
+ }
+
+ f->close();
+ } else {
+ err = _encode_buffer_bins(state, p_path);
+ ERR_FAIL_COND_V(err != OK, err);
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err);
+ ERR_FAIL_COND_V(!f, FAILED);
+
+ f->create(FileAccess::ACCESS_RESOURCES);
+ String json = JSON::print(state->json);
+ f->store_string(json);
+ f->close();
+ }
+ return err;
+}