summaryrefslogtreecommitdiff
path: root/modules/gdnavigation/nav_map.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'modules/gdnavigation/nav_map.cpp')
-rw-r--r--modules/gdnavigation/nav_map.cpp665
1 files changed, 665 insertions, 0 deletions
diff --git a/modules/gdnavigation/nav_map.cpp b/modules/gdnavigation/nav_map.cpp
new file mode 100644
index 0000000000..3d0e02c77d
--- /dev/null
+++ b/modules/gdnavigation/nav_map.cpp
@@ -0,0 +1,665 @@
+/*************************************************************************/
+/* rvo_space.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md) */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "nav_map.h"
+
+#include "core/os/threaded_array_processor.h"
+#include "nav_region.h"
+#include "rvo_agent.h"
+#include <algorithm>
+
+/**
+ @author AndreaCatania
+*/
+
+#define USE_ENTRY_POINT
+
+NavMap::NavMap() :
+ up(0, 1, 0),
+ cell_size(0.3),
+ edge_connection_margin(5.0),
+ regenerate_polygons(true),
+ regenerate_links(true),
+ agents_dirty(false),
+ deltatime(0.0),
+ map_update_id(0) {}
+
+void NavMap::set_up(Vector3 p_up) {
+ up = p_up;
+ regenerate_polygons = true;
+}
+
+void NavMap::set_cell_size(float p_cell_size) {
+ cell_size = p_cell_size;
+ regenerate_polygons = true;
+}
+
+void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
+ edge_connection_margin = p_edge_connection_margin;
+ regenerate_links = true;
+}
+
+gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
+ const int x = int(Math::floor(p_pos.x / cell_size));
+ const int y = int(Math::floor(p_pos.y / cell_size));
+ const int z = int(Math::floor(p_pos.z / cell_size));
+
+ gd::PointKey p;
+ p.key = 0;
+ p.x = x;
+ p.y = y;
+ p.z = z;
+ return p;
+}
+
+Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize) const {
+
+ const gd::Polygon *begin_poly = NULL;
+ const gd::Polygon *end_poly = NULL;
+ Vector3 begin_point;
+ Vector3 end_point;
+ float begin_d = 1e20;
+ float end_d = 1e20;
+
+ // Find the initial poly and the end poly on this map.
+ for (size_t i(0); i < polygons.size(); i++) {
+ const gd::Polygon &p = polygons[i];
+
+ // For each point cast a face and check the distance between the origin/destination
+ for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
+
+ Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
+ Vector3 spoint = f.get_closest_point_to(p_origin);
+ float dpoint = spoint.distance_to(p_origin);
+ if (dpoint < begin_d) {
+ begin_d = dpoint;
+ begin_poly = &p;
+ begin_point = spoint;
+ }
+
+ spoint = f.get_closest_point_to(p_destination);
+ dpoint = spoint.distance_to(p_destination);
+ if (dpoint < end_d) {
+ end_d = dpoint;
+ end_poly = &p;
+ end_point = spoint;
+ }
+ }
+ }
+
+ if (!begin_poly || !end_poly) {
+ // No path
+ return Vector<Vector3>();
+ }
+
+ if (begin_poly == end_poly) {
+
+ Vector<Vector3> path;
+ path.resize(2);
+ path.write[0] = begin_point;
+ path.write[1] = end_point;
+ return path;
+ }
+
+ std::vector<gd::NavigationPoly> navigation_polys;
+ navigation_polys.reserve(polygons.size() * 0.75);
+
+ // The elements indices in the `navigation_polys`.
+ int least_cost_id(-1);
+ List<uint32_t> open_list;
+ bool found_route = false;
+
+ navigation_polys.push_back(gd::NavigationPoly(begin_poly));
+ {
+ least_cost_id = 0;
+ gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id];
+ least_cost_poly->self_id = least_cost_id;
+ least_cost_poly->entry = begin_point;
+ }
+
+ open_list.push_back(0);
+
+ const gd::Polygon *reachable_end = NULL;
+ float reachable_d = 1e30;
+ bool is_reachable = true;
+
+ while (found_route == false) {
+
+ {
+ // Takes the current least_cost_poly neighbors and compute the traveled_distance of each
+ for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) {
+ gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id];
+
+ const gd::Edge &edge = least_cost_poly->poly->edges[i];
+ if (!edge.other_polygon)
+ continue;
+
+#ifdef USE_ENTRY_POINT
+ Vector3 edge_line[2] = {
+ least_cost_poly->poly->points[i].pos,
+ least_cost_poly->poly->points[(i + 1) % least_cost_poly->poly->points.size()].pos
+ };
+
+ const Vector3 new_entry = Geometry::get_closest_point_to_segment(least_cost_poly->entry, edge_line);
+ const float new_distance = least_cost_poly->entry.distance_to(new_entry) + least_cost_poly->traveled_distance;
+#else
+ const float new_distance = least_cost_poly->poly->center.distance_to(edge.other_polygon->center) + least_cost_poly->traveled_distance;
+#endif
+
+ auto it = std::find(
+ navigation_polys.begin(),
+ navigation_polys.end(),
+ gd::NavigationPoly(edge.other_polygon));
+
+ if (it != navigation_polys.end()) {
+ // Oh this was visited already, can we win the cost?
+ if (it->traveled_distance > new_distance) {
+
+ it->prev_navigation_poly_id = least_cost_id;
+ it->back_navigation_edge = edge.other_edge;
+ it->traveled_distance = new_distance;
+#ifdef USE_ENTRY_POINT
+ it->entry = new_entry;
+#endif
+ }
+ } else {
+ // Add to open neighbours
+
+ navigation_polys.push_back(gd::NavigationPoly(edge.other_polygon));
+ gd::NavigationPoly *np = &navigation_polys[navigation_polys.size() - 1];
+
+ np->self_id = navigation_polys.size() - 1;
+ np->prev_navigation_poly_id = least_cost_id;
+ np->back_navigation_edge = edge.other_edge;
+ np->traveled_distance = new_distance;
+#ifdef USE_ENTRY_POINT
+ np->entry = new_entry;
+#endif
+ open_list.push_back(navigation_polys.size() - 1);
+ }
+ }
+ }
+
+ // Removes the least cost polygon from the open list so we can advance.
+ open_list.erase(least_cost_id);
+
+ if (open_list.size() == 0) {
+ // When the open list is empty at this point the End Polygon is not reachable
+ // so use the further reachable polygon
+ ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
+ is_reachable = false;
+ if (reachable_end == NULL) {
+ // The path is not found and there is not a way out.
+ break;
+ }
+
+ // Set as end point the furthest reachable point.
+ end_poly = reachable_end;
+ end_d = 1e20;
+ for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
+ Face3 f(end_poly->points[point_id - 2].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
+ Vector3 spoint = f.get_closest_point_to(p_destination);
+ float dpoint = spoint.distance_to(p_destination);
+ if (dpoint < end_d) {
+ end_point = spoint;
+ end_d = dpoint;
+ }
+ }
+
+ // Reset open and navigation_polys
+ gd::NavigationPoly np = navigation_polys[0];
+ navigation_polys.clear();
+ navigation_polys.push_back(np);
+ open_list.clear();
+ open_list.push_back(0);
+
+ reachable_end = NULL;
+
+ continue;
+ }
+
+ // Now take the new least_cost_poly from the open list.
+ least_cost_id = -1;
+ float least_cost = 1e30;
+
+ for (auto element = open_list.front(); element != NULL; element = element->next()) {
+ gd::NavigationPoly *np = &navigation_polys[element->get()];
+ float cost = np->traveled_distance;
+#ifdef USE_ENTRY_POINT
+ cost += np->entry.distance_to(end_point);
+#else
+ cost += np->poly->center.distance_to(end_point);
+#endif
+ if (cost < least_cost) {
+ least_cost_id = np->self_id;
+ least_cost = cost;
+ }
+ }
+
+ // Stores the further reachable end polygon, in case our goal is not reachable.
+ if (is_reachable) {
+ float d = navigation_polys[least_cost_id].entry.distance_to(p_destination);
+ if (reachable_d > d) {
+ reachable_d = d;
+ reachable_end = navigation_polys[least_cost_id].poly;
+ }
+ }
+
+ ERR_BREAK(least_cost_id == -1);
+
+ // Check if we reached the end
+ if (navigation_polys[least_cost_id].poly == end_poly) {
+ // Yep, done!!
+ found_route = true;
+ break;
+ }
+ }
+
+ if (found_route) {
+
+ Vector<Vector3> path;
+ if (p_optimize) {
+
+ // String pulling
+
+ gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
+ Vector3 apex_point = end_point;
+ Vector3 portal_left = apex_point;
+ Vector3 portal_right = apex_point;
+ gd::NavigationPoly *left_poly = apex_poly;
+ gd::NavigationPoly *right_poly = apex_poly;
+ gd::NavigationPoly *p = apex_poly;
+
+ path.push_back(end_point);
+
+ while (p) {
+
+ Vector3 left;
+ Vector3 right;
+
+#define CLOCK_TANGENT(m_a, m_b, m_c) (((m_a) - (m_c)).cross((m_a) - (m_b)))
+
+ if (p->poly == begin_poly) {
+ left = begin_point;
+ right = begin_point;
+ } else {
+ int prev = p->back_navigation_edge;
+ int prev_n = (p->back_navigation_edge + 1) % p->poly->points.size();
+ left = p->poly->points[prev].pos;
+ right = p->poly->points[prev_n].pos;
+
+ //if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5).dot(up) < 0){
+ if (p->poly->clockwise) {
+ SWAP(left, right);
+ }
+ }
+
+ bool skip = false;
+
+ if (CLOCK_TANGENT(apex_point, portal_left, left).dot(up) >= 0) {
+ //process
+ if (portal_left == apex_point || CLOCK_TANGENT(apex_point, left, portal_right).dot(up) > 0) {
+ left_poly = p;
+ portal_left = left;
+ } else {
+
+ clip_path(navigation_polys, path, apex_poly, portal_right, right_poly);
+
+ apex_point = portal_right;
+ p = right_poly;
+ left_poly = p;
+ apex_poly = p;
+ portal_left = apex_point;
+ portal_right = apex_point;
+ path.push_back(apex_point);
+ skip = true;
+ }
+ }
+
+ if (!skip && CLOCK_TANGENT(apex_point, portal_right, right).dot(up) <= 0) {
+ //process
+ if (portal_right == apex_point || CLOCK_TANGENT(apex_point, right, portal_left).dot(up) < 0) {
+ right_poly = p;
+ portal_right = right;
+ } else {
+
+ clip_path(navigation_polys, path, apex_poly, portal_left, left_poly);
+
+ apex_point = portal_left;
+ p = left_poly;
+ right_poly = p;
+ apex_poly = p;
+ portal_right = apex_point;
+ portal_left = apex_point;
+ path.push_back(apex_point);
+ }
+ }
+
+ if (p->prev_navigation_poly_id != -1)
+ p = &navigation_polys[p->prev_navigation_poly_id];
+ else
+ // The end
+ p = NULL;
+ }
+
+ if (path[path.size() - 1] != begin_point)
+ path.push_back(begin_point);
+
+ path.invert();
+
+ } else {
+ path.push_back(end_point);
+
+ // Add mid points
+ int np_id = least_cost_id;
+ while (np_id != -1) {
+
+#ifdef USE_ENTRY_POINT
+ Vector3 point = navigation_polys[np_id].entry;
+#else
+ int prev = navigation_polys[np_id].back_navigation_edge;
+ int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
+ Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
+#endif
+
+ path.push_back(point);
+ np_id = navigation_polys[np_id].prev_navigation_poly_id;
+ }
+
+ path.invert();
+ }
+
+ return path;
+ }
+ return Vector<Vector3>();
+}
+
+void NavMap::add_region(NavRegion *p_region) {
+ regions.push_back(p_region);
+ regenerate_links = true;
+}
+
+void NavMap::remove_region(NavRegion *p_region) {
+ regions.push_back(p_region);
+ regenerate_links = true;
+}
+
+bool NavMap::has_agent(RvoAgent *agent) const {
+ return std::find(agents.begin(), agents.end(), agent) != agents.end();
+}
+
+void NavMap::add_agent(RvoAgent *agent) {
+ if (!has_agent(agent)) {
+ agents.push_back(agent);
+ agents_dirty = true;
+ }
+}
+
+void NavMap::remove_agent(RvoAgent *agent) {
+ remove_agent_as_controlled(agent);
+ auto it = std::find(agents.begin(), agents.end(), agent);
+ if (it != agents.end()) {
+ agents.erase(it);
+ agents_dirty = true;
+ }
+}
+
+void NavMap::set_agent_as_controlled(RvoAgent *agent) {
+ const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end();
+ if (!exist) {
+ ERR_FAIL_COND(!has_agent(agent));
+ controlled_agents.push_back(agent);
+ }
+}
+
+void NavMap::remove_agent_as_controlled(RvoAgent *agent) {
+ auto it = std::find(controlled_agents.begin(), controlled_agents.end(), agent);
+ if (it != controlled_agents.end()) {
+ controlled_agents.erase(it);
+ }
+}
+
+void NavMap::sync() {
+
+ if (regenerate_polygons) {
+ for (size_t r(0); r < regions.size(); r++) {
+ regions[r]->scratch_polygons();
+ }
+ regenerate_links = true;
+ }
+
+ for (size_t r(0); r < regions.size(); r++) {
+ if (regions[r]->sync()) {
+ regenerate_links = true;
+ }
+ }
+
+ if (regenerate_links) {
+ // Copy all region polygons in the map.
+ int count = 0;
+ for (size_t r(0); r < regions.size(); r++) {
+ count += regions[r]->get_polygons().size();
+ }
+
+ polygons.resize(count);
+ count = 0;
+
+ for (size_t r(0); r < regions.size(); r++) {
+ std::copy(
+ regions[r]->get_polygons().data(),
+ regions[r]->get_polygons().data() + regions[r]->get_polygons().size(),
+ polygons.begin() + count);
+
+ count += regions[r]->get_polygons().size();
+ }
+
+ // Connects the `Edges` of all the `Polygons` of all `Regions` each other.
+ Map<gd::EdgeKey, gd::Connection> connections;
+
+ for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) {
+ gd::Polygon &poly(polygons[poly_id]);
+
+ for (size_t p(0); p < poly.points.size(); p++) {
+ int next_point = (p + 1) % poly.points.size();
+ gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
+
+ Map<gd::EdgeKey, gd::Connection>::Element *connection = connections.find(ek);
+ if (!connection) {
+ // Nothing yet
+ gd::Connection c;
+ c.A = &poly;
+ c.A_edge = p;
+ c.B = NULL;
+ c.B_edge = -1;
+ connections[ek] = c;
+
+ } else if (connection->get().B == NULL) {
+ CRASH_COND(connection->get().A == NULL); // Unreachable
+
+ // Connect the two Polygons by this edge
+ connection->get().B = &poly;
+ connection->get().B_edge = p;
+
+ connection->get().A->edges[connection->get().A_edge].this_edge = connection->get().A_edge;
+ connection->get().A->edges[connection->get().A_edge].other_polygon = connection->get().B;
+ connection->get().A->edges[connection->get().A_edge].other_edge = connection->get().B_edge;
+
+ connection->get().B->edges[connection->get().B_edge].this_edge = connection->get().B_edge;
+ connection->get().B->edges[connection->get().B_edge].other_polygon = connection->get().A;
+ connection->get().B->edges[connection->get().B_edge].other_edge = connection->get().A_edge;
+ } else {
+ // The edge is already connected with another edge, skip.
+ }
+ }
+ }
+
+ // Takes all the free edges.
+ std::vector<gd::FreeEdge> free_edges;
+ free_edges.reserve(connections.size());
+
+ for (auto connection_element = connections.front(); connection_element; connection_element = connection_element->next()) {
+ if (connection_element->get().B == NULL) {
+ CRASH_COND(connection_element->get().A == NULL); // Unreachable
+ CRASH_COND(connection_element->get().A_edge < 0); // Unreachable
+
+ // This is a free edge
+ uint32_t id(free_edges.size());
+ free_edges.push_back(gd::FreeEdge());
+ free_edges[id].is_free = true;
+ free_edges[id].poly = connection_element->get().A;
+ free_edges[id].edge_id = connection_element->get().A_edge;
+ uint32_t point_0(free_edges[id].edge_id);
+ uint32_t point_1((free_edges[id].edge_id + 1) % free_edges[id].poly->points.size());
+ Vector3 pos_0 = free_edges[id].poly->points[point_0].pos;
+ Vector3 pos_1 = free_edges[id].poly->points[point_1].pos;
+ Vector3 relative = pos_1 - pos_0;
+ free_edges[id].edge_center = (pos_0 + pos_1) / 2.0;
+ free_edges[id].edge_dir = relative.normalized();
+ free_edges[id].edge_len_squared = relative.length_squared();
+ }
+ }
+
+ const float ecm_squared(edge_connection_margin * edge_connection_margin);
+#define LEN_TOLLERANCE 0.1
+#define DIR_TOLLERANCE 0.9
+ // In front of tollerance
+#define IFO_TOLLERANCE 0.5
+
+ // Find the compatible near edges.
+ //
+ // Note:
+ // Considering that the edges must be compatible (for obvious reasons)
+ // to be connected, create new polygons to remove that small gap is
+ // not really useful and would result in wasteful computation during
+ // connection, integration and path finding.
+ for (size_t i(0); i < free_edges.size(); i++) {
+ if (!free_edges[i].is_free) {
+ continue;
+ }
+ gd::FreeEdge &edge = free_edges[i];
+ for (size_t y(0); y < free_edges.size(); y++) {
+ gd::FreeEdge &other_edge = free_edges[y];
+ if (i == y || !other_edge.is_free || edge.poly->owner == other_edge.poly->owner) {
+ continue;
+ }
+
+ Vector3 rel_centers = other_edge.edge_center - edge.edge_center;
+ if (ecm_squared > rel_centers.length_squared() // Are enough closer?
+ && ABS(edge.edge_len_squared - other_edge.edge_len_squared) < LEN_TOLLERANCE // Are the same length?
+ && ABS(edge.edge_dir.dot(other_edge.edge_dir)) > DIR_TOLLERANCE // Are alligned?
+ && ABS(rel_centers.normalized().dot(edge.edge_dir)) < IFO_TOLLERANCE // Are one in front the other?
+ ) {
+ // The edges can be connected
+ edge.is_free = false;
+ other_edge.is_free = false;
+
+ edge.poly->edges[edge.edge_id].this_edge = edge.edge_id;
+ edge.poly->edges[edge.edge_id].other_edge = other_edge.edge_id;
+ edge.poly->edges[edge.edge_id].other_polygon = other_edge.poly;
+
+ other_edge.poly->edges[other_edge.edge_id].this_edge = other_edge.edge_id;
+ other_edge.poly->edges[other_edge.edge_id].other_edge = edge.edge_id;
+ other_edge.poly->edges[other_edge.edge_id].other_polygon = edge.poly;
+ }
+ }
+ }
+ }
+
+ if (regenerate_links) {
+ map_update_id = map_update_id + 1 % 9999999;
+ }
+
+ if (agents_dirty) {
+ std::vector<RVO::Agent *> raw_agents;
+ raw_agents.reserve(agents.size());
+ for (size_t i(0); i < agents.size(); i++)
+ raw_agents.push_back(agents[i]->get_agent());
+ rvo.buildAgentTree(raw_agents);
+ }
+
+ regenerate_polygons = false;
+ regenerate_links = false;
+ agents_dirty = false;
+}
+
+void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) {
+ (*(agent + index))->get_agent()->computeNeighbors(&rvo);
+ (*(agent + index))->get_agent()->computeNewVelocity(deltatime);
+}
+
+void NavMap::step(real_t p_deltatime) {
+ deltatime = p_deltatime;
+ if (controlled_agents.size() > 0) {
+ thread_process_array(
+ controlled_agents.size(),
+ this,
+ &NavMap::compute_single_step,
+ controlled_agents.data());
+ }
+}
+
+void NavMap::dispatch_callbacks() {
+ for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
+ controlled_agents[i]->dispatch_callback();
+ }
+}
+
+void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const {
+ Vector3 from = path[path.size() - 1];
+
+ if (from.distance_to(p_to_point) < CMP_EPSILON)
+ return;
+ Plane cut_plane;
+ cut_plane.normal = (from - p_to_point).cross(up);
+ if (cut_plane.normal == Vector3())
+ return;
+ cut_plane.normal.normalize();
+ cut_plane.d = cut_plane.normal.dot(from);
+
+ while (from_poly != p_to_poly) {
+
+ int back_nav_edge = from_poly->back_navigation_edge;
+ Vector3 a = from_poly->poly->points[back_nav_edge].pos;
+ Vector3 b = from_poly->poly->points[(back_nav_edge + 1) % from_poly->poly->points.size()].pos;
+
+ ERR_FAIL_COND(from_poly->prev_navigation_poly_id == -1);
+ from_poly = &p_navigation_polys[from_poly->prev_navigation_poly_id];
+
+ if (a.distance_to(b) > CMP_EPSILON) {
+
+ Vector3 inters;
+ if (cut_plane.intersects_segment(a, b, &inters)) {
+ if (inters.distance_to(p_to_point) > CMP_EPSILON && inters.distance_to(path[path.size() - 1]) > CMP_EPSILON) {
+ path.push_back(inters);
+ }
+ }
+ }
+ }
+}