diff options
Diffstat (limited to 'modules/gdscript/doc_classes/@GDScript.xml')
-rw-r--r-- | modules/gdscript/doc_classes/@GDScript.xml | 166 |
1 files changed, 67 insertions, 99 deletions
diff --git a/modules/gdscript/doc_classes/@GDScript.xml b/modules/gdscript/doc_classes/@GDScript.xml index 9324691df5..9e40a69712 100644 --- a/modules/gdscript/doc_classes/@GDScript.xml +++ b/modules/gdscript/doc_classes/@GDScript.xml @@ -52,7 +52,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns the absolute value of parameter [code]s[/code] (i.e. unsigned value, works for integer and float). + Returns the absolute value of parameter [code]s[/code] (i.e. positive value). [codeblock] # a is 1 a = abs(-1) @@ -112,7 +112,7 @@ </argument> <description> Returns the arc tangent of [code]s[/code] in radians. Use it to get the angle from an angle's tangent in trigonometry: [code]atan(tan(angle)) == angle[/code]. - The method cannot know in which quadrant the angle should fall. See [method atan2] if you always want an exact angle. + The method cannot know in which quadrant the angle should fall. See [method atan2] if you have both [code]y[/code] and [code]x[/code]. [codeblock] a = atan(0.5) # a is 0.463648 [/codeblock] @@ -127,6 +127,7 @@ </argument> <description> Returns the arc tangent of [code]y/x[/code] in radians. Use to get the angle of tangent [code]y/x[/code]. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant. + Important note: The Y coordinate comes first, by convention. [codeblock] a = atan2(0, -1) # a is 3.141593 [/codeblock] @@ -161,7 +162,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Rounds [code]s[/code] upward, returning the smallest integral value that is not less than [code]s[/code]. + Rounds [code]s[/code] upward (towards positive infinity), returning the smallest whole number that is not less than [code]s[/code]. [codeblock] i = ceil(1.45) # i is 2 i = ceil(1.001) # i is 2 @@ -283,7 +284,7 @@ <argument index="0" name="deg" type="float"> </argument> <description> - Returns degrees converted to radians. + Converts an angle expressed in degrees to radians. [codeblock] # r is 3.141593 r = deg2rad(180) @@ -307,7 +308,7 @@ <argument index="1" name="curve" type="float"> </argument> <description> - Easing function, based on exponent. 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out. Negative values are in-out/out in. + Easing function, based on exponent. The curve values are: 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out. Negative values are in-out/out in. </description> </method> <method name="exp"> @@ -317,7 +318,7 @@ </argument> <description> The natural exponential function. It raises the mathematical constant [b]e[/b] to the power of [code]s[/code] and returns it. - [b]e[/b] has an approximate value of 2.71828. + [b]e[/b] has an approximate value of 2.71828, and can be obtained with [code]exp(1)[/code]. For exponents to other bases use the method [method pow]. [codeblock] a = exp(2) # Approximately 7.39 @@ -330,7 +331,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Rounds [code]s[/code] to the closest smaller integer and returns it. + Rounds [code]s[/code] downward (towards negative infinity), returning the largest whole number that is not more than [code]s[/code]. [codeblock] # a is 2.0 a = floor(2.99) @@ -504,6 +505,8 @@ </argument> <description> Returns [code]true[/code] if [code]a[/code] and [code]b[/code] are approximately equal to each other. + Here, approximately equal means that [code]a[/code] and [code]b[/code] are within a small internal epsilon of each other, which scales with the magnitude of the numbers. + Infinity values of the same sign are considered equal. </description> </method> <method name="is_inf"> @@ -530,7 +533,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns whether [code]s[/code] is a NaN (Not-A-Number) value. + Returns whether [code]s[/code] is a NaN ("Not a Number" or invalid) value. </description> </method> <method name="is_zero_approx"> @@ -540,6 +543,7 @@ </argument> <description> Returns [code]true[/code] if [code]s[/code] is zero or almost zero. + This method is faster than using [method is_equal_approx] with one value as zero. </description> </method> <method name="len"> @@ -568,7 +572,7 @@ <description> Linearly interpolates between two values by a normalized value. This is the opposite of [method inverse_lerp]. If the [code]from[/code] and [code]to[/code] arguments are of type [int] or [float], the return value is a [float]. - If both are of the same vector type ([Vector2], [Vector3] or [Color]), the return value will be of the same type ([code]lerp[/code] then calls the vector type's [code]linear_interpolate[/code] method). + If both are of the same vector type ([Vector2], [Vector3] or [Color]), the return value will be of the same type ([code]lerp[/code] then calls the vector type's [code]lerp[/code] method). [codeblock] lerp(0, 4, 0.75) # Returns 3.0 lerp(Vector2(1, 5), Vector2(3, 2), 0.5) # Returns Vector2(2, 3.5) @@ -619,11 +623,11 @@ <argument index="0" name="path" type="String"> </argument> <description> - Loads a resource from the filesystem located at [code]path[/code]. - [b]Note:[/b] Resource paths can be obtained by right-clicking on a resource in the FileSystem dock and choosing [b]Copy Path[/b]. + Loads a resource from the filesystem located at [code]path[/code]. The resource is loaded on the method call (unless it's referenced already elsewhere, e.g. in another script or in the scene), which might cause slight delay, especially when loading scenes. To avoid unnecessary delays when loading something multiple times, either store the resource in a variable or use [method preload]. + [b]Note:[/b] Resource paths can be obtained by right-clicking on a resource in the FileSystem dock and choosing "Copy Path" or by dragging the file from the FileSystem dock into the script. [codeblock] - # Load a scene called main located in the root of the project directory. - var main = load("res://main.tscn") + # Load a scene called main located in the root of the project directory and cache it in a variable. + var main = load("res://main.tscn") # main will contain a PackedScene resource. [/codeblock] [b]Important:[/b] The path must be absolute, a local path will just return [code]null[/code]. </description> @@ -639,6 +643,7 @@ [codeblock] log(10) # Returns 2.302585 [/codeblock] + [b]Note:[/b] The logarithm of [code]0[/code] returns [code]-inf[/code], while negative values return [code]-nan[/code]. </description> </method> <method name="max"> @@ -684,7 +689,9 @@ Moves [code]from[/code] toward [code]to[/code] by the [code]delta[/code] value. Use a negative [code]delta[/code] value to move away. [codeblock] + move_toward(5, 10, 4) # Returns 9 move_toward(10, 5, 4) # Returns 6 + move_toward(10, 5, -1.5) # Returns 11.5 [/codeblock] </description> </method> @@ -694,12 +701,17 @@ <argument index="0" name="value" type="int"> </argument> <description> - Returns the nearest larger power of 2 for integer [code]value[/code]. + Returns the nearest equal or larger power of 2 for integer [code]value[/code]. + In other words, returns the smallest value [code]a[/code] where [code]a = pow(2, n)[/code] such that [code]value <= a[/code] for some non-negative integer [code]n[/code]. [codeblock] nearest_po2(3) # Returns 4 nearest_po2(4) # Returns 4 nearest_po2(5) # Returns 8 + + nearest_po2(0) # Returns 0 (this may not be what you expect) + nearest_po2(-1) # Returns 0 (this may not be what you expect) [/codeblock] + [b]WARNING:[/b] Due to the way it is implemented, this function returns [code]0[/code] rather than [code]1[/code] for non-positive values of [code]value[/code] (in reality, 1 is the smallest integer power of 2). </description> </method> <method name="ord"> @@ -723,16 +735,17 @@ <argument index="0" name="json" type="String"> </argument> <description> - Parse JSON text to a Variant (use [method typeof] to check if it is what you expect). - Be aware that the JSON specification does not define integer or float types, but only a number type. Therefore, parsing a JSON text will convert all numerical values to [float] types. - Note that JSON objects do not preserve key order like Godot dictionaries, thus you should not rely on keys being in a certain order if a dictionary is constructed from JSON. In contrast, JSON arrays retain the order of their elements: + Parse JSON text to a Variant. (Use [method typeof] to check if the Variant's type is what you expect.) + [b]Note:[/b] The JSON specification does not define integer or float types, but only a [i]number[/i] type. Therefore, parsing a JSON text will convert all numerical values to [float] types. + [b]Note:[/b] JSON objects do not preserve key order like Godot dictionaries, thus, you should not rely on keys being in a certain order if a dictionary is constructed from JSON. In contrast, JSON arrays retain the order of their elements: [codeblock] - p = parse_json('["a", "b", "c"]') - if typeof(p) == TYPE_ARRAY: - print(p[0]) # Prints a + var p = JSON.parse('["hello", "world", "!"]') + if typeof(p.result) == TYPE_ARRAY: + print(p.result[0]) # Prints "hello" else: - print("unexpected results") + push_error("Unexpected results.") [/codeblock] + See also [JSON] for an alternative way to parse JSON text. </description> </method> <method name="polar2cartesian"> @@ -797,11 +810,11 @@ <argument index="0" name="path" type="String"> </argument> <description> - Returns a resource from the filesystem that is loaded during script parsing. - [b]Note:[/b] Resource paths can be obtained by right clicking on a resource in the Assets Panel and choosing "Copy Path". + Returns a [Resource] from the filesystem located at [code]path[/code]. The resource is loaded during script parsing, i.e. is loaded with the script and [method preload] effectively acts as a reference to that resource. Note that the method requires a constant path. If you want to load a resource from a dynamic/variable path, use [method load]. + [b]Note:[/b] Resource paths can be obtained by right clicking on a resource in the Assets Panel and choosing "Copy Path" or by dragging the file from the FileSystem dock into the script. [codeblock] - # Load a scene called main located in the root of the project directory. - var main = preload("res://main.tscn") + # Instance a scene. + var diamond = preload("res://diamond.tscn").instance() [/codeblock] </description> </method> @@ -907,7 +920,7 @@ <argument index="0" name="rad" type="float"> </argument> <description> - Converts from radians to degrees. + Converts an angle expressed in radians to degrees. [codeblock] rad2deg(0.523599) # Returns 30 [/codeblock] @@ -1026,7 +1039,7 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns the integral value that is nearest to [code]s[/code], with halfway cases rounded away from zero. + Rounds [code]s[/code] to the nearest whole number, with halfway cases rounded away from zero. [codeblock] round(2.6) # Returns 3 [/codeblock] @@ -1091,12 +1104,15 @@ </argument> <argument index="1" name="to" type="float"> </argument> - <argument index="2" name="weight" type="float"> + <argument index="2" name="s" type="float"> </argument> <description> - Returns a number smoothly interpolated between the [code]from[/code] and [code]to[/code], based on the [code]weight[/code]. Similar to [method lerp], but interpolates faster at the beginning and slower at the end. + Returns the result of smoothly interpolating the value of [code]s[/code] between [code]0[/code] and [code]1[/code], based on the where [code]s[/code] lies with respect to the edges [code]from[/code] and [code]to[/code]. + The return value is [code]0[/code] if [code]s <= from[/code], and [code]1[/code] if [code]s >= to[/code]. If [code]s[/code] lies between [code]from[/code] and [code]to[/code], the returned value follows an S-shaped curve that maps [code]s[/code] between [code]0[/code] and [code]1[/code]. + This S-shaped curve is the cubic Hermite interpolator, given by [code]f(s) = 3*s^2 - 2*s^3[/code]. [codeblock] - smoothstep(0, 2, 0.5) # Returns 0.15 + smoothstep(0, 2, -5.0) # Returns 0.0 + smoothstep(0, 2, 0.5) # Returns 0.15625 smoothstep(0, 2, 1.0) # Returns 0.5 smoothstep(0, 2, 2.0) # Returns 1.0 [/codeblock] @@ -1108,10 +1124,11 @@ <argument index="0" name="s" type="float"> </argument> <description> - Returns the square root of [code]s[/code]. + Returns the square root of [code]s[/code], where [code]s[/code] is a non-negative number. [codeblock] sqrt(9) # Returns 3 [/codeblock] + [b]Note:[/b]Negative values of [code]s[/code] return NaN. If you need negative inputs, use [code]System.Numerics.Complex[/code] in C#. </description> </method> <method name="step_decimals"> @@ -1204,12 +1221,16 @@ <argument index="0" name="var" type="Variant"> </argument> <description> - Converts a Variant [code]var[/code] to JSON text and return the result. Useful for serializing data to store or send over the network. + Converts a [Variant] [code]var[/code] to JSON text and return the result. Useful for serializing data to store or send over the network. [codeblock] + # Both numbers below are integers. a = { "a": 1, "b": 2 } b = to_json(a) print(b) # {"a":1, "b":2} + # Both numbers above are floats, even if they display without any decimal places. [/codeblock] + [b]Note:[/b] The JSON specification does not define integer or float types, but only a [i]number[/i] type. Therefore, converting a [Variant] to JSON text will convert all numerical values to [float] types. + See also [JSON] for an alternative way to convert a [Variant] to JSON text. </description> </method> <method name="type_exists"> @@ -1252,9 +1273,9 @@ j = to_json([1, 2, 3]) v = validate_json(j) if not v: - print("valid") + print("Valid JSON.") else: - prints("invalid", v) + push_error("Invalid JSON: " + v) [/codeblock] </description> </method> @@ -1312,27 +1333,19 @@ Wraps float [code]value[/code] between [code]min[/code] and [code]max[/code]. Usable for creating loop-alike behavior or infinite surfaces. [codeblock] - # a is 0.5 - a = wrapf(10.5, 0.0, 10.0) - [/codeblock] - [codeblock] - # a is 9.5 - a = wrapf(-0.5, 0.0, 10.0) - [/codeblock] - [codeblock] - # Infinite loop between 0.0 and 0.99 - f = wrapf(f + 0.1, 0.0, 1.0) + # Infinite loop between 5.0 and 9.9 + value = wrapf(value + 0.1, 5.0, 10.0) [/codeblock] [codeblock] # Infinite rotation (in radians) angle = wrapf(angle + 0.1, 0.0, TAU) [/codeblock] - [b]Note:[/b] If you just want to wrap between 0.0 and [code]n[/code] (where [code]n[/code] is a positive floating-point value), it is better for performance to use the [method fmod] method like [code]fmod(number, n)[/code]. - [code]wrapf[/code] is more flexible than using the [method fmod] approach by giving the user a simple control over the minimum value. It also fully supports negative numbers, e.g. [codeblock] # Infinite rotation (in radians) angle = wrapf(angle + 0.1, -PI, PI) [/codeblock] + [b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method fposmod], so prefer using that instead. + [code]wrapf[/code] is more flexible than using the [method fposmod] approach by giving the user control over the minimum value. </description> </method> <method name="wrapi"> @@ -1348,75 +1361,30 @@ Wraps integer [code]value[/code] between [code]min[/code] and [code]max[/code]. Usable for creating loop-alike behavior or infinite surfaces. [codeblock] - # a is 0 - a = wrapi(10, 0, 10) + # Infinite loop between 5 and 9 + frame = wrapi(frame + 1, 5, 10) [/codeblock] [codeblock] - # a is 9 - a = wrapi(-1, 0, 10) - [/codeblock] - [codeblock] - # Infinite loop between 0 and 9 - frame = wrapi(frame + 1, 0, 10) - [/codeblock] - [b]Note:[/b] If you just want to wrap between 0 and [code]n[/code] (where [code]n[/code] is a positive integer value), it is better for performance to use the modulo operator like [code]number % n[/code]. - [code]wrapi[/code] is more flexible than using the modulo approach by giving the user a simple control over the minimum value. It also fully supports negative numbers, e.g. - [codeblock] # result is -2 var result = wrapi(-6, -5, -1) [/codeblock] - </description> - </method> - <method name="yield"> - <return type="GDScriptFunctionState"> - </return> - <argument index="0" name="object" type="Object" default="null"> - </argument> - <argument index="1" name="signal" type="String" default=""""> - </argument> - <description> - Stops the function execution and returns the current suspended state to the calling function. - From the caller, call [method GDScriptFunctionState.resume] on the state to resume execution. This invalidates the state. Within the resumed function, [code]yield()[/code] returns whatever was passed to the [code]resume()[/code] function call. - If passed an object and a signal, the execution is resumed when the object emits the given signal. In this case, [code]yield()[/code] returns the argument passed to [code]emit_signal()[/code] if the signal takes only one argument, or an array containing all the arguments passed to [code]emit_signal()[/code] if the signal takes multiple arguments. - You can also use [code]yield[/code] to wait for a function to finish: - [codeblock] - func _ready(): - yield(countdown(), "completed") # waiting for the countdown() function to complete - print('Ready') - - func countdown(): - yield(get_tree(), "idle_frame") # returns a GDScriptFunctionState object to _ready() - print(3) - yield(get_tree().create_timer(1.0), "timeout") - print(2) - yield(get_tree().create_timer(1.0), "timeout") - print(1) - yield(get_tree().create_timer(1.0), "timeout") - - # prints: - # 3 - # 2 - # 1 - # Ready - [/codeblock] - When yielding on a function, the [code]completed[/code] signal will be emitted automatically when the function returns. It can, therefore, be used as the [code]signal[/code] parameter of the [code]yield[/code] method to resume. - In order to yield on a function, the resulting function should also return a [code]GDScriptFunctionState[/code]. Notice [code]yield(get_tree(), "idle_frame")[/code] from the above example. + [b]Note:[/b] If [code]min[/code] is [code]0[/code], this is equivalent to [method posmod], so prefer using that instead. + [code]wrapi[/code] is more flexible than using the [method posmod] approach by giving the user control over the minimum value. </description> </method> </methods> <constants> <constant name="PI" value="3.141593"> - Constant that represents how many times the diameter of a circle fits around its perimeter. + Constant that represents how many times the diameter of a circle fits around its perimeter. This is equivalent to [code]TAU / 2[/code]. </constant> <constant name="TAU" value="6.283185"> - The circle constant, the circumference of the unit circle. + The circle constant, the circumference of the unit circle in radians. </constant> <constant name="INF" value="inf"> - A positive infinity. (For negative infinity, use -INF). + Positive infinity. For negative infinity, use -INF. </constant> <constant name="NAN" value="nan"> - Macro constant that expands to an expression of type float that represents a NaN. - The NaN values are used to identify undefined or non-representable values for floating-point elements, such as the square root of negative numbers or the result of 0/0. + "Not a Number", an invalid value. [code]NaN[/code] has special properties, including that it is not equal to itself. It is output by some invalid operations, such as dividing zero by zero. </constant> </constants> </class> |