summaryrefslogtreecommitdiff
path: root/editor/import
diff options
context:
space:
mode:
Diffstat (limited to 'editor/import')
-rw-r--r--editor/import/editor_import_collada.cpp4
-rw-r--r--editor/import/editor_scene_importer_gltf.cpp2108
-rw-r--r--editor/import/editor_scene_importer_gltf.h304
-rw-r--r--editor/import/resource_importer_obj.cpp4
-rw-r--r--editor/import/resource_importer_texture.cpp2
-rw-r--r--editor/import/resource_importer_wav.cpp4
6 files changed, 2419 insertions, 7 deletions
diff --git a/editor/import/editor_import_collada.cpp b/editor/import/editor_import_collada.cpp
index 5bf2da9912..3626c6be59 100644
--- a/editor/import/editor_import_collada.cpp
+++ b/editor/import/editor_import_collada.cpp
@@ -554,10 +554,10 @@ static void _generate_tangents_and_binormals(const PoolVector<int> &p_indices, c
tangent = Vector3();
} else {
tangent = Vector3((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r,
- (t2 * z1 - t1 * z2) * r)
+ (t2 * z1 - t1 * z2) * r)
.normalized();
binormal = Vector3((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r,
- (s1 * z2 - s2 * z1) * r)
+ (s1 * z2 - s2 * z1) * r)
.normalized();
}
diff --git a/editor/import/editor_scene_importer_gltf.cpp b/editor/import/editor_scene_importer_gltf.cpp
new file mode 100644
index 0000000000..1c42bcef8a
--- /dev/null
+++ b/editor/import/editor_scene_importer_gltf.cpp
@@ -0,0 +1,2108 @@
+#include "editor_scene_importer_gltf.h"
+#include "io/json.h"
+#include "os/file_access.h"
+#include "os/os.h"
+#include "scene/3d/camera.h"
+#include "scene/3d/mesh_instance.h"
+#include "scene/animation/animation_player.h"
+#include "scene/resources/surface_tool.h"
+#include "thirdparty/misc/base64.h"
+
+uint32_t EditorSceneImporterGLTF::get_import_flags() const {
+
+ return IMPORT_SCENE | IMPORT_ANIMATION;
+}
+void EditorSceneImporterGLTF::get_extensions(List<String> *r_extensions) const {
+
+ r_extensions->push_back("gltf");
+ r_extensions->push_back("glb");
+}
+
+Error EditorSceneImporterGLTF::_parse_json(const String &p_path, GLTFState &state) {
+
+ Error err;
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
+ if (!f) {
+ return err;
+ }
+
+ Vector<uint8_t> array;
+ array.resize(f->get_len());
+ f->get_buffer(array.ptr(), array.size());
+ String text;
+ text.parse_utf8((const char *)array.ptr(), array.size());
+
+ String err_txt;
+ int err_line;
+ Variant v;
+ err = JSON::parse(text, v, err_txt, err_line);
+ if (err != OK) {
+ _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
+ return err;
+ }
+ state.json = v;
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_glb(const String &p_path, GLTFState &state) {
+
+ Error err;
+ FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
+ if (!f) {
+ return err;
+ }
+
+ uint32_t magic = f->get_32();
+ ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF
+ uint32_t version = f->get_32();
+ uint32_t length = f->get_32();
+
+ uint32_t chunk_length = f->get_32();
+ uint32_t chunk_type = f->get_32();
+
+ ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON
+ Vector<uint8_t> json_data;
+ json_data.resize(chunk_length);
+ uint32_t len = f->get_buffer(json_data.ptr(), chunk_length);
+ ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
+
+ String text;
+ text.parse_utf8((const char *)json_data.ptr(), json_data.size());
+
+ String err_txt;
+ int err_line;
+ Variant v;
+ err = JSON::parse(text, v, err_txt, err_line);
+ if (err != OK) {
+ _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
+ return err;
+ }
+
+ state.json = v;
+
+ //data?
+
+ chunk_length = f->get_32();
+ chunk_type = f->get_32();
+
+ if (f->eof_reached()) {
+ return OK; //all good
+ }
+
+ ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN
+
+ state.glb_data.resize(chunk_length);
+ len = f->get_buffer(state.glb_data.ptr(), chunk_length);
+ ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
+
+ return OK;
+}
+
+static Vector3 _arr_to_vec3(const Array &p_array) {
+ ERR_FAIL_COND_V(p_array.size() != 3, Vector3());
+ return Vector3(p_array[0], p_array[1], p_array[2]);
+}
+
+static Quat _arr_to_quat(const Array &p_array) {
+ ERR_FAIL_COND_V(p_array.size() != 4, Quat());
+ return Quat(p_array[0], p_array[1], p_array[2], p_array[3]);
+}
+
+static Transform _arr_to_xform(const Array &p_array) {
+ ERR_FAIL_COND_V(p_array.size() != 16, Transform());
+
+ Transform xform;
+ xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2]));
+ xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6]));
+ xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10]));
+ xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14]));
+
+ return xform;
+}
+
+String EditorSceneImporterGLTF::_gen_unique_name(GLTFState &state, const String &p_name) {
+
+ int index = 1;
+
+ String name;
+ while (true) {
+
+ name = p_name;
+ if (index > 1) {
+ name += " " + itos(index);
+ }
+ if (!state.unique_names.has(name)) {
+ break;
+ }
+ index++;
+ }
+
+ state.unique_names.insert(name);
+
+ return name;
+}
+
+Error EditorSceneImporterGLTF::_parse_scenes(GLTFState &state) {
+
+ ERR_FAIL_COND_V(!state.json.has("scenes"), ERR_FILE_CORRUPT);
+ Array scenes = state.json["scenes"];
+ for (int i = 0; i < 1; i++) { //only first scene is imported
+ Dictionary s = scenes[i];
+ ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE);
+ Array nodes = s["nodes"];
+ for (int j = 0; j < nodes.size(); j++) {
+ state.root_nodes.push_back(nodes[j]);
+ }
+
+ if (s.has("name")) {
+ state.scene_name = s["name"];
+ }
+ }
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_nodes(GLTFState &state) {
+
+ ERR_FAIL_COND_V(!state.json.has("nodes"), ERR_FILE_CORRUPT);
+ Array nodes = state.json["nodes"];
+ for (int i = 0; i < nodes.size(); i++) {
+
+ GLTFNode *node = memnew(GLTFNode);
+ Dictionary n = nodes[i];
+
+ print_line("node " + itos(i) + ": " + String(Variant(n)));
+ if (n.has("name")) {
+ node->name = n["name"];
+ }
+ if (n.has("camera")) {
+ node->camera = n["camera"];
+ }
+ if (n.has("mesh")) {
+ node->mesh = n["mesh"];
+ }
+ if (n.has("skin")) {
+ node->skin = n["skin"];
+ if (!state.skin_users.has(node->skin)) {
+ state.skin_users[node->skin] = Vector<int>();
+ }
+
+ state.skin_users[node->skin].push_back(i);
+ }
+ if (n.has("matrix")) {
+ node->xform = _arr_to_xform(n["matrix"]);
+
+ } else {
+
+ if (n.has("translation")) {
+ node->translation = _arr_to_vec3(n["translation"]);
+ }
+ if (n.has("rotation")) {
+ node->rotation = _arr_to_quat(n["rotation"]);
+ }
+ if (n.has("scale")) {
+ node->scale = _arr_to_vec3(n["scale"]);
+ }
+
+ node->xform.basis = Basis(node->rotation);
+ node->xform.basis.scale(node->scale);
+ node->xform.origin = node->translation;
+ }
+
+ if (n.has("children")) {
+ Array children = n["children"];
+ for (int i = 0; i < children.size(); i++) {
+ node->children.push_back(children[i]);
+ }
+ }
+
+ state.nodes.push_back(node);
+ }
+
+ //build the hierarchy
+
+ for (int i = 0; i < state.nodes.size(); i++) {
+
+ for (int j = 0; j < state.nodes[i]->children.size(); j++) {
+ int child = state.nodes[i]->children[j];
+ ERR_FAIL_INDEX_V(child, state.nodes.size(), ERR_FILE_CORRUPT);
+ ERR_CONTINUE(state.nodes[child]->parent != -1); //node already has a parent, wtf.
+
+ state.nodes[child]->parent = i;
+ }
+ }
+
+ return OK;
+}
+
+static Vector<uint8_t> _parse_base64_uri(const String &uri) {
+
+ int start = uri.find(",");
+ ERR_FAIL_COND_V(start == -1, Vector<uint8_t>());
+
+ CharString substr = uri.right(start + 1).ascii();
+
+ int strlen = substr.length();
+
+ Vector<uint8_t> buf;
+ buf.resize(strlen / 4 * 3 + 1 + 1);
+
+ int len = base64_decode((char *)buf.ptr(), (char *)substr.get_data(), strlen);
+
+ buf.resize(len);
+
+ return buf;
+}
+
+Error EditorSceneImporterGLTF::_parse_buffers(GLTFState &state, const String &p_base_path) {
+
+ if (!state.json.has("buffers"))
+ return OK;
+
+ Array buffers = state.json["buffers"];
+ for (int i = 0; i < buffers.size(); i++) {
+
+ if (i == 0 && state.glb_data.size()) {
+ state.buffers.push_back(state.glb_data);
+
+ } else {
+ Dictionary buffer = buffers[i];
+ if (buffer.has("uri")) {
+
+ Vector<uint8_t> buffer_data;
+ String uri = buffer["uri"];
+
+ if (uri.findn("data:application/octet-stream;base64") == 0) {
+ //embedded data
+ buffer_data = _parse_base64_uri(uri);
+ } else {
+
+ uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows
+ buffer_data = FileAccess::get_file_as_array(uri);
+ ERR_FAIL_COND_V(buffer.size() == 0, ERR_PARSE_ERROR);
+ }
+
+ ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR);
+ int byteLength = buffer["byteLength"];
+ ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR);
+ state.buffers.push_back(buffer_data);
+ }
+ }
+ }
+
+ print_line("total buffers: " + itos(state.buffers.size()));
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_buffer_views(GLTFState &state) {
+
+ ERR_FAIL_COND_V(!state.json.has("bufferViews"), ERR_FILE_CORRUPT);
+ Array buffers = state.json["bufferViews"];
+ for (int i = 0; i < buffers.size(); i++) {
+
+ Dictionary d = buffers[i];
+
+ GLTFBufferView buffer_view;
+
+ ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR);
+ buffer_view.buffer = d["buffer"];
+ ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR);
+ buffer_view.byte_length = d["byteLength"];
+
+ if (d.has("byteOffset")) {
+ buffer_view.byte_offset = d["byteOffset"];
+ }
+
+ if (d.has("byteStride")) {
+ buffer_view.byte_stride = d["byteStride"];
+ }
+
+ if (d.has("target")) {
+ int target = d["target"];
+ buffer_view.indices = target == ELEMENT_ARRAY_BUFFER;
+ }
+
+ state.buffer_views.push_back(buffer_view);
+ }
+
+ print_line("total buffer views: " + itos(state.buffer_views.size()));
+
+ return OK;
+}
+
+EditorSceneImporterGLTF::GLTFType EditorSceneImporterGLTF::_get_type_from_str(const String &p_string) {
+
+ if (p_string == "SCALAR")
+ return TYPE_SCALAR;
+
+ if (p_string == "VEC2")
+ return TYPE_VEC2;
+ if (p_string == "VEC3")
+ return TYPE_VEC3;
+ if (p_string == "VEC4")
+ return TYPE_VEC4;
+
+ if (p_string == "MAT2")
+ return TYPE_MAT2;
+ if (p_string == "MAT3")
+ return TYPE_MAT3;
+ if (p_string == "MAT4")
+ return TYPE_MAT4;
+
+ ERR_FAIL_V(TYPE_SCALAR);
+}
+
+Error EditorSceneImporterGLTF::_parse_accessors(GLTFState &state) {
+
+ ERR_FAIL_COND_V(!state.json.has("accessors"), ERR_FILE_CORRUPT);
+ Array accessors = state.json["accessors"];
+ for (int i = 0; i < accessors.size(); i++) {
+
+ Dictionary d = accessors[i];
+
+ GLTFAccessor accessor;
+
+ ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR);
+ accessor.component_type = d["componentType"];
+ ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
+ accessor.count = d["count"];
+ ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
+ accessor.type = _get_type_from_str(d["type"]);
+
+ if (d.has("bufferView")) {
+ accessor.buffer_view = d["bufferView"]; //optional because it may be sparse...
+ }
+
+ if (d.has("byteOffset")) {
+ accessor.byte_offset = d["byteOffset"];
+ }
+
+ if (d.has("max")) {
+ accessor.max = d["max"];
+ }
+
+ if (d.has("min")) {
+ accessor.min = d["min"];
+ }
+
+ if (d.has("sparse")) {
+ //eeh..
+
+ Dictionary s = d["sparse"];
+
+ ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
+ accessor.sparse_count = d["count"];
+ ERR_FAIL_COND_V(!d.has("indices"), ERR_PARSE_ERROR);
+ Dictionary si = d["indices"];
+
+ ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
+ accessor.sparse_indices_buffer_view = si["bufferView"];
+ ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
+ accessor.sparse_indices_component_type = si["componentType"];
+
+ if (si.has("byteOffset")) {
+ accessor.sparse_indices_byte_offset = si["byteOffset"];
+ }
+
+ ERR_FAIL_COND_V(!d.has("values"), ERR_PARSE_ERROR);
+ Dictionary sv = d["values"];
+
+ ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
+ accessor.sparse_values_buffer_view = sv["bufferView"];
+ if (sv.has("byteOffset")) {
+ accessor.sparse_values_byte_offset = sv["byteOffset"];
+ }
+ }
+
+ state.accessors.push_back(accessor);
+ }
+
+ print_line("total accessors: " + itos(state.accessors.size()));
+
+ return OK;
+}
+
+String EditorSceneImporterGLTF::_get_component_type_name(uint32_t p_component) {
+
+ switch (p_component) {
+ case COMPONENT_TYPE_BYTE: return "Byte";
+ case COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte";
+ case COMPONENT_TYPE_SHORT: return "Short";
+ case COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort";
+ case COMPONENT_TYPE_INT: return "Int";
+ case COMPONENT_TYPE_FLOAT: return "Float";
+ }
+
+ return "<Error>";
+}
+
+String EditorSceneImporterGLTF::_get_type_name(GLTFType p_component) {
+
+ static const char *names[] = {
+ "float",
+ "vec2",
+ "vec3",
+ "vec4",
+ "mat2",
+ "mat3",
+ "mat4"
+ };
+
+ return names[p_component];
+}
+
+Error EditorSceneImporterGLTF::_decode_buffer_view(GLTFState &state, int p_buffer_view, double *dst, int skip_every, int skip_bytes, int element_size, int count, GLTFType type, int component_count, int component_type, int component_size, bool normalized, int byte_offset, bool for_vertex) {
+
+ const GLTFBufferView &bv = state.buffer_views[p_buffer_view];
+
+ int stride = bv.byte_stride ? bv.byte_stride : element_size;
+ if (for_vertex && stride % 4) {
+ stride += 4 - (stride % 4); //according to spec must be multiple of 4
+ }
+
+ ERR_FAIL_INDEX_V(bv.buffer, state.buffers.size(), ERR_PARSE_ERROR);
+
+ uint32_t offset = bv.byte_offset + byte_offset;
+ Vector<uint8_t> buffer = state.buffers[bv.buffer]; //copy on write, so no performance hit
+
+ //use to debug
+ print_line("type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
+ print_line("accessor offset" + itos(byte_offset) + " view offset: " + itos(bv.byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv.byte_length));
+
+ int buffer_end = (stride * (count - 1)) + element_size;
+ ERR_FAIL_COND_V(buffer_end > bv.byte_length, ERR_PARSE_ERROR);
+
+ ERR_FAIL_COND_V((offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR);
+
+ //fill everything as doubles
+
+ for (int i = 0; i < count; i++) {
+
+ const uint8_t *src = &buffer[offset + i * stride];
+
+ for (int j = 0; j < component_count; j++) {
+
+ if (skip_every && j > 0 && (j % skip_every) == 0) {
+ src += skip_bytes;
+ }
+
+ double d = 0;
+
+ switch (component_type) {
+ case COMPONENT_TYPE_BYTE: {
+ int8_t b = int8_t(*src);
+ if (normalized) {
+ d = (double(b) / 128.0);
+ } else {
+ d = double(b);
+ }
+ } break;
+ case COMPONENT_TYPE_UNSIGNED_BYTE: {
+ uint8_t b = *src;
+ if (normalized) {
+ d = (double(b) / 255.0);
+ } else {
+ d = double(b);
+ }
+ } break;
+ case COMPONENT_TYPE_SHORT: {
+ int16_t s = *(int16_t *)src;
+ if (normalized) {
+ d = (double(s) / 32768.0);
+ } else {
+ d = double(s);
+ }
+ } break;
+ case COMPONENT_TYPE_UNSIGNED_SHORT: {
+ uint16_t s = *(uint16_t *)src;
+ if (normalized) {
+ d = (double(s) / 65535.0);
+ } else {
+ d = double(s);
+ }
+
+ } break;
+ case COMPONENT_TYPE_INT: {
+ d = *(int *)src;
+ } break;
+ case COMPONENT_TYPE_FLOAT: {
+ d = *(float *)src;
+ } break;
+ }
+
+ *dst++ = d;
+ src += component_size;
+ }
+ }
+
+ return OK;
+}
+
+int EditorSceneImporterGLTF::_get_component_type_size(int component_type) {
+
+ switch (component_type) {
+ case COMPONENT_TYPE_BYTE: return 1; break;
+ case COMPONENT_TYPE_UNSIGNED_BYTE: return 1; break;
+ case COMPONENT_TYPE_SHORT: return 2; break;
+ case COMPONENT_TYPE_UNSIGNED_SHORT: return 2; break;
+ case COMPONENT_TYPE_INT: return 4; break;
+ case COMPONENT_TYPE_FLOAT: return 4; break;
+ default: { ERR_FAIL_V(0); }
+ }
+ return 0;
+}
+
+Vector<double> EditorSceneImporterGLTF::_decode_accessor(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ //spec, for reference:
+ //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
+
+ ERR_FAIL_INDEX_V(p_accessor, state.accessors.size(), Vector<double>());
+
+ const GLTFAccessor &a = state.accessors[p_accessor];
+
+ int component_count_for_type[7] = {
+ 1, 2, 3, 4, 4, 9, 16
+ };
+
+ int component_count = component_count_for_type[a.type];
+ int component_size = _get_component_type_size(a.component_type);
+ ERR_FAIL_COND_V(component_size == 0, Vector<double>());
+ int element_size = component_count * component_size;
+
+ int skip_every = 0;
+ int skip_bytes = 0;
+ //special case of alignments, as described in spec
+ switch (a.component_type) {
+ case COMPONENT_TYPE_BYTE:
+ case COMPONENT_TYPE_UNSIGNED_BYTE: {
+
+ if (a.type == TYPE_MAT2) {
+ skip_every = 2;
+ skip_bytes = 2;
+ element_size = 8; //override for this case
+ }
+ if (a.type == TYPE_MAT3) {
+ skip_every = 3;
+ skip_bytes = 1;
+ element_size = 12; //override for this case
+ }
+
+ } break;
+ case COMPONENT_TYPE_SHORT:
+ case COMPONENT_TYPE_UNSIGNED_SHORT: {
+ if (a.type == TYPE_MAT3) {
+ skip_every = 6;
+ skip_bytes = 4;
+ element_size = 16; //override for this case
+ }
+ } break;
+ default: {}
+ }
+
+ Vector<double> dst_buffer;
+ dst_buffer.resize(component_count * a.count);
+ double *dst = dst_buffer.ptr();
+
+ if (a.buffer_view >= 0) {
+
+ ERR_FAIL_INDEX_V(a.buffer_view, state.buffer_views.size(), Vector<double>());
+
+ Error err = _decode_buffer_view(state, a.buffer_view, dst, skip_every, skip_bytes, element_size, a.count, a.type, component_count, a.component_type, component_size, a.normalized, a.byte_offset, p_for_vertex);
+ if (err != OK)
+ return Vector<double>();
+
+ } else {
+ //fill with zeros, as bufferview is not defined.
+ for (int i = 0; i < (a.count * component_count); i++) {
+ dst_buffer[i] = 0;
+ }
+ }
+
+ if (a.sparse_count > 0) {
+ // I could not find any file using this, so this code is so far untested
+ Vector<double> indices;
+ indices.resize(a.sparse_count);
+ int indices_component_size = _get_component_type_size(a.sparse_indices_component_type);
+
+ Error err = _decode_buffer_view(state, a.sparse_indices_buffer_view, indices.ptr(), 0, 0, indices_component_size, a.sparse_count, TYPE_SCALAR, 1, a.sparse_indices_component_type, indices_component_size, false, a.sparse_indices_byte_offset, false);
+ if (err != OK)
+ return Vector<double>();
+
+ Vector<double> data;
+ data.resize(component_count * a.sparse_count);
+ err = _decode_buffer_view(state, a.sparse_values_buffer_view, data.ptr(), skip_every, skip_bytes, element_size, a.sparse_count, a.type, component_count, a.component_type, component_size, a.normalized, a.sparse_values_byte_offset, p_for_vertex);
+ if (err != OK)
+ return Vector<double>();
+
+ for (int i = 0; i < indices.size(); i++) {
+ int write_offset = int(indices[i]) * component_count;
+
+ for (int j = 0; j < component_count; j++) {
+ dst[write_offset + j] = data[i * component_count + j];
+ }
+ }
+ }
+
+ return dst_buffer;
+}
+
+PoolVector<int> EditorSceneImporterGLTF::_decode_accessor_as_ints(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ PoolVector<int> ret;
+ if (attribs.size() == 0)
+ return ret;
+ const double *attribs_ptr = attribs.ptr();
+ int ret_size = attribs.size();
+ ret.resize(ret_size);
+ {
+ PoolVector<int>::Write w = ret.write();
+ for (int i = 0; i < ret_size; i++) {
+ w[i] = int(attribs_ptr[i]);
+ }
+ }
+ return ret;
+}
+
+PoolVector<float> EditorSceneImporterGLTF::_decode_accessor_as_floats(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ PoolVector<float> ret;
+ if (attribs.size() == 0)
+ return ret;
+ const double *attribs_ptr = attribs.ptr();
+ int ret_size = attribs.size();
+ ret.resize(ret_size);
+ {
+ PoolVector<float>::Write w = ret.write();
+ for (int i = 0; i < ret_size; i++) {
+ w[i] = float(attribs_ptr[i]);
+ }
+ }
+ return ret;
+}
+
+PoolVector<Vector2> EditorSceneImporterGLTF::_decode_accessor_as_vec2(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ PoolVector<Vector2> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ int ret_size = attribs.size() / 2;
+ ret.resize(ret_size);
+ {
+ PoolVector<Vector2>::Write w = ret.write();
+ for (int i = 0; i < ret_size; i++) {
+ w[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]);
+ }
+ }
+ return ret;
+}
+
+PoolVector<Vector3> EditorSceneImporterGLTF::_decode_accessor_as_vec3(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ PoolVector<Vector3> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ int ret_size = attribs.size() / 3;
+ ret.resize(ret_size);
+ {
+ PoolVector<Vector3>::Write w = ret.write();
+ for (int i = 0; i < ret_size; i++) {
+ w[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]);
+ }
+ }
+ return ret;
+}
+PoolVector<Color> EditorSceneImporterGLTF::_decode_accessor_as_color(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ PoolVector<Color> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ int ret_size = attribs.size() / 4;
+ ret.resize(ret_size);
+ {
+ PoolVector<Color>::Write w = ret.write();
+ for (int i = 0; i < ret_size; i++) {
+ w[i] = Color(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]);
+ }
+ }
+ return ret;
+}
+Vector<Quat> EditorSceneImporterGLTF::_decode_accessor_as_quat(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Quat> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
+ const double *attribs_ptr = attribs.ptr();
+ int ret_size = attribs.size() / 4;
+ ret.resize(ret_size);
+ {
+ for (int i = 0; i < ret_size; i++) {
+ ret[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]);
+ }
+ }
+ return ret;
+}
+Vector<Transform2D> EditorSceneImporterGLTF::_decode_accessor_as_xform2d(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Transform2D> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
+ ret.resize(attribs.size() / 4);
+ for (int i = 0; i < ret.size(); i++) {
+ ret[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]);
+ ret[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]);
+ }
+ return ret;
+}
+
+Vector<Basis> EditorSceneImporterGLTF::_decode_accessor_as_basis(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Basis> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret);
+ ret.resize(attribs.size() / 9);
+ for (int i = 0; i < ret.size(); i++) {
+ ret[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2]));
+ ret[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5]));
+ ret[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8]));
+ }
+ return ret;
+}
+Vector<Transform> EditorSceneImporterGLTF::_decode_accessor_as_xform(GLTFState &state, int p_accessor, bool p_for_vertex) {
+
+ Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
+ Vector<Transform> ret;
+ if (attribs.size() == 0)
+ return ret;
+ ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret);
+ ret.resize(attribs.size() / 16);
+ for (int i = 0; i < ret.size(); i++) {
+ ret[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2]));
+ ret[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6]));
+ ret[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10]));
+ ret[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14]));
+ }
+ return ret;
+}
+
+Error EditorSceneImporterGLTF::_parse_meshes(GLTFState &state) {
+
+ if (!state.json.has("meshes"))
+ return OK;
+
+ Array meshes = state.json["meshes"];
+ for (int i = 0; i < meshes.size(); i++) {
+
+ Dictionary d = meshes[i];
+
+ GLTFMesh mesh;
+ mesh.mesh.instance();
+
+ ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR);
+
+ Array primitives = d["primitives"];
+
+ for (int j = 0; j < primitives.size(); j++) {
+
+ Dictionary p = primitives[j];
+
+ Array array;
+ array.resize(Mesh::ARRAY_MAX);
+
+ ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR);
+
+ Dictionary a = p["attributes"];
+
+ Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
+ if (p.has("mode")) {
+ int mode = p["mode"];
+ ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT);
+ static const Mesh::PrimitiveType primitives[7] = {
+ Mesh::PRIMITIVE_POINTS,
+ Mesh::PRIMITIVE_LINES,
+ Mesh::PRIMITIVE_LINE_LOOP,
+ Mesh::PRIMITIVE_LINE_STRIP,
+ Mesh::PRIMITIVE_TRIANGLES,
+ Mesh::PRIMITIVE_TRIANGLE_STRIP,
+ Mesh::PRIMITIVE_TRIANGLE_FAN,
+ };
+
+ primitive = primitives[mode];
+ }
+
+ if (a.has("POSITION")) {
+ array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true);
+ }
+ if (a.has("NORMAL")) {
+ array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true);
+ }
+ if (a.has("TANGENT")) {
+ array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true);
+ }
+ if (a.has("TEXCOORD_0")) {
+ array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true);
+ }
+ if (a.has("TEXCOORD_1")) {
+ array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true);
+ }
+ if (a.has("COLOR_0")) {
+ array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true);
+ }
+ if (a.has("JOINTS_0")) {
+ array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
+ }
+ if (a.has("WEIGHTS_0")) {
+ PoolVector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
+ { //gltf does not seem to normalize the weights for some reason..
+ int wc = weights.size();
+ PoolVector<float>::Write w = weights.write();
+ for (int i = 0; i < wc; i += 4) {
+ float total = 0.0;
+ total += w[i + 0];
+ total += w[i + 1];
+ total += w[i + 2];
+ total += w[i + 3];
+ if (total > 0.0) {
+ w[i + 0] /= total;
+ w[i + 1] /= total;
+ w[i + 2] /= total;
+ w[i + 3] /= total;
+ }
+ }
+ }
+ array[Mesh::ARRAY_WEIGHTS] = weights;
+ }
+
+ if (p.has("indices")) {
+
+ PoolVector<int> indices = _decode_accessor_as_ints(state, p["indices"], false);
+
+ if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
+ //swap around indices, convert ccw to cw for front face
+
+ int is = indices.size();
+ PoolVector<int>::Write w = indices.write();
+ for (int i = 0; i < is; i += 3) {
+ SWAP(w[i + 1], w[i + 2]);
+ }
+ }
+ array[Mesh::ARRAY_INDEX] = indices;
+ } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
+ //generate indices because they need to be swapped for CW/CCW
+ PoolVector<Vector3> vertices = array[Mesh::ARRAY_VERTEX];
+ ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR);
+ PoolVector<int> indices;
+ int vs = vertices.size();
+ indices.resize(vs);
+ {
+ PoolVector<int>::Write w = indices.write();
+ for (int i = 0; i < vs; i += 3) {
+ w[i] = i;
+ w[i + 1] = i + 2;
+ w[i + 2] = i + 1;
+ }
+ }
+ array[Mesh::ARRAY_INDEX] = indices;
+ }
+
+ bool generated_tangents = false;
+ Variant erased_indices;
+
+ if (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")) {
+ //must generate mikktspace tangents.. ergh..
+ Ref<SurfaceTool> st;
+ st.instance();
+ st->create_from_triangle_arrays(array);
+ if (p.has("targets")) {
+ //morph targets should not be reindexed, as array size might differ
+ //removing indices is the best bet here
+ st->deindex();
+ erased_indices = a[Mesh::ARRAY_INDEX];
+ a[Mesh::ARRAY_INDEX] = Variant();
+ }
+ st->generate_tangents();
+ array = st->commit_to_arrays();
+ generated_tangents = true;
+ }
+
+ Array morphs;
+ //blend shapes
+ if (p.has("targets")) {
+ print_line("has targets!");
+ Array targets = p["targets"];
+
+ if (j == 0) {
+ for (int k = 0; k < targets.size(); k++) {
+ mesh.mesh->add_blend_shape(String("morph_") + itos(k));
+ }
+ }
+
+ for (int k = 0; k < targets.size(); k++) {
+
+ Dictionary t = targets[k];
+
+ Array array_copy;
+ array_copy.resize(Mesh::ARRAY_MAX);
+
+ for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
+ array_copy[l] = array[l];
+ }
+
+ array_copy[Mesh::ARRAY_INDEX] = Variant();
+
+ if (t.has("POSITION")) {
+ array_copy[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, t["POSITION"], true);
+ }
+ if (t.has("NORMAL")) {
+ array_copy[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, t["NORMAL"], true);
+ }
+ if (t.has("TANGENT")) {
+ PoolVector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true);
+ PoolVector<float> tangents_v4;
+ PoolVector<float> src_tangents = array[Mesh::ARRAY_TANGENT];
+ ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR);
+
+ {
+
+ int size4 = src_tangents.size();
+ tangents_v4.resize(size4);
+ PoolVector<float>::Write w4 = tangents_v4.write();
+
+ PoolVector<Vector3>::Read r3 = tangents_v3.read();
+ PoolVector<float>::Read r4 = src_tangents.read();
+
+ for (int l = 0; l < size4 / 4; l++) {
+
+ w4[l * 4 + 0] = r3[l].x;
+ w4[l * 4 + 1] = r3[l].y;
+ w4[l * 4 + 2] = r3[l].z;
+ w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value
+ }
+ }
+
+ array_copy[Mesh::ARRAY_TANGENT] = tangents_v4;
+ }
+
+ if (generated_tangents) {
+ Ref<SurfaceTool> st;
+ st.instance();
+ array_copy[Mesh::ARRAY_INDEX] = erased_indices; //needed for tangent generation, erased by deindex
+ st->create_from_triangle_arrays(array_copy);
+ st->deindex();
+ st->generate_tangents();
+ array_copy = st->commit_to_arrays();
+ }
+
+ morphs.push_back(array_copy);
+ }
+ }
+
+ //just add it
+ mesh.mesh->add_surface_from_arrays(primitive, array, morphs);
+
+ if (p.has("material")) {
+ int material = p["material"];
+ ERR_FAIL_INDEX_V(material, state.materials.size(), ERR_FILE_CORRUPT);
+ Ref<Material> mat = state.materials[material];
+
+ mesh.mesh->surface_set_material(mesh.mesh->get_surface_count() - 1, mat);
+ }
+ }
+
+ if (d.has("weights")) {
+ Array weights = d["weights"];
+ ERR_FAIL_COND_V(mesh.mesh->get_blend_shape_count() != weights.size(), ERR_PARSE_ERROR);
+ mesh.blend_weights.resize(weights.size());
+ for (int j = 0; j < weights.size(); j++) {
+ mesh.blend_weights[j] = weights[j];
+ }
+ }
+
+ state.meshes.push_back(mesh);
+ }
+
+ print_line("total meshes: " + itos(state.meshes.size()));
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_images(GLTFState &state, const String &p_base_path) {
+
+ if (!state.json.has("images"))
+ return OK;
+
+ Array images = state.json["images"];
+ for (int i = 0; i < images.size(); i++) {
+
+ Dictionary d = images[i];
+
+ String mimetype;
+ if (d.has("mimeType")) {
+ mimetype = d["mimeType"];
+ }
+
+ Vector<uint8_t> data;
+ const uint8_t *data_ptr = NULL;
+ int data_size = 0;
+
+ if (d.has("uri")) {
+ String uri = d["uri"];
+
+ if (uri.findn("data:application/octet-stream;base64") == 0) {
+ //embedded data
+ data = _parse_base64_uri(uri);
+ data_ptr = data.ptr();
+ data_size = data.size();
+ } else {
+
+ uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows
+ Ref<Texture> texture = ResourceLoader::load(uri);
+ state.images.push_back(texture);
+ continue;
+ }
+ }
+
+ if (d.has("bufferView")) {
+ int bvi = d["bufferView"];
+
+ ERR_FAIL_INDEX_V(bvi, state.buffer_views.size(), ERR_PARAMETER_RANGE_ERROR);
+
+ GLTFBufferView &bv = state.buffer_views[bvi];
+
+ int bi = bv.buffer;
+ ERR_FAIL_INDEX_V(bi, state.buffers.size(), ERR_PARAMETER_RANGE_ERROR);
+
+ ERR_FAIL_COND_V(bv.byte_offset + bv.byte_length > state.buffers[bi].size(), ERR_FILE_CORRUPT);
+
+ data_ptr = &state.buffers[bi][bv.byte_offset];
+ data_size = bv.byte_length;
+ }
+
+ ERR_FAIL_COND_V(mimetype == "", ERR_FILE_CORRUPT);
+
+ if (mimetype.findn("png") != -1) {
+ //is a png
+ Ref<Image> img = Image::_png_mem_loader_func(data_ptr, data_size);
+
+ ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT);
+
+ Ref<ImageTexture> t;
+ t.instance();
+ t->create_from_image(img);
+
+ state.images.push_back(t);
+ continue;
+ }
+
+ if (mimetype.findn("jpg") != -1) {
+ //is a jpg
+ Ref<Image> img = Image::_jpg_mem_loader_func(data_ptr, data_size);
+
+ ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT);
+
+ Ref<ImageTexture> t;
+ t.instance();
+ t->create_from_image(img);
+
+ state.images.push_back(t);
+
+ continue;
+ }
+
+ ERR_FAIL_V(ERR_FILE_CORRUPT);
+ }
+
+ print_line("total images: " + itos(state.images.size()));
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_textures(GLTFState &state) {
+
+ if (!state.json.has("textures"))
+ return OK;
+
+ Array textures = state.json["textures"];
+ for (int i = 0; i < textures.size(); i++) {
+
+ Dictionary d = textures[i];
+
+ ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR);
+
+ GLTFTexture t;
+ t.src_image = d["source"];
+ state.textures.push_back(t);
+ }
+
+ return OK;
+}
+
+Ref<Texture> EditorSceneImporterGLTF::_get_texture(GLTFState &state, int p_texture) {
+ ERR_FAIL_INDEX_V(p_texture, state.textures.size(), Ref<Texture>());
+ int image = state.textures[p_texture].src_image;
+
+ ERR_FAIL_INDEX_V(image, state.images.size(), Ref<Texture>());
+
+ return state.images[image];
+}
+
+Error EditorSceneImporterGLTF::_parse_materials(GLTFState &state) {
+
+ if (!state.json.has("materials"))
+ return OK;
+
+ Array materials = state.json["materials"];
+ for (int i = 0; i < materials.size(); i++) {
+
+ Dictionary d = materials[i];
+
+ Ref<SpatialMaterial> material;
+ material.instance();
+ if (d.has("name")) {
+ material->set_name(d["name"]);
+ }
+
+ if (d.has("pbrMetallicRoughness")) {
+
+ Dictionary mr = d["pbrMetallicRoughness"];
+ if (mr.has("baseColorFactor")) {
+ Array arr = mr["baseColorFactor"];
+ ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
+ Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
+
+ material->set_albedo(c);
+ }
+
+ if (mr.has("baseColorTexture")) {
+ Dictionary bct = mr["baseColorTexture"];
+ if (bct.has("index")) {
+ material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, _get_texture(state, bct["index"]));
+ }
+ if (!mr.has("baseColorFactor")) {
+ material->set_albedo(Color(1, 1, 1));
+ }
+ }
+
+ if (mr.has("metallicFactor")) {
+
+ material->set_metallic(mr["metallicFactor"]);
+ }
+ if (mr.has("roughnessFactor")) {
+
+ material->set_roughness(mr["roughnessFactor"]);
+ }
+
+ if (mr.has("metallicRoughnessTexture")) {
+ Dictionary bct = mr["metallicRoughnessTexture"];
+ if (bct.has("index")) {
+ Ref<Texture> t = _get_texture(state, bct["index"]);
+ material->set_texture(SpatialMaterial::TEXTURE_METALLIC, t);
+ material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_RED);
+ material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, t);
+ material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN);
+ if (!mr.has("metallicFactor")) {
+ material->set_metallic(1);
+ }
+ if (!mr.has("roughnessFactor")) {
+ material->set_roughness(1);
+ }
+ }
+ }
+ }
+
+ if (d.has("normalTexture")) {
+ Dictionary bct = d["normalTexture"];
+ if (bct.has("index")) {
+ material->set_texture(SpatialMaterial::TEXTURE_NORMAL, _get_texture(state, bct["index"]));
+ material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true);
+ }
+ if (bct.has("scale")) {
+ material->set_normal_scale(bct["scale"]);
+ }
+ }
+ if (d.has("occlusionTexture")) {
+ Dictionary bct = d["occlusionTexture"];
+ if (bct.has("index")) {
+ material->set_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"]));
+ material->set_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION, true);
+ }
+ }
+
+ if (d.has("emissiveFactor")) {
+ Array arr = d["emissiveFactor"];
+ ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
+ Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
+ material->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
+
+ material->set_emission(c);
+ }
+
+ if (d.has("emissiveTexture")) {
+ Dictionary bct = d["emissiveTexture"];
+ if (bct.has("index")) {
+ material->set_texture(SpatialMaterial::TEXTURE_EMISSION, _get_texture(state, bct["index"]));
+ material->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
+ material->set_emission(Color(0, 0, 0));
+ }
+ }
+
+ if (d.has("doubleSided")) {
+ bool ds = d["doubleSided"];
+ if (ds) {
+ material->set_cull_mode(SpatialMaterial::CULL_DISABLED);
+ }
+ }
+
+ if (d.has("alphaMode")) {
+ String am = d["alphaMode"];
+ if (am != "OPAQUE") {
+ material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
+ }
+ }
+
+ state.materials.push_back(material);
+ }
+
+ print_line("total materials: " + itos(state.materials.size()));
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_skins(GLTFState &state) {
+
+ if (!state.json.has("skins"))
+ return OK;
+
+ Array skins = state.json["skins"];
+ for (int i = 0; i < skins.size(); i++) {
+
+ Dictionary d = skins[i];
+
+ GLTFSkin skin;
+
+ ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR);
+
+ Array joints = d["joints"];
+ Vector<Transform> bind_matrices;
+
+ if (d.has("inverseBindMatrices")) {
+ bind_matrices = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false);
+ ERR_FAIL_COND_V(bind_matrices.size() != joints.size(), ERR_PARSE_ERROR);
+ }
+
+ for (int j = 0; j < joints.size(); j++) {
+ int index = joints[j];
+ ERR_FAIL_INDEX_V(index, state.nodes.size(), ERR_PARSE_ERROR);
+ state.nodes[index]->joint_skin = state.skins.size();
+ state.nodes[index]->joint_bone = j;
+ GLTFSkin::Bone bone;
+ bone.node = index;
+ if (bind_matrices.size()) {
+ bone.inverse_bind = bind_matrices[j];
+ }
+
+ skin.bones.push_back(bone);
+ }
+
+ print_line("skin has skeleton? " + itos(d.has("skeleton")));
+ if (d.has("skeleton")) {
+ int skeleton = d["skeleton"];
+ ERR_FAIL_INDEX_V(skeleton, state.nodes.size(), ERR_PARSE_ERROR);
+ state.nodes[skeleton]->skeleton_skin = state.skins.size();
+ print_line("setting skeleton skin to" + itos(skeleton));
+ skin.skeleton = skeleton;
+ }
+
+ if (d.has("name")) {
+ skin.name = d["name"];
+ }
+
+ //locate the right place to put a Skeleton node
+
+ if (state.skin_users.has(i)) {
+ Vector<int> users = state.skin_users[i];
+ int skin_node = -1;
+ for (int j = 0; j < users.size(); j++) {
+ int user = state.nodes[users[j]]->parent; //always go from parent
+ if (j == 0) {
+ skin_node = user;
+ } else if (skin_node != -1) {
+ bool found = false;
+ while (skin_node >= 0) {
+
+ int cuser = user;
+ while (cuser != -1) {
+ if (cuser == skin_node) {
+ found = true;
+ break;
+ }
+ cuser = state.nodes[skin_node]->parent;
+ }
+ if (found)
+ break;
+ skin_node = state.nodes[skin_node]->parent;
+ }
+
+ if (!found) {
+ skin_node = -1; //just leave where it is
+ }
+
+ //find a common parent
+ }
+ }
+
+ if (skin_node != -1) {
+ for (int j = 0; j < users.size(); j++) {
+ state.nodes[users[j]]->child_of_skeleton = i;
+ }
+
+ state.nodes[skin_node]->skeleton_children.push_back(i);
+ }
+ state.skins.push_back(skin);
+ }
+ }
+ print_line("total skins: " + itos(state.skins.size()));
+
+ //now
+
+ return OK;
+}
+
+Error EditorSceneImporterGLTF::_parse_cameras(GLTFState &state) {
+
+ if (!state.json.has("cameras"))
+ return OK;
+
+ Array cameras = state.json["cameras"];
+
+ for (int i = 0; i < cameras.size(); i++) {
+
+ Dictionary d = cameras[i];
+
+ GLTFCamera camera;
+ ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
+ String type = d["type"];
+ if (type == "orthographic") {
+
+ camera.perspective = false;
+ if (d.has("orthographic")) {
+ Dictionary og = d["orthographic"];
+ camera.fov_size = og["ymag"];
+ camera.zfar = og["zfar"];
+ camera.znear = og["znear"];
+ } else {
+ camera.fov_size = 10;
+ }
+
+ } else if (type == "perspective") {
+
+ camera.perspective = true;
+ if (d.has("perspective")) {
+ Dictionary ppt = d["perspective"];
+ camera.fov_size = ppt["yfov"];
+ camera.zfar = ppt["zfar"];
+ camera.znear = ppt["znear"];
+ } else {
+ camera.fov_size = 10;
+ }
+ } else {
+ ERR_EXPLAIN("Camera should be in 'orthographic' or 'perspective'");
+ ERR_FAIL_V(ERR_PARSE_ERROR);
+ }
+
+ state.cameras.push_back(camera);
+ }
+
+ print_line("total cameras: " + itos(state.cameras.size()));
+}
+
+Error EditorSceneImporterGLTF::_parse_animations(GLTFState &state) {
+
+ if (!state.json.has("animations"))
+ return OK;
+
+ Array animations = state.json["animations"];
+
+ for (int i = 0; i < animations.size(); i++) {
+
+ Dictionary d = animations[i];
+
+ GLTFAnimation animation;
+
+ if (!d.has("channels") || !d.has("samplers"))
+ continue;
+
+ Array channels = d["channels"];
+ Array samplers = d["samplers"];
+
+ if (d.has("name")) {
+ animation.name = d["name"];
+ }
+
+ for (int j = 0; j < channels.size(); j++) {
+
+ Dictionary c = channels[j];
+ if (!c.has("target"))
+ continue;
+
+ Dictionary t = c["target"];
+ if (!t.has("node") || !t.has("path")) {
+ continue;
+ }
+
+ ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR);
+ int sampler = c["sampler"];
+ ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR);
+
+ int node = t["node"];
+ String path = t["path"];
+
+ ERR_FAIL_INDEX_V(node, state.nodes.size(), ERR_PARSE_ERROR);
+
+ GLTFAnimation::Track *track = NULL;
+
+ if (!animation.tracks.has(node)) {
+ animation.tracks[node] = GLTFAnimation::Track();
+ }
+
+ track = &animation.tracks[node];
+
+ Dictionary s = samplers[sampler];
+
+ ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR);
+ ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR);
+
+ int input = s["input"];
+ int output = s["output"];
+
+ GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR;
+ if (s.has("interpolation")) {
+ String in = s["interpolation"];
+ if (in == "STEP") {
+ interp = GLTFAnimation::INTERP_STEP;
+ } else if (in == "LINEAR") {
+ interp = GLTFAnimation::INTERP_LINEAR;
+ } else if (in == "CATMULLROMSPLINE") {
+ interp = GLTFAnimation::INTERP_CATMULLROMSPLINE;
+ } else if (in == "CUBICSPLINE") {
+ interp = GLTFAnimation::INTERP_CUBIC_SPLINE;
+ }
+ }
+
+ print_line("path: " + path);
+ PoolVector<float> times = _decode_accessor_as_floats(state, input, false);
+ if (path == "translation") {
+ PoolVector<Vector3> translations = _decode_accessor_as_vec3(state, output, false);
+ track->translation_track.interpolation = interp;
+ track->translation_track.times = Variant(times); //convert via variant
+ track->translation_track.values = Variant(translations); //convert via variant
+ } else if (path == "rotation") {
+ Vector<Quat> rotations = _decode_accessor_as_quat(state, output, false);
+ track->rotation_track.interpolation = interp;
+ track->rotation_track.times = Variant(times); //convert via variant
+ track->rotation_track.values = rotations; //convert via variant
+ } else if (path == "scale") {
+ PoolVector<Vector3> scales = _decode_accessor_as_vec3(state, output, false);
+ track->scale_track.interpolation = interp;
+ track->scale_track.times = Variant(times); //convert via variant
+ track->scale_track.values = Variant(scales); //convert via variant
+ } else if (path == "weights") {
+ PoolVector<float> weights = _decode_accessor_as_floats(state, output, false);
+
+ ERR_FAIL_INDEX_V(state.nodes[node]->mesh, state.meshes.size(), ERR_PARSE_ERROR);
+ GLTFMesh *mesh = &state.meshes[state.nodes[node]->mesh];
+ ERR_FAIL_COND_V(mesh->blend_weights.size() == 0, ERR_PARSE_ERROR);
+ int wc = mesh->blend_weights.size();
+
+ track->weight_tracks.resize(wc);
+
+ int wlen = weights.size() / wc;
+ PoolVector<float>::Read r = weights.read();
+ for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea
+ GLTFAnimation::Channel<float> cf;
+ cf.interpolation = interp;
+ cf.times = Variant(times);
+ Vector<float> wdata;
+ wdata.resize(wlen);
+ for (int l = 0; l < wlen; l++) {
+ wdata[l] = r[l * wc + k];
+ }
+
+ cf.values = wdata;
+ track->weight_tracks[k] = cf;
+ }
+ } else {
+ WARN_PRINTS("Invalid path: " + path);
+ }
+ }
+
+ state.animations.push_back(animation);
+ }
+
+ print_line("total animations: " + itos(state.animations.size()));
+
+ return OK;
+}
+
+void EditorSceneImporterGLTF::_assign_scene_names(GLTFState &state) {
+
+ for (int i = 0; i < state.nodes.size(); i++) {
+ GLTFNode *n = state.nodes[i];
+ if (n->name == "") {
+ if (n->mesh >= 0) {
+ n->name = "Mesh";
+ } else if (n->joint_skin >= 0) {
+ n->name = "Bone";
+ } else {
+ n->name = "Node";
+ }
+ }
+
+ n->name = _gen_unique_name(state, n->name);
+ }
+}
+
+void EditorSceneImporterGLTF::_generate_node(GLTFState &state, int p_node, Node *p_parent, Node *p_owner, Vector<Skeleton *> &skeletons) {
+ ERR_FAIL_INDEX(p_node, state.nodes.size());
+
+ GLTFNode *n = state.nodes[p_node];
+ Spatial *node;
+
+ if (n->mesh >= 0) {
+ ERR_FAIL_INDEX(n->mesh, state.meshes.size());
+ MeshInstance *mi = memnew(MeshInstance);
+ const GLTFMesh &mesh = state.meshes[n->mesh];
+ mi->set_mesh(mesh.mesh);
+ for (int i = 0; i < mesh.blend_weights.size(); i++) {
+ mi->set("blend_shapes/" + mesh.mesh->get_blend_shape_name(i), mesh.blend_weights[i]);
+ }
+
+ node = mi;
+ } else if (n->camera >= 0) {
+ ERR_FAIL_INDEX(n->camera, state.cameras.size());
+ Camera *camera = memnew(Camera);
+
+ const GLTFCamera &c = state.cameras[n->camera];
+ if (c.perspective) {
+ camera->set_perspective(c.fov_size, c.znear, c.znear);
+ } else {
+ camera->set_orthogonal(c.fov_size, c.znear, c.znear);
+ }
+
+ node = camera;
+ } else {
+ node = memnew(Spatial);
+ }
+
+ node->set_name(n->name);
+
+ if (n->child_of_skeleton >= 0) {
+ //move skeleton around and place it on node, as the node _is_ a skeleton.
+ Skeleton *s = skeletons[n->child_of_skeleton];
+ p_parent = s;
+ }
+
+ p_parent->add_child(node);
+ node->set_owner(p_owner);
+ node->set_transform(n->xform);
+
+ n->godot_node = node;
+
+ for (int i = 0; i < n->skeleton_children.size(); i++) {
+
+ Skeleton *s = skeletons[n->skeleton_children[i]];
+ s->get_parent()->remove_child(s);
+ node->add_child(s);
+ s->set_owner(p_owner);
+ }
+
+ for (int i = 0; i < n->children.size(); i++) {
+ if (state.nodes[n->children[i]]->joint_skin >= 0) {
+ _generate_bone(state, n->children[i], skeletons, -1);
+ } else {
+ _generate_node(state, n->children[i], node, p_owner, skeletons);
+ }
+ }
+}
+
+void EditorSceneImporterGLTF::_generate_bone(GLTFState &state, int p_node, Vector<Skeleton *> &skeletons, int p_parent_bone) {
+ ERR_FAIL_INDEX(p_node, state.nodes.size());
+
+ GLTFNode *n = state.nodes[p_node];
+
+ ERR_FAIL_COND(n->joint_skin < 0);
+
+ int bone_index = skeletons[n->joint_skin]->get_bone_count();
+ skeletons[n->joint_skin]->add_bone(n->name);
+ if (p_parent_bone >= 0) {
+ skeletons[n->joint_skin]->set_bone_parent(bone_index, p_parent_bone);
+ }
+ skeletons[n->joint_skin]->set_bone_rest(bone_index, state.skins[n->joint_skin].bones[n->joint_bone].inverse_bind.affine_inverse());
+
+ n->godot_node = skeletons[n->joint_skin];
+ n->godot_bone_index = bone_index;
+
+ for (int i = 0; i < n->children.size(); i++) {
+ ERR_CONTINUE(state.nodes[n->children[i]]->joint_skin < 0);
+ _generate_bone(state, n->children[i], skeletons, bone_index);
+ }
+}
+
+template <class T>
+struct EditorSceneImporterGLTFInterpolate {
+
+ T lerp(const T &a, const T &b, float c) const {
+
+ return a + (b - a) * c;
+ }
+
+ T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
+
+ float t2 = t * t;
+ float t3 = t2 * t;
+
+ return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
+ }
+
+ T bezier(T start, T control_1, T control_2, T end, float t) {
+ /* Formula from Wikipedia article on Bezier curves. */
+ real_t omt = (1.0 - t);
+ real_t omt2 = omt * omt;
+ real_t omt3 = omt2 * omt;
+ real_t t2 = t * t;
+ real_t t3 = t2 * t;
+
+ return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
+ }
+};
+
+//thank you for existing, partial specialization
+template <>
+struct EditorSceneImporterGLTFInterpolate<Quat> {
+
+ Quat lerp(const Quat &a, const Quat &b, float c) const {
+
+ return a.slerp(b, c);
+ }
+
+ Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) {
+
+ return p1.slerp(p2, c);
+ }
+
+ Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) {
+ return start.slerp(end, t);
+ }
+};
+
+template <class T>
+T EditorSceneImporterGLTF::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time, GLTFAnimation::Interpolation p_interp) {
+
+ //could use binary search, worth it?
+ int idx = -1;
+ for (int i = 0; i < p_times.size(); i++) {
+ if (p_times[i] > p_time)
+ break;
+ idx++;
+ }
+
+ EditorSceneImporterGLTFInterpolate<T> interp;
+
+ switch (p_interp) {
+ case GLTFAnimation::INTERP_LINEAR: {
+
+ if (idx == -1) {
+ return p_values[0];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[p_times.size() - 1];
+ }
+
+ float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
+
+ return interp.lerp(p_values[idx], p_values[idx + 1], c);
+
+ } break;
+ case GLTFAnimation::INTERP_STEP: {
+
+ if (idx == -1) {
+ return p_values[0];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[p_times.size() - 1];
+ }
+
+ return p_values[idx];
+
+ } break;
+ case GLTFAnimation::INTERP_CATMULLROMSPLINE: {
+
+ if (idx == -1) {
+ return p_values[1];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[1 + p_times.size() - 1];
+ }
+
+ float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
+
+ return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
+
+ } break;
+ case GLTFAnimation::INTERP_CUBIC_SPLINE: {
+
+ if (idx == -1) {
+ return p_values[1];
+ } else if (idx >= p_times.size() - 1) {
+ return p_values[(p_times.size() - 1) * 3 + 1];
+ }
+
+ float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
+
+ T from = p_values[idx * 3 + 1];
+ T c1 = from + p_values[idx * 3 + 0];
+ T to = p_values[idx * 3 + 3];
+ T c2 = to + p_values[idx * 3 + 2];
+
+ return interp.bezier(from, c1, c2, to, c);
+
+ } break;
+ }
+
+ ERR_FAIL_V(p_values[0]);
+}
+
+void EditorSceneImporterGLTF::_import_animation(GLTFState &state, AnimationPlayer *ap, int index, int bake_fps, Vector<Skeleton *> skeletons) {
+
+ const GLTFAnimation &anim = state.animations[index];
+
+ String name = anim.name;
+ if (name == "") {
+ name = _gen_unique_name(state, "Animation");
+ }
+
+ Ref<Animation> animation;
+ animation.instance();
+ animation->set_name(name);
+
+ for (Map<int, GLTFAnimation::Track>::Element *E = anim.tracks.front(); E; E = E->next()) {
+
+ const GLTFAnimation::Track &track = E->get();
+ //need to find the path
+ NodePath node_path;
+
+ GLTFNode *node = state.nodes[E->key()];
+ ERR_CONTINUE(!node->godot_node);
+
+ if (node->godot_bone_index >= 0) {
+ Skeleton *sk = (Skeleton *)node->godot_node;
+ String path = ap->get_parent()->get_path_to(sk);
+ String bone = sk->get_bone_name(node->godot_bone_index);
+ node_path = path + ":" + bone;
+ } else {
+ node_path = ap->get_parent()->get_path_to(node->godot_node);
+ }
+
+ float length = 0;
+
+ for (int i = 0; i < track.rotation_track.times.size(); i++) {
+ length = MAX(length, track.rotation_track.times[i]);
+ }
+ for (int i = 0; i < track.translation_track.times.size(); i++) {
+ length = MAX(length, track.translation_track.times[i]);
+ }
+ for (int i = 0; i < track.scale_track.times.size(); i++) {
+ length = MAX(length, track.scale_track.times[i]);
+ }
+
+ for (int i = 0; i < track.weight_tracks.size(); i++) {
+ for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
+ length = MAX(length, track.weight_tracks[i].times[j]);
+ }
+ }
+
+ animation->set_length(length);
+
+ if (track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) {
+ //make transform track
+ int track_idx = animation->get_track_count();
+ animation->add_track(Animation::TYPE_TRANSFORM);
+ animation->track_set_path(track_idx, node_path);
+ //first determine animation length
+
+ float increment = 1.0 / float(bake_fps);
+ float time = 0.0;
+
+ Vector3 base_pos;
+ Quat base_rot;
+ Vector3 base_scale = Vector3(1, 1, 1);
+
+ if (!track.rotation_track.values.size()) {
+ base_rot = state.nodes[E->key()]->rotation;
+ }
+
+ if (!track.translation_track.values.size()) {
+ base_pos = state.nodes[E->key()]->translation;
+ }
+
+ if (!track.scale_track.values.size()) {
+ base_scale = state.nodes[E->key()]->scale;
+ }
+
+ bool last = false;
+ while (true) {
+
+ Vector3 pos = base_pos;
+ Quat rot = base_rot;
+ Vector3 scale = base_scale;
+
+ if (track.translation_track.times.size()) {
+
+ pos = _interpolate_track<Vector3>(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation);
+ }
+
+ if (track.rotation_track.times.size()) {
+
+ rot = _interpolate_track<Quat>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation);
+ }
+
+ if (track.scale_track.times.size()) {
+
+ scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation);
+ }
+
+ if (node->godot_bone_index >= 0) {
+
+ Transform xform;
+ xform.basis = Basis(rot);
+ xform.basis.scale(scale);
+ xform.origin = pos;
+
+ Skeleton *skeleton = skeletons[node->joint_skin];
+ int bone = node->godot_bone_index;
+ xform = skeleton->get_bone_rest(bone).affine_inverse() * xform;
+
+ rot = xform.basis;
+ rot.normalize();
+ scale = xform.basis.get_scale();
+ pos = xform.origin;
+ }
+
+ animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
+
+ if (last) {
+ break;
+ }
+ time += increment;
+ if (time >= length) {
+ last = true;
+ time = length;
+ }
+ }
+ }
+
+ for (int i = 0; i < track.weight_tracks.size(); i++) {
+ ERR_CONTINUE(node->mesh < 0 || node->mesh >= state.meshes.size());
+ const GLTFMesh &mesh = state.meshes[node->mesh];
+ String prop = "blend_shapes/" + mesh.mesh->get_blend_shape_name(i);
+ node_path = String(node_path) + ":" + prop;
+
+ int track_idx = animation->get_track_count();
+ animation->add_track(Animation::TYPE_VALUE);
+ animation->track_set_path(track_idx, node_path);
+
+ if (track.weight_tracks[i].interpolation <= GLTFAnimation::INTERP_STEP) {
+ animation->track_set_interpolation_type(track_idx, track.weight_tracks[i].interpolation == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_NEAREST);
+ for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
+ float t = track.weight_tracks[i].times[j];
+ float w = track.weight_tracks[i].values[j];
+ animation->track_insert_key(track_idx, t, w);
+ }
+ } else {
+ //must bake, apologies.
+ float increment = 1.0 / float(bake_fps);
+ float time = 0.0;
+
+ bool last = false;
+ while (true) {
+
+ float value = _interpolate_track<float>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, track.weight_tracks[i].interpolation);
+ if (last) {
+ break;
+ }
+ time += increment;
+ if (time >= length) {
+ last = true;
+ time = length;
+ }
+ }
+ }
+ }
+ }
+
+ ap->add_animation(name, animation);
+}
+
+Spatial *EditorSceneImporterGLTF::_generate_scene(GLTFState &state, int p_bake_fps) {
+
+ Spatial *root = memnew(Spatial);
+ root->set_name(state.scene_name);
+ //generate skeletons
+ Vector<Skeleton *> skeletons;
+ for (int i = 0; i < state.skins.size(); i++) {
+ Skeleton *s = memnew(Skeleton);
+ String name = state.skins[i].name;
+ if (name == "") {
+ name = _gen_unique_name(state, "Skeleton");
+ }
+ s->set_name(name);
+ root->add_child(s);
+ s->set_owner(root);
+ skeletons.push_back(s);
+ }
+ for (int i = 0; i < state.root_nodes.size(); i++) {
+ if (state.nodes[state.root_nodes[i]]->joint_skin >= 0) {
+ _generate_bone(state, state.root_nodes[i], skeletons, -1);
+ } else {
+ _generate_node(state, state.root_nodes[i], root, root, skeletons);
+ }
+ }
+
+ for (int i = 0; i < skeletons.size(); i++) {
+ skeletons[i]->localize_rests();
+ }
+
+ if (state.animations.size()) {
+ AnimationPlayer *ap = memnew(AnimationPlayer);
+ ap->set_name("AnimationPlayer");
+ root->add_child(ap);
+ ap->set_owner(root);
+
+ for (int i = 0; i < state.animations.size(); i++) {
+ _import_animation(state, ap, i, p_bake_fps, skeletons);
+ }
+ }
+
+ return root;
+}
+
+Node *EditorSceneImporterGLTF::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps, Error *r_err) {
+
+ GLTFState state;
+
+ if (p_path.to_lower().ends_with("glb")) {
+ //binary file
+ //text file
+ Error err = _parse_glb(p_path, state);
+ if (err)
+ return NULL;
+ } else {
+ //text file
+ Error err = _parse_json(p_path, state);
+ if (err)
+ return NULL;
+ }
+
+ ERR_FAIL_COND_V(!state.json.has("asset"), NULL);
+
+ Dictionary asset = state.json["asset"];
+
+ ERR_FAIL_COND_V(!asset.has("version"), NULL);
+
+ String version = asset["version"];
+
+ state.major_version = version.get_slice(".", 0).to_int();
+ state.minor_version = version.get_slice(".", 1).to_int();
+
+ /* STEP 0 PARSE SCENE */
+ Error err = _parse_scenes(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 1 PARSE NODES */
+ err = _parse_nodes(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 2 PARSE BUFFERS */
+ err = _parse_buffers(state, p_path.get_base_dir());
+ if (err != OK)
+ return NULL;
+
+ /* STEP 3 PARSE BUFFER VIEWS */
+ err = _parse_buffer_views(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 4 PARSE ACCESSORS */
+ err = _parse_accessors(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 5 PARSE IMAGES */
+ err = _parse_images(state, p_path.get_base_dir());
+ if (err != OK)
+ return NULL;
+
+ /* STEP 6 PARSE TEXTURES */
+ err = _parse_textures(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 7 PARSE TEXTURES */
+ err = _parse_materials(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 8 PARSE MESHES (we have enough info now) */
+ err = _parse_meshes(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 9 PARSE SKINS */
+ err = _parse_skins(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 10 PARSE CAMERAS */
+ err = _parse_cameras(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 11 PARSE ANIMATIONS */
+ err = _parse_animations(state);
+ if (err != OK)
+ return NULL;
+
+ /* STEP 12 ASSIGN SCENE NAMES */
+ _assign_scene_names(state);
+
+ /* STEP 13 MAKE SCENE! */
+ Spatial *scene = _generate_scene(state, p_bake_fps);
+
+ return scene;
+}
+
+Ref<Animation> EditorSceneImporterGLTF::import_animation(const String &p_path, uint32_t p_flags) {
+
+ return Ref<Animation>();
+}
+
+EditorSceneImporterGLTF::EditorSceneImporterGLTF() {
+}
diff --git a/editor/import/editor_scene_importer_gltf.h b/editor/import/editor_scene_importer_gltf.h
new file mode 100644
index 0000000000..d9479fae6f
--- /dev/null
+++ b/editor/import/editor_scene_importer_gltf.h
@@ -0,0 +1,304 @@
+#ifndef EDITOR_SCENE_IMPORTER_GLTF_H
+#define EDITOR_SCENE_IMPORTER_GLTF_H
+
+#include "editor/import/resource_importer_scene.h"
+#include "scene/3d/skeleton.h"
+#include "scene/3d/spatial.h"
+
+class AnimationPlayer;
+
+class EditorSceneImporterGLTF : public EditorSceneImporter {
+
+ GDCLASS(EditorSceneImporterGLTF, EditorSceneImporter);
+
+ enum {
+ ARRAY_BUFFER = 34962,
+ ELEMENT_ARRAY_BUFFER = 34963,
+
+ TYPE_BYTE = 5120,
+ TYPE_UNSIGNED_BYTE = 5121,
+ TYPE_SHORT = 5122,
+ TYPE_UNSIGNED_SHORT = 5123,
+ TYPE_UNSIGNED_INT = 5125,
+ TYPE_FLOAT = 5126,
+
+ COMPONENT_TYPE_BYTE = 5120,
+ COMPONENT_TYPE_UNSIGNED_BYTE = 5121,
+ COMPONENT_TYPE_SHORT = 5122,
+ COMPONENT_TYPE_UNSIGNED_SHORT = 5123,
+ COMPONENT_TYPE_INT = 5125,
+ COMPONENT_TYPE_FLOAT = 5126,
+
+ };
+
+ String _get_component_type_name(uint32_t p_component);
+ int _get_component_type_size(int component_type);
+
+ enum GLTFType {
+ TYPE_SCALAR,
+ TYPE_VEC2,
+ TYPE_VEC3,
+ TYPE_VEC4,
+ TYPE_MAT2,
+ TYPE_MAT3,
+ TYPE_MAT4,
+ };
+
+ String _get_type_name(GLTFType p_component);
+
+ struct GLTFNode {
+ //matrices need to be transformed to this
+ int parent;
+
+ Transform xform;
+ String name;
+ Node *godot_node;
+ int godot_bone_index;
+
+ int mesh;
+ int camera;
+ int skin;
+ int skeleton_skin;
+ int child_of_skeleton; // put as children of skeleton
+ Vector<int> skeleton_children; //skeleton put as children of this
+
+ int joint_skin;
+ int joint_bone;
+
+ //keep them for animation
+ Vector3 translation;
+ Quat rotation;
+ Vector3 scale;
+
+ Vector<int> children;
+
+ GLTFNode() {
+ godot_node = NULL;
+ godot_bone_index = -1;
+ joint_skin = -1;
+ joint_bone = -1;
+ child_of_skeleton = -1;
+ skeleton_skin = -1;
+ mesh = -1;
+ camera = -1;
+ parent = -1;
+ scale = Vector3(1, 1, 1);
+ }
+ };
+
+ struct GLTFBufferView {
+
+ int buffer;
+ int byte_offset;
+ int byte_length;
+ int byte_stride;
+ bool indices;
+ //matrices need to be transformed to this
+
+ GLTFBufferView() {
+ buffer = 0;
+ byte_offset = 0;
+ byte_length = 0;
+ byte_stride = 0;
+ indices = false;
+ }
+ };
+
+ struct GLTFAccessor {
+
+ int buffer_view;
+ int byte_offset;
+ int component_type;
+ bool normalized;
+ int count;
+ GLTFType type;
+ float min;
+ float max;
+ int sparse_count;
+ int sparse_indices_buffer_view;
+ int sparse_indices_byte_offset;
+ int sparse_indices_component_type;
+ int sparse_values_buffer_view;
+ int sparse_values_byte_offset;
+
+ //matrices need to be transformed to this
+
+ GLTFAccessor() {
+ buffer_view = 0;
+ byte_offset = 0;
+ component_type = 0;
+ normalized = false;
+ count = 0;
+ min = 0;
+ max = 0;
+ sparse_count = 0;
+ sparse_indices_byte_offset = 0;
+ sparse_values_byte_offset = 0;
+ }
+ };
+ struct GLTFTexture {
+ int src_image;
+ };
+
+ struct GLTFSkin {
+
+ String name;
+ struct Bone {
+ Transform inverse_bind;
+ int node;
+ };
+
+ int skeleton;
+ Vector<Bone> bones;
+
+ //matrices need to be transformed to this
+
+ GLTFSkin() {
+ skeleton = -1;
+ }
+ };
+
+ struct GLTFMesh {
+ Ref<ArrayMesh> mesh;
+ Vector<float> blend_weights;
+ };
+
+ struct GLTFCamera {
+
+ bool perspective;
+ float fov_size;
+ float zfar;
+ float znear;
+
+ GLTFCamera() {
+ perspective = true;
+ fov_size = 65;
+ zfar = 500;
+ znear = 0.1;
+ }
+ };
+
+ struct GLTFAnimation {
+
+ enum Interpolation {
+ INTERP_LINEAR,
+ INTERP_STEP,
+ INTERP_CATMULLROMSPLINE,
+ INTERP_CUBIC_SPLINE
+ };
+
+ template <class T>
+ struct Channel {
+ Interpolation interpolation;
+ Vector<float> times;
+ Vector<T> values;
+ };
+
+ struct Track {
+
+ Channel<Vector3> translation_track;
+ Channel<Quat> rotation_track;
+ Channel<Vector3> scale_track;
+ Vector<Channel<float> > weight_tracks;
+ };
+
+ String name;
+
+ Map<int, Track> tracks;
+ };
+
+ struct GLTFState {
+
+ Dictionary json;
+ int major_version;
+ int minor_version;
+ Vector<uint8_t> glb_data;
+
+ Vector<GLTFNode *> nodes;
+ Vector<Vector<uint8_t> > buffers;
+ Vector<GLTFBufferView> buffer_views;
+ Vector<GLTFAccessor> accessors;
+
+ Vector<GLTFMesh> meshes; //meshes are loaded directly, no reason not to.
+ Vector<Ref<Material> > materials;
+
+ String scene_name;
+ Vector<int> root_nodes;
+
+ Vector<GLTFTexture> textures;
+ Vector<Ref<Texture> > images;
+
+ Vector<GLTFSkin> skins;
+ Vector<GLTFCamera> cameras;
+
+ Set<String> unique_names;
+
+ Vector<GLTFAnimation> animations;
+
+ Map<int, Vector<int> > skin_users; //cache skin users
+
+ ~GLTFState() {
+ for (int i = 0; i < nodes.size(); i++) {
+ memdelete(nodes[i]);
+ }
+ }
+ };
+
+ String _gen_unique_name(GLTFState &state, const String &p_name);
+
+ Ref<Texture> _get_texture(GLTFState &state, int p_texture);
+
+ Error _parse_json(const String &p_path, GLTFState &state);
+ Error _parse_glb(const String &p_path, GLTFState &state);
+
+ Error _parse_scenes(GLTFState &state);
+ Error _parse_nodes(GLTFState &state);
+ Error _parse_buffers(GLTFState &state, const String &p_base_path);
+ Error _parse_buffer_views(GLTFState &state);
+ GLTFType _get_type_from_str(const String &p_string);
+ Error _parse_accessors(GLTFState &state);
+ Error _decode_buffer_view(GLTFState &state, int p_buffer_view, double *dst, int skip_every, int skip_bytes, int element_size, int count, GLTFType type, int component_count, int component_type, int component_size, bool normalized, int byte_offset, bool for_vertex);
+ Vector<double> _decode_accessor(GLTFState &state, int p_accessor, bool p_for_vertex);
+ PoolVector<float> _decode_accessor_as_floats(GLTFState &state, int p_accessor, bool p_for_vertex);
+ PoolVector<int> _decode_accessor_as_ints(GLTFState &state, int p_accessor, bool p_for_vertex);
+ PoolVector<Vector2> _decode_accessor_as_vec2(GLTFState &state, int p_accessor, bool p_for_vertex);
+ PoolVector<Vector3> _decode_accessor_as_vec3(GLTFState &state, int p_accessor, bool p_for_vertex);
+ PoolVector<Color> _decode_accessor_as_color(GLTFState &state, int p_accessor, bool p_for_vertex);
+ Vector<Quat> _decode_accessor_as_quat(GLTFState &state, int p_accessor, bool p_for_vertex);
+ Vector<Transform2D> _decode_accessor_as_xform2d(GLTFState &state, int p_accessor, bool p_for_vertex);
+ Vector<Basis> _decode_accessor_as_basis(GLTFState &state, int p_accessor, bool p_for_vertex);
+ Vector<Transform> _decode_accessor_as_xform(GLTFState &state, int p_accessor, bool p_for_vertex);
+
+ void _generate_bone(GLTFState &state, int p_node, Vector<Skeleton *> &skeletons, int p_parent_bone);
+ void _generate_node(GLTFState &state, int p_node, Node *p_parent, Node *p_owner, Vector<Skeleton *> &skeletons);
+ void _import_animation(GLTFState &state, AnimationPlayer *ap, int index, int bake_fps, Vector<Skeleton *> skeletons);
+
+ Spatial *_generate_scene(GLTFState &state, int p_bake_fps);
+
+ Error _parse_meshes(GLTFState &state);
+ Error _parse_images(GLTFState &state, const String &p_base_path);
+ Error _parse_textures(GLTFState &state);
+
+ Error _parse_materials(GLTFState &state);
+
+ Error _parse_skins(GLTFState &state);
+
+ Error _parse_cameras(GLTFState &state);
+
+ Error _parse_animations(GLTFState &state);
+
+ void _assign_scene_names(GLTFState &state);
+
+ template <class T>
+ T _interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time, GLTFAnimation::Interpolation p_interp);
+
+public:
+ virtual uint32_t get_import_flags() const;
+ virtual void get_extensions(List<String> *r_extensions) const;
+ virtual Node *import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps = NULL, Error *r_err = NULL);
+ virtual Ref<Animation> import_animation(const String &p_path, uint32_t p_flags);
+
+ EditorSceneImporterGLTF();
+};
+
+#endif // EDITOR_SCENE_IMPORTER_GLTF_H
diff --git a/editor/import/resource_importer_obj.cpp b/editor/import/resource_importer_obj.cpp
index 25548f7899..8f86e64cf2 100644
--- a/editor/import/resource_importer_obj.cpp
+++ b/editor/import/resource_importer_obj.cpp
@@ -323,8 +323,8 @@ Node *EditorOBJImporter::import_scene(const String &p_path, uint32_t p_flags, in
surf_tool->add_smooth_group(false);
else
surf_tool->add_smooth_group(true);
- } else if (l.begins_with("g ") || l.begins_with("usemtl ") || (l.begins_with("o ") || f->eof_reached())) { //commit group to mesh
-
+ } else if (/*l.begins_with("g ") ||*/ l.begins_with("usemtl ") || (l.begins_with("o ") || f->eof_reached())) { //commit group to mesh
+ //groups are too annoying
if (surf_tool->get_vertex_array().size()) {
//another group going on, commit it
if (normals.size() == 0) {
diff --git a/editor/import/resource_importer_texture.cpp b/editor/import/resource_importer_texture.cpp
index 98020ed9b8..c0c507c2d6 100644
--- a/editor/import/resource_importer_texture.cpp
+++ b/editor/import/resource_importer_texture.cpp
@@ -236,7 +236,7 @@ void ResourceImporterTexture::_save_stex(const Ref<Image> &p_image, const String
format |= StreamTexture::FORMAT_BIT_DETECT_NORMAL;
if ((p_compress_mode == COMPRESS_LOSSLESS || p_compress_mode == COMPRESS_LOSSY) && p_image->get_format() > Image::FORMAT_RGBA8) {
- p_compress_mode == COMPRESS_UNCOMPRESSED; //these can't go as lossy
+ p_compress_mode = COMPRESS_UNCOMPRESSED; //these can't go as lossy
}
switch (p_compress_mode) {
diff --git a/editor/import/resource_importer_wav.cpp b/editor/import/resource_importer_wav.cpp
index 18c4bed5dd..8cb712cb78 100644
--- a/editor/import/resource_importer_wav.cpp
+++ b/editor/import/resource_importer_wav.cpp
@@ -291,7 +291,7 @@ Error ResourceImporterWAV::import(const String &p_source_file, const String &p_s
bool limit_rate = p_options["force/max_rate"];
int limit_rate_hz = p_options["force/max_rate_hz"];
- if (limit_rate && rate > limit_rate_hz) {
+ if (limit_rate && rate > limit_rate_hz && rate > 0 && frames > 0) {
//resampleeee!!!
int new_data_frames = frames * limit_rate_hz / rate;
Vector<float> new_data;
@@ -356,7 +356,7 @@ Error ResourceImporterWAV::import(const String &p_source_file, const String &p_s
bool trim = p_options["edit/trim"];
- if (trim && !loop) {
+ if (trim && !loop && format_channels > 0) {
int first = 0;
int last = (frames * format_channels) - 1;