diff options
Diffstat (limited to 'modules/gdnavigation/nav_map.cpp')
-rw-r--r-- | modules/gdnavigation/nav_map.cpp | 665 |
1 files changed, 665 insertions, 0 deletions
diff --git a/modules/gdnavigation/nav_map.cpp b/modules/gdnavigation/nav_map.cpp new file mode 100644 index 0000000000..3d0e02c77d --- /dev/null +++ b/modules/gdnavigation/nav_map.cpp @@ -0,0 +1,665 @@ +/*************************************************************************/ +/* rvo_space.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md) */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "nav_map.h" + +#include "core/os/threaded_array_processor.h" +#include "nav_region.h" +#include "rvo_agent.h" +#include <algorithm> + +/** + @author AndreaCatania +*/ + +#define USE_ENTRY_POINT + +NavMap::NavMap() : + up(0, 1, 0), + cell_size(0.3), + edge_connection_margin(5.0), + regenerate_polygons(true), + regenerate_links(true), + agents_dirty(false), + deltatime(0.0), + map_update_id(0) {} + +void NavMap::set_up(Vector3 p_up) { + up = p_up; + regenerate_polygons = true; +} + +void NavMap::set_cell_size(float p_cell_size) { + cell_size = p_cell_size; + regenerate_polygons = true; +} + +void NavMap::set_edge_connection_margin(float p_edge_connection_margin) { + edge_connection_margin = p_edge_connection_margin; + regenerate_links = true; +} + +gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const { + const int x = int(Math::floor(p_pos.x / cell_size)); + const int y = int(Math::floor(p_pos.y / cell_size)); + const int z = int(Math::floor(p_pos.z / cell_size)); + + gd::PointKey p; + p.key = 0; + p.x = x; + p.y = y; + p.z = z; + return p; +} + +Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize) const { + + const gd::Polygon *begin_poly = NULL; + const gd::Polygon *end_poly = NULL; + Vector3 begin_point; + Vector3 end_point; + float begin_d = 1e20; + float end_d = 1e20; + + // Find the initial poly and the end poly on this map. + for (size_t i(0); i < polygons.size(); i++) { + const gd::Polygon &p = polygons[i]; + + // For each point cast a face and check the distance between the origin/destination + for (size_t point_id = 2; point_id < p.points.size(); point_id++) { + + Face3 f(p.points[point_id - 2].pos, p.points[point_id - 1].pos, p.points[point_id].pos); + Vector3 spoint = f.get_closest_point_to(p_origin); + float dpoint = spoint.distance_to(p_origin); + if (dpoint < begin_d) { + begin_d = dpoint; + begin_poly = &p; + begin_point = spoint; + } + + spoint = f.get_closest_point_to(p_destination); + dpoint = spoint.distance_to(p_destination); + if (dpoint < end_d) { + end_d = dpoint; + end_poly = &p; + end_point = spoint; + } + } + } + + if (!begin_poly || !end_poly) { + // No path + return Vector<Vector3>(); + } + + if (begin_poly == end_poly) { + + Vector<Vector3> path; + path.resize(2); + path.write[0] = begin_point; + path.write[1] = end_point; + return path; + } + + std::vector<gd::NavigationPoly> navigation_polys; + navigation_polys.reserve(polygons.size() * 0.75); + + // The elements indices in the `navigation_polys`. + int least_cost_id(-1); + List<uint32_t> open_list; + bool found_route = false; + + navigation_polys.push_back(gd::NavigationPoly(begin_poly)); + { + least_cost_id = 0; + gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; + least_cost_poly->self_id = least_cost_id; + least_cost_poly->entry = begin_point; + } + + open_list.push_back(0); + + const gd::Polygon *reachable_end = NULL; + float reachable_d = 1e30; + bool is_reachable = true; + + while (found_route == false) { + + { + // Takes the current least_cost_poly neighbors and compute the traveled_distance of each + for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) { + gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id]; + + const gd::Edge &edge = least_cost_poly->poly->edges[i]; + if (!edge.other_polygon) + continue; + +#ifdef USE_ENTRY_POINT + Vector3 edge_line[2] = { + least_cost_poly->poly->points[i].pos, + least_cost_poly->poly->points[(i + 1) % least_cost_poly->poly->points.size()].pos + }; + + const Vector3 new_entry = Geometry::get_closest_point_to_segment(least_cost_poly->entry, edge_line); + const float new_distance = least_cost_poly->entry.distance_to(new_entry) + least_cost_poly->traveled_distance; +#else + const float new_distance = least_cost_poly->poly->center.distance_to(edge.other_polygon->center) + least_cost_poly->traveled_distance; +#endif + + auto it = std::find( + navigation_polys.begin(), + navigation_polys.end(), + gd::NavigationPoly(edge.other_polygon)); + + if (it != navigation_polys.end()) { + // Oh this was visited already, can we win the cost? + if (it->traveled_distance > new_distance) { + + it->prev_navigation_poly_id = least_cost_id; + it->back_navigation_edge = edge.other_edge; + it->traveled_distance = new_distance; +#ifdef USE_ENTRY_POINT + it->entry = new_entry; +#endif + } + } else { + // Add to open neighbours + + navigation_polys.push_back(gd::NavigationPoly(edge.other_polygon)); + gd::NavigationPoly *np = &navigation_polys[navigation_polys.size() - 1]; + + np->self_id = navigation_polys.size() - 1; + np->prev_navigation_poly_id = least_cost_id; + np->back_navigation_edge = edge.other_edge; + np->traveled_distance = new_distance; +#ifdef USE_ENTRY_POINT + np->entry = new_entry; +#endif + open_list.push_back(navigation_polys.size() - 1); + } + } + } + + // Removes the least cost polygon from the open list so we can advance. + open_list.erase(least_cost_id); + + if (open_list.size() == 0) { + // When the open list is empty at this point the End Polygon is not reachable + // so use the further reachable polygon + ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons"); + is_reachable = false; + if (reachable_end == NULL) { + // The path is not found and there is not a way out. + break; + } + + // Set as end point the furthest reachable point. + end_poly = reachable_end; + end_d = 1e20; + for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) { + Face3 f(end_poly->points[point_id - 2].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos); + Vector3 spoint = f.get_closest_point_to(p_destination); + float dpoint = spoint.distance_to(p_destination); + if (dpoint < end_d) { + end_point = spoint; + end_d = dpoint; + } + } + + // Reset open and navigation_polys + gd::NavigationPoly np = navigation_polys[0]; + navigation_polys.clear(); + navigation_polys.push_back(np); + open_list.clear(); + open_list.push_back(0); + + reachable_end = NULL; + + continue; + } + + // Now take the new least_cost_poly from the open list. + least_cost_id = -1; + float least_cost = 1e30; + + for (auto element = open_list.front(); element != NULL; element = element->next()) { + gd::NavigationPoly *np = &navigation_polys[element->get()]; + float cost = np->traveled_distance; +#ifdef USE_ENTRY_POINT + cost += np->entry.distance_to(end_point); +#else + cost += np->poly->center.distance_to(end_point); +#endif + if (cost < least_cost) { + least_cost_id = np->self_id; + least_cost = cost; + } + } + + // Stores the further reachable end polygon, in case our goal is not reachable. + if (is_reachable) { + float d = navigation_polys[least_cost_id].entry.distance_to(p_destination); + if (reachable_d > d) { + reachable_d = d; + reachable_end = navigation_polys[least_cost_id].poly; + } + } + + ERR_BREAK(least_cost_id == -1); + + // Check if we reached the end + if (navigation_polys[least_cost_id].poly == end_poly) { + // Yep, done!! + found_route = true; + break; + } + } + + if (found_route) { + + Vector<Vector3> path; + if (p_optimize) { + + // String pulling + + gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; + Vector3 apex_point = end_point; + Vector3 portal_left = apex_point; + Vector3 portal_right = apex_point; + gd::NavigationPoly *left_poly = apex_poly; + gd::NavigationPoly *right_poly = apex_poly; + gd::NavigationPoly *p = apex_poly; + + path.push_back(end_point); + + while (p) { + + Vector3 left; + Vector3 right; + +#define CLOCK_TANGENT(m_a, m_b, m_c) (((m_a) - (m_c)).cross((m_a) - (m_b))) + + if (p->poly == begin_poly) { + left = begin_point; + right = begin_point; + } else { + int prev = p->back_navigation_edge; + int prev_n = (p->back_navigation_edge + 1) % p->poly->points.size(); + left = p->poly->points[prev].pos; + right = p->poly->points[prev_n].pos; + + //if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5).dot(up) < 0){ + if (p->poly->clockwise) { + SWAP(left, right); + } + } + + bool skip = false; + + if (CLOCK_TANGENT(apex_point, portal_left, left).dot(up) >= 0) { + //process + if (portal_left == apex_point || CLOCK_TANGENT(apex_point, left, portal_right).dot(up) > 0) { + left_poly = p; + portal_left = left; + } else { + + clip_path(navigation_polys, path, apex_poly, portal_right, right_poly); + + apex_point = portal_right; + p = right_poly; + left_poly = p; + apex_poly = p; + portal_left = apex_point; + portal_right = apex_point; + path.push_back(apex_point); + skip = true; + } + } + + if (!skip && CLOCK_TANGENT(apex_point, portal_right, right).dot(up) <= 0) { + //process + if (portal_right == apex_point || CLOCK_TANGENT(apex_point, right, portal_left).dot(up) < 0) { + right_poly = p; + portal_right = right; + } else { + + clip_path(navigation_polys, path, apex_poly, portal_left, left_poly); + + apex_point = portal_left; + p = left_poly; + right_poly = p; + apex_poly = p; + portal_right = apex_point; + portal_left = apex_point; + path.push_back(apex_point); + } + } + + if (p->prev_navigation_poly_id != -1) + p = &navigation_polys[p->prev_navigation_poly_id]; + else + // The end + p = NULL; + } + + if (path[path.size() - 1] != begin_point) + path.push_back(begin_point); + + path.invert(); + + } else { + path.push_back(end_point); + + // Add mid points + int np_id = least_cost_id; + while (np_id != -1) { + +#ifdef USE_ENTRY_POINT + Vector3 point = navigation_polys[np_id].entry; +#else + int prev = navigation_polys[np_id].back_navigation_edge; + int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size(); + Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5; +#endif + + path.push_back(point); + np_id = navigation_polys[np_id].prev_navigation_poly_id; + } + + path.invert(); + } + + return path; + } + return Vector<Vector3>(); +} + +void NavMap::add_region(NavRegion *p_region) { + regions.push_back(p_region); + regenerate_links = true; +} + +void NavMap::remove_region(NavRegion *p_region) { + regions.push_back(p_region); + regenerate_links = true; +} + +bool NavMap::has_agent(RvoAgent *agent) const { + return std::find(agents.begin(), agents.end(), agent) != agents.end(); +} + +void NavMap::add_agent(RvoAgent *agent) { + if (!has_agent(agent)) { + agents.push_back(agent); + agents_dirty = true; + } +} + +void NavMap::remove_agent(RvoAgent *agent) { + remove_agent_as_controlled(agent); + auto it = std::find(agents.begin(), agents.end(), agent); + if (it != agents.end()) { + agents.erase(it); + agents_dirty = true; + } +} + +void NavMap::set_agent_as_controlled(RvoAgent *agent) { + const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end(); + if (!exist) { + ERR_FAIL_COND(!has_agent(agent)); + controlled_agents.push_back(agent); + } +} + +void NavMap::remove_agent_as_controlled(RvoAgent *agent) { + auto it = std::find(controlled_agents.begin(), controlled_agents.end(), agent); + if (it != controlled_agents.end()) { + controlled_agents.erase(it); + } +} + +void NavMap::sync() { + + if (regenerate_polygons) { + for (size_t r(0); r < regions.size(); r++) { + regions[r]->scratch_polygons(); + } + regenerate_links = true; + } + + for (size_t r(0); r < regions.size(); r++) { + if (regions[r]->sync()) { + regenerate_links = true; + } + } + + if (regenerate_links) { + // Copy all region polygons in the map. + int count = 0; + for (size_t r(0); r < regions.size(); r++) { + count += regions[r]->get_polygons().size(); + } + + polygons.resize(count); + count = 0; + + for (size_t r(0); r < regions.size(); r++) { + std::copy( + regions[r]->get_polygons().data(), + regions[r]->get_polygons().data() + regions[r]->get_polygons().size(), + polygons.begin() + count); + + count += regions[r]->get_polygons().size(); + } + + // Connects the `Edges` of all the `Polygons` of all `Regions` each other. + Map<gd::EdgeKey, gd::Connection> connections; + + for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) { + gd::Polygon &poly(polygons[poly_id]); + + for (size_t p(0); p < poly.points.size(); p++) { + int next_point = (p + 1) % poly.points.size(); + gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key); + + Map<gd::EdgeKey, gd::Connection>::Element *connection = connections.find(ek); + if (!connection) { + // Nothing yet + gd::Connection c; + c.A = &poly; + c.A_edge = p; + c.B = NULL; + c.B_edge = -1; + connections[ek] = c; + + } else if (connection->get().B == NULL) { + CRASH_COND(connection->get().A == NULL); // Unreachable + + // Connect the two Polygons by this edge + connection->get().B = &poly; + connection->get().B_edge = p; + + connection->get().A->edges[connection->get().A_edge].this_edge = connection->get().A_edge; + connection->get().A->edges[connection->get().A_edge].other_polygon = connection->get().B; + connection->get().A->edges[connection->get().A_edge].other_edge = connection->get().B_edge; + + connection->get().B->edges[connection->get().B_edge].this_edge = connection->get().B_edge; + connection->get().B->edges[connection->get().B_edge].other_polygon = connection->get().A; + connection->get().B->edges[connection->get().B_edge].other_edge = connection->get().A_edge; + } else { + // The edge is already connected with another edge, skip. + } + } + } + + // Takes all the free edges. + std::vector<gd::FreeEdge> free_edges; + free_edges.reserve(connections.size()); + + for (auto connection_element = connections.front(); connection_element; connection_element = connection_element->next()) { + if (connection_element->get().B == NULL) { + CRASH_COND(connection_element->get().A == NULL); // Unreachable + CRASH_COND(connection_element->get().A_edge < 0); // Unreachable + + // This is a free edge + uint32_t id(free_edges.size()); + free_edges.push_back(gd::FreeEdge()); + free_edges[id].is_free = true; + free_edges[id].poly = connection_element->get().A; + free_edges[id].edge_id = connection_element->get().A_edge; + uint32_t point_0(free_edges[id].edge_id); + uint32_t point_1((free_edges[id].edge_id + 1) % free_edges[id].poly->points.size()); + Vector3 pos_0 = free_edges[id].poly->points[point_0].pos; + Vector3 pos_1 = free_edges[id].poly->points[point_1].pos; + Vector3 relative = pos_1 - pos_0; + free_edges[id].edge_center = (pos_0 + pos_1) / 2.0; + free_edges[id].edge_dir = relative.normalized(); + free_edges[id].edge_len_squared = relative.length_squared(); + } + } + + const float ecm_squared(edge_connection_margin * edge_connection_margin); +#define LEN_TOLLERANCE 0.1 +#define DIR_TOLLERANCE 0.9 + // In front of tollerance +#define IFO_TOLLERANCE 0.5 + + // Find the compatible near edges. + // + // Note: + // Considering that the edges must be compatible (for obvious reasons) + // to be connected, create new polygons to remove that small gap is + // not really useful and would result in wasteful computation during + // connection, integration and path finding. + for (size_t i(0); i < free_edges.size(); i++) { + if (!free_edges[i].is_free) { + continue; + } + gd::FreeEdge &edge = free_edges[i]; + for (size_t y(0); y < free_edges.size(); y++) { + gd::FreeEdge &other_edge = free_edges[y]; + if (i == y || !other_edge.is_free || edge.poly->owner == other_edge.poly->owner) { + continue; + } + + Vector3 rel_centers = other_edge.edge_center - edge.edge_center; + if (ecm_squared > rel_centers.length_squared() // Are enough closer? + && ABS(edge.edge_len_squared - other_edge.edge_len_squared) < LEN_TOLLERANCE // Are the same length? + && ABS(edge.edge_dir.dot(other_edge.edge_dir)) > DIR_TOLLERANCE // Are alligned? + && ABS(rel_centers.normalized().dot(edge.edge_dir)) < IFO_TOLLERANCE // Are one in front the other? + ) { + // The edges can be connected + edge.is_free = false; + other_edge.is_free = false; + + edge.poly->edges[edge.edge_id].this_edge = edge.edge_id; + edge.poly->edges[edge.edge_id].other_edge = other_edge.edge_id; + edge.poly->edges[edge.edge_id].other_polygon = other_edge.poly; + + other_edge.poly->edges[other_edge.edge_id].this_edge = other_edge.edge_id; + other_edge.poly->edges[other_edge.edge_id].other_edge = edge.edge_id; + other_edge.poly->edges[other_edge.edge_id].other_polygon = edge.poly; + } + } + } + } + + if (regenerate_links) { + map_update_id = map_update_id + 1 % 9999999; + } + + if (agents_dirty) { + std::vector<RVO::Agent *> raw_agents; + raw_agents.reserve(agents.size()); + for (size_t i(0); i < agents.size(); i++) + raw_agents.push_back(agents[i]->get_agent()); + rvo.buildAgentTree(raw_agents); + } + + regenerate_polygons = false; + regenerate_links = false; + agents_dirty = false; +} + +void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) { + (*(agent + index))->get_agent()->computeNeighbors(&rvo); + (*(agent + index))->get_agent()->computeNewVelocity(deltatime); +} + +void NavMap::step(real_t p_deltatime) { + deltatime = p_deltatime; + if (controlled_agents.size() > 0) { + thread_process_array( + controlled_agents.size(), + this, + &NavMap::compute_single_step, + controlled_agents.data()); + } +} + +void NavMap::dispatch_callbacks() { + for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) { + controlled_agents[i]->dispatch_callback(); + } +} + +void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const { + Vector3 from = path[path.size() - 1]; + + if (from.distance_to(p_to_point) < CMP_EPSILON) + return; + Plane cut_plane; + cut_plane.normal = (from - p_to_point).cross(up); + if (cut_plane.normal == Vector3()) + return; + cut_plane.normal.normalize(); + cut_plane.d = cut_plane.normal.dot(from); + + while (from_poly != p_to_poly) { + + int back_nav_edge = from_poly->back_navigation_edge; + Vector3 a = from_poly->poly->points[back_nav_edge].pos; + Vector3 b = from_poly->poly->points[(back_nav_edge + 1) % from_poly->poly->points.size()].pos; + + ERR_FAIL_COND(from_poly->prev_navigation_poly_id == -1); + from_poly = &p_navigation_polys[from_poly->prev_navigation_poly_id]; + + if (a.distance_to(b) > CMP_EPSILON) { + + Vector3 inters; + if (cut_plane.intersects_segment(a, b, &inters)) { + if (inters.distance_to(p_to_point) > CMP_EPSILON && inters.distance_to(path[path.size() - 1]) > CMP_EPSILON) { + path.push_back(inters); + } + } + } + } +} |