diff options
Diffstat (limited to 'modules/gdnavigation/nav_map.cpp')
| -rw-r--r-- | modules/gdnavigation/nav_map.cpp | 526 | 
1 files changed, 255 insertions, 271 deletions
diff --git a/modules/gdnavigation/nav_map.cpp b/modules/gdnavigation/nav_map.cpp index 2646a4cc0c..41306f0687 100644 --- a/modules/gdnavigation/nav_map.cpp +++ b/modules/gdnavigation/nav_map.cpp @@ -40,7 +40,7 @@  	@author AndreaCatania  */ -#define USE_ENTRY_POINT +#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))  void NavMap::set_up(Vector3 p_up) {  	up = p_up; @@ -70,44 +70,52 @@ gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {  	return p;  } -Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize) const { +Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_layers) const { +	// Find the start poly and the end poly on this map.  	const gd::Polygon *begin_poly = nullptr;  	const gd::Polygon *end_poly = nullptr;  	Vector3 begin_point;  	Vector3 end_point;  	float begin_d = 1e20;  	float end_d = 1e20; -  	// Find the initial poly and the end poly on this map.  	for (size_t i(0); i < polygons.size(); i++) {  		const gd::Polygon &p = polygons[i]; +		// Only consider the polygon if it in a region with compatible layers. +		if ((p_layers & p.owner->get_layers()) == 0) { +			continue; +		} +  		// For each point cast a face and check the distance between the origin/destination -		for (size_t point_id = 2; point_id < p.points.size(); point_id++) { -			Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos); -			Vector3 spoint = f.get_closest_point_to(p_origin); -			float dpoint = spoint.distance_to(p_origin); -			if (dpoint < begin_d) { -				begin_d = dpoint; +		for (size_t point_id = 0; point_id < p.points.size(); point_id++) { +			const Vector3 p1 = p.points[point_id].pos; +			const Vector3 p2 = p.points[(point_id + 1) % p.points.size()].pos; +			const Vector3 p3 = p.points[(point_id + 2) % p.points.size()].pos; +			const Face3 face(p1, p2, p3); + +			Vector3 point = face.get_closest_point_to(p_origin); +			float distance_to_point = point.distance_to(p_origin); +			if (distance_to_point < begin_d) { +				begin_d = distance_to_point;  				begin_poly = &p; -				begin_point = spoint; +				begin_point = point;  			} -			spoint = f.get_closest_point_to(p_destination); -			dpoint = spoint.distance_to(p_destination); -			if (dpoint < end_d) { -				end_d = dpoint; +			point = face.get_closest_point_to(p_destination); +			distance_to_point = point.distance_to(p_destination); +			if (distance_to_point < end_d) { +				end_d = distance_to_point;  				end_poly = &p; -				end_point = spoint; +				end_point = point;  			}  		}  	} +	// Check for trivial cases  	if (!begin_poly || !end_poly) { -		// No path  		return Vector<Vector3>();  	} -  	if (begin_poly == end_poly) {  		Vector<Vector3> path;  		path.resize(2); @@ -116,90 +124,89 @@ Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p  		return path;  	} +	// List of all reachable navigation polys.  	std::vector<gd::NavigationPoly> navigation_polys;  	navigation_polys.reserve(polygons.size() * 0.75); -	// The elements indices in the `navigation_polys`. -	int least_cost_id(-1); -	List<uint32_t> open_list; -	bool found_route = false; +	// Add the start polygon to the reachable navigation polygons. +	gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly); +	begin_navigation_poly.self_id = 0; +	begin_navigation_poly.entry = begin_point; +	begin_navigation_poly.back_navigation_edge_pathway_start = begin_point; +	begin_navigation_poly.back_navigation_edge_pathway_end = begin_point; +	navigation_polys.push_back(begin_navigation_poly); -	navigation_polys.push_back(gd::NavigationPoly(begin_poly)); -	{ -		least_cost_id = 0; -		gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; -		least_cost_poly->self_id = least_cost_id; -		least_cost_poly->entry = begin_point; -	} +	// List of polygon IDs to visit. +	List<uint32_t> to_visit; +	to_visit.push_back(0); -	open_list.push_back(0); +	// This is an implementation of the A* algorithm. +	int least_cost_id = 0; +	bool found_route = false;  	const gd::Polygon *reachable_end = nullptr;  	float reachable_d = 1e30;  	bool is_reachable = true; -	while (found_route == false) { -		{ -			// Takes the current least_cost_poly neighbors and compute the traveled_distance of each -			for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) { -				gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; +	while (true) { +		gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; + +		// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance. +		for (size_t i = 0; i < least_cost_poly->poly->edges.size(); i++) { +			const gd::Edge &edge = least_cost_poly->poly->edges[i]; + +			// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon. +			for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) { +				const gd::Edge::Connection &connection = edge.connections[connection_index]; -				const gd::Edge &edge = least_cost_poly->poly->edges[i]; -				if (!edge.other_polygon) { +				// Only consider the connection to another polygon if this polygon is in a region with compatible layers. +				if ((p_layers & connection.polygon->owner->get_layers()) == 0) {  					continue;  				} -#ifdef USE_ENTRY_POINT -				Vector3 edge_line[2] = { -					least_cost_poly->poly->points[i].pos, -					least_cost_poly->poly->points[(i + 1) % least_cost_poly->poly->points.size()].pos -				}; - -				const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly->entry, edge_line); +				Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end }; +				const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly->entry, pathway);  				const float new_distance = least_cost_poly->entry.distance_to(new_entry) + least_cost_poly->traveled_distance; -#else -				const float new_distance = least_cost_poly->poly->center.distance_to(edge.other_polygon->center) + least_cost_poly->traveled_distance; -#endif -				auto it = std::find( +				const std::vector<gd::NavigationPoly>::iterator it = std::find(  						navigation_polys.begin(),  						navigation_polys.end(), -						gd::NavigationPoly(edge.other_polygon)); +						gd::NavigationPoly(connection.polygon));  				if (it != navigation_polys.end()) { -					// Oh this was visited already, can we win the cost? -					if (it->traveled_distance > new_distance) { -						it->prev_navigation_poly_id = least_cost_id; -						it->back_navigation_edge = edge.other_edge; +					// Polygon already visited, check if we can reduce the travel cost. +					if (new_distance < it->traveled_distance) { +						it->back_navigation_poly_id = least_cost_id; +						it->back_navigation_edge = connection.edge; +						it->back_navigation_edge_pathway_start = connection.pathway_start; +						it->back_navigation_edge_pathway_end = connection.pathway_end;  						it->traveled_distance = new_distance; -#ifdef USE_ENTRY_POINT  						it->entry = new_entry; -#endif  					}  				} else { -					// Add to open neighbours - -					navigation_polys.push_back(gd::NavigationPoly(edge.other_polygon)); -					gd::NavigationPoly *np = &navigation_polys[navigation_polys.size() - 1]; - -					np->self_id = navigation_polys.size() - 1; -					np->prev_navigation_poly_id = least_cost_id; -					np->back_navigation_edge = edge.other_edge; -					np->traveled_distance = new_distance; -#ifdef USE_ENTRY_POINT -					np->entry = new_entry; -#endif -					open_list.push_back(navigation_polys.size() - 1); +					// Add the neighbour polygon to the reachable ones. +					gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon); +					new_navigation_poly.self_id = navigation_polys.size(); +					new_navigation_poly.back_navigation_poly_id = least_cost_id; +					new_navigation_poly.back_navigation_edge = connection.edge; +					new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start; +					new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end; +					new_navigation_poly.traveled_distance = new_distance; +					new_navigation_poly.entry = new_entry; +					navigation_polys.push_back(new_navigation_poly); + +					// Add the neighbour polygon to the polygons to visit. +					to_visit.push_back(navigation_polys.size() - 1);  				}  			}  		} -		// Removes the least cost polygon from the open list so we can advance. -		open_list.erase(least_cost_id); +		// Removes the least cost polygon from the list of polygons to visit so we can advance. +		to_visit.erase(least_cost_id); -		if (open_list.size() == 0) { -			// When the open list is empty at this point the End Polygon is not reachable -			// so use the further reachable polygon +		// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable +		if (to_visit.size() == 0) { +			// Thus use the further reachable polygon  			ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");  			is_reachable = false;  			if (reachable_end == nullptr) { @@ -224,26 +231,21 @@ Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p  			gd::NavigationPoly np = navigation_polys[0];  			navigation_polys.clear();  			navigation_polys.push_back(np); -			open_list.clear(); -			open_list.push_back(0); +			to_visit.clear(); +			to_visit.push_back(0);  			reachable_end = nullptr;  			continue;  		} -		// Now take the new least_cost_poly from the open list. +		// Find the polygon with the minimum cost from the list of polygons to visit.  		least_cost_id = -1;  		float least_cost = 1e30; - -		for (auto element = open_list.front(); element != nullptr; element = element->next()) { +		for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {  			gd::NavigationPoly *np = &navigation_polys[element->get()];  			float cost = np->traveled_distance; -#ifdef USE_ENTRY_POINT  			cost += np->entry.distance_to(end_point); -#else -			cost += np->poly->center.distance_to(end_point); -#endif  			if (cost < least_cost) {  				least_cost_id = np->self_id;  				least_cost = cost; @@ -263,124 +265,108 @@ Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p  		// Check if we reached the end  		if (navigation_polys[least_cost_id].poly == end_poly) { -			// Yep, done!!  			found_route = true;  			break;  		}  	} -	if (found_route) { -		Vector<Vector3> path; -		if (p_optimize) { -			// String pulling - -			gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; -			Vector3 apex_point = end_point; -			Vector3 portal_left = apex_point; -			Vector3 portal_right = apex_point; -			gd::NavigationPoly *left_poly = apex_poly; -			gd::NavigationPoly *right_poly = apex_poly; -			gd::NavigationPoly *p = apex_poly; - -			path.push_back(end_point); +	// If we did not find a route, return an empty path. +	if (!found_route) { +		return Vector<Vector3>(); +	} -			while (p) { -				Vector3 left; -				Vector3 right; +	Vector<Vector3> path; +	// Optimize the path. +	if (p_optimize) { +		// Set the apex poly/point to the end point +		gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; +		Vector3 apex_point = end_point; -#define CLOCK_TANGENT(m_a, m_b, m_c) (((m_a) - (m_c)).cross((m_a) - (m_b))) +		gd::NavigationPoly *left_poly = apex_poly; +		Vector3 left_portal = apex_point; +		gd::NavigationPoly *right_poly = apex_poly; +		Vector3 right_portal = apex_point; -				if (p->poly == begin_poly) { -					left = begin_point; -					right = begin_point; -				} else { -					int prev = p->back_navigation_edge; -					int prev_n = (p->back_navigation_edge + 1) % p->poly->points.size(); -					left = p->poly->points[prev].pos; -					right = p->poly->points[prev_n].pos; +		gd::NavigationPoly *p = apex_poly; -					if (p->poly->clockwise) { -						SWAP(left, right); -					} -				} +		path.push_back(end_point); -				bool skip = false; - -				if (CLOCK_TANGENT(apex_point, portal_left, left).dot(up) >= 0) { -					//process -					if (portal_left == apex_point || CLOCK_TANGENT(apex_point, left, portal_right).dot(up) > 0) { -						left_poly = p; -						portal_left = left; -					} else { -						clip_path(navigation_polys, path, apex_poly, portal_right, right_poly); - -						apex_point = portal_right; -						p = right_poly; -						left_poly = p; -						apex_poly = p; -						portal_left = apex_point; -						portal_right = apex_point; -						path.push_back(apex_point); -						skip = true; -					} -				} +		while (p) { +			// Set left and right points of the pathway between polygons. +			Vector3 left = p->back_navigation_edge_pathway_start; +			Vector3 right = p->back_navigation_edge_pathway_end; +			if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) { +				SWAP(left, right); +			} -				if (!skip && CLOCK_TANGENT(apex_point, portal_right, right).dot(up) <= 0) { -					//process -					if (portal_right == apex_point || CLOCK_TANGENT(apex_point, right, portal_left).dot(up) < 0) { -						right_poly = p; -						portal_right = right; -					} else { -						clip_path(navigation_polys, path, apex_poly, portal_left, left_poly); - -						apex_point = portal_left; -						p = left_poly; -						right_poly = p; -						apex_poly = p; -						portal_right = apex_point; -						portal_left = apex_point; -						path.push_back(apex_point); -					} +			bool skip = false; +			if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) { +				//process +				if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) { +					left_poly = p; +					left_portal = left; +				} else { +					clip_path(navigation_polys, path, apex_poly, right_portal, right_poly); + +					apex_point = right_portal; +					p = right_poly; +					left_poly = p; +					apex_poly = p; +					left_portal = apex_point; +					right_portal = apex_point; +					path.push_back(apex_point); +					skip = true;  				} +			} -				if (p->prev_navigation_poly_id != -1) { -					p = &navigation_polys[p->prev_navigation_poly_id]; +			if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) { +				//process +				if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) { +					right_poly = p; +					right_portal = right;  				} else { -					// The end -					p = nullptr; +					clip_path(navigation_polys, path, apex_poly, left_portal, left_poly); + +					apex_point = left_portal; +					p = left_poly; +					right_poly = p; +					apex_poly = p; +					right_portal = apex_point; +					left_portal = apex_point; +					path.push_back(apex_point);  				}  			} -			if (path[path.size() - 1] != begin_point) { -				path.push_back(begin_point); +			// Go to the previous polygon. +			if (p->back_navigation_poly_id != -1) { +				p = &navigation_polys[p->back_navigation_poly_id]; +			} else { +				// The end +				p = nullptr;  			} +		} -			path.invert(); - -		} else { -			path.push_back(end_point); +		// If the last point is not the begin point, add it to the list. +		if (path[path.size() - 1] != begin_point) { +			path.push_back(begin_point); +		} -			// Add mid points -			int np_id = least_cost_id; -			while (np_id != -1) { -#ifdef USE_ENTRY_POINT -				Vector3 point = navigation_polys[np_id].entry; -#else -				int prev = navigation_polys[np_id].back_navigation_edge; -				int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size(); -				Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5; -#endif +		path.reverse(); -				path.push_back(point); -				np_id = navigation_polys[np_id].prev_navigation_poly_id; -			} +	} else { +		path.push_back(end_point); -			path.invert(); +		// Add mid points +		int np_id = least_cost_id; +		while (np_id != -1) { +			path.push_back(navigation_polys[np_id].entry); +			np_id = navigation_polys[np_id].back_navigation_poly_id;  		} -		return path; +		path.reverse();  	} -	return Vector<Vector3>(); + +	return path;  }  Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const { @@ -518,7 +504,7 @@ void NavMap::add_region(NavRegion *p_region) {  }  void NavMap::remove_region(NavRegion *p_region) { -	std::vector<NavRegion *>::iterator it = std::find(regions.begin(), regions.end(), p_region); +	const std::vector<NavRegion *>::iterator it = std::find(regions.begin(), regions.end(), p_region);  	if (it != regions.end()) {  		regions.erase(it);  		regenerate_links = true; @@ -538,7 +524,7 @@ void NavMap::add_agent(RvoAgent *agent) {  void NavMap::remove_agent(RvoAgent *agent) {  	remove_agent_as_controlled(agent); -	auto it = std::find(agents.begin(), agents.end(), agent); +	const std::vector<RvoAgent *>::iterator it = std::find(agents.begin(), agents.end(), agent);  	if (it != agents.end()) {  		agents.erase(it);  		agents_dirty = true; @@ -554,13 +540,14 @@ void NavMap::set_agent_as_controlled(RvoAgent *agent) {  }  void NavMap::remove_agent_as_controlled(RvoAgent *agent) { -	auto it = std::find(controlled_agents.begin(), controlled_agents.end(), agent); +	const std::vector<RvoAgent *>::iterator it = std::find(controlled_agents.begin(), controlled_agents.end(), agent);  	if (it != controlled_agents.end()) {  		controlled_agents.erase(it);  	}  }  void NavMap::sync() { +	// Check if we need to update the links.  	if (regenerate_polygons) {  		for (size_t r(0); r < regions.size(); r++) {  			regions[r]->scratch_polygons(); @@ -575,27 +562,30 @@ void NavMap::sync() {  	}  	if (regenerate_links) { -		// Copy all region polygons in the map. +		// Remove regions connections. +		for (size_t r(0); r < regions.size(); r++) { +			regions[r]->get_connections().clear(); +		} + +		// Resize the polygon count.  		int count = 0;  		for (size_t r(0); r < regions.size(); r++) {  			count += regions[r]->get_polygons().size();  		} -  		polygons.resize(count); -		count = 0; +		// Copy all region polygons in the map. +		count = 0;  		for (size_t r(0); r < regions.size(); r++) {  			std::copy(  					regions[r]->get_polygons().data(),  					regions[r]->get_polygons().data() + regions[r]->get_polygons().size(),  					polygons.begin() + count); -  			count += regions[r]->get_polygons().size();  		} -		// Connects the `Edges` of all the `Polygons` of all `Regions` each other. -		Map<gd::EdgeKey, gd::Connection> connections; - +		// Group all edges per key. +		Map<gd::EdgeKey, Vector<gd::Edge::Connection>> connections;  		for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) {  			gd::Polygon &poly(polygons[poly_id]); @@ -603,69 +593,40 @@ void NavMap::sync() {  				int next_point = (p + 1) % poly.points.size();  				gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key); -				Map<gd::EdgeKey, gd::Connection>::Element *connection = connections.find(ek); +				Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *connection = connections.find(ek);  				if (!connection) { -					// Nothing yet -					gd::Connection c; -					c.A = &poly; -					c.A_edge = p; -					c.B = nullptr; -					c.B_edge = -1; -					connections[ek] = c; - -				} else if (connection->get().B == nullptr) { -					CRASH_COND(connection->get().A == nullptr); // Unreachable - -					// Connect the two Polygons by this edge -					connection->get().B = &poly; -					connection->get().B_edge = p; - -					connection->get().A->edges[connection->get().A_edge].this_edge = connection->get().A_edge; -					connection->get().A->edges[connection->get().A_edge].other_polygon = connection->get().B; -					connection->get().A->edges[connection->get().A_edge].other_edge = connection->get().B_edge; - -					connection->get().B->edges[connection->get().B_edge].this_edge = connection->get().B_edge; -					connection->get().B->edges[connection->get().B_edge].other_polygon = connection->get().A; -					connection->get().B->edges[connection->get().B_edge].other_edge = connection->get().A_edge; +					connections[ek] = Vector<gd::Edge::Connection>(); +				} +				if (connections[ek].size() <= 1) { +					// Add the polygon/edge tuple to this key. +					gd::Edge::Connection new_connection; +					new_connection.polygon = &poly; +					new_connection.edge = p; +					new_connection.pathway_start = poly.points[p].pos; +					new_connection.pathway_end = poly.points[next_point].pos; +					connections[ek].push_back(new_connection);  				} else {  					// The edge is already connected with another edge, skip. -					ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the Navigation3D's `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem."); +					ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem.");  				}  			}  		} -		// Takes all the free edges. -		std::vector<gd::FreeEdge> free_edges; -		free_edges.reserve(connections.size()); - -		for (auto connection_element = connections.front(); connection_element; connection_element = connection_element->next()) { -			if (connection_element->get().B == nullptr) { -				CRASH_COND(connection_element->get().A == nullptr); // Unreachable -				CRASH_COND(connection_element->get().A_edge < 0); // Unreachable - -				// This is a free edge -				uint32_t id(free_edges.size()); -				free_edges.push_back(gd::FreeEdge()); -				free_edges[id].is_free = true; -				free_edges[id].poly = connection_element->get().A; -				free_edges[id].edge_id = connection_element->get().A_edge; -				uint32_t point_0(free_edges[id].edge_id); -				uint32_t point_1((free_edges[id].edge_id + 1) % free_edges[id].poly->points.size()); -				Vector3 pos_0 = free_edges[id].poly->points[point_0].pos; -				Vector3 pos_1 = free_edges[id].poly->points[point_1].pos; -				Vector3 relative = pos_1 - pos_0; -				free_edges[id].edge_center = (pos_0 + pos_1) / 2.0; -				free_edges[id].edge_dir = relative.normalized(); -				free_edges[id].edge_len_squared = relative.length_squared(); +		Vector<gd::Edge::Connection> free_edges; +		for (Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *E = connections.front(); E; E = E->next()) { +			if (E->get().size() == 2) { +				// Connect edge that are shared in different polygons. +				gd::Edge::Connection &c1 = E->get().write[0]; +				gd::Edge::Connection &c2 = E->get().write[1]; +				c1.polygon->edges[c1.edge].connections.push_back(c2); +				c2.polygon->edges[c2.edge].connections.push_back(c1); +				// Note: The pathway_start/end are full for those connection and do not need to be modified. +			} else { +				CRASH_COND_MSG(E->get().size() != 1, vformat("Number of connection != 1. Found: %d", E->get().size())); +				free_edges.push_back(E->get()[0]);  			}  		} -		const float ecm_squared(edge_connection_margin * edge_connection_margin); -#define LEN_TOLLERANCE 0.1 -#define DIR_TOLLERANCE 0.9 -		// In front of tolerance -#define IFO_TOLLERANCE 0.5 -  		// Find the compatible near edges.  		//  		// Note: @@ -673,43 +634,67 @@ void NavMap::sync() {  		// to be connected, create new polygons to remove that small gap is  		// not really useful and would result in wasteful computation during  		// connection, integration and path finding. -		for (size_t i(0); i < free_edges.size(); i++) { -			if (!free_edges[i].is_free) { -				continue; -			} -			gd::FreeEdge &edge = free_edges[i]; -			for (size_t y(0); y < free_edges.size(); y++) { -				gd::FreeEdge &other_edge = free_edges[y]; -				if (i == y || !other_edge.is_free || edge.poly->owner == other_edge.poly->owner) { +		for (int i = 0; i < free_edges.size(); i++) { +			const gd::Edge::Connection &free_edge = free_edges[i]; +			Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos; +			Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos; + +			for (int j = 0; j < free_edges.size(); j++) { +				const gd::Edge::Connection &other_edge = free_edges[j]; +				if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {  					continue;  				} -				Vector3 rel_centers = other_edge.edge_center - edge.edge_center; -				if (ecm_squared > rel_centers.length_squared() // Are enough closer? -						&& ABS(edge.edge_len_squared - other_edge.edge_len_squared) < LEN_TOLLERANCE // Are the same length? -						&& ABS(edge.edge_dir.dot(other_edge.edge_dir)) > DIR_TOLLERANCE // Are aligned? -						&& ABS(rel_centers.normalized().dot(edge.edge_dir)) < IFO_TOLLERANCE // Are one in front the other? -				) { -					// The edges can be connected -					edge.is_free = false; -					other_edge.is_free = false; - -					edge.poly->edges[edge.edge_id].this_edge = edge.edge_id; -					edge.poly->edges[edge.edge_id].other_edge = other_edge.edge_id; -					edge.poly->edges[edge.edge_id].other_polygon = other_edge.poly; - -					other_edge.poly->edges[other_edge.edge_id].this_edge = other_edge.edge_id; -					other_edge.poly->edges[other_edge.edge_id].other_edge = edge.edge_id; -					other_edge.poly->edges[other_edge.edge_id].other_polygon = edge.poly; +				Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos; +				Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos; + +				// Compute the projection of the opposite edge on the current one +				Vector3 edge_vector = edge_p2 - edge_p1; +				float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared()); +				float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared()); +				if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) { +					continue; +				} + +				// Check if the two edges are close to each other enough and compute a pathway between the two regions. +				Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1; +				Vector3 other1; +				if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) { +					other1 = other_edge_p1; +				} else { +					other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));  				} +				if ((self1 - other1).length() > edge_connection_margin) { +					continue; +				} + +				Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1; +				Vector3 other2; +				if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) { +					other2 = other_edge_p2; +				} else { +					other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); +				} +				if ((self2 - other2).length() > edge_connection_margin) { +					continue; +				} + +				// The edges can now be connected. +				gd::Edge::Connection new_connection = other_edge; +				new_connection.pathway_start = (self1 + other1) / 2.0; +				new_connection.pathway_end = (self2 + other2) / 2.0; +				free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection); + +				// Add the connection to the region_connection map. +				free_edge.polygon->owner->get_connections().push_back(new_connection);  			}  		} -	} -	if (regenerate_links) { +		// Update the update ID.  		map_update_id = (map_update_id + 1) % 9999999;  	} +	// Update agents tree.  	if (agents_dirty) {  		std::vector<RVO::Agent *> raw_agents;  		raw_agents.reserve(agents.size()); @@ -761,16 +746,15 @@ void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys  	cut_plane.d = cut_plane.normal.dot(from);  	while (from_poly != p_to_poly) { -		int back_nav_edge = from_poly->back_navigation_edge; -		Vector3 a = from_poly->poly->points[back_nav_edge].pos; -		Vector3 b = from_poly->poly->points[(back_nav_edge + 1) % from_poly->poly->points.size()].pos; +		Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start; +		Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end; -		ERR_FAIL_COND(from_poly->prev_navigation_poly_id == -1); -		from_poly = &p_navigation_polys[from_poly->prev_navigation_poly_id]; +		ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1); +		from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id]; -		if (a.distance_to(b) > CMP_EPSILON) { +		if (pathway_start.distance_to(pathway_end) > CMP_EPSILON) {  			Vector3 inters; -			if (cut_plane.intersects_segment(a, b, &inters)) { +			if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {  				if (inters.distance_to(p_to_point) > CMP_EPSILON && inters.distance_to(path[path.size() - 1]) > CMP_EPSILON) {  					path.push_back(inters);  				}  |