summaryrefslogtreecommitdiff
path: root/modules/gdscript/doc_classes/@GDScript.xml
diff options
context:
space:
mode:
Diffstat (limited to 'modules/gdscript/doc_classes/@GDScript.xml')
-rw-r--r--modules/gdscript/doc_classes/@GDScript.xml148
1 files changed, 58 insertions, 90 deletions
diff --git a/modules/gdscript/doc_classes/@GDScript.xml b/modules/gdscript/doc_classes/@GDScript.xml
index f04cb4b4c3..9e40a69712 100644
--- a/modules/gdscript/doc_classes/@GDScript.xml
+++ b/modules/gdscript/doc_classes/@GDScript.xml
@@ -52,7 +52,7 @@
<argument index="0" name="s" type="float">
</argument>
<description>
- Returns the absolute value of parameter [code]s[/code] (i.e. unsigned value, works for integer and float).
+ Returns the absolute value of parameter [code]s[/code] (i.e. positive value).
[codeblock]
# a is 1
a = abs(-1)
@@ -112,7 +112,7 @@
</argument>
<description>
Returns the arc tangent of [code]s[/code] in radians. Use it to get the angle from an angle's tangent in trigonometry: [code]atan(tan(angle)) == angle[/code].
- The method cannot know in which quadrant the angle should fall. See [method atan2] if you always want an exact angle.
+ The method cannot know in which quadrant the angle should fall. See [method atan2] if you have both [code]y[/code] and [code]x[/code].
[codeblock]
a = atan(0.5) # a is 0.463648
[/codeblock]
@@ -127,6 +127,7 @@
</argument>
<description>
Returns the arc tangent of [code]y/x[/code] in radians. Use to get the angle of tangent [code]y/x[/code]. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant.
+ Important note: The Y coordinate comes first, by convention.
[codeblock]
a = atan2(0, -1) # a is 3.141593
[/codeblock]
@@ -161,7 +162,7 @@
<argument index="0" name="s" type="float">
</argument>
<description>
- Rounds [code]s[/code] upward, returning the smallest integral value that is not less than [code]s[/code].
+ Rounds [code]s[/code] upward (towards positive infinity), returning the smallest whole number that is not less than [code]s[/code].
[codeblock]
i = ceil(1.45) # i is 2
i = ceil(1.001) # i is 2
@@ -283,7 +284,7 @@
<argument index="0" name="deg" type="float">
</argument>
<description>
- Returns degrees converted to radians.
+ Converts an angle expressed in degrees to radians.
[codeblock]
# r is 3.141593
r = deg2rad(180)
@@ -307,7 +308,7 @@
<argument index="1" name="curve" type="float">
</argument>
<description>
- Easing function, based on exponent. 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out. Negative values are in-out/out in.
+ Easing function, based on exponent. The curve values are: 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out. Negative values are in-out/out in.
</description>
</method>
<method name="exp">
@@ -317,7 +318,7 @@
</argument>
<description>
The natural exponential function. It raises the mathematical constant [b]e[/b] to the power of [code]s[/code] and returns it.
- [b]e[/b] has an approximate value of 2.71828.
+ [b]e[/b] has an approximate value of 2.71828, and can be obtained with [code]exp(1)[/code].
For exponents to other bases use the method [method pow].
[codeblock]
a = exp(2) # Approximately 7.39
@@ -330,7 +331,7 @@
<argument index="0" name="s" type="float">
</argument>
<description>
- Rounds [code]s[/code] to the closest smaller integer and returns it.
+ Rounds [code]s[/code] downward (towards negative infinity), returning the largest whole number that is not more than [code]s[/code].
[codeblock]
# a is 2.0
a = floor(2.99)
@@ -504,6 +505,8 @@
</argument>
<description>
Returns [code]true[/code] if [code]a[/code] and [code]b[/code] are approximately equal to each other.
+ Here, approximately equal means that [code]a[/code] and [code]b[/code] are within a small internal epsilon of each other, which scales with the magnitude of the numbers.
+ Infinity values of the same sign are considered equal.
</description>
</method>
<method name="is_inf">
@@ -530,7 +533,7 @@
<argument index="0" name="s" type="float">
</argument>
<description>
- Returns whether [code]s[/code] is a NaN (Not-A-Number) value.
+ Returns whether [code]s[/code] is a NaN ("Not a Number" or invalid) value.
</description>
</method>
<method name="is_zero_approx">
@@ -540,6 +543,7 @@
</argument>
<description>
Returns [code]true[/code] if [code]s[/code] is zero or almost zero.
+ This method is faster than using [method is_equal_approx] with one value as zero.
</description>
</method>
<method name="len">
@@ -639,6 +643,7 @@
[codeblock]
log(10) # Returns 2.302585
[/codeblock]
+ [b]Note:[/b] The logarithm of [code]0[/code] returns [code]-inf[/code], while negative values return [code]-nan[/code].
</description>
</method>
<method name="max">
@@ -684,7 +689,9 @@
Moves [code]from[/code] toward [code]to[/code] by the [code]delta[/code] value.
Use a negative [code]delta[/code] value to move away.
[codeblock]
+ move_toward(5, 10, 4) # Returns 9
move_toward(10, 5, 4) # Returns 6
+ move_toward(10, 5, -1.5) # Returns 11.5
[/codeblock]
</description>
</method>
@@ -694,12 +701,17 @@
<argument index="0" name="value" type="int">
</argument>
<description>
- Returns the nearest larger power of 2 for integer [code]value[/code].
+ Returns the nearest equal or larger power of 2 for integer [code]value[/code].
+ In other words, returns the smallest value [code]a[/code] where [code]a = pow(2, n)[/code] such that [code]value &lt;= a[/code] for some non-negative integer [code]n[/code].
[codeblock]
nearest_po2(3) # Returns 4
nearest_po2(4) # Returns 4
nearest_po2(5) # Returns 8
+
+ nearest_po2(0) # Returns 0 (this may not be what you expect)
+ nearest_po2(-1) # Returns 0 (this may not be what you expect)
[/codeblock]
+ [b]WARNING:[/b] Due to the way it is implemented, this function returns [code]0[/code] rather than [code]1[/code] for non-positive values of [code]value[/code] (in reality, 1 is the smallest integer power of 2).
</description>
</method>
<method name="ord">
@@ -723,16 +735,17 @@
<argument index="0" name="json" type="String">
</argument>
<description>
- Parse JSON text to a Variant (use [method typeof] to check if it is what you expect).
- Be aware that the JSON specification does not define integer or float types, but only a number type. Therefore, parsing a JSON text will convert all numerical values to [float] types.
- Note that JSON objects do not preserve key order like Godot dictionaries, thus you should not rely on keys being in a certain order if a dictionary is constructed from JSON. In contrast, JSON arrays retain the order of their elements:
+ Parse JSON text to a Variant. (Use [method typeof] to check if the Variant's type is what you expect.)
+ [b]Note:[/b] The JSON specification does not define integer or float types, but only a [i]number[/i] type. Therefore, parsing a JSON text will convert all numerical values to [float] types.
+ [b]Note:[/b] JSON objects do not preserve key order like Godot dictionaries, thus, you should not rely on keys being in a certain order if a dictionary is constructed from JSON. In contrast, JSON arrays retain the order of their elements:
[codeblock]
- p = parse_json('["a", "b", "c"]')
- if typeof(p) == TYPE_ARRAY:
- print(p[0]) # Prints a
+ var p = JSON.parse('["hello", "world", "!"]')
+ if typeof(p.result) == TYPE_ARRAY:
+ print(p.result[0]) # Prints "hello"
else:
- print("unexpected results")
+ push_error("Unexpected results.")
[/codeblock]
+ See also [JSON] for an alternative way to parse JSON text.
</description>
</method>
<method name="polar2cartesian">
@@ -907,7 +920,7 @@
<argument index="0" name="rad" type="float">
</argument>
<description>
- Converts from radians to degrees.
+ Converts an angle expressed in radians to degrees.
[codeblock]
rad2deg(0.523599) # Returns 30
[/codeblock]
@@ -1026,7 +1039,7 @@
<argument index="0" name="s" type="float">
</argument>
<description>
- Returns the integral value that is nearest to [code]s[/code], with halfway cases rounded away from zero.
+ Rounds [code]s[/code] to the nearest whole number, with halfway cases rounded away from zero.
[codeblock]
round(2.6) # Returns 3
[/codeblock]
@@ -1091,12 +1104,15 @@
</argument>
<argument index="1" name="to" type="float">
</argument>
- <argument index="2" name="weight" type="float">
+ <argument index="2" name="s" type="float">
</argument>
<description>
- Returns a number smoothly interpolated between the [code]from[/code] and [code]to[/code], based on the [code]weight[/code]. Similar to [method lerp], but interpolates faster at the beginning and slower at the end.
+ Returns the result of smoothly interpolating the value of [code]s[/code] between [code]0[/code] and [code]1[/code], based on the where [code]s[/code] lies with respect to the edges [code]from[/code] and [code]to[/code].
+ The return value is [code]0[/code] if [code]s &lt;= from[/code], and [code]1[/code] if [code]s &gt;= to[/code]. If [code]s[/code] lies between [code]from[/code] and [code]to[/code], the returned value follows an S-shaped curve that maps [code]s[/code] between [code]0[/code] and [code]1[/code].
+ This S-shaped curve is the cubic Hermite interpolator, given by [code]f(s) = 3*s^2 - 2*s^3[/code].
[codeblock]
- smoothstep(0, 2, 0.5) # Returns 0.15
+ smoothstep(0, 2, -5.0) # Returns 0.0
+ smoothstep(0, 2, 0.5) # Returns 0.15625
smoothstep(0, 2, 1.0) # Returns 0.5
smoothstep(0, 2, 2.0) # Returns 1.0
[/codeblock]
@@ -1108,10 +1124,11 @@
<argument index="0" name="s" type="float">
</argument>
<description>
- Returns the square root of [code]s[/code].
+ Returns the square root of [code]s[/code], where [code]s[/code] is a non-negative number.
[codeblock]
sqrt(9) # Returns 3
[/codeblock]
+ [b]Note:[/b]Negative values of [code]s[/code] return NaN. If you need negative inputs, use [code]System.Numerics.Complex[/code] in C#.
</description>
</method>
<method name="step_decimals">
@@ -1204,12 +1221,16 @@
<argument index="0" name="var" type="Variant">
</argument>
<description>
- Converts a Variant [code]var[/code] to JSON text and return the result. Useful for serializing data to store or send over the network.
+ Converts a [Variant] [code]var[/code] to JSON text and return the result. Useful for serializing data to store or send over the network.
[codeblock]
+ # Both numbers below are integers.
a = { "a": 1, "b": 2 }
b = to_json(a)
print(b) # {"a":1, "b":2}
+ # Both numbers above are floats, even if they display without any decimal places.
[/codeblock]
+ [b]Note:[/b] The JSON specification does not define integer or float types, but only a [i]number[/i] type. Therefore, converting a [Variant] to JSON text will convert all numerical values to [float] types.
+ See also [JSON] for an alternative way to convert a [Variant] to JSON text.
</description>
</method>
<method name="type_exists">
@@ -1252,9 +1273,9 @@
j = to_json([1, 2, 3])
v = validate_json(j)
if not v:
- print("valid")
+ print("Valid JSON.")
else:
- prints("invalid", v)
+ push_error("Invalid JSON: " + v)
[/codeblock]
</description>
</method>
@@ -1312,27 +1333,19 @@
Wraps float [code]value[/code] between [code]min[/code] and [code]max[/code].
Usable for creating loop-alike behavior or infinite surfaces.
[codeblock]
- # a is 0.5
- a = wrapf(10.5, 0.0, 10.0)
- [/codeblock]
- [codeblock]
- # a is 9.5
- a = wrapf(-0.5, 0.0, 10.0)
- [/codeblock]
- [codeblock]
- # Infinite loop between 0.0 and 0.99
- f = wrapf(f + 0.1, 0.0, 1.0)
+ # Infinite loop between 5.0 and 9.9
+ value = wrapf(value + 0.1, 5.0, 10.0)
[/codeblock]
[codeblock]
# Infinite rotation (in radians)
angle = wrapf(angle + 0.1, 0.0, TAU)
[/codeblock]
- [b]Note:[/b] If you just want to wrap between 0.0 and [code]n[/code] (where [code]n[/code] is a positive floating-point value), it is better for performance to use the [method fmod] method like [code]fmod(number, n)[/code].
- [code]wrapf[/code] is more flexible than using the [method fmod] approach by giving the user a simple control over the minimum value. It also fully supports negative numbers, e.g.
[codeblock]
# Infinite rotation (in radians)
angle = wrapf(angle + 0.1, -PI, PI)
[/codeblock]
+ [b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method fposmod], so prefer using that instead.
+ [code]wrapf[/code] is more flexible than using the [method fposmod] approach by giving the user control over the minimum value.
</description>
</method>
<method name="wrapi">
@@ -1348,75 +1361,30 @@
Wraps integer [code]value[/code] between [code]min[/code] and [code]max[/code].
Usable for creating loop-alike behavior or infinite surfaces.
[codeblock]
- # a is 0
- a = wrapi(10, 0, 10)
+ # Infinite loop between 5 and 9
+ frame = wrapi(frame + 1, 5, 10)
[/codeblock]
[codeblock]
- # a is 9
- a = wrapi(-1, 0, 10)
- [/codeblock]
- [codeblock]
- # Infinite loop between 0 and 9
- frame = wrapi(frame + 1, 0, 10)
- [/codeblock]
- [b]Note:[/b] If you just want to wrap between 0 and [code]n[/code] (where [code]n[/code] is a positive integer value), it is better for performance to use the modulo operator like [code]number % n[/code].
- [code]wrapi[/code] is more flexible than using the modulo approach by giving the user a simple control over the minimum value. It also fully supports negative numbers, e.g.
- [codeblock]
# result is -2
var result = wrapi(-6, -5, -1)
[/codeblock]
- </description>
- </method>
- <method name="yield">
- <return type="GDScriptFunctionState">
- </return>
- <argument index="0" name="object" type="Object" default="null">
- </argument>
- <argument index="1" name="signal" type="String" default="&quot;&quot;">
- </argument>
- <description>
- Stops the function execution and returns the current suspended state to the calling function.
- From the caller, call [method GDScriptFunctionState.resume] on the state to resume execution. This invalidates the state. Within the resumed function, [code]yield()[/code] returns whatever was passed to the [code]resume()[/code] function call.
- If passed an object and a signal, the execution is resumed when the object emits the given signal. In this case, [code]yield()[/code] returns the argument passed to [code]emit_signal()[/code] if the signal takes only one argument, or an array containing all the arguments passed to [code]emit_signal()[/code] if the signal takes multiple arguments.
- You can also use [code]yield[/code] to wait for a function to finish:
- [codeblock]
- func _ready():
- yield(countdown(), "completed") # waiting for the countdown() function to complete
- print('Ready')
-
- func countdown():
- yield(get_tree(), "idle_frame") # returns a GDScriptFunctionState object to _ready()
- print(3)
- yield(get_tree().create_timer(1.0), "timeout")
- print(2)
- yield(get_tree().create_timer(1.0), "timeout")
- print(1)
- yield(get_tree().create_timer(1.0), "timeout")
-
- # prints:
- # 3
- # 2
- # 1
- # Ready
- [/codeblock]
- When yielding on a function, the [code]completed[/code] signal will be emitted automatically when the function returns. It can, therefore, be used as the [code]signal[/code] parameter of the [code]yield[/code] method to resume.
- In order to yield on a function, the resulting function should also return a [code]GDScriptFunctionState[/code]. Notice [code]yield(get_tree(), "idle_frame")[/code] from the above example.
+ [b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method posmod], so prefer using that instead.
+ [code]wrapi[/code] is more flexible than using the [method posmod] approach by giving the user control over the minimum value.
</description>
</method>
</methods>
<constants>
<constant name="PI" value="3.141593">
- Constant that represents how many times the diameter of a circle fits around its perimeter.
+ Constant that represents how many times the diameter of a circle fits around its perimeter. This is equivalent to [code]TAU / 2[/code].
</constant>
<constant name="TAU" value="6.283185">
- The circle constant, the circumference of the unit circle.
+ The circle constant, the circumference of the unit circle in radians.
</constant>
<constant name="INF" value="inf">
- A positive infinity. (For negative infinity, use -INF).
+ Positive infinity. For negative infinity, use -INF.
</constant>
<constant name="NAN" value="nan">
- Macro constant that expands to an expression of type float that represents a NaN.
- The NaN values are used to identify undefined or non-representable values for floating-point elements, such as the square root of negative numbers or the result of 0/0.
+ "Not a Number", an invalid value. [code]NaN[/code] has special properties, including that it is not equal to itself. It is output by some invalid operations, such as dividing zero by zero.
</constant>
</constants>
</class>