summaryrefslogtreecommitdiff
path: root/modules/fbx/data/fbx_mesh_data.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'modules/fbx/data/fbx_mesh_data.cpp')
-rw-r--r--modules/fbx/data/fbx_mesh_data.cpp1447
1 files changed, 1447 insertions, 0 deletions
diff --git a/modules/fbx/data/fbx_mesh_data.cpp b/modules/fbx/data/fbx_mesh_data.cpp
new file mode 100644
index 0000000000..963a815896
--- /dev/null
+++ b/modules/fbx/data/fbx_mesh_data.cpp
@@ -0,0 +1,1447 @@
+/*************************************************************************/
+/* fbx_mesh_data.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "fbx_mesh_data.h"
+
+#include "core/templates/local_vector.h"
+#include "scene/resources/mesh.h"
+#include "scene/resources/surface_tool.h"
+
+#include "thirdparty/misc/triangulator.h"
+
+template <class T>
+T collect_first(const Vector<VertexData<T>> *p_data, T p_fall_back) {
+ if (p_data->is_empty()) {
+ return p_fall_back;
+ }
+
+ return (*p_data)[0].data;
+}
+
+template <class T>
+HashMap<int, T> collect_all(const Vector<VertexData<T>> *p_data, HashMap<int, T> p_fall_back) {
+ if (p_data->is_empty()) {
+ return p_fall_back;
+ }
+
+ HashMap<int, T> collection;
+ for (int i = 0; i < p_data->size(); i += 1) {
+ const VertexData<T> &vd = (*p_data)[i];
+ collection[vd.polygon_index] = vd.data;
+ }
+ return collection;
+}
+
+template <class T>
+T collect_average(const Vector<VertexData<T>> *p_data, T p_fall_back) {
+ if (p_data->is_empty()) {
+ return p_fall_back;
+ }
+
+ T combined = (*p_data)[0].data; // Make sure the data is always correctly initialized.
+ print_verbose("size of data: " + itos(p_data->size()));
+ for (int i = 1; i < p_data->size(); i += 1) {
+ combined += (*p_data)[i].data;
+ }
+ combined = combined / real_t(p_data->size());
+
+ return combined.normalized();
+}
+
+HashMap<int, Vector3> collect_normal(const Vector<VertexData<Vector3>> *p_data, HashMap<int, Vector3> p_fall_back) {
+ if (p_data->is_empty()) {
+ return p_fall_back;
+ }
+
+ HashMap<int, Vector3> collection;
+ for (int i = 0; i < p_data->size(); i += 1) {
+ const VertexData<Vector3> &vd = (*p_data)[i];
+ collection[vd.polygon_index] = vd.data;
+ }
+ return collection;
+}
+
+HashMap<int, Vector2> collect_uv(const Vector<VertexData<Vector2>> *p_data, HashMap<int, Vector2> p_fall_back) {
+ if (p_data->is_empty()) {
+ return p_fall_back;
+ }
+
+ HashMap<int, Vector2> collection;
+ for (int i = 0; i < p_data->size(); i += 1) {
+ const VertexData<Vector2> &vd = (*p_data)[i];
+ collection[vd.polygon_index] = vd.data;
+ }
+ return collection;
+}
+
+typedef int Vertex;
+typedef int SurfaceId;
+typedef int PolygonId;
+typedef int DataIndex;
+
+struct SurfaceData {
+ Ref<SurfaceTool> surface_tool;
+ OrderedHashMap<Vertex, int> lookup_table; // proposed fix is to replace lookup_table[vertex_id] to give the position of the vertices_map[int] index.
+ LocalVector<Vertex> vertices_map; // this must be ordered the same as insertion <-- slow to do find() operation.
+ Ref<Material> material;
+ HashMap<PolygonId, Vector<DataIndex>> surface_polygon_vertex;
+ Array morphs;
+};
+
+EditorSceneImporterMeshNode3D *FBXMeshData::create_fbx_mesh(const ImportState &state, const FBXDocParser::MeshGeometry *p_mesh_geometry, const FBXDocParser::Model *model, bool use_compression) {
+ mesh_geometry = p_mesh_geometry;
+ // todo: make this just use a uint64_t FBX ID this is a copy of our original materials unfortunately.
+ const std::vector<const FBXDocParser::Material *> &material_lookup = model->GetMaterials();
+
+ // TODO: perf hotspot on large files
+ // this can be a very large copy
+ std::vector<int> polygon_indices = mesh_geometry->get_polygon_indices();
+ std::vector<Vector3> vertices = mesh_geometry->get_vertices();
+
+ // Phase 1. Parse all FBX data.
+ HashMap<int, Vector3> normals;
+ HashMap<int, HashMap<int, Vector3>> normals_raw = extract_per_vertex_data(
+ vertices.size(),
+ mesh_geometry->get_edge_map(),
+ polygon_indices,
+ mesh_geometry->get_normals(),
+ &collect_all,
+ HashMap<int, Vector3>());
+
+ HashMap<int, Vector2> uvs_0;
+ HashMap<int, HashMap<int, Vector2>> uvs_0_raw = extract_per_vertex_data(
+ vertices.size(),
+ mesh_geometry->get_edge_map(),
+ polygon_indices,
+ mesh_geometry->get_uv_0(),
+ &collect_all,
+ HashMap<int, Vector2>());
+
+ HashMap<int, Vector2> uvs_1;
+ HashMap<int, HashMap<int, Vector2>> uvs_1_raw = extract_per_vertex_data(
+ vertices.size(),
+ mesh_geometry->get_edge_map(),
+ polygon_indices,
+ mesh_geometry->get_uv_1(),
+ &collect_all,
+ HashMap<int, Vector2>());
+
+ HashMap<int, Color> colors;
+ HashMap<int, HashMap<int, Color>> colors_raw = extract_per_vertex_data(
+ vertices.size(),
+ mesh_geometry->get_edge_map(),
+ polygon_indices,
+ mesh_geometry->get_colors(),
+ &collect_all,
+ HashMap<int, Color>());
+
+ // TODO what about tangents?
+ // TODO what about bi-nomials?
+ // TODO there is other?
+
+ HashMap<int, SurfaceId> polygon_surfaces = extract_per_polygon(
+ vertices.size(),
+ polygon_indices,
+ mesh_geometry->get_material_allocation_id(),
+ -1);
+
+ HashMap<String, MorphVertexData> morphs;
+ extract_morphs(mesh_geometry, morphs);
+
+ // TODO please add skinning.
+ //mesh_id = mesh_geometry->ID();
+
+ sanitize_vertex_weights(state);
+
+ // Re organize polygon vertices to to correctly take into account strange
+ // UVs.
+ reorganize_vertices(
+ polygon_indices,
+ vertices,
+ normals,
+ uvs_0,
+ uvs_1,
+ colors,
+ morphs,
+ normals_raw,
+ colors_raw,
+ uvs_0_raw,
+ uvs_1_raw);
+
+ const int color_count = colors.size();
+ print_verbose("Vertex color count: " + itos(color_count));
+
+ // Make sure that from this moment on the mesh_geometry is no used anymore.
+ // This is a safety step, because the mesh_geometry data are no more valid
+ // at this point.
+
+ const int vertex_count = vertices.size();
+
+ print_verbose("Vertex count: " + itos(vertex_count));
+
+ // The map key is the material allocator id that is also used as surface id.
+ HashMap<SurfaceId, SurfaceData> surfaces;
+
+ // Phase 2. For each material create a surface tool (So a different mesh).
+ {
+ if (polygon_surfaces.is_empty()) {
+ // No material, just use the default one with index -1.
+ // Set -1 to all polygons.
+ const int polygon_count = count_polygons(polygon_indices);
+ for (int p = 0; p < polygon_count; p += 1) {
+ polygon_surfaces[p] = -1;
+ }
+ }
+
+ // Create the surface now.
+ for (const int *polygon_id = polygon_surfaces.next(nullptr); polygon_id != nullptr; polygon_id = polygon_surfaces.next(polygon_id)) {
+ const int surface_id = polygon_surfaces[*polygon_id];
+ if (surfaces.has(surface_id) == false) {
+ SurfaceData sd;
+ sd.surface_tool.instance();
+ sd.surface_tool->begin(Mesh::PRIMITIVE_TRIANGLES);
+
+ if (surface_id < 0) {
+ // nothing to do
+ } else if (surface_id < (int)material_lookup.size()) {
+ const FBXDocParser::Material *mat_mapping = material_lookup.at(surface_id);
+ const uint64_t mapping_id = mat_mapping->ID();
+ if (state.cached_materials.has(mapping_id)) {
+ sd.material = state.cached_materials[mapping_id];
+ }
+ } else {
+ WARN_PRINT("out of bounds surface detected, FBX file has corrupt material data");
+ }
+
+ surfaces.set(surface_id, sd);
+ }
+ }
+ }
+
+ // Phase 3. Map the vertices relative to each surface, in this way we can
+ // just insert the vertices that we need per each surface.
+ {
+ PolygonId polygon_index = -1;
+ SurfaceId surface_id = -1;
+ SurfaceData *surface_data = nullptr;
+
+ for (size_t polygon_vertex = 0; polygon_vertex < polygon_indices.size(); polygon_vertex += 1) {
+ if (is_start_of_polygon(polygon_indices, polygon_vertex)) {
+ polygon_index += 1;
+ ERR_FAIL_COND_V_MSG(polygon_surfaces.has(polygon_index) == false, nullptr, "The FBX file is corrupted, This surface_index is not expected.");
+ surface_id = polygon_surfaces[polygon_index];
+ surface_data = surfaces.getptr(surface_id);
+ CRASH_COND(surface_data == nullptr); // Can't be null.
+ }
+
+ const int vertex = get_vertex_from_polygon_vertex(polygon_indices, polygon_vertex);
+
+ // The vertex position in the surface
+ // Uses a lookup table for speed with large scenes
+ bool has_polygon_vertex_index = surface_data->lookup_table.has(vertex);
+ int surface_polygon_vertex_index = -1;
+
+ if (has_polygon_vertex_index) {
+ surface_polygon_vertex_index = surface_data->lookup_table[vertex];
+ } else {
+ surface_polygon_vertex_index = surface_data->vertices_map.size();
+ surface_data->lookup_table[vertex] = surface_polygon_vertex_index;
+ surface_data->vertices_map.push_back(vertex);
+ }
+
+ surface_data->surface_polygon_vertex[polygon_index].push_back(surface_polygon_vertex_index);
+ }
+ }
+
+ //print_verbose("[debug UV 1] UV1: " + itos(uvs_0.size()));
+ //print_verbose("[debug UV 2] UV2: " + itos(uvs_1.size()));
+
+ // Phase 4. Per each surface just insert the vertices and add the indices.
+ for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
+ SurfaceData *surface = surfaces.getptr(*surface_id);
+
+ // Just add the vertices data.
+ for (unsigned int i = 0; i < surface->vertices_map.size(); i += 1) {
+ const Vertex vertex = surface->vertices_map[i];
+
+ // This must be done before add_vertex because the surface tool is
+ // expecting this before the st->add_vertex() call
+ add_vertex(state,
+ surface->surface_tool,
+ state.scale,
+ vertex,
+ vertices,
+ normals,
+ uvs_0,
+ uvs_1,
+ colors);
+ }
+
+ // Triangulate the various polygons and add the indices.
+ for (const PolygonId *polygon_id = surface->surface_polygon_vertex.next(nullptr); polygon_id != nullptr; polygon_id = surface->surface_polygon_vertex.next(polygon_id)) {
+ const Vector<DataIndex> *indices = surface->surface_polygon_vertex.getptr(*polygon_id);
+
+ triangulate_polygon(
+ surface->surface_tool,
+ *indices,
+ surface->vertices_map,
+ vertices);
+ }
+ }
+
+ // Phase 5. Compose the morphs if any.
+ for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
+ SurfaceData *surface = surfaces.getptr(*surface_id);
+
+ for (const String *morph_name = morphs.next(nullptr); morph_name != nullptr; morph_name = morphs.next(morph_name)) {
+ MorphVertexData *morph_data = morphs.getptr(*morph_name);
+
+ // As said by the docs, this is not supposed to be different than
+ // vertex_count.
+ CRASH_COND(morph_data->vertices.size() != vertex_count);
+ CRASH_COND(morph_data->normals.size() != vertex_count);
+
+ Vector3 *vertices_ptr = morph_data->vertices.ptrw();
+ Vector3 *normals_ptr = morph_data->normals.ptrw();
+
+ Ref<SurfaceTool> morph_st;
+ morph_st.instance();
+ morph_st->begin(Mesh::PRIMITIVE_TRIANGLES);
+
+ for (unsigned int vi = 0; vi < surface->vertices_map.size(); vi += 1) {
+ const Vertex vertex = surface->vertices_map[vi];
+ add_vertex(
+ state,
+ morph_st,
+ state.scale,
+ vertex,
+ vertices,
+ normals,
+ uvs_0,
+ uvs_1,
+ colors,
+ vertices_ptr[vertex],
+ normals_ptr[vertex]);
+ }
+
+ if (state.is_blender_fbx) {
+ morph_st->generate_normals();
+ }
+ morph_st->generate_tangents();
+ surface->morphs.push_back(morph_st->commit_to_arrays());
+ }
+ }
+
+ // Phase 6. Compose the mesh and return it.
+ Ref<EditorSceneImporterMesh> mesh;
+ mesh.instance();
+
+ // Add blend shape info.
+ for (const String *morph_name = morphs.next(nullptr); morph_name != nullptr; morph_name = morphs.next(morph_name)) {
+ mesh->add_blend_shape(*morph_name);
+ }
+
+ // TODO always normalized, Why?
+ mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
+
+ // Add surfaces.
+ int in_mesh_surface_id = 0;
+ for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
+ SurfaceData *surface = surfaces.getptr(*surface_id);
+
+ if (state.is_blender_fbx) {
+ surface->surface_tool->generate_normals();
+ }
+ // you can't generate them without a valid uv map.
+ if (uvs_0_raw.size() > 0) {
+ surface->surface_tool->generate_tangents();
+ }
+
+ Array mesh_array = surface->surface_tool->commit_to_arrays();
+ Array blend_shapes = surface->morphs;
+
+ if (surface->material.is_valid()) {
+ mesh->add_surface(Mesh::PRIMITIVE_TRIANGLES, mesh_array, blend_shapes, Dictionary(), surface->material, surface->material->get_name());
+ } else {
+ mesh->add_surface(Mesh::PRIMITIVE_TRIANGLES, mesh_array, blend_shapes);
+ }
+
+ in_mesh_surface_id += 1;
+ }
+
+ EditorSceneImporterMeshNode3D *godot_mesh = memnew(EditorSceneImporterMeshNode3D);
+ godot_mesh->set_mesh(mesh);
+ return godot_mesh;
+}
+
+void FBXMeshData::sanitize_vertex_weights(const ImportState &state) {
+ const int max_vertex_influence_count = RS::ARRAY_WEIGHTS_SIZE;
+ Map<int, int> skeleton_to_skin_bind_id;
+ // TODO: error's need added
+ const FBXDocParser::Skin *fbx_skin = mesh_geometry->DeformerSkin();
+
+ if (fbx_skin == nullptr || fbx_skin->Clusters().size() == 0) {
+ return; // do nothing
+ }
+
+ //
+ // Precalculate the skin cluster mapping
+ //
+
+ int bind_id = 0;
+ for (const FBXDocParser::Cluster *cluster : fbx_skin->Clusters()) {
+ Ref<FBXBone> bone = state.fbx_bone_map[cluster->TargetNode()->ID()];
+ skeleton_to_skin_bind_id.insert(bone->godot_bone_id, bind_id);
+ bind_id++;
+ }
+
+ for (const Vertex *v = vertex_weights.next(nullptr); v != nullptr; v = vertex_weights.next(v)) {
+ VertexWeightMapping *vm = vertex_weights.getptr(*v);
+ ERR_CONTINUE(vm->bones.size() != vm->weights.size()); // No message, already checked.
+ ERR_CONTINUE(vm->bones_ref.size() != vm->weights.size()); // No message, already checked.
+
+ const int initial_size = vm->weights.size();
+ {
+ // Init bone id
+ int *bones_ptr = vm->bones.ptrw();
+ Ref<FBXBone> *bones_ref_ptr = vm->bones_ref.ptrw();
+
+ for (int i = 0; i < vm->weights.size(); i += 1) {
+ // At this point this is not possible because the skeleton is already initialized.
+ CRASH_COND(bones_ref_ptr[i]->godot_bone_id == -2);
+ bones_ptr[i] = skeleton_to_skin_bind_id[bones_ref_ptr[i]->godot_bone_id];
+ }
+
+ // From this point on the data is no more valid.
+ vm->bones_ref.clear();
+ }
+
+ {
+ // Sort
+ real_t *weights_ptr = vm->weights.ptrw();
+ int *bones_ptr = vm->bones.ptrw();
+ for (int i = 0; i < vm->weights.size(); i += 1) {
+ for (int x = i + 1; x < vm->weights.size(); x += 1) {
+ if (weights_ptr[i] < weights_ptr[x]) {
+ SWAP(weights_ptr[i], weights_ptr[x]);
+ SWAP(bones_ptr[i], bones_ptr[x]);
+ }
+ }
+ }
+ }
+
+ {
+ // Resize
+ vm->weights.resize(max_vertex_influence_count);
+ vm->bones.resize(max_vertex_influence_count);
+ real_t *weights_ptr = vm->weights.ptrw();
+ int *bones_ptr = vm->bones.ptrw();
+ for (int i = initial_size; i < max_vertex_influence_count; i += 1) {
+ weights_ptr[i] = 0.0;
+ bones_ptr[i] = 0;
+ }
+
+ // Normalize
+ real_t sum = 0.0;
+ for (int i = 0; i < max_vertex_influence_count; i += 1) {
+ sum += weights_ptr[i];
+ }
+ if (sum > 0.0) {
+ for (int i = 0; i < vm->weights.size(); i += 1) {
+ weights_ptr[i] = weights_ptr[i] / sum;
+ }
+ }
+ }
+ }
+}
+
+void FBXMeshData::reorganize_vertices(
+ // TODO: perf hotspot on insane files
+ std::vector<int> &r_polygon_indices,
+ std::vector<Vector3> &r_vertices,
+ HashMap<int, Vector3> &r_normals,
+ HashMap<int, Vector2> &r_uv_1,
+ HashMap<int, Vector2> &r_uv_2,
+ HashMap<int, Color> &r_color,
+ HashMap<String, MorphVertexData> &r_morphs,
+ HashMap<int, HashMap<int, Vector3>> &r_normals_raw,
+ HashMap<int, HashMap<int, Color>> &r_colors_raw,
+ HashMap<int, HashMap<int, Vector2>> &r_uv_1_raw,
+ HashMap<int, HashMap<int, Vector2>> &r_uv_2_raw) {
+ // Key: OldVertex; Value: [New vertices];
+ HashMap<int, Vector<int>> duplicated_vertices;
+
+ PolygonId polygon_index = -1;
+ for (int pv = 0; pv < (int)r_polygon_indices.size(); pv += 1) {
+ if (is_start_of_polygon(r_polygon_indices, pv)) {
+ polygon_index += 1;
+ }
+ const Vertex index = get_vertex_from_polygon_vertex(r_polygon_indices, pv);
+
+ bool need_duplication = false;
+ Vector2 this_vert_poly_uv1 = Vector2();
+ Vector2 this_vert_poly_uv2 = Vector2();
+ Vector3 this_vert_poly_normal = Vector3();
+ Color this_vert_poly_color = Color();
+
+ // Take the normal and see if we need to duplicate this polygon.
+ if (r_normals_raw.has(index)) {
+ const HashMap<PolygonId, Vector3> *nrml_arr = r_normals_raw.getptr(index);
+
+ if (nrml_arr->has(polygon_index)) {
+ this_vert_poly_normal = nrml_arr->get(polygon_index);
+ } else if (nrml_arr->has(-1)) {
+ this_vert_poly_normal = nrml_arr->get(-1);
+ } else {
+ print_error("invalid normal detected: " + itos(index) + " polygon index: " + itos(polygon_index));
+ for (const PolygonId *pid = nrml_arr->next(nullptr); pid != nullptr; pid = nrml_arr->next(pid)) {
+ print_verbose("debug contents key: " + itos(*pid));
+
+ if (nrml_arr->has(*pid)) {
+ print_verbose("contents valid: " + nrml_arr->get(*pid));
+ }
+ }
+ }
+
+ // Now, check if we need to duplicate it.
+ for (const PolygonId *pid = nrml_arr->next(nullptr); pid != nullptr; pid = nrml_arr->next(pid)) {
+ if (*pid == polygon_index) {
+ continue;
+ }
+
+ const Vector3 vert_poly_normal = *nrml_arr->getptr(*pid);
+ if ((this_vert_poly_normal - vert_poly_normal).length_squared() > CMP_EPSILON) {
+ // Yes this polygon need duplication.
+ need_duplication = true;
+ break;
+ }
+ }
+ }
+
+ // TODO: make me vertex color
+ // Take the normal and see if we need to duplicate this polygon.
+ if (r_colors_raw.has(index)) {
+ const HashMap<PolygonId, Color> *color_arr = r_colors_raw.getptr(index);
+
+ if (color_arr->has(polygon_index)) {
+ this_vert_poly_color = color_arr->get(polygon_index);
+ } else if (color_arr->has(-1)) {
+ this_vert_poly_color = color_arr->get(-1);
+ } else {
+ print_error("invalid color detected: " + itos(index) + " polygon index: " + itos(polygon_index));
+ for (const PolygonId *pid = color_arr->next(nullptr); pid != nullptr; pid = color_arr->next(pid)) {
+ print_verbose("debug contents key: " + itos(*pid));
+
+ if (color_arr->has(*pid)) {
+ print_verbose("contents valid: " + color_arr->get(*pid));
+ }
+ }
+ }
+
+ // Now, check if we need to duplicate it.
+ for (const PolygonId *pid = color_arr->next(nullptr); pid != nullptr; pid = color_arr->next(pid)) {
+ if (*pid == polygon_index) {
+ continue;
+ }
+
+ const Color vert_poly_color = *color_arr->getptr(*pid);
+ if (!this_vert_poly_color.is_equal_approx(vert_poly_color)) {
+ // Yes this polygon need duplication.
+ need_duplication = true;
+ break;
+ }
+ }
+ }
+
+ // Take the UV1 and UV2 and see if we need to duplicate this polygon.
+ {
+ HashMap<int, HashMap<int, Vector2>> *uv_raw = &r_uv_1_raw;
+ Vector2 *this_vert_poly_uv = &this_vert_poly_uv1;
+ for (int kk = 0; kk < 2; kk++) {
+ if (uv_raw->has(index)) {
+ const HashMap<PolygonId, Vector2> *uvs = uv_raw->getptr(index);
+
+ if (uvs->has(polygon_index)) {
+ // This Polygon has its own uv.
+ (*this_vert_poly_uv) = *uvs->getptr(polygon_index);
+
+ // Check if we need to duplicate it.
+ for (const PolygonId *pid = uvs->next(nullptr); pid != nullptr; pid = uvs->next(pid)) {
+ if (*pid == polygon_index) {
+ continue;
+ }
+ const Vector2 vert_poly_uv = *uvs->getptr(*pid);
+ if (((*this_vert_poly_uv) - vert_poly_uv).length_squared() > CMP_EPSILON) {
+ // Yes this polygon need duplication.
+ need_duplication = true;
+ break;
+ }
+ }
+ } else if (uvs->has(-1)) {
+ // It has the default UV.
+ (*this_vert_poly_uv) = *uvs->getptr(-1);
+ } else if (uvs->size() > 0) {
+ // No uv, this is strange, just take the first and duplicate.
+ (*this_vert_poly_uv) = *uvs->getptr(*uvs->next(nullptr));
+ WARN_PRINT("No UVs for this polygon, while there is no default and some other polygons have it. This FBX file may be corrupted.");
+ }
+ }
+ uv_raw = &r_uv_2_raw;
+ this_vert_poly_uv = &this_vert_poly_uv2;
+ }
+ }
+
+ // If we want to duplicate it, Let's see if we already duplicated this
+ // vertex.
+ if (need_duplication) {
+ if (duplicated_vertices.has(index)) {
+ Vertex similar_vertex = -1;
+ // Let's see if one of the new vertices has the same data of this.
+ const Vector<int> *new_vertices = duplicated_vertices.getptr(index);
+ for (int j = 0; j < new_vertices->size(); j += 1) {
+ const Vertex new_vertex = (*new_vertices)[j];
+ bool same_uv1 = false;
+ bool same_uv2 = false;
+ bool same_normal = false;
+ bool same_color = false;
+
+ if (r_uv_1.has(new_vertex)) {
+ if ((this_vert_poly_uv1 - (*r_uv_1.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
+ same_uv1 = true;
+ }
+ }
+
+ if (r_uv_2.has(new_vertex)) {
+ if ((this_vert_poly_uv2 - (*r_uv_2.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
+ same_uv2 = true;
+ }
+ }
+
+ if (r_color.has(new_vertex)) {
+ if (this_vert_poly_color.is_equal_approx((*r_color.getptr(new_vertex)))) {
+ same_color = true;
+ }
+ }
+
+ if (r_normals.has(new_vertex)) {
+ if ((this_vert_poly_normal - (*r_normals.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
+ same_uv2 = true;
+ }
+ }
+
+ if (same_uv1 && same_uv2 && same_normal && same_color) {
+ similar_vertex = new_vertex;
+ break;
+ }
+ }
+
+ if (similar_vertex != -1) {
+ // Update polygon.
+ if (is_end_of_polygon(r_polygon_indices, pv)) {
+ r_polygon_indices[pv] = ~similar_vertex;
+ } else {
+ r_polygon_indices[pv] = similar_vertex;
+ }
+ need_duplication = false;
+ }
+ }
+ }
+
+ if (need_duplication) {
+ const Vertex old_index = index;
+ const Vertex new_index = r_vertices.size();
+
+ // Polygon index.
+ if (is_end_of_polygon(r_polygon_indices, pv)) {
+ r_polygon_indices[pv] = ~new_index;
+ } else {
+ r_polygon_indices[pv] = new_index;
+ }
+
+ // Vertex position.
+ r_vertices.push_back(r_vertices[old_index]);
+
+ // Normals
+ if (r_normals_raw.has(old_index)) {
+ r_normals.set(new_index, this_vert_poly_normal);
+ r_normals_raw.getptr(old_index)->erase(polygon_index);
+ r_normals_raw[new_index][polygon_index] = this_vert_poly_normal;
+ }
+
+ // Vertex Color
+ if (r_colors_raw.has(old_index)) {
+ r_color.set(new_index, this_vert_poly_color);
+ r_colors_raw.getptr(old_index)->erase(polygon_index);
+ r_colors_raw[new_index][polygon_index] = this_vert_poly_color;
+ }
+
+ // UV 0
+ if (r_uv_1_raw.has(old_index)) {
+ r_uv_1.set(new_index, this_vert_poly_uv1);
+ r_uv_1_raw.getptr(old_index)->erase(polygon_index);
+ r_uv_1_raw[new_index][polygon_index] = this_vert_poly_uv1;
+ }
+
+ // UV 1
+ if (r_uv_2_raw.has(old_index)) {
+ r_uv_2.set(new_index, this_vert_poly_uv2);
+ r_uv_2_raw.getptr(old_index)->erase(polygon_index);
+ r_uv_2_raw[new_index][polygon_index] = this_vert_poly_uv2;
+ }
+
+ // Morphs
+ for (const String *mname = r_morphs.next(nullptr); mname != nullptr; mname = r_morphs.next(mname)) {
+ MorphVertexData *d = r_morphs.getptr(*mname);
+ // This can't never happen.
+ CRASH_COND(d == nullptr);
+ if (d->vertices.size() > old_index) {
+ d->vertices.push_back(d->vertices[old_index]);
+ }
+ if (d->normals.size() > old_index) {
+ d->normals.push_back(d->normals[old_index]);
+ }
+ }
+
+ if (vertex_weights.has(old_index)) {
+ vertex_weights.set(new_index, vertex_weights[old_index]);
+ }
+
+ duplicated_vertices[old_index].push_back(new_index);
+ } else {
+ if (r_normals_raw.has(index) &&
+ r_normals.has(index) == false) {
+ r_normals.set(index, this_vert_poly_normal);
+ }
+
+ if (r_colors_raw.has(index) && r_color.has(index) == false) {
+ r_color.set(index, this_vert_poly_color);
+ }
+
+ if (r_uv_1_raw.has(index) &&
+ r_uv_1.has(index) == false) {
+ r_uv_1.set(index, this_vert_poly_uv1);
+ }
+
+ if (r_uv_2_raw.has(index) &&
+ r_uv_2.has(index) == false) {
+ r_uv_2.set(index, this_vert_poly_uv2);
+ }
+ }
+ }
+}
+
+void FBXMeshData::add_vertex(
+ const ImportState &state,
+ Ref<SurfaceTool> p_surface_tool,
+ real_t p_scale,
+ Vertex p_vertex,
+ const std::vector<Vector3> &p_vertices_position,
+ const HashMap<int, Vector3> &p_normals,
+ const HashMap<int, Vector2> &p_uvs_0,
+ const HashMap<int, Vector2> &p_uvs_1,
+ const HashMap<int, Color> &p_colors,
+ const Vector3 &p_morph_value,
+ const Vector3 &p_morph_normal) {
+ ERR_FAIL_INDEX_MSG(p_vertex, (Vertex)p_vertices_position.size(), "FBX file is corrupted, the position of the vertex can't be retrieved.");
+
+ if (p_normals.has(p_vertex) && !state.is_blender_fbx) {
+ p_surface_tool->set_normal(p_normals[p_vertex] + p_morph_normal);
+ }
+
+ if (p_uvs_0.has(p_vertex)) {
+ //print_verbose("uv1: [" + itos(p_vertex) + "] " + p_uvs_0[p_vertex]);
+ // Inverts Y UV.
+ p_surface_tool->set_uv(Vector2(p_uvs_0[p_vertex].x, 1 - p_uvs_0[p_vertex].y));
+ }
+
+ if (p_uvs_1.has(p_vertex)) {
+ //print_verbose("uv2: [" + itos(p_vertex) + "] " + p_uvs_1[p_vertex]);
+ // Inverts Y UV.
+ p_surface_tool->set_uv2(Vector2(p_uvs_1[p_vertex].x, 1 - p_uvs_1[p_vertex].y));
+ }
+
+ if (p_colors.has(p_vertex)) {
+ p_surface_tool->set_color(p_colors[p_vertex]);
+ }
+
+ // TODO what about binormals?
+ // TODO there is other?
+
+ if (vertex_weights.has(p_vertex)) {
+ // Let's extract the weight info.
+ const VertexWeightMapping *vm = vertex_weights.getptr(p_vertex);
+ const Vector<int> &bones = vm->bones;
+
+ // the bug is that the bone idx is wrong because it is not ref'ing the skin.
+
+ if (bones.size() > RS::ARRAY_WEIGHTS_SIZE) {
+ print_error("[weight overflow detected]");
+ }
+
+ p_surface_tool->set_weights(vm->weights);
+ // 0 1 2 3 4 5 6 7 < local skeleton / skin for mesh
+ // 0 1 2 3 4 5 6 7 8 9 10 < actual skeleton with all joints
+ p_surface_tool->set_bones(bones);
+ }
+
+ // The surface tool want the vertex position as last thing.
+ p_surface_tool->add_vertex((p_vertices_position[p_vertex] + p_morph_value) * p_scale);
+}
+
+void FBXMeshData::triangulate_polygon(Ref<SurfaceTool> st, Vector<int> p_polygon_vertex, const Vector<Vertex> p_surface_vertex_map, const std::vector<Vector3> &p_vertices) const {
+ const int polygon_vertex_count = p_polygon_vertex.size();
+ if (polygon_vertex_count == 1) {
+ // point to triangle
+ st->add_index(p_polygon_vertex[0]);
+ st->add_index(p_polygon_vertex[0]);
+ st->add_index(p_polygon_vertex[0]);
+ return;
+ } else if (polygon_vertex_count == 2) {
+ // line to triangle
+ st->add_index(p_polygon_vertex[1]);
+ st->add_index(p_polygon_vertex[1]);
+ st->add_index(p_polygon_vertex[0]);
+ return;
+ } else if (polygon_vertex_count == 3) {
+ // triangle to triangle
+ st->add_index(p_polygon_vertex[0]);
+ st->add_index(p_polygon_vertex[2]);
+ st->add_index(p_polygon_vertex[1]);
+ return;
+ } else if (polygon_vertex_count == 4) {
+ // quad to triangle - this code is awesome for import times
+ // it prevents triangles being generated slowly
+ st->add_index(p_polygon_vertex[0]);
+ st->add_index(p_polygon_vertex[2]);
+ st->add_index(p_polygon_vertex[1]);
+ st->add_index(p_polygon_vertex[2]);
+ st->add_index(p_polygon_vertex[0]);
+ st->add_index(p_polygon_vertex[3]);
+ return;
+ } else {
+ // non triangulated - we must run the triangulation algorithm
+ bool is_simple_convex = false;
+ // this code is 'slow' but required it triangulates all the unsupported geometry.
+ // Doesn't allow for bigger polygons because those are unlikely be convex
+ if (polygon_vertex_count <= 6) {
+ // Start from true, check if it's false.
+ is_simple_convex = true;
+ Vector3 first_vec;
+ for (int i = 0; i < polygon_vertex_count; i += 1) {
+ const Vector3 p1 = p_vertices[p_surface_vertex_map[p_polygon_vertex[i]]];
+ const Vector3 p2 = p_vertices[p_surface_vertex_map[p_polygon_vertex[(i + 1) % polygon_vertex_count]]];
+ const Vector3 p3 = p_vertices[p_surface_vertex_map[p_polygon_vertex[(i + 2) % polygon_vertex_count]]];
+
+ const Vector3 edge1 = p1 - p2;
+ const Vector3 edge2 = p3 - p2;
+
+ const Vector3 res = edge1.normalized().cross(edge2.normalized()).normalized();
+ if (i == 0) {
+ first_vec = res;
+ } else {
+ if (first_vec.dot(res) < 0.0) {
+ // Ok we found an angle that is not the same dir of the
+ // others.
+ is_simple_convex = false;
+ break;
+ }
+ }
+ }
+ }
+
+ if (is_simple_convex) {
+ // This is a convex polygon, so just triangulate it.
+ for (int i = 0; i < (polygon_vertex_count - 2); i += 1) {
+ st->add_index(p_polygon_vertex[2 + i]);
+ st->add_index(p_polygon_vertex[1 + i]);
+ st->add_index(p_polygon_vertex[0]);
+ }
+ return;
+ }
+ }
+
+ {
+ // This is a concave polygon.
+
+ std::vector<Vector3> poly_vertices(polygon_vertex_count);
+ for (int i = 0; i < polygon_vertex_count; i += 1) {
+ poly_vertices[i] = p_vertices[p_surface_vertex_map[p_polygon_vertex[i]]];
+ }
+
+ const Vector3 poly_norm = get_poly_normal(poly_vertices);
+ if (poly_norm.length_squared() <= CMP_EPSILON) {
+ ERR_FAIL_COND_MSG(poly_norm.length_squared() <= CMP_EPSILON, "The normal of this poly was not computed. Is this FBX file corrupted.");
+ }
+
+ // Select the plan coordinate.
+ int axis_1_coord = 0;
+ int axis_2_coord = 1;
+ {
+ real_t inv = poly_norm.z;
+
+ const real_t axis_x = ABS(poly_norm.x);
+ const real_t axis_y = ABS(poly_norm.y);
+ const real_t axis_z = ABS(poly_norm.z);
+
+ if (axis_x > axis_y) {
+ if (axis_x > axis_z) {
+ // For the most part the normal point toward X.
+ axis_1_coord = 1;
+ axis_2_coord = 2;
+ inv = poly_norm.x;
+ }
+ } else if (axis_y > axis_z) {
+ // For the most part the normal point toward Y.
+ axis_1_coord = 2;
+ axis_2_coord = 0;
+ inv = poly_norm.y;
+ }
+
+ // Swap projection axes to take the negated projection vector into account
+ if (inv < 0.0f) {
+ SWAP(axis_1_coord, axis_2_coord);
+ }
+ }
+
+ TriangulatorPoly triangulator_poly;
+ triangulator_poly.Init(polygon_vertex_count);
+ std::vector<Vector2> projected_vertices(polygon_vertex_count);
+ for (int i = 0; i < polygon_vertex_count; i += 1) {
+ const Vector2 pv(poly_vertices[i][axis_1_coord], poly_vertices[i][axis_2_coord]);
+ projected_vertices[i] = pv;
+ triangulator_poly.GetPoint(i) = pv;
+ }
+ triangulator_poly.SetOrientation(TRIANGULATOR_CCW);
+
+ List<TriangulatorPoly> out_poly;
+
+ TriangulatorPartition triangulator_partition;
+ if (triangulator_partition.Triangulate_OPT(&triangulator_poly, &out_poly) == 0) { // Good result.
+ if (triangulator_partition.Triangulate_EC(&triangulator_poly, &out_poly) == 0) { // Medium result.
+ if (triangulator_partition.Triangulate_MONO(&triangulator_poly, &out_poly) == 0) { // Really poor result.
+ ERR_FAIL_MSG("The triangulation of this polygon failed, please try to triangulate your mesh or check if it has broken polygons.");
+ }
+ }
+ }
+
+ std::vector<Vector2> tris(out_poly.size());
+ for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
+ TriangulatorPoly &tp = I->get();
+
+ ERR_FAIL_COND_MSG(tp.GetNumPoints() != 3, "The triangulator retuned more points, how this is possible?");
+ // Find Index
+ for (int i = 2; i >= 0; i -= 1) {
+ const Vector2 vertex = tp.GetPoint(i);
+ bool done = false;
+ // Find Index
+ for (int y = 0; y < polygon_vertex_count; y += 1) {
+ if ((projected_vertices[y] - vertex).length_squared() <= CMP_EPSILON) {
+ // This seems the right vertex
+ st->add_index(p_polygon_vertex[y]);
+ done = true;
+ break;
+ }
+ }
+ ERR_FAIL_COND(done == false);
+ }
+ }
+ }
+}
+
+void FBXMeshData::gen_weight_info(Ref<SurfaceTool> st, Vertex vertex_id) const {
+ if (vertex_weights.is_empty()) {
+ return;
+ }
+
+ if (vertex_weights.has(vertex_id)) {
+ // Let's extract the weight info.
+ const VertexWeightMapping *vm = vertex_weights.getptr(vertex_id);
+ st->set_weights(vm->weights);
+ st->set_bones(vm->bones);
+ }
+}
+
+int FBXMeshData::get_vertex_from_polygon_vertex(const std::vector<int> &p_polygon_indices, int p_index) const {
+ if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
+ return -1;
+ }
+
+ const int vertex = p_polygon_indices[p_index];
+ if (vertex >= 0) {
+ return vertex;
+ } else {
+ // Negative numbers are the end of the face, reversing the bits is
+ // possible to obtain the positive correct vertex number.
+ return ~vertex;
+ }
+}
+
+bool FBXMeshData::is_end_of_polygon(const std::vector<int> &p_polygon_indices, int p_index) const {
+ if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
+ return false;
+ }
+
+ const int vertex = p_polygon_indices[p_index];
+
+ // If the index is negative this is the end of the Polygon.
+ return vertex < 0;
+}
+
+bool FBXMeshData::is_start_of_polygon(const std::vector<int> &p_polygon_indices, int p_index) const {
+ if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
+ return false;
+ }
+
+ if (p_index == 0) {
+ return true;
+ }
+
+ // If the previous indices is negative this is the begin of a new Polygon.
+ return p_polygon_indices[p_index - 1] < 0;
+}
+
+int FBXMeshData::count_polygons(const std::vector<int> &p_polygon_indices) const {
+ // The negative numbers define the end of the polygon. Counting the amount of
+ // negatives the numbers of polygons are obtained.
+ int count = 0;
+ for (size_t i = 0; i < p_polygon_indices.size(); i += 1) {
+ if (p_polygon_indices[i] < 0) {
+ count += 1;
+ }
+ }
+ return count;
+}
+
+template <class R, class T>
+HashMap<int, R> FBXMeshData::extract_per_vertex_data(
+ int p_vertex_count,
+ const std::vector<FBXDocParser::MeshGeometry::Edge> &p_edge_map,
+ const std::vector<int> &p_mesh_indices,
+ const FBXDocParser::MeshGeometry::MappingData<T> &p_mapping_data,
+ R (*collector_function)(const Vector<VertexData<T>> *p_vertex_data, R p_fall_back),
+ R p_fall_back) const {
+ /* When index_to_direct is set
+ * index size is 184 ( contains index for the data array [values 0, 96] )
+ * data size is 96 (contains uv coordinates)
+ * this means index is simple data reduction basically
+ */
+ ////
+ if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_mapping_data.index.size() == 0) {
+ print_verbose("debug count: index size: " + itos(p_mapping_data.index.size()) + ", data size: " + itos(p_mapping_data.data.size()));
+ print_verbose("vertex indices count: " + itos(p_mesh_indices.size()));
+ print_verbose("Edge map size: " + itos(p_edge_map.size()));
+ }
+
+ ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_mapping_data.index.size() == 0, (HashMap<int, R>()), "FBX importer needs to map correctly to this field, please specify the override index name to fix this problem!");
+ ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index && p_mapping_data.index.size() == 0, (HashMap<int, R>()), "The FBX seems corrupted");
+
+ // Aggregate vertex data.
+ HashMap<Vertex, Vector<VertexData<T>>> aggregate_vertex_data;
+
+ switch (p_mapping_data.map_type) {
+ case FBXDocParser::MeshGeometry::MapType::none: {
+ // No data nothing to do.
+ return (HashMap<int, R>());
+ }
+ case FBXDocParser::MeshGeometry::MapType::vertex: {
+ ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct, (HashMap<int, R>()), "We will support in future");
+
+ if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
+ // The data is mapped per vertex directly.
+ ERR_FAIL_COND_V_MSG((int)p_mapping_data.data.size() != p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR01");
+ for (size_t vertex_index = 0; vertex_index < p_mapping_data.data.size(); vertex_index += 1) {
+ aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[vertex_index] });
+ }
+ } else {
+ // The data is mapped per vertex using a reference.
+ // The indices array, contains a *reference_id for each vertex.
+ // * Note that the reference_id is the id of data into the data array.
+ //
+ // https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
+ ERR_FAIL_COND_V_MSG((int)p_mapping_data.index.size() != p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR02");
+ for (size_t vertex_index = 0; vertex_index < p_mapping_data.index.size(); vertex_index += 1) {
+ ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[vertex_index], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR03.");
+ aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[p_mapping_data.index[vertex_index]] });
+ }
+ }
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::polygon_vertex: {
+ if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct) {
+ // The data is mapped using each index from the indexes array then direct to the data (data reduction algorithm)
+ ERR_FAIL_COND_V_MSG((int)p_mesh_indices.size() != (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR04");
+ int polygon_id = -1;
+ for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.index.size(); polygon_vertex_index += 1) {
+ if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
+ polygon_id += 1;
+ }
+ const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
+ ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR05");
+ ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR06");
+ const int index_to_direct = p_mapping_data.index[polygon_vertex_index];
+ T value = p_mapping_data.data[index_to_direct];
+ aggregate_vertex_data[vertex_index].push_back({ polygon_id, value });
+ }
+ } else if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
+ // The data are mapped per polygon vertex directly.
+ ERR_FAIL_COND_V_MSG((int)p_mesh_indices.size() != (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR04");
+ int polygon_id = -1;
+ for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.data.size(); polygon_vertex_index += 1) {
+ if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
+ polygon_id += 1;
+ }
+ const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
+ ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR05");
+ ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR06");
+
+ aggregate_vertex_data[vertex_index].push_back({ polygon_id, p_mapping_data.data[polygon_vertex_index] });
+ }
+ } else {
+ // The data is mapped per polygon_vertex using a reference.
+ // The indices array, contains a *reference_id for each polygon_vertex.
+ // * Note that the reference_id is the id of data into the data array.
+ //
+ // https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
+ ERR_FAIL_COND_V_MSG(p_mesh_indices.size() != p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR7");
+ int polygon_id = -1;
+ for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.index.size(); polygon_vertex_index += 1) {
+ if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
+ polygon_id += 1;
+ }
+ const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
+ ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR8");
+ ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR9.");
+ ERR_FAIL_COND_V_MSG(p_mapping_data.index[polygon_vertex_index] < 0, (HashMap<int, R>()), "FBX file seems corrupted: #ERR10.");
+ ERR_FAIL_COND_V_MSG(p_mapping_data.index[polygon_vertex_index] >= (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR11.");
+ aggregate_vertex_data[vertex_index].push_back({ polygon_id, p_mapping_data.data[p_mapping_data.index[polygon_vertex_index]] });
+ }
+ }
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::polygon: {
+ if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
+ // The data are mapped per polygon directly.
+ const int polygon_count = count_polygons(p_mesh_indices);
+ ERR_FAIL_COND_V_MSG(polygon_count != (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR12");
+
+ // Advance each polygon vertex, each new polygon advance the polygon index.
+ int polygon_index = -1;
+ for (size_t polygon_vertex_index = 0;
+ polygon_vertex_index < p_mesh_indices.size();
+ polygon_vertex_index += 1) {
+ if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
+ polygon_index += 1;
+ ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR13");
+ }
+
+ const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
+ ERR_FAIL_INDEX_V_MSG(vertex_index, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR14");
+
+ aggregate_vertex_data[vertex_index].push_back({ polygon_index, p_mapping_data.data[polygon_index] });
+ }
+ ERR_FAIL_COND_V_MSG((polygon_index + 1) != polygon_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR16. Not all Polygons are present in the file.");
+ } else {
+ // The data is mapped per polygon using a reference.
+ // The indices array, contains a *reference_id for each polygon.
+ // * Note that the reference_id is the id of data into the data array.
+ //
+ // https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
+ const int polygon_count = count_polygons(p_mesh_indices);
+ ERR_FAIL_COND_V_MSG(polygon_count != (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR17");
+
+ // Advance each polygon vertex, each new polygon advance the polygon index.
+ int polygon_index = -1;
+ for (size_t polygon_vertex_index = 0;
+ polygon_vertex_index < p_mesh_indices.size();
+ polygon_vertex_index += 1) {
+ if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
+ polygon_index += 1;
+ ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR18");
+ ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[polygon_index], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR19");
+ }
+
+ const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
+ ERR_FAIL_INDEX_V_MSG(vertex_index, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR20");
+
+ aggregate_vertex_data[vertex_index].push_back({ polygon_index, p_mapping_data.data[p_mapping_data.index[polygon_index]] });
+ }
+ ERR_FAIL_COND_V_MSG((polygon_index + 1) != polygon_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR22. Not all Polygons are present in the file.");
+ }
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::edge: {
+ if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
+ // The data are mapped per edge directly.
+ ERR_FAIL_COND_V_MSG(p_edge_map.size() != p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR23");
+ for (size_t edge_index = 0; edge_index < p_mapping_data.data.size(); edge_index += 1) {
+ const FBXDocParser::MeshGeometry::Edge edge = FBXDocParser::MeshGeometry::get_edge(p_edge_map, edge_index);
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_0, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR24");
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_1, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR25");
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_0, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR26");
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_1, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR27");
+ aggregate_vertex_data[edge.vertex_0].push_back({ -1, p_mapping_data.data[edge_index] });
+ aggregate_vertex_data[edge.vertex_1].push_back({ -1, p_mapping_data.data[edge_index] });
+ }
+ } else {
+ // The data is mapped per edge using a reference.
+ // The indices array, contains a *reference_id for each polygon.
+ // * Note that the reference_id is the id of data into the data array.
+ //
+ // https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
+ ERR_FAIL_COND_V_MSG(p_edge_map.size() != p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR28");
+ for (size_t edge_index = 0; edge_index < p_mapping_data.data.size(); edge_index += 1) {
+ const FBXDocParser::MeshGeometry::Edge edge = FBXDocParser::MeshGeometry::get_edge(p_edge_map, edge_index);
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_0, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR29");
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_1, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR30");
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_0, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR31");
+ ERR_FAIL_INDEX_V_MSG(edge.vertex_1, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR32");
+ ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[edge.vertex_0], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR33");
+ ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[edge.vertex_1], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR34");
+ aggregate_vertex_data[edge.vertex_0].push_back({ -1, p_mapping_data.data[p_mapping_data.index[edge_index]] });
+ aggregate_vertex_data[edge.vertex_1].push_back({ -1, p_mapping_data.data[p_mapping_data.index[edge_index]] });
+ }
+ }
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::all_the_same: {
+ // No matter the mode, no matter the data size; The first always win
+ // and is set to all the vertices.
+ ERR_FAIL_COND_V_MSG(p_mapping_data.data.size() <= 0, (HashMap<int, R>()), "FBX file seems corrupted: #ERR35");
+ if (p_mapping_data.data.size() > 0) {
+ for (int vertex_index = 0; vertex_index < p_vertex_count; vertex_index += 1) {
+ aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[0] });
+ }
+ }
+ } break;
+ }
+
+ if (aggregate_vertex_data.size() == 0) {
+ return (HashMap<int, R>());
+ }
+
+ // A map is used because turns out that the some FBX file are not well organized
+ // with vertices well compacted. Using a map allows avoid those issues.
+ HashMap<Vertex, R> result;
+
+ // Aggregate the collected data.
+ for (const Vertex *index = aggregate_vertex_data.next(nullptr); index != nullptr; index = aggregate_vertex_data.next(index)) {
+ Vector<VertexData<T>> *aggregated_vertex = aggregate_vertex_data.getptr(*index);
+ // This can't be null because we are just iterating.
+ CRASH_COND(aggregated_vertex == nullptr);
+
+ ERR_FAIL_INDEX_V_MSG(0, aggregated_vertex->size(), (HashMap<int, R>()), "The FBX file is corrupted, No valid data for this vertex index.");
+ result[*index] = collector_function(aggregated_vertex, p_fall_back);
+ }
+
+ // Sanitize the data now, if the file is broken we can try import it anyway.
+ bool problem_found = false;
+ for (size_t i = 0; i < p_mesh_indices.size(); i += 1) {
+ const Vertex vertex = get_vertex_from_polygon_vertex(p_mesh_indices, i);
+ if (result.has(vertex) == false) {
+ result[vertex] = p_fall_back;
+ problem_found = true;
+ }
+ }
+ if (problem_found) {
+ WARN_PRINT("Some data is missing, this FBX file may be corrupted: #WARN0.");
+ }
+
+ return result;
+}
+
+template <class T>
+HashMap<int, T> FBXMeshData::extract_per_polygon(
+ int p_vertex_count,
+ const std::vector<int> &p_polygon_indices,
+ const FBXDocParser::MeshGeometry::MappingData<T> &p_fbx_data,
+ T p_fallback_value) const {
+ ERR_FAIL_COND_V_MSG(p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_fbx_data.data.size() == 0, (HashMap<int, T>()), "invalid index to direct array");
+ ERR_FAIL_COND_V_MSG(p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index && p_fbx_data.index.size() == 0, (HashMap<int, T>()), "The FBX seems corrupted");
+
+ const int polygon_count = count_polygons(p_polygon_indices);
+
+ // Aggregate vertex data.
+ HashMap<int, Vector<T>> aggregate_polygon_data;
+
+ switch (p_fbx_data.map_type) {
+ case FBXDocParser::MeshGeometry::MapType::none: {
+ // No data nothing to do.
+ return (HashMap<int, T>());
+ }
+ case FBXDocParser::MeshGeometry::MapType::vertex: {
+ ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per vertex. This should not happen.");
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::polygon_vertex: {
+ ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per polygon vertex. This should not happen.");
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::polygon: {
+ if (p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct) {
+ // The data is stored efficiently index_to_direct allows less data in the FBX file.
+ for (int polygon_index = 0;
+ polygon_index < polygon_count;
+ polygon_index += 1) {
+ if (p_fbx_data.index.size() == 0) {
+ ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR62");
+ aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[polygon_index]);
+ } else {
+ ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR62");
+
+ const int index_to_direct = p_fbx_data.index[polygon_index];
+ T value = p_fbx_data.data[index_to_direct];
+ aggregate_polygon_data[polygon_index].push_back(value);
+ }
+ }
+ } else if (p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
+ // The data are mapped per polygon directly.
+ ERR_FAIL_COND_V_MSG(polygon_count != (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR51");
+
+ // Advance each polygon vertex, each new polygon advance the polygon index.
+ for (int polygon_index = 0;
+ polygon_index < polygon_count;
+ polygon_index += 1) {
+ ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR52");
+ aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[polygon_index]);
+ }
+ } else {
+ // The data is mapped per polygon using a reference.
+ // The indices array, contains a *reference_id for each polygon.
+ // * Note that the reference_id is the id of data into the data array.
+ //
+ // https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
+ ERR_FAIL_COND_V_MSG(polygon_count != (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file seems corrupted: #ERR52");
+
+ // Advance each polygon vertex, each new polygon advance the polygon index.
+ for (int polygon_index = 0;
+ polygon_index < polygon_count;
+ polygon_index += 1) {
+ ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR53");
+ ERR_FAIL_INDEX_V_MSG(p_fbx_data.index[polygon_index], (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR54");
+ aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[p_fbx_data.index[polygon_index]]);
+ }
+ }
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::edge: {
+ ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per edge. This should not happen.");
+ } break;
+ case FBXDocParser::MeshGeometry::MapType::all_the_same: {
+ // No matter the mode, no matter the data size; The first always win
+ // and is set to all the vertices.
+ ERR_FAIL_COND_V_MSG(p_fbx_data.data.size() <= 0, (HashMap<int, T>()), "FBX file seems corrupted: #ERR55");
+ if (p_fbx_data.data.size() > 0) {
+ for (int polygon_index = 0; polygon_index < polygon_count; polygon_index += 1) {
+ aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[0]);
+ }
+ }
+ } break;
+ }
+
+ if (aggregate_polygon_data.size() == 0) {
+ return (HashMap<int, T>());
+ }
+
+ // A map is used because turns out that the some FBX file are not well organized
+ // with vertices well compacted. Using a map allows avoid those issues.
+ HashMap<int, T> polygons;
+
+ // Take the first value for each vertex.
+ for (const Vertex *index = aggregate_polygon_data.next(nullptr); index != nullptr; index = aggregate_polygon_data.next(index)) {
+ Vector<T> *aggregated_polygon = aggregate_polygon_data.getptr(*index);
+ // This can't be null because we are just iterating.
+ CRASH_COND(aggregated_polygon == nullptr);
+
+ ERR_FAIL_INDEX_V_MSG(0, (int)aggregated_polygon->size(), (HashMap<int, T>()), "The FBX file is corrupted, No valid data for this polygon index.");
+
+ // Validate the final value.
+ polygons[*index] = (*aggregated_polygon)[0];
+ }
+
+ // Sanitize the data now, if the file is broken we can try import it anyway.
+ bool problem_found = false;
+ for (int polygon_i = 0; polygon_i < polygon_count; polygon_i += 1) {
+ if (polygons.has(polygon_i) == false) {
+ polygons[polygon_i] = p_fallback_value;
+ problem_found = true;
+ }
+ }
+ if (problem_found) {
+ WARN_PRINT("Some data is missing, this FBX file may be corrupted: #WARN1.");
+ }
+
+ return polygons;
+}
+
+void FBXMeshData::extract_morphs(const FBXDocParser::MeshGeometry *mesh_geometry, HashMap<String, MorphVertexData> &r_data) {
+ r_data.clear();
+
+ const int vertex_count = mesh_geometry->get_vertices().size();
+
+ for (const FBXDocParser::BlendShape *blend_shape : mesh_geometry->get_blend_shapes()) {
+ for (const FBXDocParser::BlendShapeChannel *blend_shape_channel : blend_shape->BlendShapeChannels()) {
+ const std::vector<const FBXDocParser::ShapeGeometry *> &shape_geometries = blend_shape_channel->GetShapeGeometries();
+ for (const FBXDocParser::ShapeGeometry *shape_geometry : shape_geometries) {
+ String morph_name = ImportUtils::FBXAnimMeshName(shape_geometry->Name()).c_str();
+ if (morph_name.is_empty()) {
+ morph_name = "morph";
+ }
+
+ // TODO we have only these??
+ const std::vector<unsigned int> &morphs_vertex_indices = shape_geometry->GetIndices();
+ const std::vector<Vector3> &morphs_vertices = shape_geometry->GetVertices();
+ const std::vector<Vector3> &morphs_normals = shape_geometry->GetNormals();
+
+ ERR_FAIL_COND_MSG((int)morphs_vertex_indices.size() > vertex_count, "The FBX file is corrupted: #ERR103");
+ ERR_FAIL_COND_MSG(morphs_vertex_indices.size() != morphs_vertices.size(), "The FBX file is corrupted: #ERR104");
+ ERR_FAIL_COND_MSG((int)morphs_vertices.size() > vertex_count, "The FBX file is corrupted: #ERR105");
+ ERR_FAIL_COND_MSG(morphs_normals.size() != 0 && morphs_normals.size() != morphs_vertices.size(), "The FBX file is corrupted: #ERR106");
+
+ if (r_data.has(morph_name) == false) {
+ // This morph doesn't exist yet.
+ // Create it.
+ MorphVertexData md;
+ md.vertices.resize(vertex_count);
+ md.normals.resize(vertex_count);
+ r_data.set(morph_name, md);
+ }
+
+ MorphVertexData *data = r_data.getptr(morph_name);
+ Vector3 *data_vertices_ptr = data->vertices.ptrw();
+ Vector3 *data_normals_ptr = data->normals.ptrw();
+
+ for (int i = 0; i < (int)morphs_vertex_indices.size(); i += 1) {
+ const Vertex vertex = morphs_vertex_indices[i];
+
+ ERR_FAIL_INDEX_MSG(vertex, vertex_count, "The blend shapes of this FBX file are corrupted. It has a not valid vertex.");
+
+ data_vertices_ptr[vertex] = morphs_vertices[i];
+
+ if (morphs_normals.size() != 0) {
+ data_normals_ptr[vertex] = morphs_normals[i];
+ }
+ }
+ }
+ }
+ }
+}