diff options
Diffstat (limited to 'modules/gltf/gltf_document.cpp')
-rw-r--r-- | modules/gltf/gltf_document.cpp | 6536 |
1 files changed, 6536 insertions, 0 deletions
diff --git a/modules/gltf/gltf_document.cpp b/modules/gltf/gltf_document.cpp new file mode 100644 index 0000000000..580bc006f5 --- /dev/null +++ b/modules/gltf/gltf_document.cpp @@ -0,0 +1,6536 @@ +/*************************************************************************/ +/* gltf_document.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "gltf_document.h" +#include "core/error/error_list.h" +#include "core/error/error_macros.h" +#include "core/variant/variant.h" +#include "gltf_accessor.h" +#include "gltf_animation.h" +#include "gltf_camera.h" +#include "gltf_light.h" +#include "gltf_mesh.h" +#include "gltf_node.h" +#include "gltf_skeleton.h" +#include "gltf_skin.h" +#include "gltf_spec_gloss.h" +#include "gltf_state.h" +#include "gltf_texture.h" + +#include <stdio.h> +#include <stdlib.h> + +#include "core/core_bind.h" +#include "core/crypto/crypto_core.h" +#include "core/io/json.h" +#include "core/math/disjoint_set.h" +#include "core/os/file_access.h" +#include "core/variant/typed_array.h" +#include "core/version.h" +#include "core/version_hash.gen.h" +#include "drivers/png/png_driver_common.h" +#include "editor/import/resource_importer_scene.h" +#include "modules/csg/csg_shape.h" +#include "modules/gridmap/grid_map.h" +#include "modules/regex/regex.h" +#include "scene/2d/node_2d.h" +#include "scene/3d/bone_attachment_3d.h" +#include "scene/3d/camera_3d.h" +#include "scene/3d/mesh_instance_3d.h" +#include "scene/3d/multimesh_instance_3d.h" +#include "scene/3d/node_3d.h" +#include "scene/3d/skeleton_3d.h" +#include "scene/animation/animation_player.h" +#include "scene/resources/surface_tool.h" +#include <limits> + +Error GLTFDocument::serialize(Ref<GLTFState> state, Node *p_root, const String &p_path) { + uint64_t begin_time = OS::get_singleton()->get_ticks_usec(); + + _convert_scene_node(state, p_root, p_root, -1, -1); + if (!state->buffers.size()) { + state->buffers.push_back(Vector<uint8_t>()); + } + + /* STEP 1 CONVERT MESH INSTANCES */ + _convert_mesh_instances(state); + + /* STEP 2 SERIALIZE CAMERAS */ + Error err = _serialize_cameras(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 3 CREATE SKINS */ + err = _serialize_skins(state); + if (err != OK) { + return Error::FAILED; + } + /* STEP 4 CREATE BONE ATTACHMENTS */ + err = _serialize_bone_attachment(state); + if (err != OK) { + return Error::FAILED; + } + /* STEP 5 SERIALIZE MESHES (we have enough info now) */ + err = _serialize_meshes(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 6 SERIALIZE TEXTURES */ + err = _serialize_materials(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 7 SERIALIZE IMAGES */ + err = _serialize_images(state, p_path); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 8 SERIALIZE TEXTURES */ + err = _serialize_textures(state); + if (err != OK) { + return Error::FAILED; + } + + // /* STEP 9 SERIALIZE ANIMATIONS */ + err = _serialize_animations(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 10 SERIALIZE ACCESSORS */ + err = _encode_accessors(state); + if (err != OK) { + return Error::FAILED; + } + + for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) { + state->buffer_views.write[i]->buffer = 0; + } + + /* STEP 11 SERIALIZE BUFFER VIEWS */ + err = _encode_buffer_views(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 12 SERIALIZE NODES */ + err = _serialize_nodes(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 13 SERIALIZE SCENE */ + err = _serialize_scenes(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 14 SERIALIZE SCENE */ + err = _serialize_lights(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 15 SERIALIZE EXTENSIONS */ + err = _serialize_extensions(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 16 SERIALIZE VERSION */ + err = _serialize_version(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 17 SERIALIZE FILE */ + err = _serialize_file(state, p_path); + if (err != OK) { + return Error::FAILED; + } + uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time; + float elapsed_sec = double(elapsed) / 1000000.0; + elapsed_sec = Math::snapped(elapsed_sec, 0.01f); + print_line("glTF: Export time elapsed seconds " + rtos(elapsed_sec).pad_decimals(2)); + + return OK; +} + +Error GLTFDocument::_serialize_extensions(Ref<GLTFState> state) const { + const String texture_transform = "KHR_texture_transform"; + const String punctual_lights = "KHR_lights_punctual"; + Array extensions_used; + extensions_used.push_back(punctual_lights); + extensions_used.push_back(texture_transform); + state->json["extensionsUsed"] = extensions_used; + Array extensions_required; + extensions_required.push_back(texture_transform); + state->json["extensionsRequired"] = extensions_required; + return OK; +} + +Error GLTFDocument::_serialize_scenes(Ref<GLTFState> state) { + Array scenes; + const int loaded_scene = 0; + state->json["scene"] = loaded_scene; + + if (state->nodes.size()) { + Dictionary s; + if (!state->scene_name.is_empty()) { + s["name"] = state->scene_name; + } + + Array nodes; + nodes.push_back(0); + s["nodes"] = nodes; + scenes.push_back(s); + } + state->json["scenes"] = scenes; + + return OK; +} + +Error GLTFDocument::_parse_json(const String &p_path, Ref<GLTFState> state) { + Error err; + FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); + if (!f) { + return err; + } + + Vector<uint8_t> array; + array.resize(f->get_len()); + f->get_buffer(array.ptrw(), array.size()); + String text; + text.parse_utf8((const char *)array.ptr(), array.size()); + + String err_txt; + int err_line; + Variant v; + err = JSON::parse(text, v, err_txt, err_line); + if (err != OK) { + _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); + return err; + } + state->json = v; + + return OK; +} + +Error GLTFDocument::_serialize_bone_attachment(Ref<GLTFState> state) { + for (int skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) { + for (int attachment_i = 0; attachment_i < state->skeletons[skeleton_i]->bone_attachments.size(); attachment_i++) { + BoneAttachment3D *bone_attachment = state->skeletons[skeleton_i]->bone_attachments[attachment_i]; + String bone_name = bone_attachment->get_bone_name(); + bone_name = _sanitize_bone_name(bone_name); + int32_t bone = state->skeletons[skeleton_i]->godot_skeleton->find_bone(bone_name); + ERR_CONTINUE(bone == -1); + for (int skin_i = 0; skin_i < state->skins.size(); skin_i++) { + if (state->skins[skin_i]->skeleton != skeleton_i) { + continue; + } + + for (int node_i = 0; node_i < bone_attachment->get_child_count(); node_i++) { + ERR_CONTINUE(bone >= state->skins[skin_i]->joints.size()); + _convert_scene_node(state, bone_attachment->get_child(node_i), bone_attachment->get_owner(), state->skins[skin_i]->joints[bone], 0); + } + break; + } + } + } + return OK; +} + +Error GLTFDocument::_parse_glb(const String &p_path, Ref<GLTFState> state) { + Error err; + FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); + if (!f) { + return err; + } + + uint32_t magic = f->get_32(); + ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF + f->get_32(); // version + f->get_32(); // length + + uint32_t chunk_length = f->get_32(); + uint32_t chunk_type = f->get_32(); + + ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON + Vector<uint8_t> json_data; + json_data.resize(chunk_length); + uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length); + ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); + + String text; + text.parse_utf8((const char *)json_data.ptr(), json_data.size()); + + String err_txt; + int err_line; + Variant v; + err = JSON::parse(text, v, err_txt, err_line); + if (err != OK) { + _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); + return err; + } + + state->json = v; + + //data? + + chunk_length = f->get_32(); + chunk_type = f->get_32(); + + if (f->eof_reached()) { + return OK; //all good + } + + ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN + + state->glb_data.resize(chunk_length); + len = f->get_buffer(state->glb_data.ptrw(), chunk_length); + ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); + + return OK; +} + +static Array _vec3_to_arr(const Vector3 &p_vec3) { + Array array; + array.resize(3); + array[0] = p_vec3.x; + array[1] = p_vec3.y; + array[2] = p_vec3.z; + return array; +} + +static Vector3 _arr_to_vec3(const Array &p_array) { + ERR_FAIL_COND_V(p_array.size() != 3, Vector3()); + return Vector3(p_array[0], p_array[1], p_array[2]); +} + +static Array _quat_to_array(const Quat &p_quat) { + Array array; + array.resize(4); + array[0] = p_quat.x; + array[1] = p_quat.y; + array[2] = p_quat.z; + array[3] = p_quat.w; + return array; +} + +static Quat _arr_to_quat(const Array &p_array) { + ERR_FAIL_COND_V(p_array.size() != 4, Quat()); + return Quat(p_array[0], p_array[1], p_array[2], p_array[3]); +} + +static Transform _arr_to_xform(const Array &p_array) { + ERR_FAIL_COND_V(p_array.size() != 16, Transform()); + + Transform xform; + xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2])); + xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6])); + xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10])); + xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14])); + + return xform; +} + +static Vector<real_t> _xform_to_array(const Transform p_transform) { + Vector<real_t> array; + array.resize(16); + Vector3 axis_x = p_transform.get_basis().get_axis(Vector3::AXIS_X); + array.write[0] = axis_x.x; + array.write[1] = axis_x.y; + array.write[2] = axis_x.z; + array.write[3] = 0.0f; + Vector3 axis_y = p_transform.get_basis().get_axis(Vector3::AXIS_Y); + array.write[4] = axis_y.x; + array.write[5] = axis_y.y; + array.write[6] = axis_y.z; + array.write[7] = 0.0f; + Vector3 axis_z = p_transform.get_basis().get_axis(Vector3::AXIS_Z); + array.write[8] = axis_z.x; + array.write[9] = axis_z.y; + array.write[10] = axis_z.z; + array.write[11] = 0.0f; + Vector3 origin = p_transform.get_origin(); + array.write[12] = origin.x; + array.write[13] = origin.y; + array.write[14] = origin.z; + array.write[15] = 1.0f; + return array; +} + +Error GLTFDocument::_serialize_nodes(Ref<GLTFState> state) { + Array nodes; + for (int i = 0; i < state->nodes.size(); i++) { + Dictionary node; + Ref<GLTFNode> n = state->nodes[i]; + Dictionary extensions; + node["extensions"] = extensions; + if (!n->get_name().is_empty()) { + node["name"] = n->get_name(); + } + if (n->camera != -1) { + node["camera"] = n->camera; + } + if (n->light != -1) { + Dictionary lights_punctual; + extensions["KHR_lights_punctual"] = lights_punctual; + lights_punctual["light"] = n->light; + } + if (n->mesh != -1) { + node["mesh"] = n->mesh; + } + if (n->skin != -1) { + node["skin"] = n->skin; + } + if (n->skeleton != -1 && n->skin < 0) { + } + if (n->xform != Transform()) { + node["matrix"] = _xform_to_array(n->xform); + } + + if (!n->rotation.is_equal_approx(Quat())) { + node["rotation"] = _quat_to_array(n->rotation); + } + + if (!n->scale.is_equal_approx(Vector3(1.0f, 1.0f, 1.0f))) { + node["scale"] = _vec3_to_arr(n->scale); + } + + if (!n->translation.is_equal_approx(Vector3())) { + node["translation"] = _vec3_to_arr(n->translation); + } + if (n->children.size()) { + Array children; + for (int j = 0; j < n->children.size(); j++) { + children.push_back(n->children[j]); + } + node["children"] = children; + } + nodes.push_back(node); + } + state->json["nodes"] = nodes; + return OK; +} + +String GLTFDocument::_sanitize_scene_name(const String &name) { + RegEx regex("([^a-zA-Z0-9_ -]+)"); + String p_name = regex.sub(name, "", true); + return p_name; +} + +String GLTFDocument::_gen_unique_name(Ref<GLTFState> state, const String &p_name) { + const String s_name = _sanitize_scene_name(p_name); + + String name; + int index = 1; + while (true) { + name = s_name; + + if (index > 1) { + name += " " + itos(index); + } + if (!state->unique_names.has(name)) { + break; + } + index++; + } + + state->unique_names.insert(name); + + return name; +} + +String GLTFDocument::_sanitize_bone_name(const String &name) { + String p_name = name.camelcase_to_underscore(true); + + RegEx pattern_nocolon(":"); + p_name = pattern_nocolon.sub(p_name, "_", true); + + RegEx pattern_noslash("/"); + p_name = pattern_noslash.sub(p_name, "_", true); + + RegEx pattern_nospace(" +"); + p_name = pattern_nospace.sub(p_name, "_", true); + + RegEx pattern_multiple("_+"); + p_name = pattern_multiple.sub(p_name, "_", true); + + RegEx pattern_padded("0+(\\d+)"); + p_name = pattern_padded.sub(p_name, "$1", true); + + return p_name; +} + +String GLTFDocument::_gen_unique_bone_name(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i, const String &p_name) { + String s_name = _sanitize_bone_name(p_name); + if (s_name.is_empty()) { + s_name = "bone"; + } + String name; + int index = 1; + while (true) { + name = s_name; + + if (index > 1) { + name += "_" + itos(index); + } + if (!state->skeletons[skel_i]->unique_names.has(name)) { + break; + } + index++; + } + + state->skeletons.write[skel_i]->unique_names.insert(name); + + return name; +} + +Error GLTFDocument::_parse_scenes(Ref<GLTFState> state) { + ERR_FAIL_COND_V(!state->json.has("scenes"), ERR_FILE_CORRUPT); + const Array &scenes = state->json["scenes"]; + int loaded_scene = 0; + if (state->json.has("scene")) { + loaded_scene = state->json["scene"]; + } else { + WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene."); + } + + if (scenes.size()) { + ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT); + const Dictionary &s = scenes[loaded_scene]; + ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE); + const Array &nodes = s["nodes"]; + for (int j = 0; j < nodes.size(); j++) { + state->root_nodes.push_back(nodes[j]); + } + + if (s.has("name") && s["name"] != "") { + state->scene_name = _gen_unique_name(state, s["name"]); + } else { + state->scene_name = _gen_unique_name(state, "Scene"); + } + } + + return OK; +} + +Error GLTFDocument::_parse_nodes(Ref<GLTFState> state) { + ERR_FAIL_COND_V(!state->json.has("nodes"), ERR_FILE_CORRUPT); + const Array &nodes = state->json["nodes"]; + for (int i = 0; i < nodes.size(); i++) { + Ref<GLTFNode> node; + node.instance(); + const Dictionary &n = nodes[i]; + + if (n.has("name")) { + node->set_name(n["name"]); + } + if (n.has("camera")) { + node->camera = n["camera"]; + } + if (n.has("mesh")) { + node->mesh = n["mesh"]; + } + if (n.has("skin")) { + node->skin = n["skin"]; + } + if (n.has("matrix")) { + node->xform = _arr_to_xform(n["matrix"]); + } else { + if (n.has("translation")) { + node->translation = _arr_to_vec3(n["translation"]); + } + if (n.has("rotation")) { + node->rotation = _arr_to_quat(n["rotation"]); + } + if (n.has("scale")) { + node->scale = _arr_to_vec3(n["scale"]); + } + + node->xform.basis.set_quat_scale(node->rotation, node->scale); + node->xform.origin = node->translation; + } + + if (n.has("extensions")) { + Dictionary extensions = n["extensions"]; + if (extensions.has("KHR_lights_punctual")) { + Dictionary lights_punctual = extensions["KHR_lights_punctual"]; + if (lights_punctual.has("light")) { + GLTFLightIndex light = lights_punctual["light"]; + node->light = light; + } + } + } + + if (n.has("children")) { + const Array &children = n["children"]; + for (int j = 0; j < children.size(); j++) { + node->children.push_back(children[j]); + } + } + + state->nodes.push_back(node); + } + + // build the hierarchy + for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) { + for (int j = 0; j < state->nodes[node_i]->children.size(); j++) { + GLTFNodeIndex child_i = state->nodes[node_i]->children[j]; + + ERR_FAIL_INDEX_V(child_i, state->nodes.size(), ERR_FILE_CORRUPT); + ERR_CONTINUE(state->nodes[child_i]->parent != -1); //node already has a parent, wtf. + + state->nodes.write[child_i]->parent = node_i; + } + } + + _compute_node_heights(state); + + return OK; +} + +void GLTFDocument::_compute_node_heights(Ref<GLTFState> state) { + state->root_nodes.clear(); + for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) { + Ref<GLTFNode> node = state->nodes[node_i]; + node->height = 0; + + GLTFNodeIndex current_i = node_i; + while (current_i >= 0) { + const GLTFNodeIndex parent_i = state->nodes[current_i]->parent; + if (parent_i >= 0) { + ++node->height; + } + current_i = parent_i; + } + + if (node->height == 0) { + state->root_nodes.push_back(node_i); + } + } +} + +static Vector<uint8_t> _parse_base64_uri(const String &uri) { + int start = uri.find(","); + ERR_FAIL_COND_V(start == -1, Vector<uint8_t>()); + + CharString substr = uri.right(start + 1).ascii(); + + int strlen = substr.length(); + + Vector<uint8_t> buf; + buf.resize(strlen / 4 * 3 + 1 + 1); + + size_t len = 0; + ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector<uint8_t>()); + + buf.resize(len); + + return buf; +} +Error GLTFDocument::_encode_buffer_glb(Ref<GLTFState> state, const String &p_path) { + print_verbose("glTF: Total buffers: " + itos(state->buffers.size())); + + if (!state->buffers.size()) { + return OK; + } + Array buffers; + if (state->buffers.size()) { + Vector<uint8_t> buffer_data = state->buffers[0]; + Dictionary gltf_buffer; + + gltf_buffer["byteLength"] = buffer_data.size(); + buffers.push_back(gltf_buffer); + } + + for (GLTFBufferIndex i = 1; i < state->buffers.size() - 1; i++) { + Vector<uint8_t> buffer_data = state->buffers[i]; + Dictionary gltf_buffer; + String filename = p_path.get_basename().get_file() + itos(i) + ".bin"; + String path = p_path.get_base_dir() + "/" + filename; + Error err; + FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err); + if (!f) { + return err; + } + if (buffer_data.size() == 0) { + return OK; + } + f->create(FileAccess::ACCESS_RESOURCES); + f->store_buffer(buffer_data.ptr(), buffer_data.size()); + f->close(); + gltf_buffer["uri"] = filename; + gltf_buffer["byteLength"] = buffer_data.size(); + buffers.push_back(gltf_buffer); + } + state->json["buffers"] = buffers; + + return OK; +} + +Error GLTFDocument::_encode_buffer_bins(Ref<GLTFState> state, const String &p_path) { + print_verbose("glTF: Total buffers: " + itos(state->buffers.size())); + + if (!state->buffers.size()) { + return OK; + } + Array buffers; + + for (GLTFBufferIndex i = 0; i < state->buffers.size(); i++) { + Vector<uint8_t> buffer_data = state->buffers[i]; + Dictionary gltf_buffer; + String filename = p_path.get_basename().get_file() + itos(i) + ".bin"; + String path = p_path.get_base_dir() + "/" + filename; + Error err; + FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err); + if (!f) { + return err; + } + if (buffer_data.size() == 0) { + return OK; + } + f->create(FileAccess::ACCESS_RESOURCES); + f->store_buffer(buffer_data.ptr(), buffer_data.size()); + f->close(); + gltf_buffer["uri"] = filename; + gltf_buffer["byteLength"] = buffer_data.size(); + buffers.push_back(gltf_buffer); + } + state->json["buffers"] = buffers; + + return OK; +} + +Error GLTFDocument::_parse_buffers(Ref<GLTFState> state, const String &p_base_path) { + if (!state->json.has("buffers")) { + return OK; + } + + const Array &buffers = state->json["buffers"]; + for (GLTFBufferIndex i = 0; i < buffers.size(); i++) { + if (i == 0 && state->glb_data.size()) { + state->buffers.push_back(state->glb_data); + + } else { + const Dictionary &buffer = buffers[i]; + if (buffer.has("uri")) { + Vector<uint8_t> buffer_data; + String uri = buffer["uri"]; + + if (uri.begins_with("data:")) { // Embedded data using base64. + // Validate data MIME types and throw an error if it's one we don't know/support. + if (!uri.begins_with("data:application/octet-stream;base64") && + !uri.begins_with("data:application/gltf-buffer;base64")) { + ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri); + } + buffer_data = _parse_base64_uri(uri); + } else { // Relative path to an external image file. + uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows. + buffer_data = FileAccess::get_file_as_array(uri); + ERR_FAIL_COND_V_MSG(buffer.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri); + } + + ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR); + int byteLength = buffer["byteLength"]; + ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR); + state->buffers.push_back(buffer_data); + } + } + } + + print_verbose("glTF: Total buffers: " + itos(state->buffers.size())); + + return OK; +} + +Error GLTFDocument::_encode_buffer_views(Ref<GLTFState> state) { + Array buffers; + for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) { + Dictionary d; + + Ref<GLTFBufferView> buffer_view = state->buffer_views[i]; + + d["buffer"] = buffer_view->buffer; + d["byteLength"] = buffer_view->byte_length; + + d["byteOffset"] = buffer_view->byte_offset; + + if (buffer_view->byte_stride != -1) { + d["byteStride"] = buffer_view->byte_stride; + } + + // TODO Sparse + // d["target"] = buffer_view->indices; + + ERR_FAIL_COND_V(!d.has("buffer"), ERR_INVALID_DATA); + ERR_FAIL_COND_V(!d.has("byteLength"), ERR_INVALID_DATA); + buffers.push_back(d); + } + print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size())); + state->json["bufferViews"] = buffers; + return OK; +} + +Error GLTFDocument::_parse_buffer_views(Ref<GLTFState> state) { + ERR_FAIL_COND_V(!state->json.has("bufferViews"), ERR_FILE_CORRUPT); + const Array &buffers = state->json["bufferViews"]; + for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) { + const Dictionary &d = buffers[i]; + + Ref<GLTFBufferView> buffer_view; + buffer_view.instance(); + + ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR); + buffer_view->buffer = d["buffer"]; + ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR); + buffer_view->byte_length = d["byteLength"]; + + if (d.has("byteOffset")) { + buffer_view->byte_offset = d["byteOffset"]; + } + + if (d.has("byteStride")) { + buffer_view->byte_stride = d["byteStride"]; + } + + if (d.has("target")) { + const int target = d["target"]; + buffer_view->indices = target == GLTFDocument::ELEMENT_ARRAY_BUFFER; + } + + state->buffer_views.push_back(buffer_view); + } + + print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size())); + + return OK; +} + +Error GLTFDocument::_encode_accessors(Ref<GLTFState> state) { + Array accessors; + for (GLTFAccessorIndex i = 0; i < state->accessors.size(); i++) { + Dictionary d; + + Ref<GLTFAccessor> accessor = state->accessors[i]; + d["componentType"] = accessor->component_type; + d["count"] = accessor->count; + d["type"] = _get_accessor_type_name(accessor->type); + d["byteOffset"] = accessor->byte_offset; + d["normalized"] = accessor->normalized; + d["max"] = accessor->max; + d["min"] = accessor->min; + d["bufferView"] = accessor->buffer_view; //optional because it may be sparse... + + // Dictionary s; + // s["count"] = accessor->sparse_count; + // ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR); + + // s["indices"] = accessor->sparse_accessors; + // ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR); + + // Dictionary si; + + // si["bufferView"] = accessor->sparse_indices_buffer_view; + + // ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); + // si["componentType"] = accessor->sparse_indices_component_type; + + // if (si.has("byteOffset")) { + // si["byteOffset"] = accessor->sparse_indices_byte_offset; + // } + + // ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); + // s["indices"] = si; + // Dictionary sv; + + // sv["bufferView"] = accessor->sparse_values_buffer_view; + // if (sv.has("byteOffset")) { + // sv["byteOffset"] = accessor->sparse_values_byte_offset; + // } + // ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); + // s["values"] = sv; + // ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR); + // d["sparse"] = s; + accessors.push_back(d); + } + + state->json["accessors"] = accessors; + ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT); + print_verbose("glTF: Total accessors: " + itos(state->accessors.size())); + + return OK; +} + +String GLTFDocument::_get_accessor_type_name(const GLTFDocument::GLTFType p_type) { + if (p_type == GLTFDocument::TYPE_SCALAR) { + return "SCALAR"; + } + if (p_type == GLTFDocument::TYPE_VEC2) { + return "VEC2"; + } + if (p_type == GLTFDocument::TYPE_VEC3) { + return "VEC3"; + } + if (p_type == GLTFDocument::TYPE_VEC4) { + return "VEC4"; + } + + if (p_type == GLTFDocument::TYPE_MAT2) { + return "MAT2"; + } + if (p_type == GLTFDocument::TYPE_MAT3) { + return "MAT3"; + } + if (p_type == GLTFDocument::TYPE_MAT4) { + return "MAT4"; + } + ERR_FAIL_V("SCALAR"); +} + +GLTFDocument::GLTFType GLTFDocument::_get_type_from_str(const String &p_string) { + if (p_string == "SCALAR") + return GLTFDocument::TYPE_SCALAR; + + if (p_string == "VEC2") + return GLTFDocument::TYPE_VEC2; + if (p_string == "VEC3") + return GLTFDocument::TYPE_VEC3; + if (p_string == "VEC4") + return GLTFDocument::TYPE_VEC4; + + if (p_string == "MAT2") + return GLTFDocument::TYPE_MAT2; + if (p_string == "MAT3") + return GLTFDocument::TYPE_MAT3; + if (p_string == "MAT4") + return GLTFDocument::TYPE_MAT4; + + ERR_FAIL_V(GLTFDocument::TYPE_SCALAR); +} + +Error GLTFDocument::_parse_accessors(Ref<GLTFState> state) { + ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT); + const Array &accessors = state->json["accessors"]; + for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) { + const Dictionary &d = accessors[i]; + + Ref<GLTFAccessor> accessor; + accessor.instance(); + + ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR); + accessor->component_type = d["componentType"]; + ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); + accessor->count = d["count"]; + ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); + accessor->type = _get_type_from_str(d["type"]); + + if (d.has("bufferView")) { + accessor->buffer_view = d["bufferView"]; //optional because it may be sparse... + } + + if (d.has("byteOffset")) { + accessor->byte_offset = d["byteOffset"]; + } + + if (d.has("normalized")) { + accessor->normalized = d["normalized"]; + } + + if (d.has("max")) { + accessor->max = d["max"]; + } + + if (d.has("min")) { + accessor->min = d["min"]; + } + + if (d.has("sparse")) { + //eeh.. + + const Dictionary &s = d["sparse"]; + + ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR); + accessor->sparse_count = s["count"]; + ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR); + const Dictionary &si = s["indices"]; + + ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); + accessor->sparse_indices_buffer_view = si["bufferView"]; + ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); + accessor->sparse_indices_component_type = si["componentType"]; + + if (si.has("byteOffset")) { + accessor->sparse_indices_byte_offset = si["byteOffset"]; + } + + ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR); + const Dictionary &sv = s["values"]; + + ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); + accessor->sparse_values_buffer_view = sv["bufferView"]; + if (sv.has("byteOffset")) { + accessor->sparse_values_byte_offset = sv["byteOffset"]; + } + } + + state->accessors.push_back(accessor); + } + + print_verbose("glTF: Total accessors: " + itos(state->accessors.size())); + + return OK; +} + +double GLTFDocument::_filter_number(double p_float) { + if (Math::is_nan(p_float)) { + return 0.0f; + } + return p_float; +} + +String GLTFDocument::_get_component_type_name(const uint32_t p_component) { + switch (p_component) { + case GLTFDocument::COMPONENT_TYPE_BYTE: + return "Byte"; + case GLTFDocument::COMPONENT_TYPE_UNSIGNED_BYTE: + return "UByte"; + case GLTFDocument::COMPONENT_TYPE_SHORT: + return "Short"; + case GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT: + return "UShort"; + case GLTFDocument::COMPONENT_TYPE_INT: + return "Int"; + case GLTFDocument::COMPONENT_TYPE_FLOAT: + return "Float"; + } + + return "<Error>"; +} + +String GLTFDocument::_get_type_name(const GLTFType p_component) { + static const char *names[] = { + "float", + "vec2", + "vec3", + "vec4", + "mat2", + "mat3", + "mat4" + }; + + return names[p_component]; +} + +Error GLTFDocument::_encode_buffer_view(Ref<GLTFState> state, const double *src, const int count, const GLTFType type, const int component_type, const bool normalized, const int byte_offset, const bool for_vertex, GLTFBufferViewIndex &r_accessor) { + const int component_count_for_type[7] = { + 1, 2, 3, 4, 4, 9, 16 + }; + + const int component_count = component_count_for_type[type]; + const int component_size = _get_component_type_size(component_type); + ERR_FAIL_COND_V(component_size == 0, FAILED); + + int skip_every = 0; + int skip_bytes = 0; + //special case of alignments, as described in spec + switch (component_type) { + case COMPONENT_TYPE_BYTE: + case COMPONENT_TYPE_UNSIGNED_BYTE: { + if (type == TYPE_MAT2) { + skip_every = 2; + skip_bytes = 2; + } + if (type == TYPE_MAT3) { + skip_every = 3; + skip_bytes = 1; + } + } break; + case COMPONENT_TYPE_SHORT: + case COMPONENT_TYPE_UNSIGNED_SHORT: { + if (type == TYPE_MAT3) { + skip_every = 6; + skip_bytes = 4; + } + } break; + default: { + } + } + + Ref<GLTFBufferView> bv; + bv.instance(); + const uint32_t offset = bv->byte_offset = byte_offset; + Vector<uint8_t> &gltf_buffer = state->buffers.write[0]; + + int stride = _get_component_type_size(component_type); + if (for_vertex && stride % 4) { + stride += 4 - (stride % 4); //according to spec must be multiple of 4 + } + //use to debug + print_verbose("glTF: encoding type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); + + print_verbose("glTF: encoding accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(gltf_buffer.size()) + " view len " + itos(bv->byte_length)); + + const int buffer_end = (stride * (count - 1)) + _get_component_type_size(component_type); + // TODO define bv->byte_stride + bv->byte_offset = gltf_buffer.size(); + + switch (component_type) { + case COMPONENT_TYPE_BYTE: { + Vector<int8_t> buffer; + buffer.resize(count * component_count); + int32_t dst_i = 0; + for (int i = 0; i < count; i++) { + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + dst_i += skip_bytes; + } + double d = *src; + if (normalized) { + buffer.write[dst_i] = d * 128.0; + } else { + buffer.write[dst_i] = d; + } + src++; + dst_i++; + } + } + int64_t old_size = gltf_buffer.size(); + gltf_buffer.resize(old_size + (buffer.size() * sizeof(int8_t))); + copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int8_t)); + bv->byte_length = buffer.size() * sizeof(int8_t); + } break; + case COMPONENT_TYPE_UNSIGNED_BYTE: { + Vector<uint8_t> buffer; + buffer.resize(count * component_count); + int32_t dst_i = 0; + for (int i = 0; i < count; i++) { + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + dst_i += skip_bytes; + } + double d = *src; + if (normalized) { + buffer.write[dst_i] = d * 255.0; + } else { + buffer.write[dst_i] = d; + } + src++; + dst_i++; + } + } + gltf_buffer.append_array(buffer); + bv->byte_length = buffer.size() * sizeof(uint8_t); + } break; + case COMPONENT_TYPE_SHORT: { + Vector<int16_t> buffer; + buffer.resize(count * component_count); + int32_t dst_i = 0; + for (int i = 0; i < count; i++) { + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + dst_i += skip_bytes; + } + double d = *src; + if (normalized) { + buffer.write[dst_i] = d * 32768.0; + } else { + buffer.write[dst_i] = d; + } + src++; + dst_i++; + } + } + int64_t old_size = gltf_buffer.size(); + gltf_buffer.resize(old_size + (buffer.size() * sizeof(int16_t))); + copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int16_t)); + bv->byte_length = buffer.size() * sizeof(int16_t); + } break; + case COMPONENT_TYPE_UNSIGNED_SHORT: { + Vector<uint16_t> buffer; + buffer.resize(count * component_count); + int32_t dst_i = 0; + for (int i = 0; i < count; i++) { + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + dst_i += skip_bytes; + } + double d = *src; + if (normalized) { + buffer.write[dst_i] = d * 65535.0; + } else { + buffer.write[dst_i] = d; + } + src++; + dst_i++; + } + } + int64_t old_size = gltf_buffer.size(); + gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint16_t))); + copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint16_t)); + bv->byte_length = buffer.size() * sizeof(uint16_t); + } break; + case COMPONENT_TYPE_INT: { + Vector<int> buffer; + buffer.resize(count * component_count); + int32_t dst_i = 0; + for (int i = 0; i < count; i++) { + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + dst_i += skip_bytes; + } + double d = *src; + buffer.write[dst_i] = d; + src++; + dst_i++; + } + } + int64_t old_size = gltf_buffer.size(); + gltf_buffer.resize(old_size + (buffer.size() * sizeof(int32_t))); + copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int32_t)); + bv->byte_length = buffer.size() * sizeof(int32_t); + } break; + case COMPONENT_TYPE_FLOAT: { + Vector<float> buffer; + buffer.resize(count * component_count); + int32_t dst_i = 0; + for (int i = 0; i < count; i++) { + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + dst_i += skip_bytes; + } + double d = *src; + buffer.write[dst_i] = d; + src++; + dst_i++; + } + } + int64_t old_size = gltf_buffer.size(); + gltf_buffer.resize(old_size + (buffer.size() * sizeof(float))); + copymem(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(float)); + bv->byte_length = buffer.size() * sizeof(float); + } break; + } + ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_INVALID_DATA); + + ERR_FAIL_COND_V((int)(offset + buffer_end) > gltf_buffer.size(), ERR_INVALID_DATA); + r_accessor = bv->buffer = state->buffer_views.size(); + state->buffer_views.push_back(bv); + return OK; +} + +Error GLTFDocument::_decode_buffer_view(Ref<GLTFState> state, double *dst, const GLTFBufferViewIndex p_buffer_view, const int skip_every, const int skip_bytes, const int element_size, const int count, const GLTFType type, const int component_count, const int component_type, const int component_size, const bool normalized, const int byte_offset, const bool for_vertex) { + const Ref<GLTFBufferView> bv = state->buffer_views[p_buffer_view]; + + int stride = element_size; + if (bv->byte_stride != -1) { + stride = bv->byte_stride; + } + if (for_vertex && stride % 4) { + stride += 4 - (stride % 4); //according to spec must be multiple of 4 + } + + ERR_FAIL_INDEX_V(bv->buffer, state->buffers.size(), ERR_PARSE_ERROR); + + const uint32_t offset = bv->byte_offset + byte_offset; + Vector<uint8_t> buffer = state->buffers[bv->buffer]; //copy on write, so no performance hit + const uint8_t *bufptr = buffer.ptr(); + + //use to debug + print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); + print_verbose("glTF: accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv->byte_length)); + + const int buffer_end = (stride * (count - 1)) + element_size; + ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_PARSE_ERROR); + + ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR); + + //fill everything as doubles + + for (int i = 0; i < count; i++) { + const uint8_t *src = &bufptr[offset + i * stride]; + + for (int j = 0; j < component_count; j++) { + if (skip_every && j > 0 && (j % skip_every) == 0) { + src += skip_bytes; + } + + double d = 0; + + switch (component_type) { + case COMPONENT_TYPE_BYTE: { + int8_t b = int8_t(*src); + if (normalized) { + d = (double(b) / 128.0); + } else { + d = double(b); + } + } break; + case COMPONENT_TYPE_UNSIGNED_BYTE: { + uint8_t b = *src; + if (normalized) { + d = (double(b) / 255.0); + } else { + d = double(b); + } + } break; + case COMPONENT_TYPE_SHORT: { + int16_t s = *(int16_t *)src; + if (normalized) { + d = (double(s) / 32768.0); + } else { + d = double(s); + } + } break; + case COMPONENT_TYPE_UNSIGNED_SHORT: { + uint16_t s = *(uint16_t *)src; + if (normalized) { + d = (double(s) / 65535.0); + } else { + d = double(s); + } + } break; + case COMPONENT_TYPE_INT: { + d = *(int *)src; + } break; + case COMPONENT_TYPE_FLOAT: { + d = *(float *)src; + } break; + } + + *dst++ = d; + src += component_size; + } + } + + return OK; +} + +int GLTFDocument::_get_component_type_size(const int component_type) { + switch (component_type) { + case COMPONENT_TYPE_BYTE: + case COMPONENT_TYPE_UNSIGNED_BYTE: + return 1; + break; + case COMPONENT_TYPE_SHORT: + case COMPONENT_TYPE_UNSIGNED_SHORT: + return 2; + break; + case COMPONENT_TYPE_INT: + case COMPONENT_TYPE_FLOAT: + return 4; + break; + default: { + ERR_FAIL_V(0); + } + } + return 0; +} + +Vector<double> GLTFDocument::_decode_accessor(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + //spec, for reference: + //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment + + ERR_FAIL_INDEX_V(p_accessor, state->accessors.size(), Vector<double>()); + + const Ref<GLTFAccessor> a = state->accessors[p_accessor]; + + const int component_count_for_type[7] = { + 1, 2, 3, 4, 4, 9, 16 + }; + + const int component_count = component_count_for_type[a->type]; + const int component_size = _get_component_type_size(a->component_type); + ERR_FAIL_COND_V(component_size == 0, Vector<double>()); + int element_size = component_count * component_size; + + int skip_every = 0; + int skip_bytes = 0; + //special case of alignments, as described in spec + switch (a->component_type) { + case COMPONENT_TYPE_BYTE: + case COMPONENT_TYPE_UNSIGNED_BYTE: { + if (a->type == TYPE_MAT2) { + skip_every = 2; + skip_bytes = 2; + element_size = 8; //override for this case + } + if (a->type == TYPE_MAT3) { + skip_every = 3; + skip_bytes = 1; + element_size = 12; //override for this case + } + } break; + case COMPONENT_TYPE_SHORT: + case COMPONENT_TYPE_UNSIGNED_SHORT: { + if (a->type == TYPE_MAT3) { + skip_every = 6; + skip_bytes = 4; + element_size = 16; //override for this case + } + } break; + default: { + } + } + + Vector<double> dst_buffer; + dst_buffer.resize(component_count * a->count); + double *dst = dst_buffer.ptrw(); + + if (a->buffer_view >= 0) { + ERR_FAIL_INDEX_V(a->buffer_view, state->buffer_views.size(), Vector<double>()); + + const Error err = _decode_buffer_view(state, dst, a->buffer_view, skip_every, skip_bytes, element_size, a->count, a->type, component_count, a->component_type, component_size, a->normalized, a->byte_offset, p_for_vertex); + if (err != OK) + return Vector<double>(); + } else { + //fill with zeros, as bufferview is not defined. + for (int i = 0; i < (a->count * component_count); i++) { + dst_buffer.write[i] = 0; + } + } + + if (a->sparse_count > 0) { + // I could not find any file using this, so this code is so far untested + Vector<double> indices; + indices.resize(a->sparse_count); + const int indices_component_size = _get_component_type_size(a->sparse_indices_component_type); + + Error err = _decode_buffer_view(state, indices.ptrw(), a->sparse_indices_buffer_view, 0, 0, indices_component_size, a->sparse_count, TYPE_SCALAR, 1, a->sparse_indices_component_type, indices_component_size, false, a->sparse_indices_byte_offset, false); + if (err != OK) + return Vector<double>(); + + Vector<double> data; + data.resize(component_count * a->sparse_count); + err = _decode_buffer_view(state, data.ptrw(), a->sparse_values_buffer_view, skip_every, skip_bytes, element_size, a->sparse_count, a->type, component_count, a->component_type, component_size, a->normalized, a->sparse_values_byte_offset, p_for_vertex); + if (err != OK) + return Vector<double>(); + + for (int i = 0; i < indices.size(); i++) { + const int write_offset = int(indices[i]) * component_count; + + for (int j = 0; j < component_count; j++) { + dst[write_offset + j] = data[i * component_count + j]; + } + } + } + + return dst_buffer; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_ints(Ref<GLTFState> state, const Vector<int32_t> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + const int element_count = 1; + const int ret_size = p_attribs.size(); + Vector<double> attribs; + attribs.resize(ret_size); + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + attribs.write[i] = Math::snapped(p_attribs[i], 1.0); + if (i == 0) { + for (int32_t type_i = 0; type_i < element_count; type_i++) { + type_max.write[type_i] = attribs[(i * element_count) + type_i]; + type_min.write[type_i] = attribs[(i * element_count) + type_i]; + } + } + for (int32_t type_i = 0; type_i < element_count; type_i++) { + type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]); + type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]); + type_max.write[type_i] = _filter_number(type_max.write[type_i]); + type_min.write[type_i] = _filter_number(type_min.write[type_i]); + } + } + + ERR_FAIL_COND_V(attribs.size() == 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR; + const int component_type = GLTFDocument::COMPONENT_TYPE_INT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = ret_size; + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +Vector<int> GLTFDocument::_decode_accessor_as_ints(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<int> ret; + + if (attribs.size() == 0) + return ret; + + const double *attribs_ptr = attribs.ptr(); + const int ret_size = attribs.size(); + ret.resize(ret_size); + { + for (int i = 0; i < ret_size; i++) { + ret.write[i] = int(attribs_ptr[i]); + } + } + return ret; +} + +Vector<float> GLTFDocument::_decode_accessor_as_floats(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<float> ret; + + if (attribs.size() == 0) + return ret; + + const double *attribs_ptr = attribs.ptr(); + const int ret_size = attribs.size(); + ret.resize(ret_size); + { + for (int i = 0; i < ret_size; i++) { + ret.write[i] = float(attribs_ptr[i]); + } + } + return ret; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec2(Ref<GLTFState> state, const Vector<Vector2> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + const int element_count = 2; + + const int ret_size = p_attribs.size() * element_count; + Vector<double> attribs; + attribs.resize(ret_size); + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + + for (int i = 0; i < p_attribs.size(); i++) { + Vector2 attrib = p_attribs[i]; + attribs.write[(i * element_count) + 0] = Math::snapped(attrib.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 1] = Math::snapped(attrib.y, CMP_NORMALIZE_TOLERANCE); + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC2; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_color(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + + const int ret_size = p_attribs.size() * 4; + Vector<double> attribs; + attribs.resize(ret_size); + + const int element_count = 4; + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + Color attrib = p_attribs[i]; + attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE); + + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +void GLTFDocument::_calc_accessor_min_max(int i, const int element_count, Vector<double> &type_max, Vector<double> attribs, Vector<double> &type_min) { + if (i == 0) { + for (int32_t type_i = 0; type_i < element_count; type_i++) { + type_max.write[type_i] = attribs[(i * element_count) + type_i]; + type_min.write[type_i] = attribs[(i * element_count) + type_i]; + } + } + for (int32_t type_i = 0; type_i < element_count; type_i++) { + type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]); + type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]); + type_max.write[type_i] = _filter_number(type_max.write[type_i]); + type_min.write[type_i] = _filter_number(type_min.write[type_i]); + } +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_weights(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + + const int ret_size = p_attribs.size() * 4; + Vector<double> attribs; + attribs.resize(ret_size); + + const int element_count = 4; + + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + Color attrib = p_attribs[i]; + attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE); + + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_joints(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + + const int element_count = 4; + const int ret_size = p_attribs.size() * element_count; + Vector<double> attribs; + attribs.resize(ret_size); + + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + Color attrib = p_attribs[i]; + attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE); + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; + const int component_type = GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_quats(Ref<GLTFState> state, const Vector<Quat> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + const int element_count = 4; + + const int ret_size = p_attribs.size() * element_count; + Vector<double> attribs; + attribs.resize(ret_size); + + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + Quat quat = p_attribs[i]; + attribs.write[(i * element_count) + 0] = Math::snapped(quat.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 1] = Math::snapped(quat.y, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 2] = Math::snapped(quat.z, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 3] = Math::snapped(quat.w, CMP_NORMALIZE_TOLERANCE); + + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +Vector<Vector2> GLTFDocument::_decode_accessor_as_vec2(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Vector2> ret; + + if (attribs.size() == 0) + return ret; + + ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret); + const double *attribs_ptr = attribs.ptr(); + const int ret_size = attribs.size() / 2; + ret.resize(ret_size); + { + for (int i = 0; i < ret_size; i++) { + ret.write[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]); + } + } + return ret; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_floats(Ref<GLTFState> state, const Vector<real_t> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + const int element_count = 1; + const int ret_size = p_attribs.size(); + Vector<double> attribs; + attribs.resize(ret_size); + + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + + for (int i = 0; i < p_attribs.size(); i++) { + attribs.write[i] = Math::snapped(p_attribs[i], CMP_NORMALIZE_TOLERANCE); + + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + + ERR_FAIL_COND_V(!attribs.size(), -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = ret_size; + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec3(Ref<GLTFState> state, const Vector<Vector3> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + const int element_count = 3; + const int ret_size = p_attribs.size() * element_count; + Vector<double> attribs; + attribs.resize(ret_size); + + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + Vector3 attrib = p_attribs[i]; + attribs.write[(i * element_count) + 0] = Math::snapped(attrib.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 1] = Math::snapped(attrib.y, CMP_NORMALIZE_TOLERANCE); + attribs.write[(i * element_count) + 2] = Math::snapped(attrib.z, CMP_NORMALIZE_TOLERANCE); + + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC3; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +GLTFAccessorIndex GLTFDocument::_encode_accessor_as_xform(Ref<GLTFState> state, const Vector<Transform> p_attribs, const bool p_for_vertex) { + if (p_attribs.size() == 0) { + return -1; + } + const int element_count = 16; + const int ret_size = p_attribs.size() * element_count; + Vector<double> attribs; + attribs.resize(ret_size); + + Vector<double> type_max; + type_max.resize(element_count); + Vector<double> type_min; + type_min.resize(element_count); + for (int i = 0; i < p_attribs.size(); i++) { + Transform attrib = p_attribs[i]; + Basis basis = attrib.get_basis(); + Vector3 axis_0 = basis.get_axis(Vector3::AXIS_X); + + attribs.write[i * element_count + 0] = Math::snapped(axis_0.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 1] = Math::snapped(axis_0.y, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 2] = Math::snapped(axis_0.z, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 3] = 0.0; + + Vector3 axis_1 = basis.get_axis(Vector3::AXIS_Y); + attribs.write[i * element_count + 4] = Math::snapped(axis_1.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 5] = Math::snapped(axis_1.y, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 6] = Math::snapped(axis_1.z, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 7] = 0.0; + + Vector3 axis_2 = basis.get_axis(Vector3::AXIS_Z); + attribs.write[i * element_count + 8] = Math::snapped(axis_2.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 9] = Math::snapped(axis_2.y, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 10] = Math::snapped(axis_2.z, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 11] = 0.0; + + Vector3 origin = attrib.get_origin(); + attribs.write[i * element_count + 12] = Math::snapped(origin.x, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 13] = Math::snapped(origin.y, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 14] = Math::snapped(origin.z, CMP_NORMALIZE_TOLERANCE); + attribs.write[i * element_count + 15] = 1.0; + + _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); + } + ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); + + Ref<GLTFAccessor> accessor; + accessor.instance(); + GLTFBufferIndex buffer_view_i; + int64_t size = state->buffers[0].size(); + const GLTFDocument::GLTFType type = GLTFDocument::TYPE_MAT4; + const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; + + accessor->max = type_max; + accessor->min = type_min; + accessor->normalized = false; + accessor->count = p_attribs.size(); + accessor->type = type; + accessor->component_type = component_type; + accessor->byte_offset = 0; + Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); + if (err != OK) { + return -1; + } + accessor->buffer_view = buffer_view_i; + state->accessors.push_back(accessor); + return state->accessors.size() - 1; +} + +Vector<Vector3> GLTFDocument::_decode_accessor_as_vec3(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Vector3> ret; + + if (attribs.size() == 0) + return ret; + + ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret); + const double *attribs_ptr = attribs.ptr(); + const int ret_size = attribs.size() / 3; + ret.resize(ret_size); + { + for (int i = 0; i < ret_size; i++) { + ret.write[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]); + } + } + return ret; +} + +Vector<Color> GLTFDocument::_decode_accessor_as_color(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Color> ret; + + if (attribs.size() == 0) + return ret; + + const int type = state->accessors[p_accessor]->type; + ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret); + int vec_len = 3; + if (type == TYPE_VEC4) { + vec_len = 4; + } + + ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret); + const double *attribs_ptr = attribs.ptr(); + const int ret_size = attribs.size() / vec_len; + ret.resize(ret_size); + { + for (int i = 0; i < ret_size; i++) { + ret.write[i] = Color(attribs_ptr[i * vec_len + 0], attribs_ptr[i * vec_len + 1], attribs_ptr[i * vec_len + 2], vec_len == 4 ? attribs_ptr[i * 4 + 3] : 1.0); + } + } + return ret; +} +Vector<Quat> GLTFDocument::_decode_accessor_as_quat(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Quat> ret; + + if (attribs.size() == 0) + return ret; + + ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); + const double *attribs_ptr = attribs.ptr(); + const int ret_size = attribs.size() / 4; + ret.resize(ret_size); + { + for (int i = 0; i < ret_size; i++) { + ret.write[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized(); + } + } + return ret; +} +Vector<Transform2D> GLTFDocument::_decode_accessor_as_xform2d(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Transform2D> ret; + + if (attribs.size() == 0) + return ret; + + ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); + ret.resize(attribs.size() / 4); + for (int i = 0; i < ret.size(); i++) { + ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]); + ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]); + } + return ret; +} + +Vector<Basis> GLTFDocument::_decode_accessor_as_basis(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Basis> ret; + + if (attribs.size() == 0) + return ret; + + ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret); + ret.resize(attribs.size() / 9); + for (int i = 0; i < ret.size(); i++) { + ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2])); + ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5])); + ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8])); + } + return ret; +} + +Vector<Transform> GLTFDocument::_decode_accessor_as_xform(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { + const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Transform> ret; + + if (attribs.size() == 0) + return ret; + + ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret); + ret.resize(attribs.size() / 16); + for (int i = 0; i < ret.size(); i++) { + ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2])); + ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6])); + ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10])); + ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14])); + } + return ret; +} + +Error GLTFDocument::_serialize_meshes(Ref<GLTFState> state) { + Array meshes; + for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < state->meshes.size(); gltf_mesh_i++) { + print_verbose("glTF: Serializing mesh: " + itos(gltf_mesh_i)); + Ref<EditorSceneImporterMesh> import_mesh = state->meshes.write[gltf_mesh_i]->get_mesh(); + if (import_mesh.is_null()) { + continue; + } + Array primitives; + Array targets; + Dictionary gltf_mesh; + Array target_names; + Array weights; + for (int surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) { + Dictionary primitive; + Mesh::PrimitiveType primitive_type = import_mesh->get_surface_primitive_type(surface_i); + switch (primitive_type) { + case Mesh::PRIMITIVE_POINTS: { + primitive["mode"] = 0; + break; + } + case Mesh::PRIMITIVE_LINES: { + primitive["mode"] = 1; + break; + } + // case Mesh::PRIMITIVE_LINE_LOOP: { + // primitive["mode"] = 2; + // break; + // } + case Mesh::PRIMITIVE_LINE_STRIP: { + primitive["mode"] = 3; + break; + } + case Mesh::PRIMITIVE_TRIANGLES: { + primitive["mode"] = 4; + break; + } + case Mesh::PRIMITIVE_TRIANGLE_STRIP: { + primitive["mode"] = 5; + break; + } + // case Mesh::PRIMITIVE_TRIANGLE_FAN: { + // primitive["mode"] = 6; + // break; + // } + default: { + ERR_FAIL_V(FAILED); + } + } + + Array array = import_mesh->get_surface_arrays(surface_i); + Dictionary attributes; + { + Vector<Vector3> a = array[Mesh::ARRAY_VERTEX]; + ERR_FAIL_COND_V(!a.size(), ERR_INVALID_DATA); + attributes["POSITION"] = _encode_accessor_as_vec3(state, a, true); + } + { + Vector<real_t> a = array[Mesh::ARRAY_TANGENT]; + if (a.size()) { + const int ret_size = a.size() / 4; + Vector<Color> attribs; + attribs.resize(ret_size); + for (int i = 0; i < ret_size; i++) { + Color out; + out.r = a[(i * 4) + 0]; + out.g = a[(i * 4) + 1]; + out.b = a[(i * 4) + 2]; + out.a = a[(i * 4) + 3]; + attribs.write[i] = out; + } + attributes["TANGENT"] = _encode_accessor_as_color(state, attribs, true); + } + } + { + Vector<Vector3> a = array[Mesh::ARRAY_NORMAL]; + if (a.size()) { + const int ret_size = a.size(); + Vector<Vector3> attribs; + attribs.resize(ret_size); + for (int i = 0; i < ret_size; i++) { + attribs.write[i] = Vector3(a[i]).normalized(); + } + attributes["NORMAL"] = _encode_accessor_as_vec3(state, attribs, true); + } + } + { + Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV]; + if (a.size()) { + attributes["TEXCOORD_0"] = _encode_accessor_as_vec2(state, a, true); + } + } + { + Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV2]; + if (a.size()) { + attributes["TEXCOORD_1"] = _encode_accessor_as_vec2(state, a, true); + } + } + { + Vector<Color> a = array[Mesh::ARRAY_COLOR]; + if (a.size()) { + attributes["COLOR_0"] = _encode_accessor_as_color(state, a, true); + } + } + Map<int, int> joint_i_to_bone_i; + for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) { + GLTFSkinIndex skin_i = -1; + if (state->nodes[node_i]->mesh == gltf_mesh_i) { + skin_i = state->nodes[node_i]->skin; + } + if (skin_i != -1) { + joint_i_to_bone_i = state->skins[skin_i]->joint_i_to_bone_i; + break; + } + } + { + const Array &a = array[Mesh::ARRAY_BONES]; + const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX]; + if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) { + const int ret_size = a.size() / JOINT_GROUP_SIZE; + Vector<Color> attribs; + attribs.resize(ret_size); + { + for (int array_i = 0; array_i < attribs.size(); array_i++) { + int32_t joint_0 = a[(array_i * JOINT_GROUP_SIZE) + 0]; + int32_t joint_1 = a[(array_i * JOINT_GROUP_SIZE) + 1]; + int32_t joint_2 = a[(array_i * JOINT_GROUP_SIZE) + 2]; + int32_t joint_3 = a[(array_i * JOINT_GROUP_SIZE) + 3]; + attribs.write[array_i] = Color(joint_0, joint_1, joint_2, joint_3); + } + } + attributes["JOINTS_0"] = _encode_accessor_as_joints(state, attribs, true); + } else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) { + int32_t vertex_count = vertex_array.size(); + Vector<Color> joints_0; + joints_0.resize(vertex_count); + Vector<Color> joints_1; + joints_1.resize(vertex_count); + int32_t weights_8_count = JOINT_GROUP_SIZE * 2; + for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) { + Color joint_0; + joint_0.r = a[vertex_i * weights_8_count + 0]; + joint_0.g = a[vertex_i * weights_8_count + 1]; + joint_0.b = a[vertex_i * weights_8_count + 2]; + joint_0.a = a[vertex_i * weights_8_count + 3]; + joints_0.write[vertex_i] = joint_0; + Color joint_1; + joint_1.r = a[vertex_i * weights_8_count + 4]; + joint_1.g = a[vertex_i * weights_8_count + 5]; + joint_1.b = a[vertex_i * weights_8_count + 6]; + joint_1.a = a[vertex_i * weights_8_count + 7]; + joints_1.write[vertex_i] = joint_1; + } + attributes["JOINTS_0"] = _encode_accessor_as_joints(state, joints_0, true); + attributes["JOINTS_1"] = _encode_accessor_as_joints(state, joints_1, true); + } + } + { + const Array &a = array[Mesh::ARRAY_WEIGHTS]; + const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX]; + if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) { + const int ret_size = a.size() / JOINT_GROUP_SIZE; + Vector<Color> attribs; + attribs.resize(ret_size); + for (int i = 0; i < ret_size; i++) { + attribs.write[i] = Color(a[(i * JOINT_GROUP_SIZE) + 0], a[(i * JOINT_GROUP_SIZE) + 1], a[(i * JOINT_GROUP_SIZE) + 2], a[(i * JOINT_GROUP_SIZE) + 3]); + } + attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, attribs, true); + } else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) { + int32_t vertex_count = vertex_array.size(); + Vector<Color> weights_0; + weights_0.resize(vertex_count); + Vector<Color> weights_1; + weights_1.resize(vertex_count); + int32_t weights_8_count = JOINT_GROUP_SIZE * 2; + for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) { + Color weight_0; + weight_0.r = a[vertex_i * weights_8_count + 0]; + weight_0.g = a[vertex_i * weights_8_count + 1]; + weight_0.b = a[vertex_i * weights_8_count + 2]; + weight_0.a = a[vertex_i * weights_8_count + 3]; + weights_0.write[vertex_i] = weight_0; + Color weight_1; + weight_1.r = a[vertex_i * weights_8_count + 4]; + weight_1.g = a[vertex_i * weights_8_count + 5]; + weight_1.b = a[vertex_i * weights_8_count + 6]; + weight_1.a = a[vertex_i * weights_8_count + 7]; + weights_1.write[vertex_i] = weight_1; + } + attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, weights_0, true); + attributes["WEIGHTS_1"] = _encode_accessor_as_weights(state, weights_1, true); + } + } + { + Vector<int32_t> mesh_indices = array[Mesh::ARRAY_INDEX]; + if (mesh_indices.size()) { + if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) { + //swap around indices, convert ccw to cw for front face + const int is = mesh_indices.size(); + for (int k = 0; k < is; k += 3) { + SWAP(mesh_indices.write[k + 0], mesh_indices.write[k + 2]); + } + } + primitive["indices"] = _encode_accessor_as_ints(state, mesh_indices, true); + } else { + if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) { + //generate indices because they need to be swapped for CW/CCW + const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX]; + Ref<SurfaceTool> st; + st.instance(); + st->create_from_triangle_arrays(array); + st->index(); + Vector<int32_t> generated_indices = st->commit_to_arrays()[Mesh::ARRAY_INDEX]; + const int vs = vertices.size(); + generated_indices.resize(vs); + { + for (int k = 0; k < vs; k += 3) { + generated_indices.write[k] = k; + generated_indices.write[k + 1] = k + 2; + generated_indices.write[k + 2] = k + 1; + } + } + primitive["indices"] = _encode_accessor_as_ints(state, generated_indices, true); + } + } + } + + primitive["attributes"] = attributes; + + //blend shapes + print_verbose("glTF: Mesh has targets"); + if (import_mesh->get_blend_shape_count()) { + ArrayMesh::BlendShapeMode shape_mode = import_mesh->get_blend_shape_mode(); + for (int morph_i = 0; morph_i < import_mesh->get_blend_shape_count(); morph_i++) { + Array array_morph = import_mesh->get_surface_blend_shape_arrays(surface_i, morph_i); + target_names.push_back(import_mesh->get_blend_shape_name(morph_i)); + Dictionary t; + Vector<Vector3> varr = array_morph[Mesh::ARRAY_VERTEX]; + Array mesh_arrays = import_mesh->get_surface_arrays(surface_i); + if (varr.size()) { + Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX]; + if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) { + const int max_idx = src_varr.size(); + for (int blend_i = 0; blend_i < max_idx; blend_i++) { + varr.write[blend_i] = Vector3(varr[blend_i]) - src_varr[blend_i]; + } + } + + t["POSITION"] = _encode_accessor_as_vec3(state, varr, true); + } + + Vector<Vector3> narr = array_morph[Mesh::ARRAY_NORMAL]; + if (varr.size()) { + t["NORMAL"] = _encode_accessor_as_vec3(state, narr, true); + } + Vector<real_t> tarr = array_morph[Mesh::ARRAY_TANGENT]; + if (tarr.size()) { + const int ret_size = tarr.size() / 4; + Vector<Color> attribs; + attribs.resize(ret_size); + for (int i = 0; i < ret_size; i++) { + Color tangent; + tangent.r = tarr[(i * 4) + 0]; + tangent.r = tarr[(i * 4) + 1]; + tangent.r = tarr[(i * 4) + 2]; + tangent.r = tarr[(i * 4) + 3]; + } + t["TANGENT"] = _encode_accessor_as_color(state, attribs, true); + } + targets.push_back(t); + } + } + + Ref<BaseMaterial3D> mat = import_mesh->get_surface_material(surface_i); + if (mat.is_valid()) { + Map<Ref<BaseMaterial3D>, GLTFMaterialIndex>::Element *material_cache_i = state->material_cache.find(mat); + if (material_cache_i && material_cache_i->get() != -1) { + primitive["material"] = material_cache_i->get(); + } else { + GLTFMaterialIndex mat_i = state->materials.size(); + state->materials.push_back(mat); + primitive["material"] = mat_i; + state->material_cache.insert(mat, mat_i); + } + } + + if (targets.size()) { + primitive["targets"] = targets; + } + + primitives.push_back(primitive); + } + + Dictionary e; + e["targetNames"] = target_names; + + for (int j = 0; j < target_names.size(); j++) { + real_t weight = 0; + if (j < state->meshes.write[gltf_mesh_i]->get_blend_weights().size()) { + weight = state->meshes.write[gltf_mesh_i]->get_blend_weights()[j]; + } + weights.push_back(weight); + } + if (weights.size()) { + gltf_mesh["weights"] = weights; + } + + ERR_FAIL_COND_V(target_names.size() != weights.size(), FAILED); + + gltf_mesh["extras"] = e; + + gltf_mesh["primitives"] = primitives; + + meshes.push_back(gltf_mesh); + } + + state->json["meshes"] = meshes; + print_verbose("glTF: Total meshes: " + itos(meshes.size())); + + return OK; +} + +Error GLTFDocument::_parse_meshes(Ref<GLTFState> state) { + if (!state->json.has("meshes")) { + return OK; + } + + Array meshes = state->json["meshes"]; + for (GLTFMeshIndex i = 0; i < meshes.size(); i++) { + print_verbose("glTF: Parsing mesh: " + itos(i)); + Dictionary d = meshes[i]; + + Ref<GLTFMesh> mesh; + mesh.instance(); + bool has_vertex_color = false; + + ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR); + + Array primitives = d["primitives"]; + const Dictionary &extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary(); + Ref<EditorSceneImporterMesh> import_mesh; + import_mesh.instance(); + for (int j = 0; j < primitives.size(); j++) { + Dictionary p = primitives[j]; + + Array array; + array.resize(Mesh::ARRAY_MAX); + + ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR); + + Dictionary a = p["attributes"]; + + Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; + if (p.has("mode")) { + const int mode = p["mode"]; + ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT); + static const Mesh::PrimitiveType primitives2[7] = { + Mesh::PRIMITIVE_POINTS, + Mesh::PRIMITIVE_LINES, + Mesh::PRIMITIVE_LINES, //loop not supported, should ce converted + Mesh::PRIMITIVE_LINES, + Mesh::PRIMITIVE_TRIANGLES, + Mesh::PRIMITIVE_TRIANGLE_STRIP, + Mesh::PRIMITIVE_TRIANGLES, //fan not supported, should be converted +#ifndef _MSC_VER +#warning line loop and triangle fan are not supported and need to be converted to lines and triangles +#endif + + }; + + primitive = primitives2[mode]; + } + + ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR); + if (a.has("POSITION")) { + array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true); + } + if (a.has("NORMAL")) { + array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true); + } + if (a.has("TANGENT")) { + array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true); + } + if (a.has("TEXCOORD_0")) { + array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true); + } + if (a.has("TEXCOORD_1")) { + array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true); + } + if (a.has("COLOR_0")) { + array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true); + has_vertex_color = true; + } + if (a.has("JOINTS_0") && !a.has("JOINTS_1")) { + array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true); + } else if (a.has("JOINTS_0") && a.has("JOINTS_1")) { + PackedInt32Array joints_0 = _decode_accessor_as_ints(state, a["JOINTS_0"], true); + PackedInt32Array joints_1 = _decode_accessor_as_ints(state, a["JOINTS_1"], true); + ERR_FAIL_COND_V(joints_0.size() != joints_0.size(), ERR_INVALID_DATA); + int32_t weight_8_count = JOINT_GROUP_SIZE * 2; + int32_t vertex_count = joints_0.size() / JOINT_GROUP_SIZE; + Vector<int> joints; + joints.resize(vertex_count * weight_8_count); + for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) { + joints.write[vertex_i * weight_8_count + 0] = joints_0[vertex_i * JOINT_GROUP_SIZE + 0]; + joints.write[vertex_i * weight_8_count + 1] = joints_0[vertex_i * JOINT_GROUP_SIZE + 1]; + joints.write[vertex_i * weight_8_count + 2] = joints_0[vertex_i * JOINT_GROUP_SIZE + 2]; + joints.write[vertex_i * weight_8_count + 3] = joints_0[vertex_i * JOINT_GROUP_SIZE + 3]; + joints.write[vertex_i * weight_8_count + 4] = joints_1[vertex_i * JOINT_GROUP_SIZE + 0]; + joints.write[vertex_i * weight_8_count + 5] = joints_1[vertex_i * JOINT_GROUP_SIZE + 1]; + joints.write[vertex_i * weight_8_count + 6] = joints_1[vertex_i * JOINT_GROUP_SIZE + 2]; + joints.write[vertex_i * weight_8_count + 7] = joints_1[vertex_i * JOINT_GROUP_SIZE + 3]; + } + array[Mesh::ARRAY_BONES] = joints; + } + if (a.has("WEIGHTS_0") && !a.has("WEIGHTS_1")) { + Vector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true); + { //gltf does not seem to normalize the weights for some reason.. + int wc = weights.size(); + float *w = weights.ptrw(); + + for (int k = 0; k < wc; k += 4) { + float total = 0.0; + total += w[k + 0]; + total += w[k + 1]; + total += w[k + 2]; + total += w[k + 3]; + if (total > 0.0) { + w[k + 0] /= total; + w[k + 1] /= total; + w[k + 2] /= total; + w[k + 3] /= total; + } + } + } + array[Mesh::ARRAY_WEIGHTS] = weights; + } else if (a.has("WEIGHTS_0") && a.has("WEIGHTS_1")) { + Vector<float> weights_0 = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true); + Vector<float> weights_1 = _decode_accessor_as_floats(state, a["WEIGHTS_1"], true); + Vector<float> weights; + ERR_FAIL_COND_V(weights_0.size() != weights_1.size(), ERR_INVALID_DATA); + int32_t weight_8_count = JOINT_GROUP_SIZE * 2; + int32_t vertex_count = weights_0.size() / JOINT_GROUP_SIZE; + weights.resize(vertex_count * weight_8_count); + for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) { + weights.write[vertex_i * weight_8_count + 0] = weights_0[vertex_i * JOINT_GROUP_SIZE + 0]; + weights.write[vertex_i * weight_8_count + 1] = weights_0[vertex_i * JOINT_GROUP_SIZE + 1]; + weights.write[vertex_i * weight_8_count + 2] = weights_0[vertex_i * JOINT_GROUP_SIZE + 2]; + weights.write[vertex_i * weight_8_count + 3] = weights_0[vertex_i * JOINT_GROUP_SIZE + 3]; + weights.write[vertex_i * weight_8_count + 4] = weights_1[vertex_i * JOINT_GROUP_SIZE + 0]; + weights.write[vertex_i * weight_8_count + 5] = weights_1[vertex_i * JOINT_GROUP_SIZE + 1]; + weights.write[vertex_i * weight_8_count + 6] = weights_1[vertex_i * JOINT_GROUP_SIZE + 2]; + weights.write[vertex_i * weight_8_count + 7] = weights_1[vertex_i * JOINT_GROUP_SIZE + 3]; + } + { //gltf does not seem to normalize the weights for some reason.. + int wc = weights.size(); + float *w = weights.ptrw(); + + for (int k = 0; k < wc; k += weight_8_count) { + float total = 0.0; + total += w[k + 0]; + total += w[k + 1]; + total += w[k + 2]; + total += w[k + 3]; + total += w[k + 4]; + total += w[k + 5]; + total += w[k + 6]; + total += w[k + 7]; + if (total > 0.0) { + w[k + 0] /= total; + w[k + 1] /= total; + w[k + 2] /= total; + w[k + 3] /= total; + w[k + 4] /= total; + w[k + 5] /= total; + w[k + 6] /= total; + w[k + 7] /= total; + } + } + } + array[Mesh::ARRAY_WEIGHTS] = weights; + } + + if (p.has("indices")) { + Vector<int> indices = _decode_accessor_as_ints(state, p["indices"], false); + + if (primitive == Mesh::PRIMITIVE_TRIANGLES) { + //swap around indices, convert ccw to cw for front face + + const int is = indices.size(); + int *w = indices.ptrw(); + for (int k = 0; k < is; k += 3) { + SWAP(w[k + 1], w[k + 2]); + } + } + array[Mesh::ARRAY_INDEX] = indices; + + } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) { + //generate indices because they need to be swapped for CW/CCW + const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX]; + ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR); + Vector<int> indices; + const int vs = vertices.size(); + indices.resize(vs); + { + int *w = indices.ptrw(); + for (int k = 0; k < vs; k += 3) { + w[k] = k; + w[k + 1] = k + 2; + w[k + 2] = k + 1; + } + } + array[Mesh::ARRAY_INDEX] = indices; + } + + bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")); + + if (generate_tangents) { + //must generate mikktspace tangents.. ergh.. + Ref<SurfaceTool> st; + st.instance(); + if (a.has("JOINTS_0") && a.has("JOINTS_1")) { + st->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS); + } + st->create_from_triangle_arrays(array); + st->generate_tangents(); + array = st->commit_to_arrays(); + } + + Array morphs; + //blend shapes + if (p.has("targets")) { + print_verbose("glTF: Mesh has targets"); + const Array &targets = p["targets"]; + + //ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement + //but it could require a larger refactor? + import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); + + if (j == 0) { + const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array(); + for (int k = 0; k < targets.size(); k++) { + const String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k); + import_mesh->add_blend_shape(name); + } + } + + for (int k = 0; k < targets.size(); k++) { + const Dictionary &t = targets[k]; + + Array array_copy; + array_copy.resize(Mesh::ARRAY_MAX); + + for (int l = 0; l < Mesh::ARRAY_MAX; l++) { + array_copy[l] = array[l]; + } + + array_copy[Mesh::ARRAY_INDEX] = Variant(); + + if (t.has("POSITION")) { + Vector<Vector3> varr = _decode_accessor_as_vec3(state, t["POSITION"], true); + const Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX]; + const int size = src_varr.size(); + ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); + { + const int max_idx = varr.size(); + varr.resize(size); + + Vector3 *w_varr = varr.ptrw(); + const Vector3 *r_varr = varr.ptr(); + const Vector3 *r_src_varr = src_varr.ptr(); + for (int l = 0; l < size; l++) { + if (l < max_idx) { + w_varr[l] = r_varr[l] + r_src_varr[l]; + } else { + w_varr[l] = r_src_varr[l]; + } + } + } + array_copy[Mesh::ARRAY_VERTEX] = varr; + } + if (t.has("NORMAL")) { + Vector<Vector3> narr = _decode_accessor_as_vec3(state, t["NORMAL"], true); + const Vector<Vector3> src_narr = array[Mesh::ARRAY_NORMAL]; + int size = src_narr.size(); + ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); + { + int max_idx = narr.size(); + narr.resize(size); + + Vector3 *w_narr = narr.ptrw(); + const Vector3 *r_narr = narr.ptr(); + const Vector3 *r_src_narr = src_narr.ptr(); + for (int l = 0; l < size; l++) { + if (l < max_idx) { + w_narr[l] = r_narr[l] + r_src_narr[l]; + } else { + w_narr[l] = r_src_narr[l]; + } + } + } + array_copy[Mesh::ARRAY_NORMAL] = narr; + } + if (t.has("TANGENT")) { + const Vector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true); + const Vector<float> src_tangents = array[Mesh::ARRAY_TANGENT]; + ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR); + + Vector<float> tangents_v4; + + { + int max_idx = tangents_v3.size(); + + int size4 = src_tangents.size(); + tangents_v4.resize(size4); + float *w4 = tangents_v4.ptrw(); + + const Vector3 *r3 = tangents_v3.ptr(); + const float *r4 = src_tangents.ptr(); + + for (int l = 0; l < size4 / 4; l++) { + if (l < max_idx) { + w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0]; + w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1]; + w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2]; + } else { + w4[l * 4 + 0] = r4[l * 4 + 0]; + w4[l * 4 + 1] = r4[l * 4 + 1]; + w4[l * 4 + 2] = r4[l * 4 + 2]; + } + w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value + } + } + + array_copy[Mesh::ARRAY_TANGENT] = tangents_v4; + } + + if (generate_tangents) { + Ref<SurfaceTool> st; + st.instance(); + if (a.has("JOINTS_0") && a.has("JOINTS_1")) { + st->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS); + } + st->create_from_triangle_arrays(array_copy); + st->deindex(); + st->generate_tangents(); + array_copy = st->commit_to_arrays(); + } + + morphs.push_back(array_copy); + } + } + + //just add it + + Ref<BaseMaterial3D> mat; + if (p.has("material")) { + const int material = p["material"]; + ERR_FAIL_INDEX_V(material, state->materials.size(), ERR_FILE_CORRUPT); + Ref<BaseMaterial3D> mat3d = state->materials[material]; + if (has_vertex_color) { + mat3d->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); + } + mat = mat3d; + + } else if (has_vertex_color) { + Ref<StandardMaterial3D> mat3d; + mat3d.instance(); + mat3d->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); + mat = mat3d; + } + + import_mesh->add_surface(primitive, array, morphs, Dictionary(), mat); + } + + Vector<float> blend_weights; + blend_weights.resize(import_mesh->get_blend_shape_count()); + for (int32_t weight_i = 0; weight_i < blend_weights.size(); weight_i++) { + blend_weights.write[weight_i] = 0.0f; + } + + if (d.has("weights")) { + const Array &weights = d["weights"]; + for (int j = 0; j < weights.size(); j++) { + if (j >= blend_weights.size()) { + break; + } + blend_weights.write[j] = weights[j]; + } + mesh->set_blend_weights(blend_weights); + } + mesh->set_mesh(import_mesh); + + state->meshes.push_back(mesh); + } + + print_verbose("glTF: Total meshes: " + itos(state->meshes.size())); + + return OK; +} + +Error GLTFDocument::_serialize_images(Ref<GLTFState> state, const String &p_path) { + Array images; + for (int i = 0; i < state->images.size(); i++) { + Dictionary d; + + ERR_CONTINUE(state->images[i].is_null()); + + Ref<Image> image = state->images[i]->get_data(); + ERR_CONTINUE(image.is_null()); + + if (p_path.to_lower().ends_with("glb")) { + GLTFBufferViewIndex bvi; + + Ref<GLTFBufferView> bv; + bv.instance(); + + const GLTFBufferIndex bi = 0; + bv->buffer = bi; + bv->byte_offset = state->buffers[bi].size(); + ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR); + + Vector<uint8_t> buffer; + Ref<ImageTexture> img_tex = image; + if (img_tex.is_valid()) { + image = img_tex->get_data(); + } + Error err = PNGDriverCommon::image_to_png(image, buffer); + ERR_FAIL_COND_V_MSG(err, err, "Can't convert image to PNG."); + + bv->byte_length = buffer.size(); + state->buffers.write[bi].resize(state->buffers[bi].size() + bv->byte_length); + copymem(&state->buffers.write[bi].write[bv->byte_offset], buffer.ptr(), buffer.size()); + ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT); + + state->buffer_views.push_back(bv); + bvi = state->buffer_views.size() - 1; + d["bufferView"] = bvi; + d["mimeType"] = "image/png"; + } else { + String name = state->images[i]->get_name(); + if (name.is_empty()) { + name = itos(i); + } + name = _gen_unique_name(state, name); + name = name.pad_zeros(3); + Ref<_Directory> dir; + dir.instance(); + String texture_dir = "textures"; + String new_texture_dir = p_path.get_base_dir() + "/" + texture_dir; + dir->open(p_path.get_base_dir()); + if (!dir->dir_exists(new_texture_dir)) { + dir->make_dir(new_texture_dir); + } + name = name + ".png"; + image->save_png(new_texture_dir.plus_file(name)); + d["uri"] = texture_dir.plus_file(name); + } + images.push_back(d); + } + + print_verbose("Total images: " + itos(state->images.size())); + + if (!images.size()) { + return OK; + } + state->json["images"] = images; + + return OK; +} + +Error GLTFDocument::_parse_images(Ref<GLTFState> state, const String &p_base_path) { + if (!state->json.has("images")) { + return OK; + } + + // Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images + + const Array &images = state->json["images"]; + for (int i = 0; i < images.size(); i++) { + const Dictionary &d = images[i]; + + // glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec): + // "- a URI to an external file in one of the supported images formats, or + // - a URI with embedded base64-encoded data, or + // - a reference to a bufferView; in that case mimeType must be defined." + // Since mimeType is optional for external files and base64 data, we'll have to + // fall back on letting Godot parse the data to figure out if it's PNG or JPEG. + + // We'll assume that we use either URI or bufferView, so let's warn the user + // if their image somehow uses both. And fail if it has neither. + ERR_CONTINUE_MSG(!d.has("uri") && !d.has("bufferView"), "Invalid image definition in glTF file, it should specific an 'uri' or 'bufferView'."); + if (d.has("uri") && d.has("bufferView")) { + WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'bufferView' will take precedence."); + } + + String mimetype; + if (d.has("mimeType")) { // Should be "image/png" or "image/jpeg". + mimetype = d["mimeType"]; + } + + Vector<uint8_t> data; + const uint8_t *data_ptr = nullptr; + int data_size = 0; + + if (d.has("uri")) { + // Handles the first two bullet points from the spec (embedded data, or external file). + String uri = d["uri"]; + + if (uri.begins_with("data:")) { // Embedded data using base64. + // Validate data MIME types and throw a warning if it's one we don't know/support. + if (!uri.begins_with("data:application/octet-stream;base64") && + !uri.begins_with("data:application/gltf-buffer;base64") && + !uri.begins_with("data:image/png;base64") && + !uri.begins_with("data:image/jpeg;base64")) { + WARN_PRINT(vformat("glTF: Image index '%d' uses an unsupported URI data type: %s. Skipping it.", i, uri)); + state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count. + continue; + } + data = _parse_base64_uri(uri); + data_ptr = data.ptr(); + data_size = data.size(); + // mimeType is optional, but if we have it defined in the URI, let's use it. + if (mimetype.is_empty()) { + if (uri.begins_with("data:image/png;base64")) { + mimetype = "image/png"; + } else if (uri.begins_with("data:image/jpeg;base64")) { + mimetype = "image/jpeg"; + } + } + } else { // Relative path to an external image file. + uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows. + // ResourceLoader will rely on the file extension to use the relevant loader. + // The spec says that if mimeType is defined, it should take precedence (e.g. + // there could be a `.png` image which is actually JPEG), but there's no easy + // API for that in Godot, so we'd have to load as a buffer (i.e. embedded in + // the material), so we do this only as fallback. + Ref<Texture2D> texture = ResourceLoader::load(uri); + if (texture.is_valid()) { + state->images.push_back(texture); + continue; + } else if (mimetype == "image/png" || mimetype == "image/jpeg") { + // Fallback to loading as byte array. + // This enables us to support the spec's requirement that we honor mimetype + // regardless of file URI. + data = FileAccess::get_file_as_array(uri); + if (data.size() == 0) { + WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded as a buffer of MIME type '%s' from URI: %s. Skipping it.", i, mimetype, uri)); + state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count. + continue; + } + data_ptr = data.ptr(); + data_size = data.size(); + } else { + WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded from URI: %s. Skipping it.", i, uri)); + state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count. + continue; + } + } + } else if (d.has("bufferView")) { + // Handles the third bullet point from the spec (bufferView). + ERR_FAIL_COND_V_MSG(mimetype.is_empty(), ERR_FILE_CORRUPT, + vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i)); + + const GLTFBufferViewIndex bvi = d["bufferView"]; + + ERR_FAIL_INDEX_V(bvi, state->buffer_views.size(), ERR_PARAMETER_RANGE_ERROR); + + Ref<GLTFBufferView> bv = state->buffer_views[bvi]; + + const GLTFBufferIndex bi = bv->buffer; + ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR); + + ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT); + + data_ptr = &state->buffers[bi][bv->byte_offset]; + data_size = bv->byte_length; + } + + Ref<Image> img; + + if (mimetype == "image/png") { // Load buffer as PNG. + ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE); + img = Image::_png_mem_loader_func(data_ptr, data_size); + } else if (mimetype == "image/jpeg") { // Loader buffer as JPEG. + ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE); + img = Image::_jpg_mem_loader_func(data_ptr, data_size); + } else { + // We can land here if we got an URI with base64-encoded data with application/* MIME type, + // and the optional mimeType property was not defined to tell us how to handle this data (or was invalid). + // So let's try PNG first, then JPEG. + ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE); + img = Image::_png_mem_loader_func(data_ptr, data_size); + if (img.is_null()) { + ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE); + img = Image::_jpg_mem_loader_func(data_ptr, data_size); + } + } + + ERR_FAIL_COND_V_MSG(img.is_null(), ERR_FILE_CORRUPT, + vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", i, mimetype)); + + Ref<ImageTexture> t; + t.instance(); + t->create_from_image(img); + + state->images.push_back(t); + } + + print_verbose("glTF: Total images: " + itos(state->images.size())); + + return OK; +} + +Error GLTFDocument::_serialize_textures(Ref<GLTFState> state) { + if (!state->textures.size()) { + return OK; + } + + Array textures; + for (int32_t i = 0; i < state->textures.size(); i++) { + Dictionary d; + Ref<GLTFTexture> t = state->textures[i]; + ERR_CONTINUE(t->get_src_image() == -1); + d["source"] = t->get_src_image(); + textures.push_back(d); + } + state->json["textures"] = textures; + + return OK; +} + +Error GLTFDocument::_parse_textures(Ref<GLTFState> state) { + if (!state->json.has("textures")) + return OK; + + const Array &textures = state->json["textures"]; + for (GLTFTextureIndex i = 0; i < textures.size(); i++) { + const Dictionary &d = textures[i]; + + ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR); + + Ref<GLTFTexture> t; + t.instance(); + t->set_src_image(d["source"]); + state->textures.push_back(t); + } + + return OK; +} + +GLTFTextureIndex GLTFDocument::_set_texture(Ref<GLTFState> state, Ref<Texture2D> p_texture) { + ERR_FAIL_COND_V(p_texture.is_null(), -1); + Ref<GLTFTexture> gltf_texture; + gltf_texture.instance(); + ERR_FAIL_COND_V(p_texture->get_data().is_null(), -1); + GLTFImageIndex gltf_src_image_i = state->images.size(); + state->images.push_back(p_texture); + gltf_texture->set_src_image(gltf_src_image_i); + GLTFTextureIndex gltf_texture_i = state->textures.size(); + state->textures.push_back(gltf_texture); + return gltf_texture_i; +} + +Ref<Texture2D> GLTFDocument::_get_texture(Ref<GLTFState> state, const GLTFTextureIndex p_texture) { + ERR_FAIL_INDEX_V(p_texture, state->textures.size(), Ref<Texture2D>()); + const GLTFImageIndex image = state->textures[p_texture]->get_src_image(); + + ERR_FAIL_INDEX_V(image, state->images.size(), Ref<Texture2D>()); + + return state->images[image]; +} + +Error GLTFDocument::_serialize_materials(Ref<GLTFState> state) { + Array materials; + for (int32_t i = 0; i < state->materials.size(); i++) { + Dictionary d; + + Ref<BaseMaterial3D> material = state->materials[i]; + if (material.is_null()) { + materials.push_back(d); + continue; + } + if (!material->get_name().is_empty()) { + d["name"] = _gen_unique_name(state, material->get_name()); + } + { + Dictionary mr; + { + Array arr; + const Color c = material->get_albedo().to_linear(); + arr.push_back(c.r); + arr.push_back(c.g); + arr.push_back(c.b); + arr.push_back(c.a); + mr["baseColorFactor"] = arr; + } + { + Dictionary bct; + Ref<Texture2D> albedo_texture = material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO); + GLTFTextureIndex gltf_texture_index = -1; + + if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) { + albedo_texture->set_name(material->get_name() + "_albedo"); + gltf_texture_index = _set_texture(state, albedo_texture); + } + if (gltf_texture_index != -1) { + bct["index"] = gltf_texture_index; + bct["extensions"] = _serialize_texture_transform_uv1(material); + mr["baseColorTexture"] = bct; + } + } + + mr["metallicFactor"] = material->get_metallic(); + mr["roughnessFactor"] = material->get_roughness(); + bool has_roughness = material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS).is_valid() && material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS)->get_data().is_valid(); + bool has_ao = material->get_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION) && material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION).is_valid(); + bool has_metalness = material->get_texture(BaseMaterial3D::TEXTURE_METALLIC).is_valid() && material->get_texture(BaseMaterial3D::TEXTURE_METALLIC)->get_data().is_valid(); + if (has_ao || has_roughness || has_metalness) { + Dictionary mrt; + Ref<Texture2D> roughness_texture = material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS); + BaseMaterial3D::TextureChannel roughness_channel = material->get_roughness_texture_channel(); + Ref<Texture2D> metallic_texture = material->get_texture(BaseMaterial3D::TEXTURE_METALLIC); + BaseMaterial3D::TextureChannel metalness_channel = material->get_metallic_texture_channel(); + Ref<Texture2D> ao_texture = material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION); + BaseMaterial3D::TextureChannel ao_channel = material->get_ao_texture_channel(); + Ref<ImageTexture> orm_texture; + orm_texture.instance(); + Ref<Image> orm_image; + orm_image.instance(); + int32_t height = 0; + int32_t width = 0; + Ref<Image> ao_image; + if (has_ao) { + height = ao_texture->get_height(); + width = ao_texture->get_width(); + ao_image = ao_texture->get_data(); + Ref<ImageTexture> img_tex = ao_image; + if (img_tex.is_valid()) { + ao_image = img_tex->get_data(); + } + if (ao_image->is_compressed()) { + ao_image->decompress(); + } + } + Ref<Image> roughness_image; + if (has_roughness) { + height = roughness_texture->get_height(); + width = roughness_texture->get_width(); + roughness_image = roughness_texture->get_data(); + Ref<ImageTexture> img_tex = roughness_image; + if (img_tex.is_valid()) { + roughness_image = img_tex->get_data(); + } + if (roughness_image->is_compressed()) { + roughness_image->decompress(); + } + } + Ref<Image> metallness_image; + if (has_metalness) { + height = metallic_texture->get_height(); + width = metallic_texture->get_width(); + metallness_image = metallic_texture->get_data(); + Ref<ImageTexture> img_tex = metallness_image; + if (img_tex.is_valid()) { + metallness_image = img_tex->get_data(); + } + if (metallness_image->is_compressed()) { + metallness_image->decompress(); + } + } + Ref<Texture2D> albedo_texture = material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO); + if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) { + height = albedo_texture->get_height(); + width = albedo_texture->get_width(); + } + orm_image->create(width, height, false, Image::FORMAT_RGBA8); + if (ao_image.is_valid() && ao_image->get_size() != Vector2(width, height)) { + ao_image->resize(width, height, Image::INTERPOLATE_LANCZOS); + } + if (roughness_image.is_valid() && roughness_image->get_size() != Vector2(width, height)) { + roughness_image->resize(width, height, Image::INTERPOLATE_LANCZOS); + } + if (metallness_image.is_valid() && metallness_image->get_size() != Vector2(width, height)) { + metallness_image->resize(width, height, Image::INTERPOLATE_LANCZOS); + } + for (int32_t h = 0; h < height; h++) { + for (int32_t w = 0; w < width; w++) { + Color c = Color(1.0f, 1.0f, 1.0f); + if (has_ao) { + if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == ao_channel) { + c.r = ao_image->get_pixel(w, h).r; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == ao_channel) { + c.r = ao_image->get_pixel(w, h).g; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == ao_channel) { + c.r = ao_image->get_pixel(w, h).b; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == ao_channel) { + c.r = ao_image->get_pixel(w, h).a; + } + } + if (has_roughness) { + if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == roughness_channel) { + c.g = roughness_image->get_pixel(w, h).r; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == roughness_channel) { + c.g = roughness_image->get_pixel(w, h).g; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == roughness_channel) { + c.g = roughness_image->get_pixel(w, h).b; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == roughness_channel) { + c.g = roughness_image->get_pixel(w, h).a; + } + } + if (has_metalness) { + if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == metalness_channel) { + c.b = metallness_image->get_pixel(w, h).r; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == metalness_channel) { + c.b = metallness_image->get_pixel(w, h).g; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == metalness_channel) { + c.b = metallness_image->get_pixel(w, h).b; + } else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == metalness_channel) { + c.b = metallness_image->get_pixel(w, h).a; + } + } + orm_image->set_pixel(w, h, c); + } + } + orm_image->generate_mipmaps(); + orm_texture->create_from_image(orm_image); + GLTFTextureIndex orm_texture_index = -1; + if (has_ao || has_roughness || has_metalness) { + orm_texture->set_name(material->get_name() + "_orm"); + orm_texture_index = _set_texture(state, orm_texture); + } + if (has_ao) { + Dictionary ot; + ot["index"] = orm_texture_index; + d["occlusionTexture"] = ot; + } + if (has_roughness || has_metalness) { + mrt["index"] = orm_texture_index; + mrt["extensions"] = _serialize_texture_transform_uv1(material); + mr["metallicRoughnessTexture"] = mrt; + } + } + d["pbrMetallicRoughness"] = mr; + } + + if (material->get_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING)) { + Dictionary nt; + Ref<ImageTexture> tex; + tex.instance(); + { + Ref<Texture2D> normal_texture = material->get_texture(BaseMaterial3D::TEXTURE_NORMAL); + // Code for uncompressing RG normal maps + Ref<Image> img = normal_texture->get_data(); + Ref<ImageTexture> img_tex = img; + if (img_tex.is_valid()) { + img = img_tex->get_data(); + } + img->decompress(); + img->convert(Image::FORMAT_RGBA8); + for (int32_t y = 0; y < img->get_height(); y++) { + for (int32_t x = 0; x < img->get_width(); x++) { + Color c = img->get_pixel(x, y); + Vector2 red_green = Vector2(c.r, c.g); + red_green = red_green * Vector2(2.0f, 2.0f) - Vector2(1.0f, 1.0f); + float blue = 1.0f - red_green.dot(red_green); + blue = MAX(0.0f, blue); + c.b = Math::sqrt(blue); + img->set_pixel(x, y, c); + } + } + tex->create_from_image(img); + } + Ref<Texture2D> normal_texture = material->get_texture(BaseMaterial3D::TEXTURE_NORMAL); + GLTFTextureIndex gltf_texture_index = -1; + if (tex.is_valid() && tex->get_data().is_valid()) { + tex->set_name(material->get_name() + "_normal"); + gltf_texture_index = _set_texture(state, tex); + } + nt["scale"] = material->get_normal_scale(); + if (gltf_texture_index != -1) { + nt["index"] = gltf_texture_index; + d["normalTexture"] = nt; + } + } + + if (material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) { + const Color c = material->get_emission().to_srgb(); + Array arr; + arr.push_back(c.r); + arr.push_back(c.g); + arr.push_back(c.b); + d["emissiveFactor"] = arr; + } + if (material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) { + Dictionary et; + Ref<Texture2D> emission_texture = material->get_texture(BaseMaterial3D::TEXTURE_EMISSION); + GLTFTextureIndex gltf_texture_index = -1; + if (emission_texture.is_valid() && emission_texture->get_data().is_valid()) { + emission_texture->set_name(material->get_name() + "_emission"); + gltf_texture_index = _set_texture(state, emission_texture); + } + + if (gltf_texture_index != -1) { + et["index"] = gltf_texture_index; + d["emissiveTexture"] = et; + } + } + const bool ds = material->get_cull_mode() == BaseMaterial3D::CULL_DISABLED; + if (ds) { + d["doubleSided"] = ds; + } + if (material->get_transparency() == BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR) { + d["alphaMode"] = "MASK"; + d["alphaCutoff"] = material->get_alpha_scissor_threshold(); + } else if (material->get_transparency() != BaseMaterial3D::TRANSPARENCY_DISABLED) { + d["alphaMode"] = "BLEND"; + } + materials.push_back(d); + } + state->json["materials"] = materials; + print_verbose("Total materials: " + itos(state->materials.size())); + + return OK; +} + +Error GLTFDocument::_parse_materials(Ref<GLTFState> state) { + if (!state->json.has("materials")) + return OK; + + const Array &materials = state->json["materials"]; + for (GLTFMaterialIndex i = 0; i < materials.size(); i++) { + const Dictionary &d = materials[i]; + + Ref<StandardMaterial3D> material; + material.instance(); + if (d.has("name")) { + material->set_name(d["name"]); + } + material->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); + Dictionary pbr_spec_gloss_extensions; + if (d.has("extensions")) { + pbr_spec_gloss_extensions = d["extensions"]; + } + if (pbr_spec_gloss_extensions.has("KHR_materials_pbrSpecularGlossiness")) { + WARN_PRINT("Material uses a specular and glossiness workflow. Textures will be converted to roughness and metallic workflow, which may not be 100% accurate."); + Dictionary sgm = pbr_spec_gloss_extensions["KHR_materials_pbrSpecularGlossiness"]; + + Ref<GLTFSpecGloss> spec_gloss; + spec_gloss.instance(); + if (sgm.has("diffuseTexture")) { + const Dictionary &diffuse_texture_dict = sgm["diffuseTexture"]; + if (diffuse_texture_dict.has("index")) { + Ref<Texture2D> diffuse_texture = _get_texture(state, diffuse_texture_dict["index"]); + if (diffuse_texture.is_valid()) { + spec_gloss->diffuse_img = diffuse_texture->get_data(); + material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_texture); + } + } + } + if (sgm.has("diffuseFactor")) { + const Array &arr = sgm["diffuseFactor"]; + ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); + const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); + spec_gloss->diffuse_factor = c; + material->set_albedo(spec_gloss->diffuse_factor); + } + + if (sgm.has("specularFactor")) { + const Array &arr = sgm["specularFactor"]; + ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); + spec_gloss->specular_factor = Color(arr[0], arr[1], arr[2]); + } + + if (sgm.has("glossinessFactor")) { + spec_gloss->gloss_factor = sgm["glossinessFactor"]; + material->set_roughness(1.0f - CLAMP(spec_gloss->gloss_factor, 0.0f, 1.0f)); + } + if (sgm.has("specularGlossinessTexture")) { + const Dictionary &spec_gloss_texture = sgm["specularGlossinessTexture"]; + if (spec_gloss_texture.has("index")) { + const Ref<Texture2D> orig_texture = _get_texture(state, spec_gloss_texture["index"]); + if (orig_texture.is_valid()) { + spec_gloss->spec_gloss_img = orig_texture->get_data(); + } + } + } + spec_gloss_to_rough_metal(spec_gloss, material); + + } else if (d.has("pbrMetallicRoughness")) { + const Dictionary &mr = d["pbrMetallicRoughness"]; + if (mr.has("baseColorFactor")) { + const Array &arr = mr["baseColorFactor"]; + ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); + const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); + material->set_albedo(c); + } + + if (mr.has("baseColorTexture")) { + const Dictionary &bct = mr["baseColorTexture"]; + if (bct.has("index")) { + material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, _get_texture(state, bct["index"])); + } + if (!mr.has("baseColorFactor")) { + material->set_albedo(Color(1, 1, 1)); + } + _set_texture_transform_uv1(bct, material); + } + + if (mr.has("metallicFactor")) { + material->set_metallic(mr["metallicFactor"]); + } else { + material->set_metallic(1.0); + } + + if (mr.has("roughnessFactor")) { + material->set_roughness(mr["roughnessFactor"]); + } else { + material->set_roughness(1.0); + } + + if (mr.has("metallicRoughnessTexture")) { + const Dictionary &bct = mr["metallicRoughnessTexture"]; + if (bct.has("index")) { + const Ref<Texture2D> t = _get_texture(state, bct["index"]); + material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, t); + material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE); + material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, t); + material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN); + if (!mr.has("metallicFactor")) { + material->set_metallic(1); + } + if (!mr.has("roughnessFactor")) { + material->set_roughness(1); + } + } + } + } + + if (d.has("normalTexture")) { + const Dictionary &bct = d["normalTexture"]; + if (bct.has("index")) { + material->set_texture(BaseMaterial3D::TEXTURE_NORMAL, _get_texture(state, bct["index"])); + material->set_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING, true); + } + if (bct.has("scale")) { + material->set_normal_scale(bct["scale"]); + } + } + if (d.has("occlusionTexture")) { + const Dictionary &bct = d["occlusionTexture"]; + if (bct.has("index")) { + material->set_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"])); + material->set_ao_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED); + material->set_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION, true); + } + } + + if (d.has("emissiveFactor")) { + const Array &arr = d["emissiveFactor"]; + ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); + const Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); + material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true); + + material->set_emission(c); + } + + if (d.has("emissiveTexture")) { + const Dictionary &bct = d["emissiveTexture"]; + if (bct.has("index")) { + material->set_texture(BaseMaterial3D::TEXTURE_EMISSION, _get_texture(state, bct["index"])); + material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true); + material->set_emission(Color(0, 0, 0)); + } + } + + if (d.has("doubleSided")) { + const bool ds = d["doubleSided"]; + if (ds) { + material->set_cull_mode(BaseMaterial3D::CULL_DISABLED); + } + } + + if (d.has("alphaMode")) { + const String &am = d["alphaMode"]; + if (am == "BLEND") { + material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS); + } else if (am == "MASK") { + material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR); + if (d.has("alphaCutoff")) { + material->set_alpha_scissor_threshold(d["alphaCutoff"]); + } else { + material->set_alpha_scissor_threshold(0.5f); + } + } + } + state->materials.push_back(material); + } + + print_verbose("Total materials: " + itos(state->materials.size())); + + return OK; +} + +void GLTFDocument::_set_texture_transform_uv1(const Dictionary &d, Ref<BaseMaterial3D> material) { + if (d.has("extensions")) { + const Dictionary &extensions = d["extensions"]; + if (extensions.has("KHR_texture_transform")) { + const Dictionary &texture_transform = extensions["KHR_texture_transform"]; + const Array &offset_arr = texture_transform["offset"]; + if (offset_arr.size() == 2) { + const Vector3 offset_vector3 = Vector3(offset_arr[0], offset_arr[1], 0.0f); + material->set_uv1_offset(offset_vector3); + } + + const Array &scale_arr = texture_transform["scale"]; + if (scale_arr.size() == 2) { + const Vector3 scale_vector3 = Vector3(scale_arr[0], scale_arr[1], 1.0f); + material->set_uv1_scale(scale_vector3); + } + } + } +} + +void GLTFDocument::spec_gloss_to_rough_metal(Ref<GLTFSpecGloss> r_spec_gloss, Ref<BaseMaterial3D> p_material) { + if (r_spec_gloss->spec_gloss_img.is_null()) { + return; + } + if (r_spec_gloss->diffuse_img.is_null()) { + return; + } + Ref<Image> rm_img; + rm_img.instance(); + bool has_roughness = false; + bool has_metal = false; + p_material->set_roughness(1.0f); + p_material->set_metallic(1.0f); + rm_img->create(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), false, Image::FORMAT_RGBA8); + r_spec_gloss->spec_gloss_img->decompress(); + if (r_spec_gloss->diffuse_img.is_valid()) { + r_spec_gloss->diffuse_img->decompress(); + r_spec_gloss->diffuse_img->resize(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), Image::INTERPOLATE_LANCZOS); + r_spec_gloss->spec_gloss_img->resize(r_spec_gloss->diffuse_img->get_width(), r_spec_gloss->diffuse_img->get_height(), Image::INTERPOLATE_LANCZOS); + } + for (int32_t y = 0; y < r_spec_gloss->spec_gloss_img->get_height(); y++) { + for (int32_t x = 0; x < r_spec_gloss->spec_gloss_img->get_width(); x++) { + const Color specular_pixel = r_spec_gloss->spec_gloss_img->get_pixel(x, y).to_linear(); + Color specular = Color(specular_pixel.r, specular_pixel.g, specular_pixel.b); + specular *= r_spec_gloss->specular_factor; + Color diffuse = Color(1.0f, 1.0f, 1.0f); + diffuse *= r_spec_gloss->diffuse_img->get_pixel(x, y).to_linear(); + float metallic = 0.0f; + Color base_color; + spec_gloss_to_metal_base_color(specular, diffuse, base_color, metallic); + Color mr = Color(1.0f, 1.0f, 1.0f); + mr.g = specular_pixel.a; + mr.b = metallic; + if (!Math::is_equal_approx(mr.g, 1.0f)) { + has_roughness = true; + } + if (!Math::is_equal_approx(mr.b, 0.0f)) { + has_metal = true; + } + mr.g *= r_spec_gloss->gloss_factor; + mr.g = 1.0f - mr.g; + rm_img->set_pixel(x, y, mr); + if (r_spec_gloss->diffuse_img.is_valid()) { + r_spec_gloss->diffuse_img->set_pixel(x, y, base_color.to_srgb()); + } + } + } + rm_img->generate_mipmaps(); + r_spec_gloss->diffuse_img->generate_mipmaps(); + Ref<ImageTexture> diffuse_image_texture; + diffuse_image_texture.instance(); + diffuse_image_texture->create_from_image(r_spec_gloss->diffuse_img); + p_material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_image_texture); + Ref<ImageTexture> rm_image_texture; + rm_image_texture.instance(); + rm_image_texture->create_from_image(rm_img); + if (has_roughness) { + p_material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, rm_image_texture); + p_material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN); + } + + if (has_metal) { + p_material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, rm_image_texture); + p_material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE); + } +} + +void GLTFDocument::spec_gloss_to_metal_base_color(const Color &p_specular_factor, const Color &p_diffuse, Color &r_base_color, float &r_metallic) { + const Color DIELECTRIC_SPECULAR = Color(0.04f, 0.04f, 0.04f); + Color specular = Color(p_specular_factor.r, p_specular_factor.g, p_specular_factor.b); + const float one_minus_specular_strength = 1.0f - get_max_component(specular); + const float dielectric_specular_red = DIELECTRIC_SPECULAR.r; + float brightness_diffuse = get_perceived_brightness(p_diffuse); + const float brightness_specular = get_perceived_brightness(specular); + r_metallic = solve_metallic(dielectric_specular_red, brightness_diffuse, brightness_specular, one_minus_specular_strength); + const float one_minus_metallic = 1.0f - r_metallic; + const Color base_color_from_diffuse = p_diffuse * (one_minus_specular_strength / (1.0f - dielectric_specular_red) / MAX(one_minus_metallic, CMP_EPSILON)); + const Color base_color_from_specular = (specular - (DIELECTRIC_SPECULAR * (one_minus_metallic))) * (1.0f / MAX(r_metallic, CMP_EPSILON)); + r_base_color.r = Math::lerp(base_color_from_diffuse.r, base_color_from_specular.r, r_metallic * r_metallic); + r_base_color.g = Math::lerp(base_color_from_diffuse.g, base_color_from_specular.g, r_metallic * r_metallic); + r_base_color.b = Math::lerp(base_color_from_diffuse.b, base_color_from_specular.b, r_metallic * r_metallic); + r_base_color.a = p_diffuse.a; + r_base_color.r = CLAMP(r_base_color.r, 0.0f, 1.0f); + r_base_color.g = CLAMP(r_base_color.g, 0.0f, 1.0f); + r_base_color.b = CLAMP(r_base_color.b, 0.0f, 1.0f); + r_base_color.a = CLAMP(r_base_color.a, 0.0f, 1.0f); +} + +GLTFNodeIndex GLTFDocument::_find_highest_node(Ref<GLTFState> state, const Vector<GLTFNodeIndex> &subset) { + int highest = -1; + GLTFNodeIndex best_node = -1; + + for (int i = 0; i < subset.size(); ++i) { + const GLTFNodeIndex node_i = subset[i]; + const Ref<GLTFNode> node = state->nodes[node_i]; + + if (highest == -1 || node->height < highest) { + highest = node->height; + best_node = node_i; + } + } + + return best_node; +} + +bool GLTFDocument::_capture_nodes_in_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin, const GLTFNodeIndex node_index) { + bool found_joint = false; + + for (int i = 0; i < state->nodes[node_index]->children.size(); ++i) { + found_joint |= _capture_nodes_in_skin(state, skin, state->nodes[node_index]->children[i]); + } + + if (found_joint) { + // Mark it if we happen to find another skins joint... + if (state->nodes[node_index]->joint && skin->joints.find(node_index) < 0) { + skin->joints.push_back(node_index); + } else if (skin->non_joints.find(node_index) < 0) { + skin->non_joints.push_back(node_index); + } + } + + if (skin->joints.find(node_index) > 0) { + return true; + } + + return false; +} + +void GLTFDocument::_capture_nodes_for_multirooted_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) { + DisjointSet<GLTFNodeIndex> disjoint_set; + + for (int i = 0; i < skin->joints.size(); ++i) { + const GLTFNodeIndex node_index = skin->joints[i]; + const GLTFNodeIndex parent = state->nodes[node_index]->parent; + disjoint_set.insert(node_index); + + if (skin->joints.find(parent) >= 0) { + disjoint_set.create_union(parent, node_index); + } + } + + Vector<GLTFNodeIndex> roots; + disjoint_set.get_representatives(roots); + + if (roots.size() <= 1) { + return; + } + + int maxHeight = -1; + + // Determine the max height rooted tree + for (int i = 0; i < roots.size(); ++i) { + const GLTFNodeIndex root = roots[i]; + + if (maxHeight == -1 || state->nodes[root]->height < maxHeight) { + maxHeight = state->nodes[root]->height; + } + } + + // Go up the tree till all of the multiple roots of the skin are at the same hierarchy level. + // This sucks, but 99% of all game engines (not just Godot) would have this same issue. + for (int i = 0; i < roots.size(); ++i) { + GLTFNodeIndex current_node = roots[i]; + while (state->nodes[current_node]->height > maxHeight) { + GLTFNodeIndex parent = state->nodes[current_node]->parent; + + if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) { + skin->joints.push_back(parent); + } else if (skin->non_joints.find(parent) < 0) { + skin->non_joints.push_back(parent); + } + + current_node = parent; + } + + // replace the roots + roots.write[i] = current_node; + } + + // Climb up the tree until they all have the same parent + bool all_same; + + do { + all_same = true; + const GLTFNodeIndex first_parent = state->nodes[roots[0]]->parent; + + for (int i = 1; i < roots.size(); ++i) { + all_same &= (first_parent == state->nodes[roots[i]]->parent); + } + + if (!all_same) { + for (int i = 0; i < roots.size(); ++i) { + const GLTFNodeIndex current_node = roots[i]; + const GLTFNodeIndex parent = state->nodes[current_node]->parent; + + if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) { + skin->joints.push_back(parent); + } else if (skin->non_joints.find(parent) < 0) { + skin->non_joints.push_back(parent); + } + + roots.write[i] = parent; + } + } + + } while (!all_same); +} + +Error GLTFDocument::_expand_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) { + _capture_nodes_for_multirooted_skin(state, skin); + + // Grab all nodes that lay in between skin joints/nodes + DisjointSet<GLTFNodeIndex> disjoint_set; + + Vector<GLTFNodeIndex> all_skin_nodes; + all_skin_nodes.append_array(skin->joints); + all_skin_nodes.append_array(skin->non_joints); + + for (int i = 0; i < all_skin_nodes.size(); ++i) { + const GLTFNodeIndex node_index = all_skin_nodes[i]; + const GLTFNodeIndex parent = state->nodes[node_index]->parent; + disjoint_set.insert(node_index); + + if (all_skin_nodes.find(parent) >= 0) { + disjoint_set.create_union(parent, node_index); + } + } + + Vector<GLTFNodeIndex> out_owners; + disjoint_set.get_representatives(out_owners); + + Vector<GLTFNodeIndex> out_roots; + + for (int i = 0; i < out_owners.size(); ++i) { + Vector<GLTFNodeIndex> set; + disjoint_set.get_members(set, out_owners[i]); + + const GLTFNodeIndex root = _find_highest_node(state, set); + ERR_FAIL_COND_V(root < 0, FAILED); + out_roots.push_back(root); + } + + out_roots.sort(); + + for (int i = 0; i < out_roots.size(); ++i) { + _capture_nodes_in_skin(state, skin, out_roots[i]); + } + + skin->roots = out_roots; + + return OK; +} + +Error GLTFDocument::_verify_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) { + // This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is) + // In case additional interpolating logic is added to the skins, this will help ensure that you + // do not cause it to self implode into a fiery blaze + + // We are going to re-calculate the root nodes and compare them to the ones saved in the skin, + // then ensure the multiple trees (if they exist) are on the same sublevel + + // Grab all nodes that lay in between skin joints/nodes + DisjointSet<GLTFNodeIndex> disjoint_set; + + Vector<GLTFNodeIndex> all_skin_nodes; + all_skin_nodes.append_array(skin->joints); + all_skin_nodes.append_array(skin->non_joints); + + for (int i = 0; i < all_skin_nodes.size(); ++i) { + const GLTFNodeIndex node_index = all_skin_nodes[i]; + const GLTFNodeIndex parent = state->nodes[node_index]->parent; + disjoint_set.insert(node_index); + + if (all_skin_nodes.find(parent) >= 0) { + disjoint_set.create_union(parent, node_index); + } + } + + Vector<GLTFNodeIndex> out_owners; + disjoint_set.get_representatives(out_owners); + + Vector<GLTFNodeIndex> out_roots; + + for (int i = 0; i < out_owners.size(); ++i) { + Vector<GLTFNodeIndex> set; + disjoint_set.get_members(set, out_owners[i]); + + const GLTFNodeIndex root = _find_highest_node(state, set); + ERR_FAIL_COND_V(root < 0, FAILED); + out_roots.push_back(root); + } + + out_roots.sort(); + + ERR_FAIL_COND_V(out_roots.size() == 0, FAILED); + + // Make sure the roots are the exact same (they better be) + ERR_FAIL_COND_V(out_roots.size() != skin->roots.size(), FAILED); + for (int i = 0; i < out_roots.size(); ++i) { + ERR_FAIL_COND_V(out_roots[i] != skin->roots[i], FAILED); + } + + // Single rooted skin? Perfectly ok! + if (out_roots.size() == 1) { + return OK; + } + + // Make sure all parents of a multi-rooted skin are the SAME + const GLTFNodeIndex parent = state->nodes[out_roots[0]]->parent; + for (int i = 1; i < out_roots.size(); ++i) { + if (state->nodes[out_roots[i]]->parent != parent) { + return FAILED; + } + } + + return OK; +} + +Error GLTFDocument::_parse_skins(Ref<GLTFState> state) { + if (!state->json.has("skins")) + return OK; + + const Array &skins = state->json["skins"]; + + // Create the base skins, and mark nodes that are joints + for (int i = 0; i < skins.size(); i++) { + const Dictionary &d = skins[i]; + + Ref<GLTFSkin> skin; + skin.instance(); + + ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR); + + const Array &joints = d["joints"]; + + if (d.has("inverseBindMatrices")) { + skin->inverse_binds = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false); + ERR_FAIL_COND_V(skin->inverse_binds.size() != joints.size(), ERR_PARSE_ERROR); + } + + for (int j = 0; j < joints.size(); j++) { + const GLTFNodeIndex node = joints[j]; + ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR); + + skin->joints.push_back(node); + skin->joints_original.push_back(node); + + state->nodes.write[node]->joint = true; + } + + if (d.has("name")) { + skin->set_name(d["name"]); + } + + if (d.has("skeleton")) { + skin->skin_root = d["skeleton"]; + } + + state->skins.push_back(skin); + } + + for (GLTFSkinIndex i = 0; i < state->skins.size(); ++i) { + Ref<GLTFSkin> skin = state->skins.write[i]; + + // Expand the skin to capture all the extra non-joints that lie in between the actual joints, + // and expand the hierarchy to ensure multi-rooted trees lie on the same height level + ERR_FAIL_COND_V(_expand_skin(state, skin), ERR_PARSE_ERROR); + ERR_FAIL_COND_V(_verify_skin(state, skin), ERR_PARSE_ERROR); + } + + print_verbose("glTF: Total skins: " + itos(state->skins.size())); + + return OK; +} + +Error GLTFDocument::_determine_skeletons(Ref<GLTFState> state) { + // Using a disjoint set, we are going to potentially combine all skins that are actually branches + // of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton. + // This is another unclear issue caused by the current glTF specification. + + DisjointSet<GLTFNodeIndex> skeleton_sets; + + for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { + const Ref<GLTFSkin> skin = state->skins[skin_i]; + + Vector<GLTFNodeIndex> all_skin_nodes; + all_skin_nodes.append_array(skin->joints); + all_skin_nodes.append_array(skin->non_joints); + + for (int i = 0; i < all_skin_nodes.size(); ++i) { + const GLTFNodeIndex node_index = all_skin_nodes[i]; + const GLTFNodeIndex parent = state->nodes[node_index]->parent; + skeleton_sets.insert(node_index); + + if (all_skin_nodes.find(parent) >= 0) { + skeleton_sets.create_union(parent, node_index); + } + } + + // We are going to connect the separate skin subtrees in each skin together + // so that the final roots are entire sets of valid skin trees + for (int i = 1; i < skin->roots.size(); ++i) { + skeleton_sets.create_union(skin->roots[0], skin->roots[i]); + } + } + + { // attempt to joint all touching subsets (siblings/parent are part of another skin) + Vector<GLTFNodeIndex> groups_representatives; + skeleton_sets.get_representatives(groups_representatives); + + Vector<GLTFNodeIndex> highest_group_members; + Vector<Vector<GLTFNodeIndex>> groups; + for (int i = 0; i < groups_representatives.size(); ++i) { + Vector<GLTFNodeIndex> group; + skeleton_sets.get_members(group, groups_representatives[i]); + highest_group_members.push_back(_find_highest_node(state, group)); + groups.push_back(group); + } + + for (int i = 0; i < highest_group_members.size(); ++i) { + const GLTFNodeIndex node_i = highest_group_members[i]; + + // Attach any siblings together (this needs to be done n^2/2 times) + for (int j = i + 1; j < highest_group_members.size(); ++j) { + const GLTFNodeIndex node_j = highest_group_members[j]; + + // Even if they are siblings under the root! :) + if (state->nodes[node_i]->parent == state->nodes[node_j]->parent) { + skeleton_sets.create_union(node_i, node_j); + } + } + + // Attach any parenting going on together (we need to do this n^2 times) + const GLTFNodeIndex node_i_parent = state->nodes[node_i]->parent; + if (node_i_parent >= 0) { + for (int j = 0; j < groups.size() && i != j; ++j) { + const Vector<GLTFNodeIndex> &group = groups[j]; + + if (group.find(node_i_parent) >= 0) { + const GLTFNodeIndex node_j = highest_group_members[j]; + skeleton_sets.create_union(node_i, node_j); + } + } + } + } + } + + // At this point, the skeleton groups should be finalized + Vector<GLTFNodeIndex> skeleton_owners; + skeleton_sets.get_representatives(skeleton_owners); + + // Mark all the skins actual skeletons, after we have merged them + for (GLTFSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) { + const GLTFNodeIndex skeleton_owner = skeleton_owners[skel_i]; + Ref<GLTFSkeleton> skeleton; + skeleton.instance(); + + Vector<GLTFNodeIndex> skeleton_nodes; + skeleton_sets.get_members(skeleton_nodes, skeleton_owner); + + for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { + Ref<GLTFSkin> skin = state->skins.write[skin_i]; + + // If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton + for (int i = 0; i < skeleton_nodes.size(); ++i) { + GLTFNodeIndex skel_node_i = skeleton_nodes[i]; + if (skin->joints.find(skel_node_i) >= 0 || skin->non_joints.find(skel_node_i) >= 0) { + skin->skeleton = skel_i; + continue; + } + } + } + + Vector<GLTFNodeIndex> non_joints; + for (int i = 0; i < skeleton_nodes.size(); ++i) { + const GLTFNodeIndex node_i = skeleton_nodes[i]; + + if (state->nodes[node_i]->joint) { + skeleton->joints.push_back(node_i); + } else { + non_joints.push_back(node_i); + } + } + + state->skeletons.push_back(skeleton); + + _reparent_non_joint_skeleton_subtrees(state, state->skeletons.write[skel_i], non_joints); + } + + for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) { + Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i]; + + for (int i = 0; i < skeleton->joints.size(); ++i) { + const GLTFNodeIndex node_i = skeleton->joints[i]; + Ref<GLTFNode> node = state->nodes[node_i]; + + ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR); + ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR); + node->skeleton = skel_i; + } + + ERR_FAIL_COND_V(_determine_skeleton_roots(state, skel_i), ERR_PARSE_ERROR); + } + + return OK; +} + +Error GLTFDocument::_reparent_non_joint_skeleton_subtrees(Ref<GLTFState> state, Ref<GLTFSkeleton> skeleton, const Vector<GLTFNodeIndex> &non_joints) { + DisjointSet<GLTFNodeIndex> subtree_set; + + // Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector) + // This way we can find any joints that lie in between joints, as the current glTF specification + // mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we + // can remove this code. + + // skinD depicted here explains this issue: + // https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin + + for (int i = 0; i < non_joints.size(); ++i) { + const GLTFNodeIndex node_i = non_joints[i]; + + subtree_set.insert(node_i); + + const GLTFNodeIndex parent_i = state->nodes[node_i]->parent; + if (parent_i >= 0 && non_joints.find(parent_i) >= 0 && !state->nodes[parent_i]->joint) { + subtree_set.create_union(parent_i, node_i); + } + } + + // Find all the non joint subtrees and re-parent them to a new "fake" joint + + Vector<GLTFNodeIndex> non_joint_subtree_roots; + subtree_set.get_representatives(non_joint_subtree_roots); + + for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) { + const GLTFNodeIndex subtree_root = non_joint_subtree_roots[root_i]; + + Vector<GLTFNodeIndex> subtree_nodes; + subtree_set.get_members(subtree_nodes, subtree_root); + + for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) { + ERR_FAIL_COND_V(_reparent_to_fake_joint(state, skeleton, subtree_nodes[subtree_i]), FAILED); + + // We modified the tree, recompute all the heights + _compute_node_heights(state); + } + } + + return OK; +} + +Error GLTFDocument::_reparent_to_fake_joint(Ref<GLTFState> state, Ref<GLTFSkeleton> skeleton, const GLTFNodeIndex node_index) { + Ref<GLTFNode> node = state->nodes[node_index]; + + // Can we just "steal" this joint if it is just a spatial node? + if (node->skin < 0 && node->mesh < 0 && node->camera < 0) { + node->joint = true; + // Add the joint to the skeletons joints + skeleton->joints.push_back(node_index); + return OK; + } + + GLTFNode *fake_joint = memnew(GLTFNode); + const GLTFNodeIndex fake_joint_index = state->nodes.size(); + state->nodes.push_back(fake_joint); + + // We better not be a joint, or we messed up in our logic + if (node->joint) + return FAILED; + + fake_joint->translation = node->translation; + fake_joint->rotation = node->rotation; + fake_joint->scale = node->scale; + fake_joint->xform = node->xform; + fake_joint->joint = true; + + // We can use the exact same name here, because the joint will be inside a skeleton and not the scene + fake_joint->set_name(node->get_name()); + + // Clear the nodes transforms, since it will be parented to the fake joint + node->translation = Vector3(0, 0, 0); + node->rotation = Quat(); + node->scale = Vector3(1, 1, 1); + node->xform = Transform(); + + // Transfer the node children to the fake joint + for (int child_i = 0; child_i < node->children.size(); ++child_i) { + Ref<GLTFNode> child = state->nodes[node->children[child_i]]; + child->parent = fake_joint_index; + } + + fake_joint->children = node->children; + node->children.clear(); + + // add the fake joint to the parent and remove the original joint + if (node->parent >= 0) { + Ref<GLTFNode> parent = state->nodes[node->parent]; + parent->children.erase(node_index); + parent->children.push_back(fake_joint_index); + fake_joint->parent = node->parent; + } + + // Add the node to the fake joint + fake_joint->children.push_back(node_index); + node->parent = fake_joint_index; + node->fake_joint_parent = fake_joint_index; + + // Add the fake joint to the skeletons joints + skeleton->joints.push_back(fake_joint_index); + + // Replace skin_skeletons with fake joints if we must. + for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { + Ref<GLTFSkin> skin = state->skins.write[skin_i]; + if (skin->skin_root == node_index) { + skin->skin_root = fake_joint_index; + } + } + + return OK; +} + +Error GLTFDocument::_determine_skeleton_roots(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i) { + DisjointSet<GLTFNodeIndex> disjoint_set; + + for (GLTFNodeIndex i = 0; i < state->nodes.size(); ++i) { + const Ref<GLTFNode> node = state->nodes[i]; + + if (node->skeleton != skel_i) { + continue; + } + + disjoint_set.insert(i); + + if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) { + disjoint_set.create_union(node->parent, i); + } + } + + Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i]; + + Vector<GLTFNodeIndex> owners; + disjoint_set.get_representatives(owners); + + Vector<GLTFNodeIndex> roots; + + for (int i = 0; i < owners.size(); ++i) { + Vector<GLTFNodeIndex> set; + disjoint_set.get_members(set, owners[i]); + const GLTFNodeIndex root = _find_highest_node(state, set); + ERR_FAIL_COND_V(root < 0, FAILED); + roots.push_back(root); + } + + roots.sort(); + + skeleton->roots = roots; + + if (roots.size() == 0) { + return FAILED; + } else if (roots.size() == 1) { + return OK; + } + + // Check that the subtrees have the same parent root + const GLTFNodeIndex parent = state->nodes[roots[0]]->parent; + for (int i = 1; i < roots.size(); ++i) { + if (state->nodes[roots[i]]->parent != parent) { + return FAILED; + } + } + + return OK; +} + +Error GLTFDocument::_create_skeletons(Ref<GLTFState> state) { + for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) { + Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i]; + + Skeleton3D *skeleton = memnew(Skeleton3D); + gltf_skeleton->godot_skeleton = skeleton; + + // Make a unique name, no gltf node represents this skeleton + skeleton->set_name(_gen_unique_name(state, "Skeleton3D")); + + List<GLTFNodeIndex> bones; + + for (int i = 0; i < gltf_skeleton->roots.size(); ++i) { + bones.push_back(gltf_skeleton->roots[i]); + } + + // Make the skeleton creation deterministic by going through the roots in + // a sorted order, and DEPTH FIRST + bones.sort(); + + while (!bones.is_empty()) { + const GLTFNodeIndex node_i = bones.front()->get(); + bones.pop_front(); + + Ref<GLTFNode> node = state->nodes[node_i]; + ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED); + + { // Add all child nodes to the stack (deterministically) + Vector<GLTFNodeIndex> child_nodes; + for (int i = 0; i < node->children.size(); ++i) { + const GLTFNodeIndex child_i = node->children[i]; + if (state->nodes[child_i]->skeleton == skel_i) { + child_nodes.push_back(child_i); + } + } + + // Depth first insertion + child_nodes.sort(); + for (int i = child_nodes.size() - 1; i >= 0; --i) { + bones.push_front(child_nodes[i]); + } + } + + const int bone_index = skeleton->get_bone_count(); + + if (node->get_name().is_empty()) { + node->set_name("bone"); + } + + node->set_name(_gen_unique_bone_name(state, skel_i, node->get_name())); + + skeleton->add_bone(node->get_name()); + skeleton->set_bone_rest(bone_index, node->xform); + + if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) { + const int bone_parent = skeleton->find_bone(state->nodes[node->parent]->get_name()); + ERR_FAIL_COND_V(bone_parent < 0, FAILED); + skeleton->set_bone_parent(bone_index, skeleton->find_bone(state->nodes[node->parent]->get_name())); + } + + state->scene_nodes.insert(node_i, skeleton); + } + } + + ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(state), ERR_PARSE_ERROR); + + return OK; +} + +Error GLTFDocument::_map_skin_joints_indices_to_skeleton_bone_indices(Ref<GLTFState> state) { + for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { + Ref<GLTFSkin> skin = state->skins.write[skin_i]; + + Ref<GLTFSkeleton> skeleton = state->skeletons[skin->skeleton]; + + for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) { + const GLTFNodeIndex node_i = skin->joints_original[joint_index]; + const Ref<GLTFNode> node = state->nodes[node_i]; + + const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name()); + ERR_FAIL_COND_V(bone_index < 0, FAILED); + + skin->joint_i_to_bone_i.insert(joint_index, bone_index); + } + } + + return OK; +} + +Error GLTFDocument::_serialize_skins(Ref<GLTFState> state) { + _remove_duplicate_skins(state); + return OK; +} + +Error GLTFDocument::_create_skins(Ref<GLTFState> state) { + for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { + Ref<GLTFSkin> gltf_skin = state->skins.write[skin_i]; + + Ref<Skin> skin; + skin.instance(); + + // Some skins don't have IBM's! What absolute monsters! + const bool has_ibms = !gltf_skin->inverse_binds.is_empty(); + + for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) { + GLTFNodeIndex node = gltf_skin->joints_original[joint_i]; + String bone_name = state->nodes[node]->get_name(); + + Transform xform; + if (has_ibms) { + xform = gltf_skin->inverse_binds[joint_i]; + } + + if (state->use_named_skin_binds) { + skin->add_named_bind(bone_name, xform); + } else { + int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i]; + skin->add_bind(bone_i, xform); + } + } + + gltf_skin->godot_skin = skin; + } + + // Purge the duplicates! + _remove_duplicate_skins(state); + + // Create unique names now, after removing duplicates + for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { + Ref<Skin> skin = state->skins.write[skin_i]->godot_skin; + if (skin->get_name().is_empty()) { + // Make a unique name, no gltf node represents this skin + skin->set_name(_gen_unique_name(state, "Skin")); + } + } + + return OK; +} + +bool GLTFDocument::_skins_are_same(const Ref<Skin> skin_a, const Ref<Skin> skin_b) { + if (skin_a->get_bind_count() != skin_b->get_bind_count()) { + return false; + } + + for (int i = 0; i < skin_a->get_bind_count(); ++i) { + if (skin_a->get_bind_bone(i) != skin_b->get_bind_bone(i)) { + return false; + } + + Transform a_xform = skin_a->get_bind_pose(i); + Transform b_xform = skin_b->get_bind_pose(i); + + if (a_xform != b_xform) { + return false; + } + } + + return true; +} + +void GLTFDocument::_remove_duplicate_skins(Ref<GLTFState> state) { + for (int i = 0; i < state->skins.size(); ++i) { + for (int j = i + 1; j < state->skins.size(); ++j) { + const Ref<Skin> skin_i = state->skins[i]->godot_skin; + const Ref<Skin> skin_j = state->skins[j]->godot_skin; + + if (_skins_are_same(skin_i, skin_j)) { + // replace it and delete the old + state->skins.write[j]->godot_skin = skin_i; + } + } + } +} + +Error GLTFDocument::_serialize_lights(Ref<GLTFState> state) { + Array lights; + for (GLTFLightIndex i = 0; i < state->lights.size(); i++) { + Dictionary d; + Ref<GLTFLight> light = state->lights[i]; + Array color; + color.resize(3); + color[0] = light->color.r; + color[1] = light->color.g; + color[2] = light->color.b; + d["color"] = color; + d["type"] = light->type; + if (light->type == "spot") { + Dictionary s; + float inner_cone_angle = light->inner_cone_angle; + s["innerConeAngle"] = inner_cone_angle; + float outer_cone_angle = light->outer_cone_angle; + s["outerConeAngle"] = outer_cone_angle; + d["spot"] = s; + } + float intensity = light->intensity; + d["intensity"] = intensity; + float range = light->range; + d["range"] = range; + lights.push_back(d); + } + + if (!state->lights.size()) { + return OK; + } + + Dictionary extensions; + if (state->json.has("extensions")) { + extensions = state->json["extensions"]; + } else { + state->json["extensions"] = extensions; + } + Dictionary lights_punctual; + extensions["KHR_lights_punctual"] = lights_punctual; + lights_punctual["lights"] = lights; + + print_verbose("glTF: Total lights: " + itos(state->lights.size())); + + return OK; +} + +Error GLTFDocument::_serialize_cameras(Ref<GLTFState> state) { + Array cameras; + cameras.resize(state->cameras.size()); + for (GLTFCameraIndex i = 0; i < state->cameras.size(); i++) { + Dictionary d; + + Ref<GLTFCamera> camera = state->cameras[i]; + + if (camera->get_perspective() == false) { + Dictionary og; + og["ymag"] = Math::deg2rad(camera->get_fov_size()); + og["xmag"] = Math::deg2rad(camera->get_fov_size()); + og["zfar"] = camera->get_zfar(); + og["znear"] = camera->get_znear(); + d["orthographic"] = og; + d["type"] = "orthographic"; + } else if (camera->get_perspective()) { + Dictionary ppt; + // GLTF spec is in radians, Godot's camera is in degrees. + ppt["yfov"] = Math::deg2rad(camera->get_fov_size()); + ppt["zfar"] = camera->get_zfar(); + ppt["znear"] = camera->get_znear(); + d["perspective"] = ppt; + d["type"] = "perspective"; + } + cameras[i] = d; + } + + if (!state->cameras.size()) { + return OK; + } + + state->json["cameras"] = cameras; + + print_verbose("glTF: Total cameras: " + itos(state->cameras.size())); + + return OK; +} + +Error GLTFDocument::_parse_lights(Ref<GLTFState> state) { + if (!state->json.has("extensions")) { + return OK; + } + Dictionary extensions = state->json["extensions"]; + if (!extensions.has("KHR_lights_punctual")) { + return OK; + } + Dictionary lights_punctual = extensions["KHR_lights_punctual"]; + if (!lights_punctual.has("lights")) { + return OK; + } + + const Array &lights = lights_punctual["lights"]; + + for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) { + const Dictionary &d = lights[light_i]; + + Ref<GLTFLight> light; + light.instance(); + ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); + const String &type = d["type"]; + light->type = type; + + if (d.has("color")) { + const Array &arr = d["color"]; + ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); + const Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); + light->color = c; + } + if (d.has("intensity")) { + light->intensity = d["intensity"]; + } + if (d.has("range")) { + light->range = d["range"]; + } + if (type == "spot") { + const Dictionary &spot = d["spot"]; + light->inner_cone_angle = spot["innerConeAngle"]; + light->outer_cone_angle = spot["outerConeAngle"]; + ERR_FAIL_COND_V_MSG(light->inner_cone_angle >= light->outer_cone_angle, ERR_PARSE_ERROR, "The inner angle must be smaller than the outer angle."); + } else if (type != "point" && type != "directional") { + ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Light type is unknown."); + } + + state->lights.push_back(light); + } + + print_verbose("glTF: Total lights: " + itos(state->lights.size())); + + return OK; +} + +Error GLTFDocument::_parse_cameras(Ref<GLTFState> state) { + if (!state->json.has("cameras")) + return OK; + + const Array cameras = state->json["cameras"]; + + for (GLTFCameraIndex i = 0; i < cameras.size(); i++) { + const Dictionary &d = cameras[i]; + + Ref<GLTFCamera> camera; + camera.instance(); + ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); + const String &type = d["type"]; + if (type == "orthographic") { + camera->set_perspective(false); + if (d.has("orthographic")) { + const Dictionary &og = d["orthographic"]; + // GLTF spec is in radians, Godot's camera is in degrees. + camera->set_fov_size(Math::rad2deg(real_t(og["ymag"]))); + camera->set_zfar(og["zfar"]); + camera->set_znear(og["znear"]); + } else { + camera->set_fov_size(10); + } + } else if (type == "perspective") { + camera->set_perspective(true); + if (d.has("perspective")) { + const Dictionary &ppt = d["perspective"]; + // GLTF spec is in radians, Godot's camera is in degrees. + camera->set_fov_size(Math::rad2deg(real_t(ppt["yfov"]))); + camera->set_zfar(ppt["zfar"]); + camera->set_znear(ppt["znear"]); + } else { + camera->set_fov_size(10); + } + } else { + ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera3D should be in 'orthographic' or 'perspective'"); + } + + state->cameras.push_back(camera); + } + + print_verbose("glTF: Total cameras: " + itos(state->cameras.size())); + + return OK; +} + +String GLTFDocument::interpolation_to_string(const GLTFAnimation::Interpolation p_interp) { + String interp = "LINEAR"; + if (p_interp == GLTFAnimation::INTERP_STEP) { + interp = "STEP"; + } else if (p_interp == GLTFAnimation::INTERP_LINEAR) { + interp = "LINEAR"; + } else if (p_interp == GLTFAnimation::INTERP_CATMULLROMSPLINE) { + interp = "CATMULLROMSPLINE"; + } else if (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE) { + interp = "CUBICSPLINE"; + } + + return interp; +} + +Error GLTFDocument::_serialize_animations(Ref<GLTFState> state) { + if (!state->animation_players.size()) { + return OK; + } + for (int32_t player_i = 0; player_i < state->animation_players.size(); player_i++) { + List<StringName> animation_names; + AnimationPlayer *animation_player = state->animation_players[player_i]; + animation_player->get_animation_list(&animation_names); + if (animation_names.size()) { + for (int animation_name_i = 0; animation_name_i < animation_names.size(); animation_name_i++) { + _convert_animation(state, animation_player, animation_names[animation_name_i]); + } + } + } + Array animations; + for (GLTFAnimationIndex animation_i = 0; animation_i < state->animations.size(); animation_i++) { + Dictionary d; + Ref<GLTFAnimation> gltf_animation = state->animations[animation_i]; + if (!gltf_animation->get_tracks().size()) { + continue; + } + + if (!gltf_animation->get_name().is_empty()) { + d["name"] = gltf_animation->get_name(); + } + Array channels; + Array samplers; + + for (Map<int, GLTFAnimation::Track>::Element *track_i = gltf_animation->get_tracks().front(); track_i; track_i = track_i->next()) { + GLTFAnimation::Track track = track_i->get(); + if (track.translation_track.times.size()) { + Dictionary t; + t["sampler"] = samplers.size(); + Dictionary s; + + s["interpolation"] = interpolation_to_string(track.translation_track.interpolation); + Vector<real_t> times = Variant(track.translation_track.times); + s["input"] = _encode_accessor_as_floats(state, times, false); + Vector<Vector3> values = Variant(track.translation_track.values); + s["output"] = _encode_accessor_as_vec3(state, values, false); + + samplers.push_back(s); + + Dictionary target; + target["path"] = "translation"; + target["node"] = track_i->key(); + + t["target"] = target; + channels.push_back(t); + } + if (track.rotation_track.times.size()) { + Dictionary t; + t["sampler"] = samplers.size(); + Dictionary s; + + s["interpolation"] = interpolation_to_string(track.rotation_track.interpolation); + Vector<real_t> times = Variant(track.rotation_track.times); + s["input"] = _encode_accessor_as_floats(state, times, false); + Vector<Quat> values = track.rotation_track.values; + s["output"] = _encode_accessor_as_quats(state, values, false); + + samplers.push_back(s); + + Dictionary target; + target["path"] = "rotation"; + target["node"] = track_i->key(); + + t["target"] = target; + channels.push_back(t); + } + if (track.scale_track.times.size()) { + Dictionary t; + t["sampler"] = samplers.size(); + Dictionary s; + + s["interpolation"] = interpolation_to_string(track.scale_track.interpolation); + Vector<real_t> times = Variant(track.scale_track.times); + s["input"] = _encode_accessor_as_floats(state, times, false); + Vector<Vector3> values = Variant(track.scale_track.values); + s["output"] = _encode_accessor_as_vec3(state, values, false); + + samplers.push_back(s); + + Dictionary target; + target["path"] = "scale"; + target["node"] = track_i->key(); + + t["target"] = target; + channels.push_back(t); + } + if (track.weight_tracks.size()) { + Dictionary t; + t["sampler"] = samplers.size(); + Dictionary s; + + Vector<real_t> times; + Vector<real_t> values; + + for (int32_t times_i = 0; times_i < track.weight_tracks[0].times.size(); times_i++) { + real_t time = track.weight_tracks[0].times[times_i]; + times.push_back(time); + } + + values.resize(times.size() * track.weight_tracks.size()); + // TODO Sort by order in blend shapes + for (int k = 0; k < track.weight_tracks.size(); k++) { + Vector<float> wdata = track.weight_tracks[k].values; + for (int l = 0; l < wdata.size(); l++) { + values.write[l * track.weight_tracks.size() + k] = wdata.write[l]; + } + } + + s["interpolation"] = interpolation_to_string(track.weight_tracks[track.weight_tracks.size() - 1].interpolation); + s["input"] = _encode_accessor_as_floats(state, times, false); + s["output"] = _encode_accessor_as_floats(state, values, false); + + samplers.push_back(s); + + Dictionary target; + target["path"] = "weights"; + target["node"] = track_i->key(); + + t["target"] = target; + channels.push_back(t); + } + } + if (channels.size() && samplers.size()) { + d["channels"] = channels; + d["samplers"] = samplers; + animations.push_back(d); + } + } + + state->json["animations"] = animations; + + print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'."); + + return OK; +} + +Error GLTFDocument::_parse_animations(Ref<GLTFState> state) { + if (!state->json.has("animations")) + return OK; + + const Array &animations = state->json["animations"]; + + for (GLTFAnimationIndex i = 0; i < animations.size(); i++) { + const Dictionary &d = animations[i]; + + Ref<GLTFAnimation> animation; + animation.instance(); + + if (!d.has("channels") || !d.has("samplers")) + continue; + + Array channels = d["channels"]; + Array samplers = d["samplers"]; + + if (d.has("name")) { + const String name = d["name"]; + if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) { + animation->set_loop(true); + } + animation->set_name(_sanitize_scene_name(name)); + } + + for (int j = 0; j < channels.size(); j++) { + const Dictionary &c = channels[j]; + if (!c.has("target")) + continue; + + const Dictionary &t = c["target"]; + if (!t.has("node") || !t.has("path")) { + continue; + } + + ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR); + const int sampler = c["sampler"]; + ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR); + + GLTFNodeIndex node = t["node"]; + String path = t["path"]; + + ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR); + + GLTFAnimation::Track *track = nullptr; + + if (!animation->get_tracks().has(node)) { + animation->get_tracks()[node] = GLTFAnimation::Track(); + } + + track = &animation->get_tracks()[node]; + + const Dictionary &s = samplers[sampler]; + + ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR); + ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR); + + const int input = s["input"]; + const int output = s["output"]; + + GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR; + int output_count = 1; + if (s.has("interpolation")) { + const String &in = s["interpolation"]; + if (in == "STEP") { + interp = GLTFAnimation::INTERP_STEP; + } else if (in == "LINEAR") { + interp = GLTFAnimation::INTERP_LINEAR; + } else if (in == "CATMULLROMSPLINE") { + interp = GLTFAnimation::INTERP_CATMULLROMSPLINE; + output_count = 3; + } else if (in == "CUBICSPLINE") { + interp = GLTFAnimation::INTERP_CUBIC_SPLINE; + output_count = 3; + } + } + + const Vector<float> times = _decode_accessor_as_floats(state, input, false); + if (path == "translation") { + const Vector<Vector3> translations = _decode_accessor_as_vec3(state, output, false); + track->translation_track.interpolation = interp; + track->translation_track.times = Variant(times); //convert via variant + track->translation_track.values = Variant(translations); //convert via variant + } else if (path == "rotation") { + const Vector<Quat> rotations = _decode_accessor_as_quat(state, output, false); + track->rotation_track.interpolation = interp; + track->rotation_track.times = Variant(times); //convert via variant + track->rotation_track.values = rotations; + } else if (path == "scale") { + const Vector<Vector3> scales = _decode_accessor_as_vec3(state, output, false); + track->scale_track.interpolation = interp; + track->scale_track.times = Variant(times); //convert via variant + track->scale_track.values = Variant(scales); //convert via variant + } else if (path == "weights") { + const Vector<float> weights = _decode_accessor_as_floats(state, output, false); + + ERR_FAIL_INDEX_V(state->nodes[node]->mesh, state->meshes.size(), ERR_PARSE_ERROR); + Ref<GLTFMesh> mesh = state->meshes[state->nodes[node]->mesh]; + ERR_CONTINUE(!mesh->get_blend_weights().size()); + const int wc = mesh->get_blend_weights().size(); + + track->weight_tracks.resize(wc); + + const int expected_value_count = times.size() * output_count * wc; + ERR_FAIL_COND_V_MSG(weights.size() != expected_value_count, ERR_PARSE_ERROR, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead."); + + const int wlen = weights.size() / wc; + for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea + GLTFAnimation::Channel<float> cf; + cf.interpolation = interp; + cf.times = Variant(times); + Vector<float> wdata; + wdata.resize(wlen); + for (int l = 0; l < wlen; l++) { + wdata.write[l] = weights[l * wc + k]; + } + + cf.values = wdata; + track->weight_tracks.write[k] = cf; + } + } else { + WARN_PRINT("Invalid path '" + path + "'."); + } + } + + state->animations.push_back(animation); + } + + print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'."); + + return OK; +} + +void GLTFDocument::_assign_scene_names(Ref<GLTFState> state) { + for (int i = 0; i < state->nodes.size(); i++) { + Ref<GLTFNode> n = state->nodes[i]; + + // Any joints get unique names generated when the skeleton is made, unique to the skeleton + if (n->skeleton >= 0) + continue; + + if (n->get_name().is_empty()) { + if (n->mesh >= 0) { + n->set_name(_gen_unique_name(state, "Mesh")); + } else if (n->camera >= 0) { + n->set_name(_gen_unique_name(state, "Camera3D")); + } else { + n->set_name(_gen_unique_name(state, "Node")); + } + } + + n->set_name(_gen_unique_name(state, n->get_name())); + } +} + +BoneAttachment3D *GLTFDocument::_generate_bone_attachment(Ref<GLTFState> state, Skeleton3D *skeleton, const GLTFNodeIndex node_index) { + Ref<GLTFNode> gltf_node = state->nodes[node_index]; + Ref<GLTFNode> bone_node = state->nodes[gltf_node->parent]; + + BoneAttachment3D *bone_attachment = memnew(BoneAttachment3D); + print_verbose("glTF: Creating bone attachment for: " + gltf_node->get_name()); + + ERR_FAIL_COND_V(!bone_node->joint, nullptr); + + bone_attachment->set_bone_name(bone_node->get_name()); + + return bone_attachment; +} + +GLTFMeshIndex GLTFDocument::_convert_mesh_instance(Ref<GLTFState> state, MeshInstance3D *p_mesh_instance) { + ERR_FAIL_NULL_V(p_mesh_instance, -1); + if (p_mesh_instance->get_mesh().is_null()) { + return -1; + } + Ref<EditorSceneImporterMesh> import_mesh; + import_mesh.instance(); + Ref<Mesh> godot_mesh = p_mesh_instance->get_mesh(); + if (godot_mesh.is_null()) { + return -1; + } + Vector<float> blend_weights; + Vector<String> blend_names; + int32_t blend_count = godot_mesh->get_blend_shape_count(); + blend_names.resize(blend_count); + blend_weights.resize(blend_count); + for (int32_t blend_i = 0; blend_i < godot_mesh->get_blend_shape_count(); blend_i++) { + String blend_name = godot_mesh->get_blend_shape_name(blend_i); + blend_names.write[blend_i] = blend_name; + import_mesh->add_blend_shape(blend_name); + } + for (int32_t surface_i = 0; surface_i < godot_mesh->get_surface_count(); surface_i++) { + Mesh::PrimitiveType primitive_type = godot_mesh->surface_get_primitive_type(surface_i); + Array arrays = godot_mesh->surface_get_arrays(surface_i); + Array blend_shape_arrays = godot_mesh->surface_get_blend_shape_arrays(surface_i); + Ref<Material> mat = godot_mesh->surface_get_material(surface_i); + Ref<ArrayMesh> godot_array_mesh = godot_mesh; + String surface_name; + if (godot_array_mesh.is_valid()) { + surface_name = godot_array_mesh->surface_get_name(surface_i); + } + if (p_mesh_instance->get_surface_material(surface_i).is_valid()) { + mat = p_mesh_instance->get_surface_material(surface_i); + } + if (p_mesh_instance->get_material_override().is_valid()) { + mat = p_mesh_instance->get_material_override(); + } + import_mesh->add_surface(primitive_type, arrays, blend_shape_arrays, Dictionary(), mat, surface_name); + } + for (int32_t blend_i = 0; blend_i < blend_count; blend_i++) { + blend_weights.write[blend_i] = 0.0f; + } + Ref<GLTFMesh> gltf_mesh; + gltf_mesh.instance(); + gltf_mesh->set_mesh(import_mesh); + gltf_mesh->set_blend_weights(blend_weights); + GLTFMeshIndex mesh_i = state->meshes.size(); + state->meshes.push_back(gltf_mesh); + return mesh_i; +} + +EditorSceneImporterMeshNode3D *GLTFDocument::_generate_mesh_instance(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) { + Ref<GLTFNode> gltf_node = state->nodes[node_index]; + + ERR_FAIL_INDEX_V(gltf_node->mesh, state->meshes.size(), nullptr); + + EditorSceneImporterMeshNode3D *mi = memnew(EditorSceneImporterMeshNode3D); + print_verbose("glTF: Creating mesh for: " + gltf_node->get_name()); + + Ref<GLTFMesh> mesh = state->meshes.write[gltf_node->mesh]; + if (mesh.is_null()) { + return mi; + } + Ref<EditorSceneImporterMesh> import_mesh = mesh->get_mesh(); + if (import_mesh.is_null()) { + return mi; + } + mi->set_mesh(import_mesh); + for (int i = 0; i < mesh->get_blend_weights().size(); i++) { + mi->set("blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i), mesh->get_blend_weights()[i]); + } + return mi; +} + +Light3D *GLTFDocument::_generate_light(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) { + Ref<GLTFNode> gltf_node = state->nodes[node_index]; + + ERR_FAIL_INDEX_V(gltf_node->light, state->lights.size(), nullptr); + + print_verbose("glTF: Creating light for: " + gltf_node->get_name()); + + Ref<GLTFLight> l = state->lights[gltf_node->light]; + + float intensity = l->intensity; + if (intensity > 10) { + // GLTF spec has the default around 1, but Blender defaults lights to 100. + // The only sane way to handle this is to check where it came from and + // handle it accordingly. If it's over 10, it probably came from Blender. + intensity /= 100; + } + + if (l->type == "directional") { + DirectionalLight3D *light = memnew(DirectionalLight3D); + light->set_param(Light3D::PARAM_ENERGY, intensity); + light->set_color(l->color); + return light; + } + + const float range = CLAMP(l->range, 0, 4096); + // Doubling the range will double the effective brightness, so we need double attenuation (half brightness). + // We want to have double intensity give double brightness, so we need half the attenuation. + const float attenuation = range / intensity; + if (l->type == "point") { + OmniLight3D *light = memnew(OmniLight3D); + light->set_param(OmniLight3D::PARAM_ATTENUATION, attenuation); + light->set_param(OmniLight3D::PARAM_RANGE, range); + light->set_color(l->color); + return light; + } + if (l->type == "spot") { + SpotLight3D *light = memnew(SpotLight3D); + light->set_param(SpotLight3D::PARAM_ATTENUATION, attenuation); + light->set_param(SpotLight3D::PARAM_RANGE, range); + light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, Math::rad2deg(l->outer_cone_angle)); + light->set_color(l->color); + + // Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b + // The points in desmos are not exact, except for (1, infinity). + float angle_ratio = l->inner_cone_angle / l->outer_cone_angle; + float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1; + light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation); + return light; + } + return nullptr; +} + +Camera3D *GLTFDocument::_generate_camera(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) { + Ref<GLTFNode> gltf_node = state->nodes[node_index]; + + ERR_FAIL_INDEX_V(gltf_node->camera, state->cameras.size(), nullptr); + + Camera3D *camera = memnew(Camera3D); + print_verbose("glTF: Creating camera for: " + gltf_node->get_name()); + + Ref<GLTFCamera> c = state->cameras[gltf_node->camera]; + if (c->get_perspective()) { + camera->set_perspective(c->get_fov_size(), c->get_znear(), c->get_zfar()); + } else { + camera->set_orthogonal(c->get_fov_size(), c->get_znear(), c->get_zfar()); + } + + return camera; +} + +GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> state, Camera3D *p_camera) { + print_verbose("glTF: Converting camera: " + p_camera->get_name()); + + Ref<GLTFCamera> c; + c.instance(); + + if (p_camera->get_projection() == Camera3D::Projection::PROJECTION_PERSPECTIVE) { + c->set_perspective(true); + c->set_fov_size(p_camera->get_fov()); + c->set_zfar(p_camera->get_far()); + c->set_znear(p_camera->get_near()); + } else { + c->set_fov_size(p_camera->get_fov()); + c->set_zfar(p_camera->get_far()); + c->set_znear(p_camera->get_near()); + } + GLTFCameraIndex camera_index = state->cameras.size(); + state->cameras.push_back(c); + return camera_index; +} + +GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> state, Light3D *p_light) { + print_verbose("glTF: Converting light: " + p_light->get_name()); + + Ref<GLTFLight> l; + l.instance(); + l->color = p_light->get_color(); + if (cast_to<DirectionalLight3D>(p_light)) { + l->type = "directional"; + DirectionalLight3D *light = cast_to<DirectionalLight3D>(p_light); + l->intensity = light->get_param(DirectionalLight3D::PARAM_ENERGY); + l->range = FLT_MAX; // Range for directional lights is infinite in Godot. + } else if (cast_to<OmniLight3D>(p_light)) { + l->type = "point"; + OmniLight3D *light = cast_to<OmniLight3D>(p_light); + l->range = light->get_param(OmniLight3D::PARAM_RANGE); + float attenuation = p_light->get_param(OmniLight3D::PARAM_ATTENUATION); + l->intensity = l->range / attenuation; + } else if (cast_to<SpotLight3D>(p_light)) { + l->type = "spot"; + SpotLight3D *light = cast_to<SpotLight3D>(p_light); + l->range = light->get_param(SpotLight3D::PARAM_RANGE); + float attenuation = light->get_param(SpotLight3D::PARAM_ATTENUATION); + l->intensity = l->range / attenuation; + l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight3D::PARAM_SPOT_ANGLE)); + + // This equation is the inverse of the import equation (which has a desmos link). + float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight3D::PARAM_SPOT_ATTENUATION))); + angle_ratio = MAX(0, angle_ratio); + l->inner_cone_angle = l->outer_cone_angle * angle_ratio; + } + + GLTFLightIndex light_index = state->lights.size(); + state->lights.push_back(l); + return light_index; +} + +GLTFSkeletonIndex GLTFDocument::_convert_skeleton(Ref<GLTFState> state, Skeleton3D *p_skeleton) { + print_verbose("glTF: Converting skeleton: " + p_skeleton->get_name()); + Ref<GLTFSkeleton> gltf_skeleton; + gltf_skeleton.instance(); + gltf_skeleton->set_name(_gen_unique_name(state, p_skeleton->get_name())); + gltf_skeleton->godot_skeleton = p_skeleton; + GLTFSkeletonIndex skeleton_i = state->skeletons.size(); + state->skeletons.push_back(gltf_skeleton); + return skeleton_i; +} + +void GLTFDocument::_convert_spatial(Ref<GLTFState> state, Node3D *p_spatial, Ref<GLTFNode> p_node) { + Transform xform = p_spatial->get_transform(); + p_node->scale = xform.basis.get_scale(); + p_node->rotation = xform.basis.get_rotation_quat(); + p_node->translation = xform.origin; +} + +Node3D *GLTFDocument::_generate_spatial(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) { + Ref<GLTFNode> gltf_node = state->nodes[node_index]; + + Node3D *spatial = memnew(Node3D); + print_verbose("glTF: Converting spatial: " + gltf_node->get_name()); + + return spatial; +} +void GLTFDocument::_convert_scene_node(Ref<GLTFState> state, Node *p_current, Node *p_root, const GLTFNodeIndex p_gltf_parent, const GLTFNodeIndex p_gltf_root) { + bool retflag = true; + Node3D *spatial = cast_to<Node3D>(p_current); + _check_visibility(p_current, retflag); + if (retflag) { + return; + } + Ref<GLTFNode> gltf_node; + gltf_node.instance(); + gltf_node->set_name(_gen_unique_name(state, p_current->get_name())); + if (cast_to<Node3D>(p_current)) { + _convert_spatial(state, spatial, gltf_node); + } + if (cast_to<MeshInstance3D>(p_current)) { + _convert_mesh_to_gltf(p_current, state, spatial, gltf_node); + } else if (cast_to<BoneAttachment3D>(p_current)) { + _convert_bone_attachment_to_gltf(p_current, state, gltf_node, retflag); + // TODO 2020-12-21 iFire Handle the case of objects under the bone attachment. + return; + } else if (cast_to<Skeleton3D>(p_current)) { + _convert_skeleton_to_gltf(p_current, state, p_gltf_parent, p_gltf_root, gltf_node, p_root); + // We ignore the Godot Engine node that is the skeleton. + return; + } else if (cast_to<MultiMeshInstance3D>(p_current)) { + _convert_mult_mesh_instance_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root); + } else if (cast_to<CSGShape3D>(p_current)) { + if (p_current->get_parent() && cast_to<CSGShape3D>(p_current)->is_root_shape()) { + _convert_csg_shape_to_gltf(p_current, p_gltf_parent, gltf_node, state); + } + } else if (cast_to<GridMap>(p_current)) { + _convert_grid_map_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root); + } else if (cast_to<Camera3D>(p_current)) { + Camera3D *camera = Object::cast_to<Camera3D>(p_current); + _convert_camera_to_gltf(camera, state, spatial, gltf_node); + } else if (cast_to<Light3D>(p_current)) { + Light3D *light = Object::cast_to<Light3D>(p_current); + _convert_light_to_gltf(light, state, spatial, gltf_node); + } else if (cast_to<AnimationPlayer>(p_current)) { + AnimationPlayer *animation_player = Object::cast_to<AnimationPlayer>(p_current); + _convert_animation_player_to_gltf(animation_player, state, p_gltf_parent, p_gltf_root, gltf_node, p_current, p_root); + } + GLTFNodeIndex current_node_i = state->nodes.size(); + GLTFNodeIndex gltf_root = p_gltf_root; + if (gltf_root == -1) { + gltf_root = current_node_i; + Array scenes; + scenes.push_back(gltf_root); + state->json["scene"] = scenes; + } + _create_gltf_node(state, p_current, current_node_i, p_gltf_parent, gltf_root, gltf_node); + for (int node_i = 0; node_i < p_current->get_child_count(); node_i++) { + _convert_scene_node(state, p_current->get_child(node_i), p_root, current_node_i, gltf_root); + } +} + +void GLTFDocument::_convert_csg_shape_to_gltf(Node *p_current, GLTFNodeIndex p_gltf_parent, Ref<GLTFNode> gltf_node, Ref<GLTFState> state) { + CSGShape3D *csg = Object::cast_to<CSGShape3D>(p_current); + csg->call("_update_shape"); + Array meshes = csg->get_meshes(); + if (meshes.size() != 2) { + return; + } + Ref<Material> mat; + if (csg->get_material_override().is_valid()) { + mat = csg->get_material_override(); + } + Ref<GLTFMesh> gltf_mesh; + gltf_mesh.instance(); + Ref<EditorSceneImporterMesh> import_mesh; + import_mesh.instance(); + Ref<ArrayMesh> array_mesh = csg->get_meshes()[1]; + for (int32_t surface_i = 0; surface_i < array_mesh->get_surface_count(); surface_i++) { + import_mesh->add_surface(Mesh::PrimitiveType::PRIMITIVE_TRIANGLES, array_mesh->surface_get_arrays(surface_i), Array(), Dictionary(), mat, array_mesh->surface_get_name(surface_i)); + } + gltf_mesh->set_mesh(import_mesh); + GLTFMeshIndex mesh_i = state->meshes.size(); + state->meshes.push_back(gltf_mesh); + gltf_node->mesh = mesh_i; + gltf_node->xform = csg->get_meshes()[0]; + gltf_node->set_name(_gen_unique_name(state, csg->get_name())); +} + +void GLTFDocument::_create_gltf_node(Ref<GLTFState> state, Node *p_scene_parent, GLTFNodeIndex current_node_i, + GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_gltf_node, Ref<GLTFNode> gltf_node) { + state->scene_nodes.insert(current_node_i, p_scene_parent); + state->nodes.push_back(gltf_node); + if (current_node_i == p_parent_node_index) { + return; + } + if (p_parent_node_index == -1) { + return; + } + state->nodes.write[p_parent_node_index]->children.push_back(current_node_i); +} + +void GLTFDocument::_convert_animation_player_to_gltf(AnimationPlayer *animation_player, Ref<GLTFState> state, const GLTFNodeIndex &p_gltf_current, const GLTFNodeIndex &p_gltf_root_index, Ref<GLTFNode> p_gltf_node, Node *p_scene_parent, Node *p_root) { + ERR_FAIL_COND(!animation_player); + state->animation_players.push_back(animation_player); + print_verbose(String("glTF: Converting animation player: ") + animation_player->get_name()); +} + +void GLTFDocument::_check_visibility(Node *p_node, bool &retflag) { + retflag = true; + Node3D *spatial = Object::cast_to<Node3D>(p_node); + Node2D *node_2d = Object::cast_to<Node2D>(p_node); + if (node_2d && !node_2d->is_visible()) { + return; + } + if (spatial && !spatial->is_visible()) { + return; + } + retflag = false; +} + +void GLTFDocument::_convert_camera_to_gltf(Camera3D *camera, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) { + ERR_FAIL_COND(!camera); + GLTFCameraIndex camera_index = _convert_camera(state, camera); + if (camera_index != -1) { + gltf_node->camera = camera_index; + } +} + +void GLTFDocument::_convert_light_to_gltf(Light3D *light, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) { + ERR_FAIL_COND(!light); + GLTFLightIndex light_index = _convert_light(state, light); + if (light_index != -1) { + gltf_node->light = light_index; + } +} + +void GLTFDocument::_convert_grid_map_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) { + GridMap *grid_map = Object::cast_to<GridMap>(p_scene_parent); + ERR_FAIL_COND(!grid_map); + Array cells = grid_map->get_used_cells(); + for (int32_t k = 0; k < cells.size(); k++) { + GLTFNode *new_gltf_node = memnew(GLTFNode); + gltf_node->children.push_back(state->nodes.size()); + state->nodes.push_back(new_gltf_node); + Vector3 cell_location = cells[k]; + int32_t cell = grid_map->get_cell_item( + Vector3(cell_location.x, cell_location.y, cell_location.z)); + EditorSceneImporterMeshNode3D *import_mesh_node = memnew(EditorSceneImporterMeshNode3D); + import_mesh_node->set_mesh(grid_map->get_mesh_library()->get_item_mesh(cell)); + Transform cell_xform; + cell_xform.basis.set_orthogonal_index( + grid_map->get_cell_item_orientation( + Vector3(cell_location.x, cell_location.y, cell_location.z))); + cell_xform.basis.scale(Vector3(grid_map->get_cell_scale(), + grid_map->get_cell_scale(), + grid_map->get_cell_scale())); + cell_xform.set_origin(grid_map->map_to_world( + Vector3(cell_location.x, cell_location.y, cell_location.z))); + Ref<GLTFMesh> gltf_mesh; + gltf_mesh.instance(); + gltf_mesh = import_mesh_node; + new_gltf_node->mesh = state->meshes.size(); + state->meshes.push_back(gltf_mesh); + new_gltf_node->xform = cell_xform * grid_map->get_transform(); + new_gltf_node->set_name(_gen_unique_name(state, grid_map->get_mesh_library()->get_item_name(cell))); + } +} + +void GLTFDocument::_convert_mult_mesh_instance_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) { + MultiMeshInstance3D *multi_mesh_instance = Object::cast_to<MultiMeshInstance3D>(p_scene_parent); + ERR_FAIL_COND(!multi_mesh_instance); + Ref<MultiMesh> multi_mesh = multi_mesh_instance->get_multimesh(); + if (multi_mesh.is_valid()) { + for (int32_t instance_i = 0; instance_i < multi_mesh->get_instance_count(); + instance_i++) { + GLTFNode *new_gltf_node = memnew(GLTFNode); + Transform transform; + if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_2D) { + Transform2D xform_2d = multi_mesh->get_instance_transform_2d(instance_i); + transform.origin = + Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y); + real_t rotation = xform_2d.get_rotation(); + Quat quat; + quat.set_axis_angle(Vector3(0, 1, 0), rotation); + Size2 scale = xform_2d.get_scale(); + transform.basis.set_quat_scale(quat, + Vector3(scale.x, 0, scale.y)); + transform = + multi_mesh_instance->get_transform() * transform; + } else if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_3D) { + transform = multi_mesh_instance->get_transform() * + multi_mesh->get_instance_transform(instance_i); + } + Ref<ArrayMesh> mm = multi_mesh->get_mesh(); + if (mm.is_valid()) { + Ref<EditorSceneImporterMesh> mesh; + mesh.instance(); + for (int32_t surface_i = 0; surface_i < mm->get_surface_count(); surface_i++) { + Array surface = mm->surface_get_arrays(surface_i); + mesh->add_surface(mm->surface_get_primitive_type(surface_i), surface, Array(), Dictionary(), + mm->surface_get_material(surface_i), mm->get_name()); + } + Ref<GLTFMesh> gltf_mesh; + gltf_mesh.instance(); + gltf_mesh->set_name(multi_mesh->get_name()); + gltf_mesh->set_mesh(mesh); + new_gltf_node->mesh = state->meshes.size(); + state->meshes.push_back(gltf_mesh); + } + new_gltf_node->xform = transform; + new_gltf_node->set_name(_gen_unique_name(state, multi_mesh_instance->get_name())); + gltf_node->children.push_back(state->nodes.size()); + state->nodes.push_back(new_gltf_node); + } + } +} + +void GLTFDocument::_convert_skeleton_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Node *p_root_node) { + Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(p_scene_parent); + if (skeleton) { + // Remove placeholder skeleton3d node by not creating the gltf node + // Skins are per mesh + for (int node_i = 0; node_i < skeleton->get_child_count(); node_i++) { + _convert_scene_node(state, skeleton->get_child(node_i), p_root_node, p_parent_node_index, p_root_node_index); + } + } +} + +void GLTFDocument::_convert_bone_attachment_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Ref<GLTFNode> gltf_node, bool &retflag) { + retflag = true; + BoneAttachment3D *bone_attachment = Object::cast_to<BoneAttachment3D>(p_scene_parent); + if (bone_attachment) { + Node *node = bone_attachment->get_parent(); + while (node) { + Skeleton3D *bone_attachment_skeleton = Object::cast_to<Skeleton3D>(node); + if (bone_attachment_skeleton) { + for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) { + if (state->skeletons[skeleton_i]->godot_skeleton != bone_attachment_skeleton) { + continue; + } + state->skeletons.write[skeleton_i]->bone_attachments.push_back(bone_attachment); + break; + } + break; + } + node = node->get_parent(); + } + gltf_node.unref(); + return; + } + retflag = false; +} + +void GLTFDocument::_convert_mesh_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) { + MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_scene_parent); + if (mi) { + GLTFMeshIndex gltf_mesh_index = _convert_mesh_instance(state, mi); + if (gltf_mesh_index != -1) { + gltf_node->mesh = gltf_mesh_index; + } + } +} + +void GLTFDocument::_generate_scene_node(Ref<GLTFState> state, Node *scene_parent, Node3D *scene_root, const GLTFNodeIndex node_index) { + Ref<GLTFNode> gltf_node = state->nodes[node_index]; + + Node3D *current_node = nullptr; + + // Is our parent a skeleton + Skeleton3D *active_skeleton = Object::cast_to<Skeleton3D>(scene_parent); + + if (gltf_node->skeleton >= 0) { + Skeleton3D *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton; + + if (active_skeleton != skeleton) { + ERR_FAIL_COND_MSG(active_skeleton != nullptr, "glTF: Generating scene detected direct parented Skeletons"); + + // Add it to the scene if it has not already been added + if (skeleton->get_parent() == nullptr) { + scene_parent->add_child(skeleton); + skeleton->set_owner(scene_root); + } + } + + active_skeleton = skeleton; + current_node = skeleton; + } + + // If we have an active skeleton, and the node is node skinned, we need to create a bone attachment + if (current_node == nullptr && active_skeleton != nullptr && gltf_node->skin < 0) { + BoneAttachment3D *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index); + + scene_parent->add_child(bone_attachment); + bone_attachment->set_owner(scene_root); + + // There is no gltf_node that represent this, so just directly create a unique name + bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment3D")); + + // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node + // and attach it to the bone_attachment + scene_parent = bone_attachment; + } + + // We still have not managed to make a node + if (current_node == nullptr) { + if (gltf_node->mesh >= 0) { + current_node = _generate_mesh_instance(state, scene_parent, node_index); + } else if (gltf_node->camera >= 0) { + current_node = _generate_camera(state, scene_parent, node_index); + } else if (gltf_node->light >= 0) { + current_node = _generate_light(state, scene_parent, node_index); + } + + if (!current_node) { + current_node = _generate_spatial(state, scene_parent, node_index); + } + + scene_parent->add_child(current_node); + if (current_node != scene_root) { + current_node->set_owner(scene_root); + } + current_node->set_transform(gltf_node->xform); + current_node->set_name(gltf_node->get_name()); + } + + state->scene_nodes.insert(node_index, current_node); + + for (int i = 0; i < gltf_node->children.size(); ++i) { + _generate_scene_node(state, current_node, scene_root, gltf_node->children[i]); + } +} + +template <class T> +struct EditorSceneImporterGLTFInterpolate { + T lerp(const T &a, const T &b, float c) const { + return a + (b - a) * c; + } + + T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) { + const float t2 = t * t; + const float t3 = t2 * t; + + return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); + } + + T bezier(T start, T control_1, T control_2, T end, float t) { + /* Formula from Wikipedia article on Bezier curves. */ + const real_t omt = (1.0 - t); + const real_t omt2 = omt * omt; + const real_t omt3 = omt2 * omt; + const real_t t2 = t * t; + const real_t t3 = t2 * t; + + return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; + } +}; + +// thank you for existing, partial specialization +template <> +struct EditorSceneImporterGLTFInterpolate<Quat> { + Quat lerp(const Quat &a, const Quat &b, const float c) const { + ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized."); + ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized."); + + return a.slerp(b, c).normalized(); + } + + Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, const float c) { + ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized."); + ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized."); + + return p1.slerp(p2, c).normalized(); + } + + Quat bezier(const Quat start, const Quat control_1, const Quat control_2, const Quat end, const float t) { + ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized."); + + return start.slerp(end, t).normalized(); + } +}; + +template <class T> +T GLTFDocument::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) { + //could use binary search, worth it? + int idx = -1; + for (int i = 0; i < p_times.size(); i++) { + if (p_times[i] > p_time) + break; + idx++; + } + + EditorSceneImporterGLTFInterpolate<T> interp; + + switch (p_interp) { + case GLTFAnimation::INTERP_LINEAR: { + if (idx == -1) { + return p_values[0]; + } else if (idx >= p_times.size() - 1) { + return p_values[p_times.size() - 1]; + } + + const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); + + return interp.lerp(p_values[idx], p_values[idx + 1], c); + } break; + case GLTFAnimation::INTERP_STEP: { + if (idx == -1) { + return p_values[0]; + } else if (idx >= p_times.size() - 1) { + return p_values[p_times.size() - 1]; + } + + return p_values[idx]; + } break; + case GLTFAnimation::INTERP_CATMULLROMSPLINE: { + if (idx == -1) { + return p_values[1]; + } else if (idx >= p_times.size() - 1) { + return p_values[1 + p_times.size() - 1]; + } + + const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); + + return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c); + } break; + case GLTFAnimation::INTERP_CUBIC_SPLINE: { + if (idx == -1) { + return p_values[1]; + } else if (idx >= p_times.size() - 1) { + return p_values[(p_times.size() - 1) * 3 + 1]; + } + + const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); + + const T from = p_values[idx * 3 + 1]; + const T c1 = from + p_values[idx * 3 + 2]; + const T to = p_values[idx * 3 + 4]; + const T c2 = to + p_values[idx * 3 + 3]; + + return interp.bezier(from, c1, c2, to, c); + } break; + } + + ERR_FAIL_V(p_values[0]); +} + +void GLTFDocument::_import_animation(Ref<GLTFState> state, AnimationPlayer *ap, const GLTFAnimationIndex index, const int bake_fps) { + Ref<GLTFAnimation> anim = state->animations[index]; + + String name = anim->get_name(); + if (name.is_empty()) { + // No node represent these, and they are not in the hierarchy, so just make a unique name + name = _gen_unique_name(state, "Animation"); + } + + Ref<Animation> animation; + animation.instance(); + animation->set_name(name); + + if (anim->get_loop()) { + animation->set_loop(true); + } + + float length = 0; + + for (Map<int, GLTFAnimation::Track>::Element *track_i = anim->get_tracks().front(); track_i; track_i = track_i->next()) { + const GLTFAnimation::Track &track = track_i->get(); + //need to find the path + NodePath node_path; + + GLTFNodeIndex node_index = track_i->key(); + if (state->nodes[node_index]->fake_joint_parent >= 0) { + // Should be same as parent + node_index = state->nodes[node_index]->fake_joint_parent; + } + + const Ref<GLTFNode> gltf_node = state->nodes[track_i->key()]; + + if (gltf_node->skeleton >= 0) { + const Skeleton3D *sk = Object::cast_to<Skeleton3D>(state->scene_nodes.find(node_index)->get()); + ERR_FAIL_COND(sk == nullptr); + + const String path = ap->get_parent()->get_path_to(sk); + const String bone = gltf_node->get_name(); + node_path = path + ":" + bone; + } else { + Node *root = ap->get_parent(); + Node *godot_node = state->scene_nodes.find(node_index)->get(); + node_path = root->get_path_to(godot_node); + } + + for (int i = 0; i < track.rotation_track.times.size(); i++) { + length = MAX(length, track.rotation_track.times[i]); + } + for (int i = 0; i < track.translation_track.times.size(); i++) { + length = MAX(length, track.translation_track.times[i]); + } + for (int i = 0; i < track.scale_track.times.size(); i++) { + length = MAX(length, track.scale_track.times[i]); + } + + for (int i = 0; i < track.weight_tracks.size(); i++) { + for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { + length = MAX(length, track.weight_tracks[i].times[j]); + } + } + + if (track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) { + //make transform track + int track_idx = animation->get_track_count(); + animation->add_track(Animation::TYPE_TRANSFORM); + animation->track_set_path(track_idx, node_path); + //first determine animation length + + const float increment = 1.0 / float(bake_fps); + float time = 0.0; + + Vector3 base_pos; + Quat base_rot; + Vector3 base_scale = Vector3(1, 1, 1); + + if (!track.rotation_track.values.size()) { + base_rot = state->nodes[track_i->key()]->rotation.normalized(); + } + + if (!track.translation_track.values.size()) { + base_pos = state->nodes[track_i->key()]->translation; + } + + if (!track.scale_track.values.size()) { + base_scale = state->nodes[track_i->key()]->scale; + } + + bool last = false; + while (true) { + Vector3 pos = base_pos; + Quat rot = base_rot; + Vector3 scale = base_scale; + + if (track.translation_track.times.size()) { + pos = _interpolate_track<Vector3>(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation); + } + + if (track.rotation_track.times.size()) { + rot = _interpolate_track<Quat>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation); + } + + if (track.scale_track.times.size()) { + scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation); + } + + if (gltf_node->skeleton >= 0) { + Transform xform; + xform.basis.set_quat_scale(rot, scale); + xform.origin = pos; + + const Skeleton3D *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton; + const int bone_idx = skeleton->find_bone(gltf_node->get_name()); + xform = skeleton->get_bone_rest(bone_idx).affine_inverse() * xform; + + rot = xform.basis.get_rotation_quat(); + rot.normalize(); + scale = xform.basis.get_scale(); + pos = xform.origin; + } + + animation->transform_track_insert_key(track_idx, time, pos, rot, scale); + + if (last) { + break; + } + time += increment; + if (time >= length) { + last = true; + time = length; + } + } + } + + for (int i = 0; i < track.weight_tracks.size(); i++) { + ERR_CONTINUE(gltf_node->mesh < 0 || gltf_node->mesh >= state->meshes.size()); + Ref<GLTFMesh> mesh = state->meshes[gltf_node->mesh]; + ERR_CONTINUE(mesh.is_null()); + ERR_CONTINUE(mesh->get_mesh().is_null()); + ERR_CONTINUE(mesh->get_mesh()->get_mesh().is_null()); + const String prop = "blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i); + + const String blend_path = String(node_path) + ":" + prop; + + const int track_idx = animation->get_track_count(); + animation->add_track(Animation::TYPE_VALUE); + animation->track_set_path(track_idx, blend_path); + + // Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation, + // the other modes have to be baked. + GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation; + if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) { + animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR); + for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { + const float t = track.weight_tracks[i].times[j]; + const float attribs = track.weight_tracks[i].values[j]; + animation->track_insert_key(track_idx, t, attribs); + } + } else { + // CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies. + const float increment = 1.0 / float(bake_fps); + float time = 0.0; + bool last = false; + while (true) { + _interpolate_track<float>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp); + if (last) { + break; + } + time += increment; + if (time >= length) { + last = true; + time = length; + } + } + } + } + } + + animation->set_length(length); + + ap->add_animation(name, animation); +} + +void GLTFDocument::_convert_mesh_instances(Ref<GLTFState> state) { + for (GLTFNodeIndex mi_node_i = 0; mi_node_i < state->nodes.size(); ++mi_node_i) { + Ref<GLTFNode> node = state->nodes[mi_node_i]; + + if (node->mesh < 0) { + continue; + } + Array json_skins; + if (state->json.has("skins")) { + json_skins = state->json["skins"]; + } + Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(mi_node_i); + if (!mi_element) { + continue; + } + MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(mi_element->get()); + ERR_CONTINUE(!mi); + Transform mi_xform = mi->get_transform(); + node->scale = mi_xform.basis.get_scale(); + node->rotation = mi_xform.basis.get_rotation_quat(); + node->translation = mi_xform.origin; + + Dictionary json_skin; + Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(mi->get_node(mi->get_skeleton_path())); + if (!skeleton) { + continue; + } + if (!skeleton->get_bone_count()) { + continue; + } + Ref<Skin> skin = mi->get_skin(); + if (skin.is_null()) { + skin = skeleton->register_skin(nullptr)->get_skin(); + } + Ref<GLTFSkin> gltf_skin; + gltf_skin.instance(); + Array json_joints; + GLTFSkeletonIndex skeleton_gltf_i = -1; + + NodePath skeleton_path = mi->get_skeleton_path(); + bool is_unique = true; + for (int32_t skin_i = 0; skin_i < state->skins.size(); skin_i++) { + Ref<GLTFSkin> prev_gltf_skin = state->skins.write[skin_i]; + if (gltf_skin.is_null()) { + continue; + } + GLTFSkeletonIndex prev_skeleton = prev_gltf_skin->get_skeleton(); + if (prev_skeleton == -1 || prev_skeleton >= state->skeletons.size()) { + continue; + } + if (prev_gltf_skin->get_godot_skin() == skin && state->skeletons[prev_skeleton]->godot_skeleton == skeleton) { + node->skin = skin_i; + node->skeleton = prev_skeleton; + is_unique = false; + break; + } + } + if (!is_unique) { + continue; + } + GLTFSkeletonIndex skeleton_i = _convert_skeleton(state, skeleton); + skeleton_gltf_i = skeleton_i; + ERR_CONTINUE(skeleton_gltf_i == -1); + gltf_skin->skeleton = skeleton_gltf_i; + Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skeleton_gltf_i]; + for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) { + String godot_bone_name = skin->get_bind_name(bind_i); + if (godot_bone_name.is_empty()) { + int32_t bone = skin->get_bind_bone(bind_i); + godot_bone_name = skeleton->get_bone_name(bone); + } + if (skeleton->find_bone(godot_bone_name) == -1) { + godot_bone_name = skeleton->get_bone_name(0); + } + BoneId bone_index = skeleton->find_bone(godot_bone_name); + ERR_CONTINUE(bone_index == -1); + Ref<GLTFNode> joint_node; + joint_node.instance(); + String gltf_bone_name = _gen_unique_bone_name(state, skeleton_gltf_i, godot_bone_name); + joint_node->set_name(gltf_bone_name); + + Transform bone_rest_xform = skeleton->get_bone_rest(bone_index); + joint_node->scale = bone_rest_xform.basis.get_scale(); + joint_node->rotation = bone_rest_xform.basis.get_rotation_quat(); + joint_node->translation = bone_rest_xform.origin; + joint_node->joint = true; + + int32_t joint_node_i = state->nodes.size(); + state->nodes.push_back(joint_node); + gltf_skeleton->godot_bone_node.insert(bone_index, joint_node_i); + int32_t joint_index = gltf_skin->joints.size(); + gltf_skin->joint_i_to_bone_i.insert(joint_index, bone_index); + gltf_skin->joints.push_back(joint_node_i); + gltf_skin->joints_original.push_back(joint_node_i); + gltf_skin->inverse_binds.push_back(skin->get_bind_pose(bind_i)); + json_joints.push_back(joint_node_i); + for (Map<GLTFNodeIndex, Node *>::Element *skin_scene_node_i = state->scene_nodes.front(); skin_scene_node_i; skin_scene_node_i = skin_scene_node_i->next()) { + if (skin_scene_node_i->get() == skeleton) { + gltf_skin->skin_root = skin_scene_node_i->key(); + json_skin["skeleton"] = skin_scene_node_i->key(); + } + } + gltf_skin->godot_skin = skin; + gltf_skin->set_name(_gen_unique_name(state, skin->get_name())); + } + for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) { + String bone_name = skeleton->get_bone_name(bind_i); + String godot_bone_name = skin->get_bind_name(bind_i); + int32_t bone = -1; + if (skin->get_bind_bone(bind_i) != -1) { + bone = skin->get_bind_bone(bind_i); + godot_bone_name = skeleton->get_bone_name(bone); + } + bone = skeleton->find_bone(godot_bone_name); + if (bone == -1) { + continue; + } + BoneId bone_parent = skeleton->get_bone_parent(bone); + GLTFNodeIndex joint_node_i = gltf_skeleton->godot_bone_node[bone]; + ERR_CONTINUE(joint_node_i >= state->nodes.size()); + if (bone_parent != -1) { + GLTFNodeIndex parent_joint_gltf_node = gltf_skin->joints[bone_parent]; + Ref<GLTFNode> parent_joint_node = state->nodes.write[parent_joint_gltf_node]; + parent_joint_node->children.push_back(joint_node_i); + } else { + Node *node_parent = skeleton->get_parent(); + ERR_CONTINUE(!node_parent); + for (Map<GLTFNodeIndex, Node *>::Element *E = state->scene_nodes.front(); E; E = E->next()) { + if (E->get() == node_parent) { + GLTFNodeIndex gltf_node_i = E->key(); + Ref<GLTFNode> gltf_node = state->nodes.write[gltf_node_i]; + gltf_node->children.push_back(joint_node_i); + break; + } + } + } + } + _expand_skin(state, gltf_skin); + node->skin = state->skins.size(); + state->skins.push_back(gltf_skin); + + json_skin["inverseBindMatrices"] = _encode_accessor_as_xform(state, gltf_skin->inverse_binds, false); + json_skin["joints"] = json_joints; + json_skin["name"] = gltf_skin->get_name(); + json_skins.push_back(json_skin); + state->json["skins"] = json_skins; + } +} + +float GLTFDocument::solve_metallic(float p_dielectric_specular, float diffuse, float specular, float p_one_minus_specular_strength) { + if (specular <= p_dielectric_specular) { + return 0.0f; + } + + const float a = p_dielectric_specular; + const float b = diffuse * p_one_minus_specular_strength / (1.0f - p_dielectric_specular) + specular - 2.0f * p_dielectric_specular; + const float c = p_dielectric_specular - specular; + const float D = b * b - 4.0f * a * c; + return CLAMP((-b + Math::sqrt(D)) / (2.0f * a), 0.0f, 1.0f); +} + +float GLTFDocument::get_perceived_brightness(const Color p_color) { + const Color coeff = Color(R_BRIGHTNESS_COEFF, G_BRIGHTNESS_COEFF, B_BRIGHTNESS_COEFF); + const Color value = coeff * (p_color * p_color); + + const float r = value.r; + const float g = value.g; + const float b = value.b; + + return Math::sqrt(r + g + b); +} + +float GLTFDocument::get_max_component(const Color &p_color) { + const float r = p_color.r; + const float g = p_color.g; + const float b = p_color.b; + + return MAX(MAX(r, g), b); +} + +void GLTFDocument::_process_mesh_instances(Ref<GLTFState> state, Node *scene_root) { + for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) { + Ref<GLTFNode> node = state->nodes[node_i]; + + if (node->skin >= 0 && node->mesh >= 0) { + const GLTFSkinIndex skin_i = node->skin; + + Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(node_i); + EditorSceneImporterMeshNode3D *mi = Object::cast_to<EditorSceneImporterMeshNode3D>(mi_element->get()); + ERR_FAIL_COND(mi == nullptr); + + const GLTFSkeletonIndex skel_i = state->skins.write[node->skin]->skeleton; + Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i]; + Skeleton3D *skeleton = gltf_skeleton->godot_skeleton; + ERR_FAIL_COND(skeleton == nullptr); + + mi->get_parent()->remove_child(mi); + skeleton->add_child(mi); + mi->set_owner(skeleton->get_owner()); + + mi->set_skin(state->skins.write[skin_i]->godot_skin); + mi->set_skeleton_path(mi->get_path_to(skeleton)); + mi->set_transform(Transform()); + } + } +} + +GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state, GLTFAnimation::Track p_track, Ref<Animation> p_animation, Transform p_bone_rest, int32_t p_track_i, GLTFNodeIndex p_node_i) { + Animation::InterpolationType interpolation = p_animation->track_get_interpolation_type(p_track_i); + + GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR; + if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) { + gltf_interpolation = GLTFAnimation::INTERP_LINEAR; + } else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) { + gltf_interpolation = GLTFAnimation::INTERP_STEP; + } else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) { + gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE; + } + Animation::TrackType track_type = p_animation->track_get_type(p_track_i); + int32_t key_count = p_animation->track_get_key_count(p_track_i); + Vector<float> times; + times.resize(key_count); + String path = p_animation->track_get_path(p_track_i); + for (int32_t key_i = 0; key_i < key_count; key_i++) { + times.write[key_i] = p_animation->track_get_key_time(p_track_i, key_i); + } + const float BAKE_FPS = 30.0f; + if (track_type == Animation::TYPE_TRANSFORM) { + p_track.translation_track.times = times; + p_track.translation_track.interpolation = gltf_interpolation; + p_track.rotation_track.times = times; + p_track.rotation_track.interpolation = gltf_interpolation; + p_track.scale_track.times = times; + p_track.scale_track.interpolation = gltf_interpolation; + + p_track.scale_track.values.resize(key_count); + p_track.scale_track.interpolation = gltf_interpolation; + p_track.translation_track.values.resize(key_count); + p_track.translation_track.interpolation = gltf_interpolation; + p_track.rotation_track.values.resize(key_count); + p_track.rotation_track.interpolation = gltf_interpolation; + for (int32_t key_i = 0; key_i < key_count; key_i++) { + Vector3 translation; + Quat rotation; + Vector3 scale; + Error err = p_animation->transform_track_get_key(p_track_i, key_i, &translation, &rotation, &scale); + ERR_CONTINUE(err != OK); + Transform xform; + xform.basis.set_quat_scale(rotation, scale); + xform.origin = translation; + xform = p_bone_rest * xform; + p_track.translation_track.values.write[key_i] = xform.get_origin(); + p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat(); + p_track.scale_track.values.write[key_i] = xform.basis.get_scale(); + } + } else if (path.find(":transform") != -1) { + p_track.translation_track.times = times; + p_track.translation_track.interpolation = gltf_interpolation; + p_track.rotation_track.times = times; + p_track.rotation_track.interpolation = gltf_interpolation; + p_track.scale_track.times = times; + p_track.scale_track.interpolation = gltf_interpolation; + + p_track.scale_track.values.resize(key_count); + p_track.scale_track.interpolation = gltf_interpolation; + p_track.translation_track.values.resize(key_count); + p_track.translation_track.interpolation = gltf_interpolation; + p_track.rotation_track.values.resize(key_count); + p_track.rotation_track.interpolation = gltf_interpolation; + for (int32_t key_i = 0; key_i < key_count; key_i++) { + Transform xform = p_animation->track_get_key_value(p_track_i, key_i); + p_track.translation_track.values.write[key_i] = xform.get_origin(); + p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat(); + p_track.scale_track.values.write[key_i] = xform.basis.get_scale(); + } + } else if (track_type == Animation::TYPE_VALUE) { + if (path.find("/rotation_quat") != -1) { + p_track.rotation_track.times = times; + p_track.rotation_track.interpolation = gltf_interpolation; + + p_track.rotation_track.values.resize(key_count); + p_track.rotation_track.interpolation = gltf_interpolation; + + for (int32_t key_i = 0; key_i < key_count; key_i++) { + Quat rotation_track = p_animation->track_get_key_value(p_track_i, key_i); + p_track.rotation_track.values.write[key_i] = rotation_track; + } + } else if (path.find(":translation") != -1) { + p_track.translation_track.times = times; + p_track.translation_track.interpolation = gltf_interpolation; + + p_track.translation_track.values.resize(key_count); + p_track.translation_track.interpolation = gltf_interpolation; + + for (int32_t key_i = 0; key_i < key_count; key_i++) { + Vector3 translation = p_animation->track_get_key_value(p_track_i, key_i); + p_track.translation_track.values.write[key_i] = translation; + } + } else if (path.find(":rotation_degrees") != -1) { + p_track.rotation_track.times = times; + p_track.rotation_track.interpolation = gltf_interpolation; + + p_track.rotation_track.values.resize(key_count); + p_track.rotation_track.interpolation = gltf_interpolation; + + for (int32_t key_i = 0; key_i < key_count; key_i++) { + Quat rotation; + Vector3 rotation_degrees = p_animation->track_get_key_value(p_track_i, key_i); + Vector3 rotation_radian; + rotation_radian.x = Math::deg2rad(rotation_degrees.x); + rotation_radian.y = Math::deg2rad(rotation_degrees.y); + rotation_radian.z = Math::deg2rad(rotation_degrees.z); + rotation.set_euler(rotation_radian); + p_track.rotation_track.values.write[key_i] = rotation; + } + } else if (path.find(":scale") != -1) { + p_track.scale_track.times = times; + p_track.scale_track.interpolation = gltf_interpolation; + + p_track.scale_track.values.resize(key_count); + p_track.scale_track.interpolation = gltf_interpolation; + + for (int32_t key_i = 0; key_i < key_count; key_i++) { + Vector3 scale_track = p_animation->track_get_key_value(p_track_i, key_i); + p_track.scale_track.values.write[key_i] = scale_track; + } + } + } else if (track_type == Animation::TYPE_BEZIER) { + if (path.find("/scale") != -1) { + const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS; + if (!p_track.scale_track.times.size()) { + Vector<float> new_times; + new_times.resize(keys); + for (int32_t key_i = 0; key_i < keys; key_i++) { + new_times.write[key_i] = key_i / BAKE_FPS; + } + p_track.scale_track.times = new_times; + p_track.scale_track.interpolation = gltf_interpolation; + + p_track.scale_track.values.resize(keys); + + for (int32_t key_i = 0; key_i < keys; key_i++) { + p_track.scale_track.values.write[key_i] = Vector3(1.0f, 1.0f, 1.0f); + } + p_track.scale_track.interpolation = gltf_interpolation; + } + + for (int32_t key_i = 0; key_i < keys; key_i++) { + Vector3 bezier_track = p_track.scale_track.values[key_i]; + if (path.find("/scale:x") != -1) { + bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); + bezier_track.x = p_bone_rest.affine_inverse().basis.get_scale().x * bezier_track.x; + } else if (path.find("/scale:y") != -1) { + bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); + bezier_track.y = p_bone_rest.affine_inverse().basis.get_scale().y * bezier_track.y; + } else if (path.find("/scale:z") != -1) { + bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); + bezier_track.z = p_bone_rest.affine_inverse().basis.get_scale().z * bezier_track.z; + } + p_track.scale_track.values.write[key_i] = bezier_track; + } + } else if (path.find("/translation") != -1) { + const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS; + if (!p_track.translation_track.times.size()) { + Vector<float> new_times; + new_times.resize(keys); + for (int32_t key_i = 0; key_i < keys; key_i++) { + new_times.write[key_i] = key_i / BAKE_FPS; + } + p_track.translation_track.times = new_times; + p_track.translation_track.interpolation = gltf_interpolation; + + p_track.translation_track.values.resize(keys); + p_track.translation_track.interpolation = gltf_interpolation; + } + + for (int32_t key_i = 0; key_i < keys; key_i++) { + Vector3 bezier_track = p_track.translation_track.values[key_i]; + if (path.find("/translation:x") != -1) { + bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); + bezier_track.x = p_bone_rest.affine_inverse().origin.x * bezier_track.x; + } else if (path.find("/translation:y") != -1) { + bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); + bezier_track.y = p_bone_rest.affine_inverse().origin.y * bezier_track.y; + } else if (path.find("/translation:z") != -1) { + bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); + bezier_track.z = p_bone_rest.affine_inverse().origin.z * bezier_track.z; + } + p_track.translation_track.values.write[key_i] = bezier_track; + } + } + } + + return p_track; +} + +void GLTFDocument::_convert_animation(Ref<GLTFState> state, AnimationPlayer *ap, String p_animation_track_name) { + Ref<Animation> animation = ap->get_animation(p_animation_track_name); + Ref<GLTFAnimation> gltf_animation; + gltf_animation.instance(); + gltf_animation->set_name(_gen_unique_name(state, p_animation_track_name)); + + for (int32_t track_i = 0; track_i < animation->get_track_count(); track_i++) { + if (!animation->track_is_enabled(track_i)) { + continue; + } + String orig_track_path = animation->track_get_path(track_i); + if (String(orig_track_path).find(":translation") != -1) { + const Vector<String> node_suffix = String(orig_track_path).split(":translation"); + const NodePath path = node_suffix[0]; + const Node *node = ap->get_parent()->get_node_or_null(path); + for (Map<GLTFNodeIndex, Node *>::Element *translation_scene_node_i = state->scene_nodes.front(); translation_scene_node_i; translation_scene_node_i = translation_scene_node_i->next()) { + if (translation_scene_node_i->get() == node) { + GLTFNodeIndex node_index = translation_scene_node_i->key(); + Map<int, GLTFAnimation::Track>::Element *translation_track_i = gltf_animation->get_tracks().find(node_index); + GLTFAnimation::Track track; + if (translation_track_i) { + track = translation_track_i->get(); + } + track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); + gltf_animation->get_tracks().insert(node_index, track); + } + } + } else if (String(orig_track_path).find(":rotation_degrees") != -1) { + const Vector<String> node_suffix = String(orig_track_path).split(":rotation_degrees"); + const NodePath path = node_suffix[0]; + const Node *node = ap->get_parent()->get_node_or_null(path); + for (Map<GLTFNodeIndex, Node *>::Element *rotation_degree_scene_node_i = state->scene_nodes.front(); rotation_degree_scene_node_i; rotation_degree_scene_node_i = rotation_degree_scene_node_i->next()) { + if (rotation_degree_scene_node_i->get() == node) { + GLTFNodeIndex node_index = rotation_degree_scene_node_i->key(); + Map<int, GLTFAnimation::Track>::Element *rotation_degree_track_i = gltf_animation->get_tracks().find(node_index); + GLTFAnimation::Track track; + if (rotation_degree_track_i) { + track = rotation_degree_track_i->get(); + } + track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); + gltf_animation->get_tracks().insert(node_index, track); + } + } + } else if (String(orig_track_path).find(":scale") != -1) { + const Vector<String> node_suffix = String(orig_track_path).split(":scale"); + const NodePath path = node_suffix[0]; + const Node *node = ap->get_parent()->get_node_or_null(path); + for (Map<GLTFNodeIndex, Node *>::Element *scale_scene_node_i = state->scene_nodes.front(); scale_scene_node_i; scale_scene_node_i = scale_scene_node_i->next()) { + if (scale_scene_node_i->get() == node) { + GLTFNodeIndex node_index = scale_scene_node_i->key(); + Map<int, GLTFAnimation::Track>::Element *scale_track_i = gltf_animation->get_tracks().find(node_index); + GLTFAnimation::Track track; + if (scale_track_i) { + track = scale_track_i->get(); + } + track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); + gltf_animation->get_tracks().insert(node_index, track); + } + } + } else if (String(orig_track_path).find(":transform") != -1) { + const Vector<String> node_suffix = String(orig_track_path).split(":transform"); + const NodePath path = node_suffix[0]; + const Node *node = ap->get_parent()->get_node_or_null(path); + for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) { + if (transform_track_i->get() == node) { + GLTFAnimation::Track track; + track = _convert_animation_track(state, track, animation, Transform(), track_i, transform_track_i->key()); + gltf_animation->get_tracks().insert(transform_track_i->key(), track); + } + } + } else if (String(orig_track_path).find(":blend_shapes/") != -1) { + const Vector<String> node_suffix = String(orig_track_path).split(":blend_shapes/"); + const NodePath path = node_suffix[0]; + const String suffix = node_suffix[1]; + const Node *node = ap->get_parent()->get_node_or_null(path); + for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) { + if (transform_track_i->get() == node) { + const MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(node); + if (!mi) { + continue; + } + Ref<ArrayMesh> array_mesh = mi->get_mesh(); + if (array_mesh.is_null()) { + continue; + } + if (node_suffix.size() != 2) { + continue; + } + GLTFNodeIndex mesh_index = -1; + for (GLTFNodeIndex node_i = 0; node_i < state->scene_nodes.size(); node_i++) { + if (state->scene_nodes[node_i] == node) { + mesh_index = node_i; + break; + } + } + ERR_CONTINUE(mesh_index == -1); + Ref<Mesh> mesh = mi->get_mesh(); + ERR_CONTINUE(mesh.is_null()); + for (int32_t shape_i = 0; shape_i < mesh->get_blend_shape_count(); shape_i++) { + if (mesh->get_blend_shape_name(shape_i) != suffix) { + continue; + } + GLTFAnimation::Track track; + Map<int, GLTFAnimation::Track>::Element *blend_shape_track_i = gltf_animation->get_tracks().find(mesh_index); + if (blend_shape_track_i) { + track = blend_shape_track_i->get(); + } + Animation::InterpolationType interpolation = animation->track_get_interpolation_type(track_i); + + GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR; + if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) { + gltf_interpolation = GLTFAnimation::INTERP_LINEAR; + } else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) { + gltf_interpolation = GLTFAnimation::INTERP_STEP; + } else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) { + gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE; + } + Animation::TrackType track_type = animation->track_get_type(track_i); + if (track_type == Animation::TYPE_VALUE) { + int32_t key_count = animation->track_get_key_count(track_i); + GLTFAnimation::Channel<float> weight; + weight.interpolation = gltf_interpolation; + weight.times.resize(key_count); + for (int32_t time_i = 0; time_i < key_count; time_i++) { + weight.times.write[time_i] = animation->track_get_key_time(track_i, time_i); + } + weight.values.resize(key_count); + for (int32_t value_i = 0; value_i < key_count; value_i++) { + weight.values.write[value_i] = animation->track_get_key_value(track_i, value_i); + } + track.weight_tracks.push_back(weight); + } + gltf_animation->get_tracks()[mesh_index] = track; + } + } + } + + } else if (String(orig_track_path).find(":") != -1) { + //Process skeleton + const Vector<String> node_suffix = String(orig_track_path).split(":"); + const String node = node_suffix[0]; + const NodePath node_path = node; + const String suffix = node_suffix[1]; + Node *godot_node = ap->get_parent()->get_node_or_null(node_path); + Skeleton3D *skeleton = nullptr; + GLTFSkeletonIndex skeleton_gltf_i = -1; + for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) { + if (state->skeletons[skeleton_i]->godot_skeleton == cast_to<Skeleton3D>(godot_node)) { + skeleton = state->skeletons[skeleton_i]->godot_skeleton; + skeleton_gltf_i = skeleton_i; + ERR_CONTINUE(!skeleton); + Ref<GLTFSkeleton> skeleton_gltf = state->skeletons[skeleton_gltf_i]; + int32_t bone = skeleton->find_bone(suffix); + ERR_CONTINUE(bone == -1); + Transform xform = skeleton->get_bone_rest(bone); + if (!skeleton_gltf->godot_bone_node.has(bone)) { + continue; + } + GLTFNodeIndex node_i = skeleton_gltf->godot_bone_node[bone]; + Map<int, GLTFAnimation::Track>::Element *property_track_i = gltf_animation->get_tracks().find(node_i); + GLTFAnimation::Track track; + if (property_track_i) { + track = property_track_i->get(); + } + track = _convert_animation_track(state, track, animation, xform, track_i, node_i); + gltf_animation->get_tracks()[node_i] = track; + } + } + } else if (String(orig_track_path).find(":") == -1) { + const Node *node = ap->get_parent()->get_node_or_null(orig_track_path); + for (Map<GLTFNodeIndex, Node *>::Element *scene_node_i = state->scene_nodes.front(); scene_node_i; scene_node_i = scene_node_i->next()) { + if (scene_node_i->get() == node) { + GLTFNodeIndex node_index = scene_node_i->key(); + Map<int, GLTFAnimation::Track>::Element *node_track_i = gltf_animation->get_tracks().find(node_index); + GLTFAnimation::Track track; + if (node_track_i) { + track = node_track_i->get(); + } + track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); + gltf_animation->get_tracks().insert(node_index, track); + break; + } + } + } + } + if (gltf_animation->get_tracks().size()) { + state->animations.push_back(gltf_animation); + } +} + +Error GLTFDocument::parse(Ref<GLTFState> state, String p_path, bool p_read_binary) { + Error err; + FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); + if (!f) { + return err; + } + uint32_t magic = f->get_32(); + if (magic == 0x46546C67) { + //binary file + //text file + err = _parse_glb(p_path, state); + if (err) + return FAILED; + } else { + //text file + err = _parse_json(p_path, state); + if (err) + return FAILED; + } + f->close(); + + ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED); + + Dictionary asset = state->json["asset"]; + + ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED); + + String version = asset["version"]; + + state->major_version = version.get_slice(".", 0).to_int(); + state->minor_version = version.get_slice(".", 1).to_int(); + + /* STEP 0 PARSE SCENE */ + err = _parse_scenes(state); + if (err != OK) + return Error::FAILED; + + /* STEP 1 PARSE NODES */ + err = _parse_nodes(state); + if (err != OK) + return Error::FAILED; + + /* STEP 2 PARSE BUFFERS */ + err = _parse_buffers(state, p_path.get_base_dir()); + if (err != OK) + return Error::FAILED; + + /* STEP 3 PARSE BUFFER VIEWS */ + err = _parse_buffer_views(state); + if (err != OK) + return Error::FAILED; + + /* STEP 4 PARSE ACCESSORS */ + err = _parse_accessors(state); + if (err != OK) + return Error::FAILED; + + /* STEP 5 PARSE IMAGES */ + err = _parse_images(state, p_path.get_base_dir()); + if (err != OK) + return Error::FAILED; + + /* STEP 6 PARSE TEXTURES */ + err = _parse_textures(state); + if (err != OK) + return Error::FAILED; + + /* STEP 7 PARSE TEXTURES */ + err = _parse_materials(state); + if (err != OK) + return Error::FAILED; + + /* STEP 9 PARSE SKINS */ + err = _parse_skins(state); + if (err != OK) + return Error::FAILED; + + /* STEP 10 DETERMINE SKELETONS */ + err = _determine_skeletons(state); + if (err != OK) + return Error::FAILED; + + /* STEP 11 CREATE SKELETONS */ + err = _create_skeletons(state); + if (err != OK) + return Error::FAILED; + + /* STEP 12 CREATE SKINS */ + err = _create_skins(state); + if (err != OK) + return Error::FAILED; + + /* STEP 13 PARSE MESHES (we have enough info now) */ + err = _parse_meshes(state); + if (err != OK) + return Error::FAILED; + + /* STEP 14 PARSE LIGHTS */ + err = _parse_lights(state); + if (err != OK) { + return Error::FAILED; + } + + /* STEP 15 PARSE CAMERAS */ + err = _parse_cameras(state); + if (err != OK) + return Error::FAILED; + + /* STEP 16 PARSE ANIMATIONS */ + err = _parse_animations(state); + if (err != OK) + return Error::FAILED; + + /* STEP 17 ASSIGN SCENE NAMES */ + _assign_scene_names(state); + + return OK; +} + +Dictionary GLTFDocument::_serialize_texture_transform_uv2(Ref<BaseMaterial3D> p_material) { + Dictionary extension; + Ref<BaseMaterial3D> mat = p_material; + if (mat.is_valid()) { + Dictionary texture_transform; + Array offset; + offset.resize(2); + offset[0] = mat->get_uv2_offset().x; + offset[1] = mat->get_uv2_offset().y; + texture_transform["offset"] = offset; + Array scale; + scale.resize(2); + scale[0] = mat->get_uv2_scale().x; + scale[1] = mat->get_uv2_scale().y; + texture_transform["scale"] = scale; + // Godot doesn't support texture rotation + extension["KHR_texture_transform"] = texture_transform; + } + return extension; +} + +Dictionary GLTFDocument::_serialize_texture_transform_uv1(Ref<BaseMaterial3D> p_material) { + Dictionary extension; + if (p_material.is_valid()) { + Dictionary texture_transform; + Array offset; + offset.resize(2); + offset[0] = p_material->get_uv1_offset().x; + offset[1] = p_material->get_uv1_offset().y; + texture_transform["offset"] = offset; + Array scale; + scale.resize(2); + scale[0] = p_material->get_uv1_scale().x; + scale[1] = p_material->get_uv1_scale().y; + texture_transform["scale"] = scale; + // Godot doesn't support texture rotation + extension["KHR_texture_transform"] = texture_transform; + } + return extension; +} + +Error GLTFDocument::_serialize_version(Ref<GLTFState> state) { + const String version = "2.0"; + state->major_version = version.get_slice(".", 0).to_int(); + state->minor_version = version.get_slice(".", 1).to_int(); + Dictionary asset; + asset["version"] = version; + + String hash = VERSION_HASH; + asset["generator"] = String(VERSION_FULL_NAME) + String("@") + (hash.length() == 0 ? String("unknown") : hash); + state->json["asset"] = asset; + ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED); + ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED); + return OK; +} + +Error GLTFDocument::_serialize_file(Ref<GLTFState> state, const String p_path) { + Error err = FAILED; + if (p_path.to_lower().ends_with("glb")) { + err = _encode_buffer_glb(state, p_path); + ERR_FAIL_COND_V(err != OK, err); + FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err); + ERR_FAIL_COND_V(!f, FAILED); + + String json = JSON::print(state->json); + + const uint32_t magic = 0x46546C67; // GLTF + const int32_t header_size = 12; + const int32_t chunk_header_size = 8; + + for (int32_t pad_i = 0; pad_i < (chunk_header_size + json.utf8().length()) % 4; pad_i++) { + json += " "; + } + CharString cs = json.utf8(); + const uint32_t text_chunk_length = cs.length(); + + const uint32_t text_chunk_type = 0x4E4F534A; //JSON + int32_t binary_data_length = 0; + if (state->buffers.size()) { + binary_data_length = state->buffers[0].size(); + } + const int32_t binary_chunk_length = binary_data_length; + const int32_t binary_chunk_type = 0x004E4942; //BIN + + f->create(FileAccess::ACCESS_RESOURCES); + f->store_32(magic); + f->store_32(state->major_version); // version + f->store_32(header_size + chunk_header_size + text_chunk_length + chunk_header_size + binary_data_length); // length + f->store_32(text_chunk_length); + f->store_32(text_chunk_type); + f->store_buffer((uint8_t *)&cs[0], cs.length()); + if (binary_chunk_length) { + f->store_32(binary_chunk_length); + f->store_32(binary_chunk_type); + f->store_buffer(state->buffers[0].ptr(), binary_data_length); + } + + f->close(); + } else { + err = _encode_buffer_bins(state, p_path); + ERR_FAIL_COND_V(err != OK, err); + FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err); + ERR_FAIL_COND_V(!f, FAILED); + + f->create(FileAccess::ACCESS_RESOURCES); + String json = JSON::print(state->json); + f->store_string(json); + f->close(); + } + return err; +} |