summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.cpp1055
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.h286
-rw-r--r--drivers/gles3/rasterizer_storage_gles3.cpp13
-rw-r--r--drivers/gles3/shader_gles3.h5
-rw-r--r--drivers/gles3/shaders/SCsub13
-rw-r--r--drivers/gles3/shaders/cubemap_filter.glsl216
-rw-r--r--drivers/gles3/shaders/scene.glsl384
-rw-r--r--drivers/gles3/shaders/sky.glsl35
-rw-r--r--drivers/gles3/shaders/stdlib_inc.glsl6
-rw-r--r--drivers/gles3/shaders/tonemap_inc.glsl16
-rw-r--r--drivers/gles3/storage/material_storage.cpp5
-rw-r--r--drivers/gles3/storage/material_storage.h5
-rw-r--r--drivers/gles3/storage/mesh_storage.cpp8
-rw-r--r--drivers/gles3/storage/texture_storage.cpp5
-rw-r--r--drivers/gles3/storage/texture_storage.h11
15 files changed, 1537 insertions, 526 deletions
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp
index 68657b9152..7937090862 100644
--- a/drivers/gles3/rasterizer_scene_gles3.cpp
+++ b/drivers/gles3/rasterizer_scene_gles3.cpp
@@ -30,11 +30,26 @@
#include "rasterizer_scene_gles3.h"
#include "core/config/project_settings.h"
+#include "core/templates/sort_array.h"
#include "servers/rendering/rendering_server_default.h"
#include "storage/config.h"
#ifdef GLES3_ENABLED
+void glTexStorage2DCustom(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type) {
+#ifdef GLES_OVER_GL
+
+ for (int i = 0; i < levels; i++) {
+ glTexImage2D(target, i, internalformat, width, height, 0, format, type, nullptr);
+ width = MAX(1, (width / 2));
+ height = MAX(1, (height / 2));
+ }
+
+#else
+ glTexStorage2D(target, levels, internalformat, width, height);
+#endif
+}
+
uint64_t RasterizerSceneGLES3::auto_exposure_counter = 2;
RasterizerSceneGLES3 *RasterizerSceneGLES3::singleton = nullptr;
@@ -196,16 +211,39 @@ void RasterizerSceneGLES3::geometry_instance_set_cast_double_sided_shadows(Geome
}
uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() {
- return 0; //(1 << RS::INSTANCE_LIGHT);
- // For now, nothing is paired
+ return (1 << RS::INSTANCE_LIGHT);
}
void RasterizerSceneGLES3::geometry_instance_pair_light_instances(GeometryInstance *p_geometry_instance, const RID *p_light_instances, uint32_t p_light_instance_count) {
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
ERR_FAIL_COND(!ginstance);
+ GLES3::Config *config = GLES3::Config::get_singleton();
+
ginstance->omni_light_count = 0;
ginstance->spot_light_count = 0;
+ ginstance->omni_lights.clear();
+ ginstance->spot_lights.clear();
+
+ for (uint32_t i = 0; i < p_light_instance_count; i++) {
+ RS::LightType type = light_instance_get_type(p_light_instances[i]);
+ switch (type) {
+ case RS::LIGHT_OMNI: {
+ if (ginstance->omni_light_count < (uint32_t)config->max_lights_per_object) {
+ ginstance->omni_lights.push_back(p_light_instances[i]);
+ ginstance->omni_light_count++;
+ }
+ } break;
+ case RS::LIGHT_SPOT: {
+ if (ginstance->spot_light_count < (uint32_t)config->max_lights_per_object) {
+ ginstance->spot_lights.push_back(p_light_instances[i]);
+ ginstance->spot_light_count++;
+ }
+ } break;
+ default:
+ break;
+ }
+ }
}
void RasterizerSceneGLES3::geometry_instance_pair_reflection_probe_instances(GeometryInstance *p_geometry_instance, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count) {
@@ -495,8 +533,6 @@ void RasterizerSceneGLES3::_geometry_instance_update(GeometryInstance *p_geometr
}
}
- //Fill push constant
-
bool store_transform = true;
ginstance->base_flags = 0;
@@ -556,12 +592,12 @@ void RasterizerSceneGLES3::set_directional_shadow_count(int p_count) {
/* SKY API */
-void RasterizerSceneGLES3::Sky::free() {
- if (radiance != 0) {
- glDeleteTextures(1, &radiance);
- radiance = 0;
- glDeleteFramebuffers(1, &radiance_framebuffer);
- radiance_framebuffer = 0;
+void RasterizerSceneGLES3::_free_sky_data(Sky *p_sky) {
+ if (p_sky->radiance != 0) {
+ glDeleteTextures(1, &p_sky->radiance);
+ p_sky->radiance = 0;
+ glDeleteFramebuffers(1, &p_sky->radiance_framebuffer);
+ p_sky->radiance_framebuffer = 0;
}
}
@@ -584,7 +620,8 @@ void RasterizerSceneGLES3::sky_set_radiance_size(RID p_sky, int p_radiance_size)
sky->radiance_size = p_radiance_size;
- sky->free();
+ _free_sky_data(sky);
+ _invalidate_sky(sky);
}
void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
@@ -596,10 +633,7 @@ void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
}
sky->mode = p_mode;
-
- if (sky->mode == RS::SKY_MODE_REALTIME) {
- WARN_PRINT_ONCE("The OpenGL renderer does not support the Real Time Sky Update Mode yet. Please use High Quality Mode instead");
- }
+ _invalidate_sky(sky);
}
void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) {
@@ -611,6 +645,7 @@ void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) {
}
sky->material = p_material;
+ _invalidate_sky(sky);
}
void RasterizerSceneGLES3::_invalidate_sky(Sky *p_sky) {
@@ -626,13 +661,57 @@ void RasterizerSceneGLES3::_update_dirty_skys() {
while (sky) {
if (sky->radiance == 0) {
- //int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
+ sky->mipmap_count = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8) + 1;
- //uint32_t w = sky->radiance_size, h = sky->radiance_size;
- //int layers = sky_globals.roughness_layers;
+ // Left uninitialized, will attach a texture at render time
glGenFramebuffers(1, &sky->radiance_framebuffer);
+ GLenum internal_format = GL_RGB10_A2;
+
glGenTextures(1, &sky->radiance);
+ glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance);
+
+#ifdef GLES_OVER_GL
+ GLenum format = GL_RGBA;
+ GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV;
+ //TODO, on low-end compare this to allocating each face of each mip individually
+ // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml
+ for (int i = 0; i < 6; i++) {
+ glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr);
+ }
+
+ glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
+#else
+ glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size);
+#endif
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count);
+
+ glGenTextures(1, &sky->raw_radiance);
+ glBindTexture(GL_TEXTURE_CUBE_MAP, sky->raw_radiance);
+
+#ifdef GLES_OVER_GL
+ //TODO, on low-end compare this to allocating each face of each mip individually
+ // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml
+ for (int i = 0; i < 6; i++) {
+ glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr);
+ }
+
+ glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
+#else
+ glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size);
+#endif
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count);
+ glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
}
sky->reflection_dirty = true;
@@ -647,6 +726,152 @@ void RasterizerSceneGLES3::_update_dirty_skys() {
dirty_sky_list = nullptr;
}
+void RasterizerSceneGLES3::_setup_sky(Environment *p_env, RID p_render_buffers, const PagedArray<RID> &p_lights, const CameraMatrix &p_projection, const Transform3D &p_transform, const Size2i p_screen_size) {
+ GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+ ERR_FAIL_COND(!p_env);
+
+ GLES3::SkyMaterialData *material = nullptr;
+ Sky *sky = sky_owner.get_or_null(p_env->sky);
+
+ RID sky_material;
+
+ GLES3::SkyShaderData *shader_data = nullptr;
+
+ if (sky) {
+ sky_material = sky->material;
+
+ if (sky_material.is_valid()) {
+ material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ if (!material || !material->shader_data->valid) {
+ material = nullptr;
+ }
+ }
+
+ if (!material) {
+ sky_material = sky_globals.default_material;
+ material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ }
+
+ ERR_FAIL_COND(!material);
+
+ shader_data = material->shader_data;
+
+ ERR_FAIL_COND(!shader_data);
+
+ if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
+ sky->prev_time = time;
+ sky->reflection_dirty = true;
+ RenderingServerDefault::redraw_request();
+ }
+
+ if (material != sky->prev_material) {
+ sky->prev_material = material;
+ sky->reflection_dirty = true;
+ }
+
+ if (material->uniform_set_updated) {
+ material->uniform_set_updated = false;
+ sky->reflection_dirty = true;
+ }
+
+ if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
+ sky->prev_position = p_transform.origin;
+ sky->reflection_dirty = true;
+ }
+
+ if (shader_data->uses_light) {
+ sky_globals.directional_light_count = 0;
+ for (int i = 0; i < (int)p_lights.size(); i++) {
+ LightInstance *li = light_instance_owner.get_or_null(p_lights[i]);
+ if (!li) {
+ continue;
+ }
+ RID base = li->light;
+
+ ERR_CONTINUE(base.is_null());
+
+ RS::LightType type = light_storage->light_get_type(base);
+ if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) {
+ DirectionalLightData &sky_light_data = sky_globals.directional_lights[sky_globals.directional_light_count];
+ Transform3D light_transform = li->transform;
+ Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
+
+ sky_light_data.direction[0] = world_direction.x;
+ sky_light_data.direction[1] = world_direction.y;
+ sky_light_data.direction[2] = world_direction.z;
+
+ float sign = light_storage->light_is_negative(base) ? -1 : 1;
+ sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
+
+ Color linear_col = light_storage->light_get_color(base);
+ sky_light_data.color[0] = linear_col.r;
+ sky_light_data.color[1] = linear_col.g;
+ sky_light_data.color[2] = linear_col.b;
+
+ sky_light_data.enabled = true;
+
+ float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
+ if (angular_diameter > 0.0) {
+ angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
+ } else {
+ angular_diameter = 0.0;
+ }
+ sky_light_data.size = angular_diameter;
+ sky_globals.directional_light_count++;
+ if (sky_globals.directional_light_count >= sky_globals.max_directional_lights) {
+ break;
+ }
+ }
+ }
+ // Check whether the directional_light_buffer changes
+ bool light_data_dirty = false;
+
+ // Light buffer is dirty if we have fewer or more lights
+ // If we have fewer lights, make sure that old lights are disabled
+ if (sky_globals.directional_light_count != sky_globals.last_frame_directional_light_count) {
+ light_data_dirty = true;
+ for (uint32_t i = sky_globals.directional_light_count; i < sky_globals.max_directional_lights; i++) {
+ sky_globals.directional_lights[i].enabled = false;
+ }
+ }
+
+ if (!light_data_dirty) {
+ for (uint32_t i = 0; i < sky_globals.directional_light_count; i++) {
+ if (sky_globals.directional_lights[i].direction[0] != sky_globals.last_frame_directional_lights[i].direction[0] ||
+ sky_globals.directional_lights[i].direction[1] != sky_globals.last_frame_directional_lights[i].direction[1] ||
+ sky_globals.directional_lights[i].direction[2] != sky_globals.last_frame_directional_lights[i].direction[2] ||
+ sky_globals.directional_lights[i].energy != sky_globals.last_frame_directional_lights[i].energy ||
+ sky_globals.directional_lights[i].color[0] != sky_globals.last_frame_directional_lights[i].color[0] ||
+ sky_globals.directional_lights[i].color[1] != sky_globals.last_frame_directional_lights[i].color[1] ||
+ sky_globals.directional_lights[i].color[2] != sky_globals.last_frame_directional_lights[i].color[2] ||
+ sky_globals.directional_lights[i].enabled != sky_globals.last_frame_directional_lights[i].enabled ||
+ sky_globals.directional_lights[i].size != sky_globals.last_frame_directional_lights[i].size) {
+ light_data_dirty = true;
+ break;
+ }
+ }
+ }
+
+ if (light_data_dirty) {
+ glBindBufferBase(GL_UNIFORM_BUFFER, SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, sky_globals.directional_light_buffer);
+ glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(DirectionalLightData) * sky_globals.directional_light_count, sky_globals.directional_lights);
+ glBindBuffer(GL_UNIFORM_BUFFER, 0);
+
+ DirectionalLightData *temp = sky_globals.last_frame_directional_lights;
+ sky_globals.last_frame_directional_lights = sky_globals.directional_lights;
+ sky_globals.directional_lights = temp;
+ sky_globals.last_frame_directional_light_count = sky_globals.directional_light_count;
+ sky->reflection_dirty = true;
+ }
+ }
+
+ if (!sky->radiance) {
+ _update_dirty_skys();
+ }
+ }
+}
+
void RasterizerSceneGLES3::_draw_sky(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
ERR_FAIL_COND(!p_env);
@@ -686,8 +911,6 @@ void RasterizerSceneGLES3::_draw_sky(Environment *p_env, const CameraMatrix &p_p
ERR_FAIL_COND(!shader_data);
- //glBindBufferBase(GL_UNIFORM_BUFFER, 2, p_sky.directional light data); // Directional light data
-
// Camera
CameraMatrix camera;
@@ -709,11 +932,178 @@ void RasterizerSceneGLES3::_draw_sky(Environment *p_env, const CameraMatrix &p_p
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
- // Bind a vertex array or else OpenGL complains. We won't actually use it
- glBindVertexArray(sky_globals.quad_array);
+
+ glBindVertexArray(sky_globals.screen_triangle_array);
glDrawArrays(GL_TRIANGLES, 0, 3);
}
+void RasterizerSceneGLES3::_update_sky_radiance(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform) {
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+ ERR_FAIL_COND(!p_env);
+
+ Sky *sky = sky_owner.get_or_null(p_env->sky);
+ ERR_FAIL_COND(!sky);
+
+ GLES3::SkyMaterialData *material_data = nullptr;
+ RID sky_material;
+
+ RS::EnvironmentBG background = p_env->background;
+
+ if (sky) {
+ ERR_FAIL_COND(!sky);
+ sky_material = sky->material;
+
+ if (sky_material.is_valid()) {
+ material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ if (!material_data || !material_data->shader_data->valid) {
+ material_data = nullptr;
+ }
+ }
+
+ if (!material_data) {
+ sky_material = sky_globals.default_material;
+ material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ }
+ } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
+ sky_material = sky_globals.fog_material;
+ material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ }
+
+ ERR_FAIL_COND(!material_data);
+ material_data->bind_uniforms();
+
+ GLES3::SkyShaderData *shader_data = material_data->shader_data;
+
+ ERR_FAIL_COND(!shader_data);
+
+ bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
+ RS::SkyMode sky_mode = sky->mode;
+
+ if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
+ if (shader_data->uses_time || shader_data->uses_position) {
+ update_single_frame = true;
+ sky_mode = RS::SKY_MODE_REALTIME;
+ } else if (shader_data->uses_light || shader_data->ubo_size > 0) {
+ update_single_frame = false;
+ sky_mode = RS::SKY_MODE_INCREMENTAL;
+ } else {
+ update_single_frame = true;
+ sky_mode = RS::SKY_MODE_QUALITY;
+ }
+ }
+
+ if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
+ // On the first frame after creating sky, rebuild in single frame
+ update_single_frame = true;
+ sky_mode = RS::SKY_MODE_QUALITY;
+ }
+
+ int max_processing_layer = sky->mipmap_count;
+
+ // Update radiance cubemap
+ if (sky->reflection_dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) {
+ static const Vector3 view_normals[6] = {
+ Vector3(+1, 0, 0),
+ Vector3(-1, 0, 0),
+ Vector3(0, +1, 0),
+ Vector3(0, -1, 0),
+ Vector3(0, 0, +1),
+ Vector3(0, 0, -1)
+ };
+ static const Vector3 view_up[6] = {
+ Vector3(0, -1, 0),
+ Vector3(0, -1, 0),
+ Vector3(0, 0, +1),
+ Vector3(0, 0, -1),
+ Vector3(0, -1, 0),
+ Vector3(0, -1, 0)
+ };
+
+ CameraMatrix cm;
+ cm.set_perspective(90, 1, 0.01, 10.0);
+ CameraMatrix correction;
+ correction.set_depth_correction(true);
+ cm = correction * cm;
+
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
+
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, cm.matrix[2][0], cm.matrix[0][0], cm.matrix[2][1], cm.matrix[1][1], shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
+
+ // Bind a vertex array or else OpenGL complains. We won't actually use it
+ glBindVertexArray(sky_globals.screen_triangle_array);
+
+ glViewport(0, 0, sky->radiance_size, sky->radiance_size);
+ glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer);
+
+ for (int i = 0; i < 6; i++) {
+ Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, sky->raw_radiance, 0);
+ glDrawArrays(GL_TRIANGLES, 0, 3);
+ }
+
+ if (update_single_frame) {
+ for (int i = 0; i < max_processing_layer; i++) {
+ _filter_sky_radiance(sky, i);
+ }
+ } else {
+ _filter_sky_radiance(sky, 0); //Just copy over the first mipmap
+ }
+ sky->processing_layer = 1;
+
+ sky->reflection_dirty = false;
+ } else {
+ if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
+ _filter_sky_radiance(sky, sky->processing_layer);
+ sky->processing_layer++;
+ }
+ }
+}
+
+void RasterizerSceneGLES3::_filter_sky_radiance(Sky *p_sky, int p_base_layer) {
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_CUBE_MAP, p_sky->raw_radiance);
+ glBindFramebuffer(GL_FRAMEBUFFER, p_sky->radiance_framebuffer);
+
+ CubemapFilterShaderGLES3::ShaderVariant mode = CubemapFilterShaderGLES3::MODE_DEFAULT;
+
+ if (p_base_layer == 0) {
+ glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
+ mode = CubemapFilterShaderGLES3::MODE_COPY;
+
+ //Copy over base layer
+ }
+ glActiveTexture(GL_TEXTURE1);
+ glBindTexture(GL_TEXTURE_2D, sky_globals.radical_inverse_vdc_cache_tex);
+
+ int size = p_sky->radiance_size >> p_base_layer;
+ glViewport(0, 0, size, size);
+ glBindVertexArray(sky_globals.screen_triangle_array);
+
+ material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, mode);
+ material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::SAMPLE_COUNT, sky_globals.ggx_samples, scene_globals.cubemap_filter_shader_version, mode);
+ material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, float(p_base_layer) / (p_sky->mipmap_count - 1.0), scene_globals.cubemap_filter_shader_version, mode);
+ material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_SIZE, float(size), scene_globals.cubemap_filter_shader_version, mode);
+
+ for (int i = 0; i < 6; i++) {
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, p_sky->radiance, p_base_layer);
+#ifdef DEBUG_ENABLED
+ GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
+ ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
+#endif
+ material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_ID, i, scene_globals.cubemap_filter_shader_version, mode);
+
+ glDrawArrays(GL_TRIANGLES, 0, 3);
+ }
+ glBindVertexArray(0);
+ glViewport(0, 0, p_sky->screen_size.x, p_sky->screen_size.y);
+ glBindFramebuffer(GL_FRAMEBUFFER, 0);
+}
+
Ref<Image> RasterizerSceneGLES3::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
return Ref<Image>();
}
@@ -941,13 +1331,29 @@ void RasterizerSceneGLES3::directional_shadow_quality_set(RS::ShadowQuality p_qu
}
RID RasterizerSceneGLES3::light_instance_create(RID p_light) {
- return RID();
+ RID li = light_instance_owner.make_rid(LightInstance());
+
+ LightInstance *light_instance = light_instance_owner.get_or_null(li);
+
+ light_instance->self = li;
+ light_instance->light = p_light;
+ light_instance->light_type = RSG::light_storage->light_get_type(p_light);
+
+ return li;
}
void RasterizerSceneGLES3::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
+ LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_COND(!light_instance);
+
+ light_instance->transform = p_transform;
}
void RasterizerSceneGLES3::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
+ LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_COND(!light_instance);
+
+ light_instance->aabb = p_aabb;
}
void RasterizerSceneGLES3::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
@@ -1090,8 +1496,22 @@ void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const
flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE;
}
- //Process lights here, determine if they need extra passes
+ // Sets the index values for lookup in the shader
+ // This has to be done after _setup_lights was called this frame
+ // TODO, check shadow status of lights here, if using shadows, skip here and add below
if (p_pass_mode == PASS_MODE_COLOR) {
+ if (inst->omni_light_count) {
+ inst->omni_light_gl_cache.resize(inst->omni_light_count);
+ for (uint32_t j = 0; j < inst->omni_light_count; j++) {
+ inst->omni_light_gl_cache[j] = light_instance_get_gl_id(inst->omni_lights[j]);
+ }
+ }
+ if (inst->spot_light_count) {
+ inst->spot_light_gl_cache.resize(inst->spot_light_count);
+ for (uint32_t j = 0; j < inst->spot_light_count; j++) {
+ inst->spot_light_gl_cache[j] = light_instance_get_gl_id(inst->spot_lights[j]);
+ }
+ }
}
inst->flags_cache = flags;
@@ -1197,6 +1617,7 @@ void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const
}
}
+// Needs to be called after _setup_lights so that directional_light_count is accurate.
void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows) {
CameraMatrix correction;
correction.set_depth_correction(p_flip_y);
@@ -1205,15 +1626,13 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
RasterizerStorageGLES3::store_camera(projection, scene_state.ubo.projection_matrix);
RasterizerStorageGLES3::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix);
RasterizerStorageGLES3::store_transform(p_render_data->cam_transform, scene_state.ubo.inv_view_matrix);
- RasterizerStorageGLES3::store_transform(p_render_data->cam_transform.affine_inverse(), scene_state.ubo.view_matrix);
+ RasterizerStorageGLES3::store_transform(p_render_data->inv_cam_transform, scene_state.ubo.view_matrix);
- scene_state.ubo.directional_light_count = 1;
+ scene_state.ubo.directional_light_count = p_render_data->directional_light_count;
scene_state.ubo.z_far = p_render_data->z_far;
scene_state.ubo.z_near = p_render_data->z_near;
- scene_state.ubo.pancake_shadows = p_pancake_shadows;
-
scene_state.ubo.viewport_size[0] = p_screen_size.x;
scene_state.ubo.viewport_size[1] = p_screen_size.y;
@@ -1242,6 +1661,8 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy;
scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy;
scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy;
+ scene_state.ubo.use_ambient_light = true;
+ scene_state.ubo.use_ambient_cubemap = false;
} else {
float energy = env->ambient_light_energy;
Color color = env->ambient_light;
@@ -1253,6 +1674,16 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
Basis sky_transform = env->sky_orientation;
sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis;
RasterizerStorageGLES3::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform);
+ scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY;
+ scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR;
+ }
+
+ //specular
+ RS::EnvironmentReflectionSource ref_src = env->reflection_source;
+ if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) {
+ scene_state.ubo.use_reflection_cubemap = true;
+ } else {
+ scene_state.ubo.use_reflection_cubemap = false;
}
scene_state.ubo.fog_enabled = env->fog_enabled;
@@ -1281,6 +1712,210 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
+// Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer
+void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count) {
+ GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
+ GLES3::Config *config = GLES3::Config::get_singleton();
+
+ const Transform3D inverse_transform = p_render_data->inv_cam_transform;
+
+ const PagedArray<RID> &lights = *p_render_data->lights;
+
+ r_directional_light_count = 0;
+ r_omni_light_count = 0;
+ r_spot_light_count = 0;
+
+ int num_lights = lights.size();
+
+ for (int i = 0; i < num_lights; i++) {
+ LightInstance *li = light_instance_owner.get_or_null(lights[i]);
+ if (!li) {
+ continue;
+ }
+ RID base = li->light;
+
+ ERR_CONTINUE(base.is_null());
+
+ RS::LightType type = light_storage->light_get_type(base);
+ switch (type) {
+ case RS::LIGHT_DIRECTIONAL: {
+ if (r_directional_light_count >= RendererSceneRender::MAX_DIRECTIONAL_LIGHTS || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
+ continue;
+ }
+
+ DirectionalLightData &light_data = scene_state.directional_lights[r_directional_light_count];
+
+ Transform3D light_transform = li->transform;
+
+ Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
+
+ light_data.direction[0] = direction.x;
+ light_data.direction[1] = direction.y;
+ light_data.direction[2] = direction.z;
+
+ float sign = light_storage->light_is_negative(base) ? -1 : 1;
+
+ light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
+
+ Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
+ light_data.color[0] = linear_col.r;
+ light_data.color[1] = linear_col.g;
+ light_data.color[2] = linear_col.b;
+
+ float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
+ light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
+
+ light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
+
+ r_directional_light_count++;
+ } break;
+ case RS::LIGHT_OMNI: {
+ if (r_omni_light_count >= (uint32_t)config->max_renderable_lights) {
+ continue;
+ }
+
+ const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
+
+ if (light_storage->light_is_distance_fade_enabled(li->light)) {
+ const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
+ const float fade_length = light_storage->light_get_distance_fade_length(li->light);
+
+ if (distance > fade_begin) {
+ if (distance > fade_begin + fade_length) {
+ // Out of range, don't draw this light to improve performance.
+ continue;
+ }
+ }
+ }
+
+ li->gl_id = r_omni_light_count;
+
+ scene_state.omni_light_sort[r_omni_light_count].instance = li;
+ scene_state.omni_light_sort[r_omni_light_count].depth = distance;
+ r_omni_light_count++;
+ } break;
+ case RS::LIGHT_SPOT: {
+ if (r_spot_light_count >= (uint32_t)config->max_renderable_lights) {
+ continue;
+ }
+
+ const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
+
+ if (light_storage->light_is_distance_fade_enabled(li->light)) {
+ const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
+ const float fade_length = light_storage->light_get_distance_fade_length(li->light);
+
+ if (distance > fade_begin) {
+ if (distance > fade_begin + fade_length) {
+ // Out of range, don't draw this light to improve performance.
+ continue;
+ }
+ }
+ }
+
+ li->gl_id = r_spot_light_count;
+
+ scene_state.spot_light_sort[r_spot_light_count].instance = li;
+ scene_state.spot_light_sort[r_spot_light_count].depth = distance;
+ r_spot_light_count++;
+ } break;
+ }
+ }
+
+ if (r_omni_light_count) {
+ SortArray<InstanceSort<LightInstance>> sorter;
+ sorter.sort(scene_state.omni_light_sort, r_omni_light_count);
+ }
+
+ if (r_spot_light_count) {
+ SortArray<InstanceSort<LightInstance>> sorter;
+ sorter.sort(scene_state.spot_light_sort, r_spot_light_count);
+ }
+
+ for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) {
+ uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count);
+ LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index];
+ //RS::LightType type = (i < omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
+ LightInstance *li = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].instance : scene_state.spot_light_sort[index].instance;
+ RID base = li->light;
+
+ Transform3D light_transform = li->transform;
+ Vector3 pos = inverse_transform.xform(light_transform.origin);
+
+ light_data.position[0] = pos.x;
+ light_data.position[1] = pos.y;
+ light_data.position[2] = pos.z;
+
+ float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
+ light_data.inv_radius = 1.0 / radius;
+
+ Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
+
+ light_data.direction[0] = direction.x;
+ light_data.direction[1] = direction.y;
+ light_data.direction[2] = direction.z;
+
+ float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
+
+ light_data.size = size;
+
+ float sign = light_storage->light_is_negative(base) ? -1 : 1;
+ Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
+
+ // Reuse fade begin, fade length and distance for shadow LOD determination later.
+ float fade_begin = 0.0;
+ float fade_length = 0.0;
+ real_t distance = 0.0;
+
+ float fade = 1.0;
+ if (light_storage->light_is_distance_fade_enabled(li->light)) {
+ fade_begin = light_storage->light_get_distance_fade_begin(li->light);
+ fade_length = light_storage->light_get_distance_fade_length(li->light);
+ distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
+
+ if (distance > fade_begin) {
+ // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
+ fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
+ }
+ }
+
+ float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI * fade;
+
+ light_data.color[0] = linear_col.r * energy;
+ light_data.color[1] = linear_col.g * energy;
+ light_data.color[2] = linear_col.b * energy;
+
+ light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
+
+ light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
+
+ float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
+ light_data.cos_spot_angle = Math::cos(Math::deg2rad(spot_angle));
+
+ light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
+
+ light_data.shadow_enabled = false;
+ }
+
+ // TODO, to avoid stalls, should rotate between 3 buffers based on frame index.
+ // TODO, consider mapping the buffer as in 2D
+ if (r_omni_light_count) {
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_OMNILIGHT_UNIFORM_LOCATION, scene_state.omni_light_buffer);
+ glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_omni_light_count, scene_state.omni_lights);
+ }
+
+ if (r_spot_light_count) {
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_SPOTLIGHT_UNIFORM_LOCATION, scene_state.spot_light_buffer);
+ glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_spot_light_count, scene_state.spot_lights);
+ }
+
+ if (r_directional_light_count) {
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer);
+ glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(DirectionalLightData) * r_directional_light_count, scene_state.directional_lights);
+ }
+ glBindBuffer(GL_UNIFORM_BUFFER, 0);
+}
+
void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RendererScene::RenderInfo *r_render_info) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
@@ -1300,6 +1935,7 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
render_data.transparent_bg = rb->is_transparent;
// Our first camera is used by default
render_data.cam_transform = p_camera_data->main_transform;
+ render_data.inv_cam_transform = render_data.cam_transform.affine_inverse();
render_data.cam_projection = p_camera_data->main_projection;
render_data.view_projection[0] = p_camera_data->main_projection;
render_data.cam_orthogonal = p_camera_data->is_orthogonal;
@@ -1317,8 +1953,6 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
render_data.reflection_probes = &p_reflection_probes;
render_data.environment = p_environment;
render_data.camera_effects = p_camera_effects;
- render_data.shadow_atlas = p_shadow_atlas;
- render_data.reflection_atlas = p_reflection_atlas;
render_data.reflection_probe = p_reflection_probe;
render_data.reflection_probe_pass = p_reflection_probe_pass;
@@ -1365,8 +1999,10 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
screen_size.x = rb->width;
screen_size.y = rb->height;
+ bool use_wireframe = get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME;
+
SceneState::TonemapUBO tonemap_ubo;
- if (is_environment(p_environment)) {
+ if (env) {
tonemap_ubo.exposure = env->exposure;
tonemap_ubo.white = env->white;
tonemap_ubo.tonemapper = int32_t(env->tone_mapper);
@@ -1379,12 +2015,79 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW);
+ _setup_lights(&render_data, false, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count);
_setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, !render_data.reflection_probe.is_valid(), clear_color, false);
_fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR);
render_list[RENDER_LIST_OPAQUE].sort_by_key();
render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority();
+ bool draw_sky = false;
+ bool draw_sky_fog_only = false;
+ bool keep_color = false;
+
+ if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
+ clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black
+ } else if (env) {
+ RS::EnvironmentBG bg_mode = env->background;
+ float bg_energy = env->bg_energy;
+ switch (bg_mode) {
+ case RS::ENV_BG_CLEAR_COLOR: {
+ clear_color.r *= bg_energy;
+ clear_color.g *= bg_energy;
+ clear_color.b *= bg_energy;
+ if (env->fog_enabled) {
+ draw_sky_fog_only = true;
+ GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color));
+ }
+ } break;
+ case RS::ENV_BG_COLOR: {
+ clear_color = env->bg_color;
+ clear_color.r *= bg_energy;
+ clear_color.g *= bg_energy;
+ clear_color.b *= bg_energy;
+ if (env->fog_enabled) {
+ draw_sky_fog_only = true;
+ GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color));
+ }
+ } break;
+ case RS::ENV_BG_SKY: {
+ draw_sky = true;
+ } break;
+ case RS::ENV_BG_CANVAS: {
+ keep_color = true;
+ } break;
+ case RS::ENV_BG_KEEP: {
+ keep_color = true;
+ } break;
+ case RS::ENV_BG_CAMERA_FEED: {
+ } break;
+ default: {
+ }
+ }
+ // setup sky if used for ambient, reflections, or background
+ if (draw_sky || draw_sky_fog_only || env->reflection_source == RS::ENV_REFLECTION_SOURCE_SKY || env->ambient_source == RS::ENV_AMBIENT_SOURCE_SKY) {
+ RENDER_TIMESTAMP("Setup Sky");
+ CameraMatrix projection = render_data.cam_projection;
+ if (render_data.reflection_probe.is_valid()) {
+ CameraMatrix correction;
+ correction.set_depth_correction(true);
+ projection = correction * render_data.cam_projection;
+ }
+
+ _setup_sky(env, p_render_buffers, *render_data.lights, projection, render_data.cam_transform, screen_size);
+
+ if (env->sky.is_valid()) {
+ if (env->reflection_source == RS::ENV_REFLECTION_SOURCE_SKY || env->ambient_source == RS::ENV_AMBIENT_SOURCE_SKY || (env->reflection_source == RS::ENV_REFLECTION_SOURCE_BG && env->background == RS::ENV_BG_SKY)) {
+ _update_sky_radiance(env, projection, render_data.cam_transform);
+ }
+ } else {
+ // do not try to draw sky if invalid
+ draw_sky = false;
+ }
+ }
+ }
+
glBindFramebuffer(GL_FRAMEBUFFER, rb->framebuffer);
glViewport(0, 0, rb->width, rb->height);
@@ -1395,6 +2098,7 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW;
if (use_depth_prepass) {
+ RENDER_TIMESTAMP("Depth Prepass");
//pre z pass
glDisable(GL_BLEND);
@@ -1410,9 +2114,7 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
glClearDepth(1.0f);
glClear(GL_DEPTH_BUFFER_BIT);
- uint32_t spec_constant_base_flags = 0;
-
- RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, render_data.lod_camera_plane, render_data.lod_distance_multiplier, render_data.screen_mesh_lod_threshold);
+ RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, 0, use_wireframe);
_render_list_template<PASS_MODE_DEPTH>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
glColorMask(1, 1, 1, 1);
@@ -1429,7 +2131,7 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
} else {
- glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
+ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
glDisable(GL_BLEND);
}
scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
@@ -1445,54 +2147,29 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
glClear(GL_DEPTH_BUFFER_BIT);
}
- bool draw_sky = false;
- bool keep_color = false;
-
- if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
- clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black
- } else if (is_environment(p_environment)) {
- RS::EnvironmentBG bg_mode = environment_get_background(p_environment);
- float bg_energy = env->bg_energy; //environment_get_bg_energy(p_environment);
- switch (bg_mode) {
- case RS::ENV_BG_CLEAR_COLOR: {
- clear_color.r *= bg_energy;
- clear_color.g *= bg_energy;
- clear_color.b *= bg_energy;
- } break;
- case RS::ENV_BG_COLOR: {
- clear_color = env->bg_color; //environment_get_bg_color(p_environment);
- clear_color.r *= bg_energy;
- clear_color.g *= bg_energy;
- clear_color.b *= bg_energy;
- } break;
- case RS::ENV_BG_SKY: {
- draw_sky = true;
- } break;
- case RS::ENV_BG_CANVAS: {
- keep_color = true;
- } break;
- case RS::ENV_BG_KEEP: {
- keep_color = true;
- } break;
- case RS::ENV_BG_CAMERA_FEED: {
- } break;
- default: {
- }
- }
- // Draw sky cubemap
- }
-
if (!keep_color) {
glClearBufferfv(GL_COLOR, 0, clear_color.components);
}
-
+ RENDER_TIMESTAMP("Render Opaque Pass");
uint32_t spec_constant_base_flags = 0;
- //Render Opaque Objects
- RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, render_data.lod_camera_plane, render_data.lod_distance_multiplier, render_data.screen_mesh_lod_threshold);
+
+ {
+ // Specialization Constants that apply for entire rendering pass.
+ if (render_data.directional_light_count == 0) {
+ spec_constant_base_flags |= 1 << SPEC_CONSTANT_DISABLE_DIRECTIONAL_LIGHTS;
+ }
+
+ if (!env || (env && !env->fog_enabled)) {
+ spec_constant_base_flags |= 1 << SPEC_CONSTANT_DISABLE_FOG;
+ }
+ }
+ // Render Opaque Objects.
+ RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe);
_render_list_template<PASS_MODE_COLOR>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
if (draw_sky) {
+ RENDER_TIMESTAMP("Render Sky");
if (scene_state.current_depth_test != GLES3::SceneShaderData::DEPTH_TEST_ENABLED) {
glEnable(GL_DEPTH_TEST);
scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED;
@@ -1509,19 +2186,15 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
_draw_sky(env, render_data.cam_projection, render_data.cam_transform);
}
+ RENDER_TIMESTAMP("Render 3D Transparent Pass");
glEnable(GL_BLEND);
//Render transparent pass
- RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, render_data.lod_camera_plane, render_data.lod_distance_multiplier, render_data.screen_mesh_lod_threshold);
+ RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe);
_render_list_template<PASS_MODE_COLOR_TRANSPARENT>(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true);
if (p_render_buffers.is_valid()) {
- /*
- RENDER_TIMESTAMP("Tonemap");
- _render_buffers_post_process_and_tonemap(&render_data);
- */
-
_render_buffers_debug_draw(p_render_buffers, p_shadow_atlas, p_occluder_debug_tex);
}
glDisable(GL_BLEND);
@@ -1531,12 +2204,16 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
template <PassMode p_pass_mode>
void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) {
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+ GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
+ GLES3::Config *config = GLES3::Config::get_singleton();
GLuint prev_vertex_array_gl = 0;
GLuint prev_index_array_gl = 0;
GLES3::SceneMaterialData *prev_material_data = nullptr;
GLES3::SceneShaderData *prev_shader = nullptr;
+ GeometryInstanceGLES3 *prev_inst = nullptr;
SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized.
@@ -1553,9 +2230,23 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
} break;
}
+ if (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
+ Environment *env = environment_owner.get_or_null(p_render_data->environment);
+ glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2);
+ GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id;
+ if (env) {
+ Sky *sky = sky_owner.get_or_null(env->sky);
+ if (sky && sky->radiance != 0) {
+ texture_to_bind = sky->radiance;
+ // base_spec_constant |= USE_RADIANCE_MAP;
+ }
+ glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind);
+ }
+ }
+
for (uint32_t i = p_from_element; i < p_to_element; i++) {
const GeometryInstanceSurface *surf = p_params->elements[i];
- const GeometryInstanceGLES3 *inst = surf->owner;
+ GeometryInstanceGLES3 *inst = surf->owner;
if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass
@@ -1627,7 +2318,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
if (p_render_data->transparent_bg) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
- glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
+ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
}
} break;
@@ -1639,6 +2330,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
case GLES3::SceneShaderData::BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
+
} break;
case GLES3::SceneShaderData::BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
@@ -1718,8 +2410,6 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
prev_index_array_gl = index_array_gl;
}
- // Update pipeline information here
-
Transform3D world_transform;
if (inst->store_transform_cache) {
world_transform = inst->transform;
@@ -1727,13 +2417,40 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
if (prev_material_data != material_data) {
material_data->bind_uniforms();
+ prev_material_data = material_data;
}
if (prev_shader != shader) {
- GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_bind_shader(shader->version, shader_variant);
+ material_storage->shaders.scene_shader.version_bind_shader(shader->version, shader_variant);
+ float opaque_prepass_threshold = 0.0;
+ if (p_pass_mode == PASS_MODE_DEPTH) {
+ opaque_prepass_threshold = 0.99;
+ } else if (p_pass_mode == PASS_MODE_SHADOW) {
+ opaque_prepass_threshold = 0.1;
+ }
+
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, shader_variant);
+
+ prev_shader = shader;
+ }
+
+ if (prev_inst != inst) {
+ // Rebind the light indices.
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_count, shader->version, shader_variant);
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_count, shader->version, shader_variant);
+
+ if (inst->omni_light_count) {
+ glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, shader_variant), inst->omni_light_count, inst->omni_light_gl_cache.ptr());
+ }
+
+ if (inst->spot_light_count) {
+ glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, shader_variant), inst->spot_light_count, inst->spot_light_gl_cache.ptr());
+ }
+
+ prev_inst = inst;
}
- GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, shader_variant);
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, shader_variant);
if (use_index_buffer) {
glDrawElements(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface), mesh_storage->mesh_surface_get_index_type(mesh_surface), 0);
@@ -1976,7 +2693,7 @@ bool RasterizerSceneGLES3::free(RID p_rid) {
} else if (sky_owner.owns(p_rid)) {
Sky *sky = sky_owner.get_or_null(p_rid);
ERR_FAIL_COND_V(!sky, false);
- sky->free();
+ _free_sky_data(sky);
sky_owner.free(p_rid);
} else if (render_buffers_owner.owns(p_rid)) {
RenderBuffers *rb = render_buffers_owner.get_or_null(p_rid);
@@ -1984,6 +2701,10 @@ bool RasterizerSceneGLES3::free(RID p_rid) {
_free_render_buffer_data(rb);
render_buffers_owner.free(p_rid);
+ } else if (light_instance_owner.owns(p_rid)) {
+ LightInstance *light_instance = light_instance_owner.get_or_null(p_rid);
+ ERR_FAIL_COND_V(!light_instance, false);
+ light_instance_owner.free(p_rid);
} else {
return false;
}
@@ -2005,11 +2726,55 @@ void RasterizerSceneGLES3::light_projectors_set_filter(RS::LightProjectorFilter
RasterizerSceneGLES3::RasterizerSceneGLES3(RasterizerStorageGLES3 *p_storage) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+ GLES3::Config *config = GLES3::Config::get_singleton();
+
storage = p_storage;
{
+ // Setup Lights
+
+ config->max_renderable_lights = MIN(config->max_renderable_lights, config->max_uniform_buffer_size / (int)sizeof(RasterizerSceneGLES3::LightData));
+ config->max_lights_per_object = MIN(config->max_lights_per_object, config->max_renderable_lights);
+
+ uint32_t light_buffer_size = config->max_renderable_lights * sizeof(LightData);
+ scene_state.omni_lights = memnew_arr(LightData, config->max_renderable_lights);
+ scene_state.omni_light_sort = memnew_arr(InstanceSort<LightInstance>, config->max_renderable_lights);
+ glGenBuffers(1, &scene_state.omni_light_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer);
+ glBufferData(GL_UNIFORM_BUFFER, light_buffer_size, nullptr, GL_STREAM_DRAW);
+
+ scene_state.spot_lights = memnew_arr(LightData, config->max_renderable_lights);
+ scene_state.spot_light_sort = memnew_arr(InstanceSort<LightInstance>, config->max_renderable_lights);
+ glGenBuffers(1, &scene_state.spot_light_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer);
+ glBufferData(GL_UNIFORM_BUFFER, light_buffer_size, nullptr, GL_STREAM_DRAW);
+
+ uint32_t directional_light_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalLightData);
+ scene_state.directional_lights = memnew_arr(DirectionalLightData, MAX_DIRECTIONAL_LIGHTS);
+ glGenBuffers(1, &scene_state.directional_light_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer);
+ glBufferData(GL_UNIFORM_BUFFER, directional_light_buffer_size, nullptr, GL_STREAM_DRAW);
+ glBindBuffer(GL_UNIFORM_BUFFER, 0);
+ }
+
+ {
+ sky_globals.max_directional_lights = 4;
+ uint32_t directional_light_buffer_size = sky_globals.max_directional_lights * sizeof(DirectionalLightData);
+ sky_globals.directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights);
+ sky_globals.last_frame_directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights);
+ sky_globals.last_frame_directional_light_count = sky_globals.max_directional_lights + 1;
+ glGenBuffers(1, &sky_globals.directional_light_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer);
+ glBufferData(GL_UNIFORM_BUFFER, directional_light_buffer_size, nullptr, GL_STREAM_DRAW);
+ glBindBuffer(GL_UNIFORM_BUFFER, 0);
+ }
+
+ {
String global_defines;
global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now
+ global_defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(config->max_renderable_lights) + "\n";
+ global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n";
+ global_defines += "\n#define MAX_FORWARD_LIGHTS " + itos(config->max_lights_per_object) + "\n";
material_storage->shaders.scene_shader.initialize(global_defines);
scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create();
material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR);
@@ -2050,6 +2815,10 @@ void fragment() {
material_storage->shaders.sky_shader.initialize(global_defines);
sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create();
material_storage->shaders.sky_shader.version_bind_shader(sky_globals.shader_default_version, SkyShaderGLES3::MODE_BACKGROUND);
+
+ material_storage->shaders.cubemap_filter_shader.initialize();
+ scene_globals.cubemap_filter_shader_version = material_storage->shaders.cubemap_filter_shader.version_create();
+ material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, CubemapFilterShaderGLES3::MODE_DEFAULT);
}
{
@@ -2091,59 +2860,95 @@ void sky() {
material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader);
}
+
{
- {
- //quad buffers
-
- glGenBuffers(1, &sky_globals.quad);
- glBindBuffer(GL_ARRAY_BUFFER, sky_globals.quad);
- {
- const float qv[16] = {
- -1,
- -1,
- 0,
- 0,
- -1,
- 1,
- 0,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- -1,
- 1,
- 0,
- };
-
- glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
- }
+ glGenBuffers(1, &sky_globals.screen_triangle);
+ glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle);
+
+ const float qv[6] = {
+ -1.0f,
+ -1.0f,
+ 3.0f,
+ -1.0f,
+ -1.0f,
+ 3.0f,
+ };
+
+ glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 6, qv, GL_STATIC_DRAW);
+ glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+
+ glGenVertexArrays(1, &sky_globals.screen_triangle_array);
+ glBindVertexArray(sky_globals.screen_triangle_array);
+ glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle);
+ glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr);
+ glEnableVertexAttribArray(RS::ARRAY_VERTEX);
+ glBindVertexArray(0);
+ glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+ }
+
+ // Radical inverse vdc cache texture used for cubemap filtering.
+ {
+ glGenTextures(1, &sky_globals.radical_inverse_vdc_cache_tex);
+
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, sky_globals.radical_inverse_vdc_cache_tex);
+
+ uint8_t radical_inverse[512];
- glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+ for (uint32_t i = 0; i < 512; i++) {
+ uint32_t bits = i;
- glGenVertexArrays(1, &sky_globals.quad_array);
- glBindVertexArray(sky_globals.quad_array);
- glBindBuffer(GL_ARRAY_BUFFER, sky_globals.quad);
- glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr);
- glEnableVertexAttribArray(RS::ARRAY_VERTEX);
- glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
- glEnableVertexAttribArray(RS::ARRAY_TEX_UV);
- glBindVertexArray(0);
- glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+ bits = (bits << 16) | (bits >> 16);
+ bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1);
+ bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2);
+ bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4);
+ bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8);
+
+ float value = float(bits) * 2.3283064365386963e-10;
+ radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255));
}
+
+ glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, 512, 1, 0, GL_RED, GL_UNSIGNED_BYTE, radical_inverse);
+ glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
+ glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling
+
+ glBindTexture(GL_TEXTURE_2D, 0);
}
+#ifdef GLES_OVER_GL
+ glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
+#endif
}
RasterizerSceneGLES3::~RasterizerSceneGLES3() {
+ glDeleteBuffers(1, &scene_state.directional_light_buffer);
+ glDeleteBuffers(1, &scene_state.omni_light_buffer);
+ glDeleteBuffers(1, &scene_state.spot_light_buffer);
+ memdelete_arr(scene_state.directional_lights);
+ memdelete_arr(scene_state.omni_lights);
+ memdelete_arr(scene_state.spot_lights);
+ memdelete_arr(scene_state.omni_light_sort);
+ memdelete_arr(scene_state.spot_light_sort);
+
+ // Scene Shader
GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version);
+ GLES3::MaterialStorage::get_singleton()->shaders.cubemap_filter_shader.version_free(scene_globals.cubemap_filter_shader_version);
storage->free(scene_globals.default_material);
storage->free(scene_globals.default_shader);
+
+ // Sky Shader
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version);
storage->free(sky_globals.default_material);
storage->free(sky_globals.default_shader);
storage->free(sky_globals.fog_material);
storage->free(sky_globals.fog_shader);
+ glDeleteBuffers(1, &sky_globals.screen_triangle);
+ glDeleteVertexArrays(1, &sky_globals.screen_triangle_array);
+ glDeleteTextures(1, &sky_globals.radical_inverse_vdc_cache_tex);
+ glDeleteBuffers(1, &sky_globals.directional_light_buffer);
+ memdelete_arr(sky_globals.directional_lights);
+ memdelete_arr(sky_globals.last_frame_directional_lights);
}
#endif // GLES3_ENABLED
diff --git a/drivers/gles3/rasterizer_scene_gles3.h b/drivers/gles3/rasterizer_scene_gles3.h
index ac2f3c932a..d9a848c0f6 100644
--- a/drivers/gles3/rasterizer_scene_gles3.h
+++ b/drivers/gles3/rasterizer_scene_gles3.h
@@ -43,6 +43,7 @@
#include "servers/rendering/renderer_scene_render.h"
#include "servers/rendering_server.h"
#include "shader_gles3.h"
+#include "shaders/cubemap_filter.glsl.gen.h"
#include "shaders/sky.glsl.gen.h"
enum RenderListType {
@@ -66,17 +67,26 @@ enum SceneUniformLocation {
SCENE_GLOBALS_UNIFORM_LOCATION,
SCENE_DATA_UNIFORM_LOCATION,
SCENE_MATERIAL_UNIFORM_LOCATION,
- SCENE_RADIANCE_UNIFORM_LOCATION,
+ SCENE_EMPTY, // Unused, put here to avoid conflicts with SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION.
SCENE_OMNILIGHT_UNIFORM_LOCATION,
SCENE_SPOTLIGHT_UNIFORM_LOCATION,
+ SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION,
};
enum SkyUniformLocation {
SKY_TONEMAP_UNIFORM_LOCATION,
SKY_GLOBALS_UNIFORM_LOCATION,
- SKY_SCENE_DATA_UNIFORM_LOCATION,
- SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION,
+ SKY_EMPTY, // Unused, put here to avoid conflicts with SCENE_DATA_UNIFORM_LOCATION.
SKY_MATERIAL_UNIFORM_LOCATION,
+ SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION,
+};
+
+enum {
+ SPEC_CONSTANT_DISABLE_LIGHTMAP = 0,
+ SPEC_CONSTANT_DISABLE_DIRECTIONAL_LIGHTS = 1,
+ SPEC_CONSTANT_DISABLE_OMNI_LIGHTS = 2,
+ SPEC_CONSTANT_DISABLE_SPOT_LIGHTS = 3,
+ SPEC_CONSTANT_DISABLE_FOG = 4,
};
struct RenderDataGLES3 {
@@ -84,6 +94,7 @@ struct RenderDataGLES3 {
bool transparent_bg = false;
Transform3D cam_transform = Transform3D();
+ Transform3D inv_cam_transform = Transform3D();
CameraMatrix cam_projection = CameraMatrix();
bool cam_orthogonal = false;
@@ -97,14 +108,8 @@ struct RenderDataGLES3 {
const PagedArray<RendererSceneRender::GeometryInstance *> *instances = nullptr;
const PagedArray<RID> *lights = nullptr;
const PagedArray<RID> *reflection_probes = nullptr;
- //const PagedArray<RID> *voxel_gi_instances = nullptr;
- //const PagedArray<RID> *decals = nullptr;
- //const PagedArray<RID> *lightmaps = nullptr;
- //const PagedArray<RID> *fog_volumes = nullptr;
RID environment = RID();
RID camera_effects = RID();
- RID shadow_atlas = RID();
- RID reflection_atlas = RID();
RID reflection_probe = RID();
int reflection_probe_pass = 0;
@@ -113,6 +118,8 @@ struct RenderDataGLES3 {
float screen_mesh_lod_threshold = 0.0;
uint32_t directional_light_count = 0;
+ uint32_t spot_light_count = 0;
+ uint32_t omni_light_count = 0;
RendererScene::RenderInfo *render_info = nullptr;
};
@@ -126,90 +133,81 @@ private:
RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED;
uint64_t scene_pass = 0;
- struct SkyGlobals {
- RID shader_default_version;
- RID default_material;
- RID default_shader;
- RID fog_material;
- RID fog_shader;
- GLuint quad = 0;
- GLuint quad_array = 0;
- uint32_t max_directional_lights = 4;
- uint32_t roughness_layers = 8;
- uint32_t ggx_samples = 128;
- } sky_globals;
+ template <class T>
+ struct InstanceSort {
+ float depth;
+ T *instance = nullptr;
+ bool operator<(const InstanceSort &p_sort) const {
+ return depth < p_sort.depth;
+ }
+ };
struct SceneGlobals {
RID shader_default_version;
RID default_material;
RID default_shader;
+ RID cubemap_filter_shader_version;
} scene_globals;
- struct SceneState {
- struct UBO {
- float projection_matrix[16];
- float inv_projection_matrix[16];
- float inv_view_matrix[16];
- float view_matrix[16];
+ /* LIGHT INSTANCE */
- float viewport_size[2];
- float screen_pixel_size[2];
+ struct LightData {
+ float position[3];
+ float inv_radius;
- float ambient_light_color_energy[4];
+ float direction[3]; // Only used by SpotLight
+ float size;
- float ambient_color_sky_mix;
- uint32_t ambient_flags;
- uint32_t material_uv2_mode;
- float opaque_prepass_threshold;
- //bool use_ambient_light;
- //bool use_ambient_cubemap;
- //bool use_reflection_cubemap;
+ float color[3];
+ float attenuation;
- float radiance_inverse_xform[12];
+ float inv_spot_attenuation;
+ float cos_spot_angle;
+ float specular_amount;
+ uint32_t shadow_enabled;
+ };
+ static_assert(sizeof(LightData) % 16 == 0, "LightData size must be a multiple of 16 bytes");
- uint32_t directional_light_count;
- float z_far;
- float z_near;
- uint32_t pancake_shadows;
+ struct DirectionalLightData {
+ float direction[3];
+ float energy;
- uint32_t fog_enabled;
- float fog_density;
- float fog_height;
- float fog_height_density;
+ float color[3];
+ float size;
- float fog_light_color[3];
- float fog_sun_scatter;
+ uint32_t enabled; // For use by SkyShaders
+ float pad[2];
+ float specular;
+ };
+ static_assert(sizeof(DirectionalLightData) % 16 == 0, "DirectionalLightData size must be a multiple of 16 bytes");
- float fog_aerial_perspective;
- float time;
- uint32_t pad[2];
- };
- static_assert(sizeof(UBO) % 16 == 0, "Scene UBO size must be a multiple of 16 bytes");
+ struct LightInstance {
+ RS::LightType light_type = RS::LIGHT_DIRECTIONAL;
- struct TonemapUBO {
- float exposure = 1.0;
- float white = 1.0;
- int32_t tonemapper = 0;
- int32_t pad = 0;
- };
- static_assert(sizeof(TonemapUBO) % 16 == 0, "Tonemap UBO size must be a multiple of 16 bytes");
+ AABB aabb;
+ RID self;
+ RID light;
+ Transform3D transform;
- UBO ubo;
- GLuint ubo_buffer = 0;
- GLuint tonemap_buffer = 0;
+ Vector3 light_vector;
+ Vector3 spot_vector;
+ float linear_att = 0.0;
- bool used_depth_prepass = false;
+ uint64_t shadow_pass = 0;
+ uint64_t last_scene_pass = 0;
+ uint64_t last_scene_shadow_pass = 0;
+ uint64_t last_pass = 0;
+ uint32_t cull_mask = 0;
+ uint32_t light_directional_index = 0;
- GLES3::SceneShaderData::BlendMode current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
- GLES3::SceneShaderData::DepthDraw current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE;
- GLES3::SceneShaderData::DepthTest current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED;
- GLES3::SceneShaderData::Cull cull_mode = GLES3::SceneShaderData::CULL_BACK;
+ Rect2 directional_rect;
- bool texscreen_copied = false;
- bool used_screen_texture = false;
- bool used_normal_texture = false;
- bool used_depth_texture = false;
- } scene_state;
+ uint32_t gl_id = -1;
+
+ LightInstance() {}
+ };
+
+ mutable RID_Owner<LightInstance> light_instance_owner;
struct GeometryInstanceGLES3;
@@ -295,9 +293,11 @@ private:
float parent_fade_alpha = 1.0;
uint32_t omni_light_count = 0;
- uint32_t omni_lights[8];
+ LocalVector<RID> omni_lights;
uint32_t spot_light_count = 0;
- uint32_t spot_lights[8];
+ LocalVector<RID> spot_lights;
+ LocalVector<uint32_t> omni_light_gl_cache;
+ LocalVector<uint32_t> spot_light_gl_cache;
//used during setup
uint32_t base_flags = 0;
@@ -360,25 +360,96 @@ private:
void _geometry_instance_update(GeometryInstance *p_geometry_instance);
void _update_dirty_geometry_instances();
+ struct SceneState {
+ struct UBO {
+ float projection_matrix[16];
+ float inv_projection_matrix[16];
+ float inv_view_matrix[16];
+ float view_matrix[16];
+
+ float viewport_size[2];
+ float screen_pixel_size[2];
+
+ float ambient_light_color_energy[4];
+
+ float ambient_color_sky_mix;
+ uint32_t material_uv2_mode;
+ float pad2;
+ uint32_t use_ambient_light = 0;
+
+ uint32_t use_ambient_cubemap = 0;
+ uint32_t use_reflection_cubemap = 0;
+ float fog_aerial_perspective;
+ float time;
+
+ float radiance_inverse_xform[12];
+
+ uint32_t directional_light_count;
+ float z_far;
+ float z_near;
+ float pad1;
+
+ uint32_t fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
+
+ float fog_light_color[3];
+ float fog_sun_scatter;
+ };
+ static_assert(sizeof(UBO) % 16 == 0, "Scene UBO size must be a multiple of 16 bytes");
+
+ struct TonemapUBO {
+ float exposure = 1.0;
+ float white = 1.0;
+ int32_t tonemapper = 0;
+ int32_t pad = 0;
+ };
+ static_assert(sizeof(TonemapUBO) % 16 == 0, "Tonemap UBO size must be a multiple of 16 bytes");
+
+ UBO ubo;
+ GLuint ubo_buffer = 0;
+ GLuint tonemap_buffer = 0;
+
+ bool used_depth_prepass = false;
+
+ GLES3::SceneShaderData::BlendMode current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
+ GLES3::SceneShaderData::DepthDraw current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE;
+ GLES3::SceneShaderData::DepthTest current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED;
+ GLES3::SceneShaderData::Cull cull_mode = GLES3::SceneShaderData::CULL_BACK;
+
+ bool texscreen_copied = false;
+ bool used_screen_texture = false;
+ bool used_normal_texture = false;
+ bool used_depth_texture = false;
+
+ LightData *omni_lights = nullptr;
+ LightData *spot_lights = nullptr;
+
+ InstanceSort<LightInstance> *omni_light_sort;
+ InstanceSort<LightInstance> *spot_light_sort;
+ GLuint omni_light_buffer = 0;
+ GLuint spot_light_buffer = 0;
+ uint32_t omni_light_count = 0;
+ uint32_t spot_light_count = 0;
+
+ DirectionalLightData *directional_lights = nullptr;
+ GLuint directional_light_buffer = 0;
+ } scene_state;
+
struct RenderListParameters {
GeometryInstanceSurface **elements = nullptr;
int element_count = 0;
bool reverse_cull = false;
uint32_t spec_constant_base_flags = 0;
bool force_wireframe = false;
- Plane lod_plane;
- float lod_distance_multiplier = 0.0;
- float screen_mesh_lod_threshold = 0.0;
- RenderListParameters(GeometryInstanceSurface **p_elements, int p_element_count, bool p_reverse_cull, uint32_t p_spec_constant_base_flags, bool p_force_wireframe = false, const Plane &p_lod_plane = Plane(), float p_lod_distance_multiplier = 0.0, float p_screen_mesh_lod_threshold = 0.0) {
+ RenderListParameters(GeometryInstanceSurface **p_elements, int p_element_count, bool p_reverse_cull, uint32_t p_spec_constant_base_flags, bool p_force_wireframe = false) {
elements = p_elements;
element_count = p_element_count;
reverse_cull = p_reverse_cull;
spec_constant_base_flags = p_spec_constant_base_flags;
force_wireframe = p_force_wireframe;
- lod_plane = p_lod_plane;
- lod_distance_multiplier = p_lod_distance_multiplier;
- screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
}
};
@@ -438,6 +509,7 @@ private:
RenderList render_list[RENDER_LIST_MAX];
+ void _setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count);
void _setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows);
void _fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append = false);
@@ -637,6 +709,33 @@ protected:
/* Sky */
+ struct SkyGlobals {
+ float fog_aerial_perspective = 0.0;
+ Color fog_light_color;
+ float fog_sun_scatter = 0.0;
+ bool fog_enabled = false;
+ float fog_density = 0.0;
+ float z_far = 0.0;
+ uint32_t directional_light_count = 0;
+
+ DirectionalLightData *directional_lights = nullptr;
+ DirectionalLightData *last_frame_directional_lights = nullptr;
+ uint32_t last_frame_directional_light_count = 0;
+ GLuint directional_light_buffer = 0;
+
+ RID shader_default_version;
+ RID default_material;
+ RID default_shader;
+ RID fog_material;
+ RID fog_shader;
+ GLuint screen_triangle = 0;
+ GLuint screen_triangle_array = 0;
+ GLuint radical_inverse_vdc_cache_tex = 0;
+ uint32_t max_directional_lights = 4;
+ uint32_t roughness_layers = 8;
+ uint32_t ggx_samples = 128;
+ } sky_globals;
+
struct Sky {
// Screen Buffers
GLuint half_res_pass = 0;
@@ -648,11 +747,13 @@ protected:
// Radiance Cubemap
GLuint radiance = 0;
GLuint radiance_framebuffer = 0;
+ GLuint raw_radiance = 0;
RID material;
- RID uniform_buffer;
+ GLuint uniform_buffer;
int radiance_size = 256;
+ int mipmap_count = 1;
RS::SkyMode mode = RS::SKY_MODE_AUTOMATIC;
@@ -666,20 +767,18 @@ protected:
GLES3::SkyMaterialData *prev_material;
Vector3 prev_position = Vector3(0.0, 0.0, 0.0);
float prev_time = 0.0f;
-
- void free();
- bool set_radiance_size(int p_radiance_size);
- bool set_mode(RS::SkyMode p_mode);
- bool set_material(RID p_material);
- Ref<Image> bake_panorama(float p_energy, int p_roughness_layers, const Size2i &p_size);
};
Sky *dirty_sky_list = nullptr;
mutable RID_Owner<Sky, true> sky_owner;
+ void _setup_sky(Environment *p_env, RID p_render_buffers, const PagedArray<RID> &p_lights, const CameraMatrix &p_projection, const Transform3D &p_transform, const Size2i p_screen_size);
void _invalidate_sky(Sky *p_sky);
void _update_dirty_skys();
+ void _update_sky_radiance(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform);
+ void _filter_sky_radiance(Sky *p_sky, int p_base_layer);
void _draw_sky(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform);
+ void _free_sky_data(Sky *p_sky);
public:
RasterizerStorageGLES3 *storage;
@@ -808,6 +907,15 @@ public:
void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override;
void light_instance_mark_visible(RID p_light_instance) override;
+ _FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->light_type;
+ }
+ _FORCE_INLINE_ uint32_t light_instance_get_gl_id(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->gl_id;
+ }
+
RID fog_volume_instance_create(RID p_fog_volume) override;
void fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) override;
void fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) override;
diff --git a/drivers/gles3/rasterizer_storage_gles3.cpp b/drivers/gles3/rasterizer_storage_gles3.cpp
index 3c28289bd0..8046a18f05 100644
--- a/drivers/gles3/rasterizer_storage_gles3.cpp
+++ b/drivers/gles3/rasterizer_storage_gles3.cpp
@@ -39,6 +39,19 @@
#include "servers/rendering/shader_language.h"
void RasterizerStorageGLES3::base_update_dependency(RID p_base, DependencyTracker *p_instance) {
+ if (GLES3::MeshStorage::get_singleton()->owns_mesh(p_base)) {
+ GLES3::Mesh *mesh = GLES3::MeshStorage::get_singleton()->get_mesh(p_base);
+ p_instance->update_dependency(&mesh->dependency);
+ } else if (GLES3::MeshStorage::get_singleton()->owns_multimesh(p_base)) {
+ GLES3::MultiMesh *multimesh = GLES3::MeshStorage::get_singleton()->get_multimesh(p_base);
+ p_instance->update_dependency(&multimesh->dependency);
+ if (multimesh->mesh.is_valid()) {
+ base_update_dependency(multimesh->mesh, p_instance);
+ }
+ } else if (GLES3::LightStorage::get_singleton()->owns_light(p_base)) {
+ GLES3::Light *l = GLES3::LightStorage::get_singleton()->get_light(p_base);
+ p_instance->update_dependency(&l->dependency);
+ }
}
/* VOXEL GI API */
diff --git a/drivers/gles3/shader_gles3.h b/drivers/gles3/shader_gles3.h
index 35fb202342..228bed6f9b 100644
--- a/drivers/gles3/shader_gles3.h
+++ b/drivers/gles3/shader_gles3.h
@@ -219,7 +219,10 @@ protected:
Version *version = version_owner.get_or_null(p_version);
ERR_FAIL_COND_V(!version, -1);
ERR_FAIL_INDEX_V(p_variant, int(version->variants.size()), -1);
- return version->variants[p_variant].lookup_ptr(p_specialization)->uniform_location[p_which];
+ Version::Specialization *spec = version->variants[p_variant].lookup_ptr(p_specialization);
+ ERR_FAIL_COND_V(!spec, -1);
+ ERR_FAIL_INDEX_V(p_which, int(spec->uniform_location.size()), -1);
+ return spec->uniform_location[p_which];
}
virtual void _init() = 0;
diff --git a/drivers/gles3/shaders/SCsub b/drivers/gles3/shaders/SCsub
index ec32badc19..d8dd573f57 100644
--- a/drivers/gles3/shaders/SCsub
+++ b/drivers/gles3/shaders/SCsub
@@ -2,11 +2,18 @@
Import("env")
-env.Depends("#drivers/gles3/shaders/copy.glsl.gen.h", "#core/math/basis.h")
-env.Depends("#drivers/gles3/shaders/copy.glsl.gen.h", "#core/math/transform_2d.h")
-
if "GLES3_GLSL" in env["BUILDERS"]:
+ # find all include files
+ gl_include_files = [str(f) for f in Glob("*_inc.glsl")]
+
+ # find all shader code(all glsl files excluding our include files)
+ glsl_files = [str(f) for f in Glob("*.glsl") if str(f) not in gl_include_files]
+
+ # make sure we recompile shaders if include files change
+ env.Depends([f + ".gen.h" for f in glsl_files], gl_include_files)
+
env.GLES3_GLSL("canvas.glsl")
env.GLES3_GLSL("copy.glsl")
env.GLES3_GLSL("scene.glsl")
env.GLES3_GLSL("sky.glsl")
+ env.GLES3_GLSL("cubemap_filter.glsl")
diff --git a/drivers/gles3/shaders/cubemap_filter.glsl b/drivers/gles3/shaders/cubemap_filter.glsl
index 2081abfef6..81e66c956c 100644
--- a/drivers/gles3/shaders/cubemap_filter.glsl
+++ b/drivers/gles3/shaders/cubemap_filter.glsl
@@ -1,136 +1,102 @@
/* clang-format off */
-[vertex]
+#[modes]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
+mode_default =
+mode_copy = #define MODE_DIRECT_WRITE
+
+#[specializations]
-layout(location = 0) in highp vec2 vertex;
+#[vertex]
+
+layout(location = 0) in highp vec2 vertex_attrib;
/* clang-format on */
-layout(location = 4) in highp vec2 uv;
out highp vec2 uv_interp;
void main() {
- uv_interp = uv;
- gl_Position = vec4(vertex, 0, 1);
+ uv_interp = vertex_attrib;
+ gl_Position = vec4(uv_interp, 0.0, 1.0);
}
/* clang-format off */
-[fragment]
+#[fragment]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
+#define M_PI 3.14159265359
-#ifdef USE_SOURCE_PANORAMA
-uniform sampler2D source_panorama; //texunit:0
-#else
uniform samplerCube source_cube; //texunit:0
-#endif
+
/* clang-format on */
uniform int face_id;
uniform float roughness;
-in highp vec2 uv_interp;
-
-uniform sampler2D radical_inverse_vdc_cache; // texunit:1
-
-#define M_PI 3.14159265359
-
-#ifdef LOW_QUALITY
-
-#define SAMPLE_COUNT 64
-
-#else
-
-#define SAMPLE_COUNT 512
+uniform float face_size;
+uniform int sample_count;
+//Todo, profile on low end hardware to see if fixed loop is faster
+#ifdef USE_FIXED_SAMPLES
+#define FIXED_SAMPLE_COUNT 32
#endif
-#ifdef USE_SOURCE_PANORAMA
+in highp vec2 uv_interp;
-vec4 texturePanorama(sampler2D pano, vec3 normal) {
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
+uniform sampler2D radical_inverse_vdc_cache; // texunit:1
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
+layout(location = 0) out vec4 frag_color;
- st /= vec2(M_PI * 2.0, M_PI);
+#define M_PI 3.14159265359
- return textureLod(pano, st, 0.0);
+// Don't include tonemap_inc.glsl because all we want is these functions, we don't want the uniforms
+vec3 linear_to_srgb(vec3 color) {
+ return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
}
-#endif
+vec3 srgb_to_linear(vec3 color) {
+ return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
+}
vec3 texelCoordToVec(vec2 uv, int faceID) {
mat3 faceUvVectors[6];
// -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
+ faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
// +x
- faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
+ faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
// -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
// +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
// -z
- faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
+ faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
// +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
+ faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
- vec3 result;
- for (int i = 0; i < 6; i++) {
- if (i == faceID) {
- result = (faceUvVectors[i][0] * uv.x) + (faceUvVectors[i][1] * uv.y) + faceUvVectors[i][2];
- break;
- }
- }
+ vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
return normalize(result);
}
-vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
- float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
-
+vec3 ImportanceSampleGGX(vec2 xi, float roughness4) {
// Compute distribution direction
- float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
+ float Phi = 2.0 * M_PI * xi.x;
+ float CosTheta = sqrt((1.0 - xi.y) / (1.0 + (roughness4 - 1.0) * xi.y));
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
// Convert to spherical direction
@@ -139,12 +105,26 @@ vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
H.y = SinTheta * sin(Phi);
H.z = CosTheta;
- vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
- vec3 TangentX = normalize(cross(UpVector, N));
- vec3 TangentY = cross(N, TangentX);
+ return H;
+}
+
+float DistributionGGX(float NdotH, float roughness4) {
+ float NdotH2 = NdotH * NdotH;
+ float denom = (NdotH2 * (roughness4 - 1.0) + 1.0);
+ denom = M_PI * denom * denom;
+
+ return roughness4 / denom;
+}
+
+// https://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
+float GGX(float NdotV, float a) {
+ float k = a / 2.0;
+ return NdotV / (NdotV * (1.0 - k) + k);
+}
- // Tangent to world space
- return TangentX * H.x + TangentY * H.y + N * H.z;
+// https://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
+float G_Smith(float a, float nDotV, float nDotL) {
+ return GGX(nDotL, a * a) * GGX(nDotV, a * a);
}
float radical_inverse_VdC(int i) {
@@ -155,60 +135,54 @@ vec2 Hammersley(int i, int N) {
return vec2(float(i) / float(N), radical_inverse_VdC(i));
}
-uniform bool z_flip;
-
-layout(location = 0) out vec4 frag_color;
-
void main() {
vec3 color = vec3(0.0);
-
- vec2 uv = (uv_interp * 2.0) - 1.0;
+ vec2 uv = uv_interp;
vec3 N = texelCoordToVec(uv, face_id);
-#ifdef USE_DIRECT_WRITE
-
-#ifdef USE_SOURCE_PANORAMA
-
- frag_color = vec4(texturePanorama(source_panorama, N).rgb, 1.0);
-#else
-
- frag_color = vec4(textureCube(source_cube, N).rgb, 1.0);
-#endif //USE_SOURCE_PANORAMA
-
+#ifdef MODE_DIRECT_WRITE
+ frag_color = vec4(textureCubeLod(source_cube, N, 0.0).rgb, 1.0);
#else
vec4 sum = vec4(0.0);
+ float solid_angle_texel = 4.0 * M_PI / (6.0 * face_size * face_size);
+ float roughness2 = roughness * roughness;
+ float roughness4 = roughness2 * roughness2;
+ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
+ mat3 T;
+ T[0] = normalize(cross(UpVector, N));
+ T[1] = cross(N, T[0]);
+ T[2] = N;
- for (int sample_num = 0; sample_num < SAMPLE_COUNT; sample_num++) {
- vec2 xi = Hammersley(sample_num, SAMPLE_COUNT);
+ for (int sample_num = 0; sample_num < sample_count; sample_num++) {
+ vec2 xi = Hammersley(sample_num, sample_count);
- vec3 H = ImportanceSampleGGX(xi, roughness, N);
- vec3 V = N;
- vec3 L = (2.0 * dot(V, H) * H - V);
+ vec3 H = T * ImportanceSampleGGX(xi, roughness4);
+ float NdotH = dot(N, H);
+ vec3 L = (2.0 * NdotH * H - N);
float NdotL = clamp(dot(N, L), 0.0, 1.0);
if (NdotL > 0.0) {
+ float D = DistributionGGX(NdotH, roughness4);
+ float pdf = D * NdotH / (4.0 * NdotH) + 0.0001;
-#ifdef USE_SOURCE_PANORAMA
- vec3 val = texturePanorama(source_panorama, L).rgb;
-#else
- vec3 val = textureCubeLod(source_cube, L, 0.0).rgb;
-#endif
- //mix using Linear, to approximate high end back-end
- val = mix(pow((val + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), val * (1.0 / 12.92), vec3(lessThan(val, vec3(0.04045))));
+ float solid_angle_sample = 1.0 / (float(sample_count) * pdf + 0.0001);
- sum.rgb += val * NdotL;
+ float mipLevel = roughness == 0.0 ? 0.0 : 0.5 * log2(solid_angle_sample / solid_angle_texel);
+
+ vec3 val = textureCubeLod(source_cube, L, mipLevel).rgb;
+ // Mix using linear
+ val = srgb_to_linear(val);
+ sum.rgb += val * NdotL;
sum.a += NdotL;
}
}
sum /= sum.a;
- vec3 a = vec3(0.055);
- sum.rgb = mix((vec3(1.0) + a) * pow(sum.rgb, vec3(1.0 / 2.4)) - a, 12.92 * sum.rgb, vec3(lessThan(sum.rgb, vec3(0.0031308))));
-
+ sum.rgb = linear_to_srgb(sum.rgb);
frag_color = vec4(sum.rgb, 1.0);
#endif
}
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index 12d70db7dd..198d1d9ec7 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -7,9 +7,12 @@ mode_depth = #define MODE_RENDER_DEPTH
#[specializations]
-USE_LIGHTMAP = false
-USE_LIGHT_DIRECTIONAL = false
-USE_LIGHT_POSITIONAL = false
+DISABLE_LIGHTMAP = false
+DISABLE_LIGHT_DIRECTIONAL = false
+DISABLE_LIGHT_OMNI = false
+DISABLE_LIGHT_SPOT = false
+DISABLE_FOG = false
+USE_RADIANCE_MAP = true
#[vertex]
@@ -109,12 +112,14 @@ layout(std140) uniform SceneData { // ubo:2
mediump vec4 ambient_light_color_energy;
mediump float ambient_color_sky_mix;
- uint ambient_flags;
bool material_uv2_mode;
- float opaque_prepass_threshold;
- //bool use_ambient_light;
- //bool use_ambient_cubemap;
- //bool use_reflection_cubemap;
+ float pad2;
+ bool use_ambient_light;
+ bool use_ambient_cubemap;
+ bool use_reflection_cubemap;
+
+ float fog_aerial_perspective;
+ float time;
mat3 radiance_inverse_xform;
@@ -130,13 +135,6 @@ layout(std140) uniform SceneData { // ubo:2
vec3 fog_light_color;
float fog_sun_scatter;
-
- float fog_aerial_perspective;
-
- float time;
- float reflection_multiplier; // one normally, zero when rendering reflections
-
- bool pancake_shadows;
}
scene_data;
@@ -169,7 +167,7 @@ out vec2 uv2_interp;
#endif
#endif
-#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
@@ -191,9 +189,6 @@ layout(std140) uniform MaterialUniforms { // ubo:3
#GLOBALS
/* clang-format on */
-
-out highp vec4 position_interp;
-
invariant gl_Position;
void main() {
@@ -206,21 +201,16 @@ void main() {
#endif
highp mat3 model_normal_matrix = mat3(model_matrix);
-#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 tangent;
- float binormalf;
- tangent = normal_tangent_attrib.xyz;
- binormalf = normal_tangent_attrib.a;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
+ float binormalf = tangent_attrib.a * 2.0 - 1.0;
+ vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
-#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
-#endif
-
#if defined(UV_USED)
uv_interp = uv_attrib;
#endif
@@ -306,7 +296,7 @@ void main() {
normal_interp = normal;
#endif
-#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
@@ -316,16 +306,6 @@ void main() {
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
-
-#ifdef MODE_RENDER_DEPTH
- if (scene_data.pancake_shadows) {
- if (gl_Position.z <= 0.00001) {
- gl_Position.z = 0.00001;
- }
- }
-#endif
-
- position_interp = gl_Position;
}
/* clang-format off */
@@ -357,10 +337,9 @@ void main() {
*/
-uniform highp mat4 world_transform;
+#define M_PI 3.14159265359
/* clang-format on */
-#define M_PI 3.14159265359
#define SHADER_IS_SRGB true
/* Varyings */
@@ -381,7 +360,7 @@ in vec2 uv2_interp;
#endif
#endif
-#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif
@@ -392,29 +371,11 @@ in vec3 normal_interp;
in highp vec3 vertex_interp;
-/* PBR CHANNELS */
-
#ifdef USE_RADIANCE_MAP
-layout(std140) uniform Radiance { // ubo:4
-
- mat4 radiance_inverse_xform;
- float radiance_ambient_contribution;
-};
-
#define RADIANCE_MAX_LOD 5.0
-uniform sampler2D radiance_map; // texunit:-2
-
-vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
- vec3 norm = normalize(p_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
- return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
-}
+uniform samplerCube radiance_map; // texunit:-2
#endif
@@ -448,12 +409,14 @@ layout(std140) uniform SceneData { // ubo:2
mediump vec4 ambient_light_color_energy;
mediump float ambient_color_sky_mix;
- uint ambient_flags;
bool material_uv2_mode;
- float opaque_prepass_threshold;
- //bool use_ambient_light;
- //bool use_ambient_cubemap;
- //bool use_reflection_cubemap;
+ float pad2;
+ bool use_ambient_light;
+ bool use_ambient_cubemap;
+ bool use_reflection_cubemap;
+
+ float fog_aerial_perspective;
+ float time;
mat3 radiance_inverse_xform;
@@ -469,13 +432,6 @@ layout(std140) uniform SceneData { // ubo:2
vec3 fog_light_color;
float fog_sun_scatter;
-
- float fog_aerial_perspective;
-
- float time;
- float reflection_multiplier; // one normally, zero when rendering reflections
-
- bool pancake_shadows;
}
scene_data;
@@ -487,7 +443,7 @@ scene_data;
//directional light data
-#ifdef USE_LIGHT_DIRECTIONAL
+#ifndef DISABLE_LIGHT_DIRECTIONAL
struct DirectionalLightData {
mediump vec3 direction;
@@ -498,10 +454,14 @@ struct DirectionalLightData {
mediump float specular;
};
+layout(std140) uniform DirectionalLights { // ubo:7
+ DirectionalLightData directional_lights[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
+};
+
#endif
// omni and spot
-#ifdef USE_LIGHT_POSITIONAL
+#if !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
struct LightData { //this structure needs to be as packed as possible
highp vec3 position;
highp float inv_radius;
@@ -517,36 +477,38 @@ struct LightData { //this structure needs to be as packed as possible
mediump float specular_amount;
bool shadow_enabled;
};
-
+#ifndef DISABLE_LIGHT_OMNI
layout(std140) uniform OmniLightData { // ubo:5
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
+uniform uint omni_light_indices[MAX_FORWARD_LIGHTS];
+uniform int omni_light_count;
+#endif
+
+#ifndef DISABLE_LIGHT_SPOT
layout(std140) uniform SpotLightData { // ubo:6
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
-
-uniform highp samplerCubeShadow positional_shadow; // texunit:-6
-
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
-
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
+uniform uint spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
+#endif
-uniform int reflection_indices[MAX_FORWARD_LIGHTS];
-uniform int reflection_count;
-
+#ifdef USE_ADDITIVE_LIGHTING
+uniform highp samplerCubeShadow positional_shadow; // texunit:-4
#endif
+#endif // !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
+
uniform highp sampler2D screen_texture; // texunit:-5
uniform highp sampler2D depth_buffer; // texunit:-6
-layout(location = 0) out vec4 frag_color;
+uniform highp mat4 world_transform;
+uniform mediump float opaque_prepass_threshold;
-in highp vec4 position_interp;
+layout(location = 0) out vec4 frag_color;
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
@@ -555,7 +517,7 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, vec3(metallic));
}
-#if defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL)
+#if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
float D_GGX(float cos_theta_m, float alpha) {
float a = cos_theta_m * alpha;
float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
@@ -588,7 +550,7 @@ float SchlickFresnel(float u) {
return m2 * m2 * m; // pow(m,5)
}
-void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, vec3 albedo, inout float alpha,
+void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, float roughness, float metallic, float specular_amount, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
@@ -603,11 +565,6 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
- vec4 orms_unpacked = unpackUnorm4x8(orms);
-
- float roughness = orms_unpacked.y;
- float metallic = orms_unpacked.z;
-
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
@@ -626,7 +583,7 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
+ float cNdotV = max(NdotV, 1e-4);
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
@@ -752,15 +709,10 @@ float get_omni_attenuation(float distance, float inv_range, float decay) {
return nd * pow(max(distance, 0.0001), -decay);
}
-void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
+void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
-#ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_boost,
-#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
@@ -774,16 +726,15 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
vec3 light_rel_vec = omni_lights[idx].position - vertex;
float light_length = length(light_rel_vec);
float omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation);
- vec3 light_attenuation = vec3(omni_attenuation);
vec3 color = omni_lights[idx].color;
float size_A = 0.0;
- if (omni_lights.data[idx].size > 0.0) {
+ if (omni_lights[idx].size > 0.0) {
float t = omni_lights[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
- light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, omni_lights[idx].specular_amount, albedo, alpha,
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, omni_attenuation, f0, roughness, metallic, omni_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -800,7 +751,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
specular_light);
}
-void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
+void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
@@ -823,17 +774,16 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle));
spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation);
- float light_attenuation = spot_attenuation;
vec3 color = spot_lights[idx].color;
float size_A = 0.0;
- if (spot_lights.data[idx].size > 0.0) {
- float t = spot_lights.data[idx].size / max(0.001, light_length);
+ if (spot_lights[idx].size > 0.0) {
+ float t = spot_lights[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
- light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, spot_lights[idx].specular_amount, albedo, alpha,
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, spot_attenuation, f0, roughness, metallic, spot_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -848,7 +798,56 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
#endif
diffuse_light, specular_light);
}
-#endif // defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL)
+#endif // !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
+
+#ifndef MODE_RENDER_DEPTH
+vec4 fog_process(vec3 vertex) {
+ vec3 fog_color = scene_data.fog_light_color;
+
+#ifdef USE_RADIANCE_MAP
+/*
+ if (scene_data.fog_aerial_perspective > 0.0) {
+ vec3 sky_fog_color = vec3(0.0);
+ vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
+ // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
+ float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
+
+ sky_fog_color = textureCubeLod(radiance_map, cube_view, mip_level * RADIANCE_MAX_LOD).rgb;
+
+ fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
+ }
+ */
+#endif
+
+#ifndef DISABLE_LIGHT_DIRECTIONAL
+ if (scene_data.fog_sun_scatter > 0.001) {
+ vec4 sun_scatter = vec4(0.0);
+ float sun_total = 0.0;
+ vec3 view = normalize(vertex);
+ for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
+ vec3 light_color = directional_lights[i].color * directional_lights[i].energy;
+ float light_amount = pow(max(dot(view, directional_lights[i].direction), 0.0), 8.0);
+ fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
+ }
+ }
+#endif // !DISABLE_LIGHT_DIRECTIONAL
+
+ float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density));
+
+ if (abs(scene_data.fog_height_density) >= 0.0001) {
+ float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y;
+
+ float y_dist = y - scene_data.fog_height;
+
+ float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density));
+
+ fog_amount = max(vfog_amount, fog_amount);
+ }
+
+ return vec4(fog_color, fog_amount);
+}
+
+#endif // !MODE_RENDER_DEPTH
void main() {
//lay out everything, whatever is unused is optimized away anyway
@@ -951,7 +950,7 @@ void main() {
#ifdef USE_OPAQUE_PREPASS
#if !defined(ALPHA_SCISSOR_USED)
- if (alpha < scene_data.opaque_prepass_threshold) {
+ if (alpha < opaque_prepass_threshold) {
discard;
}
@@ -982,9 +981,31 @@ void main() {
#endif
#ifndef MODE_RENDER_DEPTH
+
+#ifndef CUSTOM_FOG_USED
+#ifndef DISABLE_FOG
+ // fog must be processed as early as possible and then packed.
+ // to maximize VGPR usage
+
+ if (scene_data.fog_enabled) {
+ fog = fog_process(vertex);
+ }
+#endif // !DISABLE_FOG
+#endif //!CUSTOM_FOG_USED
+
+ uint fog_rg = packHalf2x16(fog.rg);
+ uint fog_ba = packHalf2x16(fog.ba);
+
+#endif //!MODE_RENDER_DEPTH
+
+#ifndef MODE_RENDER_DEPTH
+
+ // Convert colors to linear
+ albedo = srgb_to_linear(albedo);
+ emission = srgb_to_linear(emission);
+ // TODO Backlight and transmittance when used
+#ifndef MODE_UNSHADED
vec3 f0 = F0(metallic, specular, albedo);
- // Convert albedo to linear. Approximation from: http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
- albedo = albedo * (albedo * (albedo * 0.305306011 + 0.682171111) + 0.012522878);
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
@@ -996,15 +1017,58 @@ void main() {
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
- // Calculate IBL
+#ifdef USE_RADIANCE_MAP
+ if (scene_data.use_reflection_cubemap) {
+#ifdef LIGHT_ANISOTROPY_USED
+ // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
+ vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
+ vec3 anisotropic_tangent = cross(anisotropic_direction, view);
+ vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
+ vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
+ vec3 ref_vec = reflect(-view, bent_normal);
+#else
+ vec3 ref_vec = reflect(-view, normal);
+#endif
+ float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
+ ref_vec = scene_data.radiance_inverse_xform * ref_vec;
+ specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).rgb;
+ specular_light = srgb_to_linear(specular_light);
+ specular_light *= horizon * horizon;
+ specular_light *= scene_data.ambient_light_color_energy.a;
+ }
+#endif
+
// Calculate Reflection probes
- // Caclculate Lightmaps
+ // Calculate Lightmaps
- float specular_blob_intensity = 1.0;
+#if defined(CUSTOM_RADIANCE_USED)
+ specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
+#endif // CUSTOM_RADIANCE_USED
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
+#ifndef USE_LIGHTMAP
+ //lightmap overrides everything
+ if (scene_data.use_ambient_light) {
+ ambient_light = scene_data.ambient_light_color_energy.rgb;
+#ifdef USE_RADIANCE_MAP
+ if (scene_data.use_ambient_cubemap) {
+ vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
+ vec3 cubemap_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).rgb;
+ cubemap_ambient = srgb_to_linear(cubemap_ambient);
+ ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
+ }
#endif
+ }
+#endif // USE_LIGHTMAP
+
+#if defined(CUSTOM_IRRADIANCE_USED)
+ ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
+#endif // CUSTOM_IRRADIANCE_USED
+ ambient_light *= albedo.rgb;
+
+ ambient_light *= ao;
+
+ // convert ao to direct light ao
+ ao = mix(1.0, ao, ao_light_affect);
{
#if defined(DIFFUSE_TOON)
@@ -1029,36 +1093,34 @@ void main() {
#endif // BASE_PASS
- //this saves some VGPRs
- uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
- float size_A = directional_lights[i].size;
-
- light_compute(normal, directional_lights[i].direction, normalize(view), size_A, directional_lights[i].color * directional_lights[i].energy, shadow, f0, orms, 1.0, albedo, alpha,
+#ifndef DISABLE_LIGHT_DIRECTIONAL
+ //diffuse_light = normal; //
+ for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
+ light_compute(normal, normalize(directional_lights[i].direction), normalize(view), directional_lights[i].size, directional_lights[i].color * directional_lights[i].energy, 1.0, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
- backlight,
+ backlight,
#endif
#ifdef LIGHT_RIM_USED
- rim, rim_tint,
+ rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_roughness, normalize(normal_interp),
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
- binormal,
- tangent, anisotropy,
+ binormal,
+ tangent, anisotropy,
#endif
- diffuse_light,
- specular_light);
-
-#endif //#USE_LIGHT_DIRECTIONAL
+ diffuse_light,
+ specular_light);
+ }
+#endif //!DISABLE_LIGHT_DIRECTIONAL
-#ifdef USE_LIGHT_POSITIONAL
- float shadow = 0.0;
- for (int i = 0; i < omni_light_count; i++) {
- light_process_omni(omni_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha,
+#ifndef DISABLE_LIGHT_OMNI
+ for (int i = 0; i < MAX_FORWARD_LIGHTS; i++) {
+ if (i >= omni_light_count) {
+ break;
+ }
+ light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -1070,13 +1132,18 @@ void main() {
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
+ binormal, tangent, anisotropy,
#endif
diffuse_light, specular_light);
}
+#endif // !DISABLE_LIGHT_OMNI
- for (int i = 0; i < spot_light_count; i++) {
- light_process_spot(spot_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha,
+#ifndef DISABLE_LIGHT_SPOT
+ for (int i = 0; i < MAX_FORWARD_LIGHTS; i++) {
+ if (i >= spot_light_count) {
+ break;
+ }
+ light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -1094,8 +1161,9 @@ void main() {
diffuse_light, specular_light);
}
-#endif // USE_LIGHT_POSITIONAL
-#endif //!MODE_RENDER_DEPTH
+#endif // !DISABLE_LIGHT_SPOT
+#endif // !MODE_UNSHADED
+#endif // !MODE_RENDER_DEPTH
#if defined(USE_SHADOW_TO_OPACITY)
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
@@ -1122,21 +1190,31 @@ void main() {
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else // !MODE_RENDER_DEPTH
- specular_light *= scene_data.reflection_multiplier;
- ambient_light *= albedo; //ambient must be multiplied by albedo at the end
+#ifdef MODE_UNSHADED
+ frag_color = vec4(albedo, alpha);
+#else
+
+ diffuse_light *= albedo;
- // base color remapping
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
-#ifdef MODE_UNSHADED
- frag_color = vec4(albedo, alpha);
-#else
- frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha);
+ frag_color = vec4(diffuse_light + specular_light, alpha);
#ifdef BASE_PASS
- frag_color.rgb += emission;
+ frag_color.rgb += emission + ambient_light;
#endif
#endif //MODE_UNSHADED
+ fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
+
+#ifndef DISABLE_FOG
+ if (scene_data.fog_enabled) {
+#ifdef BASE_PASS
+ frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
+#else
+ frag_color.rgb *= (1.0 - fog.a);
+#endif // BASE_PASS
+ }
+#endif
// Tonemap before writing as we are writing to an sRGB framebuffer
frag_color.rgb *= exposure;
diff --git a/drivers/gles3/shaders/sky.glsl b/drivers/gles3/shaders/sky.glsl
index 3a1bcd3b28..50ab38bc31 100644
--- a/drivers/gles3/shaders/sky.glsl
+++ b/drivers/gles3/shaders/sky.glsl
@@ -12,13 +12,13 @@ mode_cubemap_quarter_res = #define USE_CUBEMAP_PASS \n#define USE_QUARTER_RES_PA
#[vertex]
+layout(location = 0) in vec2 vertex_attrib;
+
out vec2 uv_interp;
/* clang-format on */
void main() {
- // One big triangle to cover the whole screen
- vec2 base_arr[3] = vec2[](vec2(-1.0, -1.0), vec2(3.0, -1.0), vec2(-1.0, 3.0));
- uv_interp = base_arr[gl_VertexID];
+ uv_interp = vertex_attrib;
gl_Position = vec4(uv_interp, 1.0, 1.0);
}
@@ -46,18 +46,13 @@ layout(std140) uniform GlobalVariableData { //ubo:1
vec4 global_variables[MAX_GLOBAL_VARIABLES];
};
-layout(std140) uniform SceneData { //ubo:2
- float pad1;
- float pad2;
-};
-
struct DirectionalLightData {
vec4 direction_energy;
vec4 color_size;
bool enabled;
};
-layout(std140) uniform DirectionalLights { //ubo:3
+layout(std140) uniform DirectionalLights { //ubo:4
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
@@ -65,7 +60,7 @@ directional_lights;
/* clang-format off */
#ifdef MATERIAL_UNIFORMS_USED
-layout(std140) uniform MaterialUniforms{ //ubo:4
+layout(std140) uniform MaterialUniforms{ //ubo:3
#MATERIAL_UNIFORMS
@@ -98,6 +93,14 @@ uniform vec4 projection;
uniform vec3 position;
uniform float time;
+uniform float fog_aerial_perspective;
+uniform vec3 fog_light_color;
+uniform float fog_sun_scatter;
+uniform bool fog_enabled;
+uniform float fog_density;
+uniform float z_far;
+uniform uint directional_light_count;
+
layout(location = 0) out vec4 frag_color;
void main() {
@@ -106,12 +109,11 @@ void main() {
cube_normal.x = (uv_interp.x + projection.x) / projection.y;
cube_normal.y = (-uv_interp.y - projection.z) / projection.w;
cube_normal = mat3(orientation) * cube_normal;
- cube_normal.z = -cube_normal.z;
cube_normal = normalize(cube_normal);
vec2 uv = gl_FragCoord.xy; // uv_interp * 0.5 + 0.5;
- vec2 panorama_coords = vec2(atan(cube_normal.x, cube_normal.z), acos(cube_normal.y));
+ vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;
@@ -126,13 +128,11 @@ void main() {
vec4 custom_fog = vec4(0.0);
#ifdef USE_CUBEMAP_PASS
- vec3 inverted_cube_normal = cube_normal;
- inverted_cube_normal.z *= -1.0;
#ifdef USES_HALF_RES_COLOR
- half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal);
+ half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal);
#endif
#ifdef USES_QUARTER_RES_COLOR
- quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal);
+ quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal);
#endif
#else
#ifdef USES_HALF_RES_COLOR
@@ -149,7 +149,8 @@ void main() {
}
- // Tonemap before writing as we are writing to an sRGB framebuffer
+ // Convert to Linear for tonemapping so color matches scene shader better
+ color = srgb_to_linear(color);
color *= exposure;
color = apply_tonemapping(color, white);
color = linear_to_srgb(color);
diff --git a/drivers/gles3/shaders/stdlib_inc.glsl b/drivers/gles3/shaders/stdlib_inc.glsl
index 6cce6c12bd..d5051760d7 100644
--- a/drivers/gles3/shaders/stdlib_inc.glsl
+++ b/drivers/gles3/shaders/stdlib_inc.glsl
@@ -42,11 +42,11 @@ vec2 unpackSnorm2x16(uint p) {
uint packUnorm4x8(vec4 v) {
uvec4 uv = uvec4(round(clamp(v, vec4(0.0), vec4(1.0)) * 255.0));
- return uv.x | uv.y << uint(8) | uv.z << uint(16) | uv.w << uint(24);
+ return uv.x | (uv.y << uint(8)) | (uv.z << uint(16)) | (uv.w << uint(24));
}
vec4 unpackUnorm4x8(uint p) {
- return vec4(float(p & uint(0xffff)), float((p >> uint(8)) & uint(0xffff)), float((p >> uint(16)) & uint(0xffff)), float(p >> uint(24))) * 0.00392156862; // 1.0 / 255.0
+ return vec4(float(p & uint(0xff)), float((p >> uint(8)) & uint(0xff)), float((p >> uint(16)) & uint(0xff)), float(p >> uint(24))) * 0.00392156862; // 1.0 / 255.0
}
uint packSnorm4x8(vec4 v) {
@@ -55,6 +55,6 @@ uint packSnorm4x8(vec4 v) {
}
vec4 unpackSnorm4x8(uint p) {
- vec4 v = vec4(float(p & uint(0xffff)), float((p >> uint(8)) & uint(0xffff)), float((p >> uint(16)) & uint(0xffff)), float(p >> uint(24)));
+ vec4 v = vec4(float(p & uint(0xff)), float((p >> uint(8)) & uint(0xff)), float((p >> uint(16)) & uint(0xff)), float(p >> uint(24)));
return clamp((v - vec4(127.0)) * vec4(0.00787401574), vec4(-1.0), vec4(1.0));
}
diff --git a/drivers/gles3/shaders/tonemap_inc.glsl b/drivers/gles3/shaders/tonemap_inc.glsl
index ea15c05359..f8f12760ec 100644
--- a/drivers/gles3/shaders/tonemap_inc.glsl
+++ b/drivers/gles3/shaders/tonemap_inc.glsl
@@ -92,11 +92,19 @@ vec3 tonemap_reinhard(vec3 color, float p_white) {
return (p_white * color + color) / (color * p_white + p_white);
}
+// This expects 0-1 range input.
vec3 linear_to_srgb(vec3 color) {
- //if going to srgb, clamp from 0 to 1.
- color = clamp(color, vec3(0.0), vec3(1.0));
- const vec3 a = vec3(0.055f);
- return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
+ //color = clamp(color, vec3(0.0), vec3(1.0));
+ //const vec3 a = vec3(0.055f);
+ //return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
+ // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
+ return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
+}
+
+// This expects 0-1 range input, outside that range it behaves poorly.
+vec3 srgb_to_linear(vec3 color) {
+ // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
+ return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
}
#define TONEMAPPER_LINEAR 0
diff --git a/drivers/gles3/storage/material_storage.cpp b/drivers/gles3/storage/material_storage.cpp
index 5ce02f6825..e93c503396 100644
--- a/drivers/gles3/storage/material_storage.cpp
+++ b/drivers/gles3/storage/material_storage.cpp
@@ -1024,6 +1024,7 @@ MaterialData::~MaterialData() {
if (uniform_buffer) {
glDeleteBuffers(1, &uniform_buffer);
+ uniform_buffer = 0;
}
}
@@ -1677,9 +1678,6 @@ ShaderCompiler::DefaultIdentifierActions actions;
//shaders.copy.initialize();
//shaders.copy_version = shaders.copy.version_create(); //TODO
//shaders.copy.version_bind_shader(shaders.copy_version, CopyShaderGLES3::MODE_COPY_SECTION);
- //shaders.cubemap_filter.init();
- //bool ggx_hq = GLOBAL_GET("rendering/quality/reflections/high_quality_ggx");
- //shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, !ggx_hq);
}
MaterialStorage::~MaterialStorage() {
@@ -3133,6 +3131,7 @@ GLES3::ShaderData *GLES3::_create_sky_shader_func() {
// Sky material
void SkyMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
+ uniform_set_updated = true;
return update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
diff --git a/drivers/gles3/storage/material_storage.h b/drivers/gles3/storage/material_storage.h
index d6f15e7056..6a11a10d76 100644
--- a/drivers/gles3/storage/material_storage.h
+++ b/drivers/gles3/storage/material_storage.h
@@ -45,6 +45,7 @@
#include "drivers/gles3/shaders/copy.glsl.gen.h"
#include "../shaders/canvas.glsl.gen.h"
+#include "../shaders/cubemap_filter.glsl.gen.h"
#include "../shaders/scene.glsl.gen.h"
#include "../shaders/sky.glsl.gen.h"
@@ -56,6 +57,7 @@ struct Shaders {
CanvasShaderGLES3 canvas_shader;
SkyShaderGLES3 sky_shader;
SceneShaderGLES3 scene_shader;
+ CubemapFilterShaderGLES3 cubemap_filter_shader;
ShaderCompiler compiler_canvas;
ShaderCompiler compiler_scene;
@@ -241,6 +243,7 @@ ShaderData *_create_sky_shader_func();
struct SkyMaterialData : public MaterialData {
SkyShaderData *shader_data = nullptr;
+ bool uniform_set_updated = false;
virtual void set_render_priority(int p_priority) {}
virtual void set_next_pass(RID p_pass) {}
@@ -458,8 +461,6 @@ private:
SelfList<Material>::List material_update_list;
- //static void _material_uniform_set_erased(void *p_material);
-
public:
static MaterialStorage *get_singleton();
diff --git a/drivers/gles3/storage/mesh_storage.cpp b/drivers/gles3/storage/mesh_storage.cpp
index e754d6150a..5739a63cac 100644
--- a/drivers/gles3/storage/mesh_storage.cpp
+++ b/drivers/gles3/storage/mesh_storage.cpp
@@ -570,24 +570,29 @@ void MeshStorage::mesh_clear(RID p_mesh) {
if (s.vertex_buffer != 0) {
glDeleteBuffers(1, &s.vertex_buffer);
+ s.vertex_buffer = 0;
}
if (s.version_count != 0) {
for (uint32_t j = 0; j < s.version_count; j++) {
glDeleteVertexArrays(1, &s.versions[j].vertex_array);
+ s.versions[j].vertex_array = 0;
}
}
if (s.attribute_buffer != 0) {
glDeleteBuffers(1, &s.attribute_buffer);
+ s.attribute_buffer = 0;
}
if (s.skin_buffer != 0) {
glDeleteBuffers(1, &s.skin_buffer);
+ s.skin_buffer = 0;
}
if (s.index_buffer != 0) {
glDeleteBuffers(1, &s.index_buffer);
+ s.index_buffer = 0;
}
memdelete(mesh->surfaces[i]);
}
@@ -804,17 +809,20 @@ void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
if (mi->surfaces[i].version_count != 0) {
for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array);
+ mi->surfaces[i].versions[j].vertex_array = 0;
}
memfree(mi->surfaces[i].versions);
}
if (mi->surfaces[i].vertex_buffer != 0) {
glDeleteBuffers(1, &mi->surfaces[i].vertex_buffer);
+ mi->surfaces[i].vertex_buffer = 0;
}
}
mi->surfaces.clear();
if (mi->blend_weights_buffer != 0) {
glDeleteBuffers(1, &mi->blend_weights_buffer);
+ mi->blend_weights_buffer = 0;
}
mi->blend_weights.clear();
mi->weights_dirty = false;
diff --git a/drivers/gles3/storage/texture_storage.cpp b/drivers/gles3/storage/texture_storage.cpp
index 4396ca4f93..f932fa8bad 100644
--- a/drivers/gles3/storage/texture_storage.cpp
+++ b/drivers/gles3/storage/texture_storage.cpp
@@ -554,7 +554,7 @@ Ref<Image> TextureStorage::_get_gl_image_and_format(const Ref<Image> &p_image, I
} break;
*/
default: {
- ERR_FAIL_V(Ref<Image>());
+ ERR_FAIL_V_MSG(Ref<Image>(), "Image Format: " + itos(p_format) + " is not supported by the OpenGL3 Renderer");
}
}
@@ -968,7 +968,7 @@ void TextureStorage::texture_set_data(RID p_texture, const Ref<Image> &p_image,
Image::Format real_format;
Ref<Image> img = _get_gl_image_and_format(p_image, p_image->get_format(), 0, real_format, format, internal_format, type, compressed, texture->resize_to_po2);
-
+ ERR_FAIL_COND(img.is_null());
if (texture->resize_to_po2) {
if (p_image->is_compressed()) {
ERR_PRINT("Texture '" + texture->path + "' is required to be a power of 2 because it uses either mipmaps or repeat, so it was decompressed. This will hurt performance and memory usage.");
@@ -1325,6 +1325,7 @@ void TextureStorage::_update_render_target(RenderTarget *rt) {
rt->color_internal_format = rt->flags[RENDER_TARGET_TRANSPARENT] ? GL_RGBA8 : GL_RGB10_A2;
rt->color_format = GL_RGBA;
+ rt->color_type = rt->flags[RENDER_TARGET_TRANSPARENT] ? GL_BYTE : GL_UNSIGNED_INT_2_10_10_10_REV;
rt->image_format = Image::FORMAT_RGBA8;
glDisable(GL_SCISSOR_TEST);
diff --git a/drivers/gles3/storage/texture_storage.h b/drivers/gles3/storage/texture_storage.h
index 8281b8c596..b092a009c1 100644
--- a/drivers/gles3/storage/texture_storage.h
+++ b/drivers/gles3/storage/texture_storage.h
@@ -249,7 +249,10 @@ struct Texture {
[[fallthrough]];
case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS: {
pmag = GL_NEAREST;
- if (config->use_nearest_mip_filter) {
+ if (mipmaps <= 1) {
+ pmin = GL_NEAREST;
+ max_lod = 0;
+ } else if (config->use_nearest_mip_filter) {
pmin = GL_NEAREST_MIPMAP_NEAREST;
} else {
pmin = GL_NEAREST_MIPMAP_LINEAR;
@@ -261,9 +264,11 @@ struct Texture {
[[fallthrough]];
case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS: {
pmag = GL_LINEAR;
- if (config->use_nearest_mip_filter) {
+ if (mipmaps <= 1) {
+ pmin = GL_LINEAR;
+ max_lod = 0;
+ } else if (config->use_nearest_mip_filter) {
pmin = GL_LINEAR_MIPMAP_NEAREST;
-
} else {
pmin = GL_LINEAR_MIPMAP_LINEAR;
}