diff options
Diffstat (limited to 'modules/gdscript/doc_classes/@GDScript.xml')
-rw-r--r-- | modules/gdscript/doc_classes/@GDScript.xml | 64 |
1 files changed, 25 insertions, 39 deletions
diff --git a/modules/gdscript/doc_classes/@GDScript.xml b/modules/gdscript/doc_classes/@GDScript.xml index f04cb4b4c3..36de66ea52 100644 --- a/modules/gdscript/doc_classes/@GDScript.xml +++ b/modules/gdscript/doc_classes/@GDScript.xml @@ -52,7 +52,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns the absolute value of parameter [code]s[/code] (i.e. unsigned value, works for integer and float). + Returns the absolute value of parameter [code]s[/code] (i.e. positive value). [codeblock] # a is 1 a = abs(-1) @@ -112,7 +112,7 @@ </argument> <description> Returns the arc tangent of [code]s[/code] in radians. Use it to get the angle from an angle's tangent in trigonometry: [code]atan(tan(angle)) == angle[/code]. - The method cannot know in which quadrant the angle should fall. See [method atan2] if you always want an exact angle. + The method cannot know in which quadrant the angle should fall. See [method atan2] if you have both [code]y[code] and [code]x[/code]. [codeblock] a = atan(0.5) # a is 0.463648 [/codeblock] @@ -127,6 +127,7 @@ </argument> <description> Returns the arc tangent of [code]y/x[/code] in radians. Use to get the angle of tangent [code]y/x[/code]. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant. + Important note: The Y coordinate comes first, by convention. [codeblock] a = atan2(0, -1) # a is 3.141593 [/codeblock] @@ -161,7 +162,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Rounds [code]s[/code] upward, returning the smallest integral value that is not less than [code]s[/code]. + Rounds [code]s[/code] upward (towards positive infinity), returning the smallest whole number that is not less than [code]s[/code]. [codeblock] i = ceil(1.45) # i is 2 i = ceil(1.001) # i is 2 @@ -283,7 +284,7 @@ <argument index="0" name="deg" type="float"> </argument> <description> - Returns degrees converted to radians. + Converts an angle expressed in degrees to radians. [codeblock] # r is 3.141593 r = deg2rad(180) @@ -307,7 +308,7 @@ <argument index="1" name="curve" type="float"> </argument> <description> - Easing function, based on exponent. 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out. Negative values are in-out/out in. + Easing function, based on exponent. The curve values are: 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out. Negative values are in-out/out in. </description> </method> <method name="exp"> @@ -330,7 +331,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Rounds [code]s[/code] to the closest smaller integer and returns it. + Rounds [code]s[/code] downward (towards negative infinity), returning the largest whole number that is not more than [code]s[/code]. [codeblock] # a is 2.0 a = floor(2.99) @@ -530,7 +531,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns whether [code]s[/code] is a NaN (Not-A-Number) value. + Returns whether [code]s[/code] is a NaN ("Not a Number" or invalid) value. </description> </method> <method name="is_zero_approx"> @@ -540,6 +541,7 @@ </argument> <description> Returns [code]true[/code] if [code]s[/code] is zero or almost zero. + This method is faster than using [method is_equal_approx] with one value as zero. </description> </method> <method name="len"> @@ -907,7 +909,7 @@ <argument index="0" name="rad" type="float"> </argument> <description> - Converts from radians to degrees. + Converts an angle expressed in radians to degrees. [codeblock] rad2deg(0.523599) # Returns 30 [/codeblock] @@ -1026,7 +1028,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns the integral value that is nearest to [code]s[/code], with halfway cases rounded away from zero. + Rounds [code]s[/code] to the nearest whole number, with halfway cases rounded away from zero. [codeblock] round(2.6) # Returns 3 [/codeblock] @@ -1108,10 +1110,11 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns the square root of [code]s[/code]. + Returns the square root of [code]s[/code], where [code]s[/code] is a non-negative number. [codeblock] sqrt(9) # Returns 3 [/codeblock] + If you need negative inputs, use [code]System.Numerics.Complex[/code] in C#. </description> </method> <method name="step_decimals"> @@ -1312,27 +1315,19 @@ Wraps float [code]value[/code] between [code]min[/code] and [code]max[/code]. Usable for creating loop-alike behavior or infinite surfaces. [codeblock] - # a is 0.5 - a = wrapf(10.5, 0.0, 10.0) - [/codeblock] - [codeblock] - # a is 9.5 - a = wrapf(-0.5, 0.0, 10.0) - [/codeblock] - [codeblock] - # Infinite loop between 0.0 and 0.99 - f = wrapf(f + 0.1, 0.0, 1.0) + # Infinite loop between 5.0 and 9.9 + value = wrapf(value + 0.1, 5.0, 10.0) [/codeblock] [codeblock] # Infinite rotation (in radians) angle = wrapf(angle + 0.1, 0.0, TAU) [/codeblock] - [b]Note:[/b] If you just want to wrap between 0.0 and [code]n[/code] (where [code]n[/code] is a positive floating-point value), it is better for performance to use the [method fmod] method like [code]fmod(number, n)[/code]. - [code]wrapf[/code] is more flexible than using the [method fmod] approach by giving the user a simple control over the minimum value. It also fully supports negative numbers, e.g. [codeblock] # Infinite rotation (in radians) angle = wrapf(angle + 0.1, -PI, PI) [/codeblock] + [b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method fposmod], so prefer using that instead. + [code]wrapf[/code] is more flexible than using the [method fposmod] approach by giving the user control over the minimum value. </description> </method> <method name="wrapi"> @@ -1348,23 +1343,15 @@ Wraps integer [code]value[/code] between [code]min[/code] and [code]max[/code]. Usable for creating loop-alike behavior or infinite surfaces. [codeblock] - # a is 0 - a = wrapi(10, 0, 10) - [/codeblock] - [codeblock] - # a is 9 - a = wrapi(-1, 0, 10) - [/codeblock] - [codeblock] - # Infinite loop between 0 and 9 - frame = wrapi(frame + 1, 0, 10) + # Infinite loop between 5 and 9 + frame = wrapi(frame + 1, 5, 10) [/codeblock] - [b]Note:[/b] If you just want to wrap between 0 and [code]n[/code] (where [code]n[/code] is a positive integer value), it is better for performance to use the modulo operator like [code]number % n[/code]. - [code]wrapi[/code] is more flexible than using the modulo approach by giving the user a simple control over the minimum value. It also fully supports negative numbers, e.g. [codeblock] # result is -2 var result = wrapi(-6, -5, -1) [/codeblock] + [b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method posmod], so prefer using that instead. + [code]wrapi[/code] is more flexible than using the [method posmod] approach by giving the user control over the minimum value. </description> </method> <method name="yield"> @@ -1406,17 +1393,16 @@ </methods> <constants> <constant name="PI" value="3.141593"> - Constant that represents how many times the diameter of a circle fits around its perimeter. + Constant that represents how many times the diameter of a circle fits around its perimeter. This is equivalent to [code]TAU / 2[/code]. </constant> <constant name="TAU" value="6.283185"> - The circle constant, the circumference of the unit circle. + The circle constant, the circumference of the unit circle in radians. </constant> <constant name="INF" value="inf"> - A positive infinity. (For negative infinity, use -INF). + Positive infinity. For negative infinity, use -INF. </constant> <constant name="NAN" value="nan"> - Macro constant that expands to an expression of type float that represents a NaN. - The NaN values are used to identify undefined or non-representable values for floating-point elements, such as the square root of negative numbers or the result of 0/0. + "Not a Number", an invalid value. [code]NaN[/code] has special properties, including that it is not equal to itself. It is output by some invalid operations, such as dividing zero by zero. </constant> </constants> </class> |