summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/coreaudio/audio_driver_coreaudio.h4
-rw-r--r--drivers/coremidi/midi_driver_coremidi.cpp4
-rw-r--r--drivers/coremidi/midi_driver_coremidi.h2
-rw-r--r--drivers/gles3/rasterizer_canvas_gles3.cpp68
-rw-r--r--drivers/gles3/rasterizer_canvas_gles3.h11
-rw-r--r--drivers/gles3/rasterizer_gles3.cpp4
-rw-r--r--drivers/gles3/rasterizer_gles3.h2
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.cpp1196
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.h373
-rw-r--r--drivers/gles3/rasterizer_storage_gles3.cpp117
-rw-r--r--drivers/gles3/rasterizer_storage_gles3.h48
-rw-r--r--drivers/gles3/shader_gles3.cpp9
-rw-r--r--drivers/gles3/shader_gles3.h10
-rw-r--r--drivers/gles3/shaders/SCsub4
-rw-r--r--drivers/gles3/shaders/canvas.glsl28
-rw-r--r--drivers/gles3/shaders/scene.glsl2332
-rw-r--r--drivers/gles3/shaders/sky.glsl88
-rw-r--r--drivers/gles3/shaders/stdlib_inc.glsl4
-rw-r--r--drivers/gles3/shaders/tonemap_inc.glsl119
-rw-r--r--drivers/gles3/storage/config.cpp31
-rw-r--r--drivers/gles3/storage/config.h62
-rw-r--r--drivers/gles3/storage/light_storage.cpp241
-rw-r--r--drivers/gles3/storage/light_storage.h192
-rw-r--r--drivers/gles3/storage/material_storage.cpp783
-rw-r--r--drivers/gles3/storage/material_storage.h179
-rw-r--r--drivers/gles3/storage/mesh_storage.cpp216
-rw-r--r--drivers/gles3/storage/mesh_storage.h19
-rw-r--r--drivers/gles3/storage/texture_storage.cpp109
-rw-r--r--drivers/gles3/storage/texture_storage.h8
-rw-r--r--drivers/gles3/texture_loader_gles3.cpp2
-rw-r--r--drivers/gles3/texture_loader_gles3.h2
-rw-r--r--drivers/png/resource_saver_png.cpp6
-rw-r--r--drivers/png/resource_saver_png.h6
-rw-r--r--drivers/register_driver_types.cpp2
-rw-r--r--drivers/unix/dir_access_unix.h4
-rw-r--r--drivers/unix/os_unix.cpp16
-rw-r--r--drivers/unix/os_unix.h3
-rw-r--r--drivers/vulkan/rendering_device_vulkan.cpp5
-rw-r--r--drivers/vulkan/rendering_device_vulkan.h5
-rw-r--r--drivers/vulkan/vulkan_context.cpp5
-rw-r--r--drivers/vulkan/vulkan_context.h43
41 files changed, 4037 insertions, 2325 deletions
diff --git a/drivers/coreaudio/audio_driver_coreaudio.h b/drivers/coreaudio/audio_driver_coreaudio.h
index b19f133d89..f86037f092 100644
--- a/drivers/coreaudio/audio_driver_coreaudio.h
+++ b/drivers/coreaudio/audio_driver_coreaudio.h
@@ -35,9 +35,9 @@
#include "servers/audio_server.h"
-#include <AudioUnit/AudioUnit.h>
+#import <AudioUnit/AudioUnit.h>
#ifdef OSX_ENABLED
-#include <CoreAudio/AudioHardware.h>
+#import <CoreAudio/AudioHardware.h>
#endif
class AudioDriverCoreAudio : public AudioDriver {
diff --git a/drivers/coremidi/midi_driver_coremidi.cpp b/drivers/coremidi/midi_driver_coremidi.cpp
index ecd10f900b..dc69ab9472 100644
--- a/drivers/coremidi/midi_driver_coremidi.cpp
+++ b/drivers/coremidi/midi_driver_coremidi.cpp
@@ -34,8 +34,8 @@
#include "core/string/print_string.h"
-#include <CoreAudio/HostTime.h>
-#include <CoreServices/CoreServices.h>
+#import <CoreAudio/HostTime.h>
+#import <CoreServices/CoreServices.h>
void MIDIDriverCoreMidi::read(const MIDIPacketList *packet_list, void *read_proc_ref_con, void *src_conn_ref_con) {
MIDIPacket *packet = const_cast<MIDIPacket *>(packet_list->packet);
diff --git a/drivers/coremidi/midi_driver_coremidi.h b/drivers/coremidi/midi_driver_coremidi.h
index be0a9f610e..0085141c6d 100644
--- a/drivers/coremidi/midi_driver_coremidi.h
+++ b/drivers/coremidi/midi_driver_coremidi.h
@@ -36,7 +36,7 @@
#include "core/os/midi_driver.h"
#include "core/templates/vector.h"
-#include <CoreMIDI/CoreMIDI.h>
+#import <CoreMIDI/CoreMIDI.h>
#include <stdio.h>
class MIDIDriverCoreMidi : public MIDIDriver {
diff --git a/drivers/gles3/rasterizer_canvas_gles3.cpp b/drivers/gles3/rasterizer_canvas_gles3.cpp
index e14018c562..df54686574 100644
--- a/drivers/gles3/rasterizer_canvas_gles3.cpp
+++ b/drivers/gles3/rasterizer_canvas_gles3.cpp
@@ -57,57 +57,57 @@
//};
void RasterizerCanvasGLES3::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) {
- p_mat4[0] = p_transform.elements[0][0];
- p_mat4[1] = p_transform.elements[0][1];
+ p_mat4[0] = p_transform.columns[0][0];
+ p_mat4[1] = p_transform.columns[0][1];
p_mat4[2] = 0;
p_mat4[3] = 0;
- p_mat4[4] = p_transform.elements[1][0];
- p_mat4[5] = p_transform.elements[1][1];
+ p_mat4[4] = p_transform.columns[1][0];
+ p_mat4[5] = p_transform.columns[1][1];
p_mat4[6] = 0;
p_mat4[7] = 0;
p_mat4[8] = 0;
p_mat4[9] = 0;
p_mat4[10] = 1;
p_mat4[11] = 0;
- p_mat4[12] = p_transform.elements[2][0];
- p_mat4[13] = p_transform.elements[2][1];
+ p_mat4[12] = p_transform.columns[2][0];
+ p_mat4[13] = p_transform.columns[2][1];
p_mat4[14] = 0;
p_mat4[15] = 1;
}
void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) {
- p_mat2x4[0] = p_transform.elements[0][0];
- p_mat2x4[1] = p_transform.elements[1][0];
+ p_mat2x4[0] = p_transform.columns[0][0];
+ p_mat2x4[1] = p_transform.columns[1][0];
p_mat2x4[2] = 0;
- p_mat2x4[3] = p_transform.elements[2][0];
+ p_mat2x4[3] = p_transform.columns[2][0];
- p_mat2x4[4] = p_transform.elements[0][1];
- p_mat2x4[5] = p_transform.elements[1][1];
+ p_mat2x4[4] = p_transform.columns[0][1];
+ p_mat2x4[5] = p_transform.columns[1][1];
p_mat2x4[6] = 0;
- p_mat2x4[7] = p_transform.elements[2][1];
+ p_mat2x4[7] = p_transform.columns[2][1];
}
void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) {
- p_mat2x3[0] = p_transform.elements[0][0];
- p_mat2x3[1] = p_transform.elements[0][1];
- p_mat2x3[2] = p_transform.elements[1][0];
- p_mat2x3[3] = p_transform.elements[1][1];
- p_mat2x3[4] = p_transform.elements[2][0];
- p_mat2x3[5] = p_transform.elements[2][1];
+ p_mat2x3[0] = p_transform.columns[0][0];
+ p_mat2x3[1] = p_transform.columns[0][1];
+ p_mat2x3[2] = p_transform.columns[1][0];
+ p_mat2x3[3] = p_transform.columns[1][1];
+ p_mat2x3[4] = p_transform.columns[2][0];
+ p_mat2x3[5] = p_transform.columns[2][1];
}
void RasterizerCanvasGLES3::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) {
- p_mat4[0] = p_transform.basis.elements[0][0];
- p_mat4[1] = p_transform.basis.elements[1][0];
- p_mat4[2] = p_transform.basis.elements[2][0];
+ p_mat4[0] = p_transform.basis.rows[0][0];
+ p_mat4[1] = p_transform.basis.rows[1][0];
+ p_mat4[2] = p_transform.basis.rows[2][0];
p_mat4[3] = 0;
- p_mat4[4] = p_transform.basis.elements[0][1];
- p_mat4[5] = p_transform.basis.elements[1][1];
- p_mat4[6] = p_transform.basis.elements[2][1];
+ p_mat4[4] = p_transform.basis.rows[0][1];
+ p_mat4[5] = p_transform.basis.rows[1][1];
+ p_mat4[6] = p_transform.basis.rows[2][1];
p_mat4[7] = 0;
- p_mat4[8] = p_transform.basis.elements[0][2];
- p_mat4[9] = p_transform.basis.elements[1][2];
- p_mat4[10] = p_transform.basis.elements[2][2];
+ p_mat4[8] = p_transform.basis.rows[0][2];
+ p_mat4[9] = p_transform.basis.rows[1][2];
+ p_mat4[10] = p_transform.basis.rows[2][2];
p_mat4[11] = 0;
p_mat4[12] = p_transform.origin.x;
p_mat4[13] = p_transform.origin.y;
@@ -142,9 +142,9 @@ void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_
_update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform);
Transform2D normal_transform = p_canvas_transform;
- normal_transform.elements[0].normalize();
- normal_transform.elements[1].normalize();
- normal_transform.elements[2] = Vector2();
+ normal_transform.columns[0].normalize();
+ normal_transform.columns[1].normalize();
+ normal_transform.columns[2] = Vector2();
_update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform);
state_buffer.canvas_modulate[0] = p_modulate.r;
@@ -179,12 +179,12 @@ void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_
//print_line("w: " + itos(ssize.width) + " s: " + rtos(canvas_scale));
state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5);
- glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_BUFFER_OBJECT, state.canvas_state_buffer);
+ glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_LOCATION, state.canvas_state_buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), &state_buffer, GL_STREAM_DRAW);
GLuint global_buffer = material_storage->global_variables_get_uniform_buffer();
- glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_BUFFER_OBJECT, global_buffer);
+ glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_LOCATION, global_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
@@ -522,7 +522,7 @@ void RasterizerCanvasGLES3::_render_item(RID p_render_target, const Item *p_item
}
}
- glBindBufferBase(GL_UNIFORM_BUFFER, INSTANCE_UNIFORM_BUFFER_OBJECT, state.canvas_instance_data_buffers[state.current_buffer]);
+ glBindBufferBase(GL_UNIFORM_BUFFER, INSTANCE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_buffer]);
#ifdef JAVASCRIPT_ENABLED
//WebGL 2.0 does not support mapping buffers, so use slow glBufferData instead
glBufferData(GL_UNIFORM_BUFFER, sizeof(InstanceData), &state.instance_data_array[0], GL_DYNAMIC_DRAW);
@@ -728,7 +728,7 @@ void RasterizerCanvasGLES3::_render_batch(uint32_t &r_index) {
}
}
- glBindBufferBase(GL_UNIFORM_BUFFER, INSTANCE_UNIFORM_BUFFER_OBJECT, state.canvas_instance_data_buffers[state.current_buffer]);
+ glBindBufferBase(GL_UNIFORM_BUFFER, INSTANCE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_buffer]);
#ifdef JAVASCRIPT_ENABLED
//WebGL 2.0 does not support mapping buffers, so use slow glBufferData instead
glBufferData(GL_UNIFORM_BUFFER, sizeof(InstanceData) * r_index, state.instance_data_array, GL_DYNAMIC_DRAW);
diff --git a/drivers/gles3/rasterizer_canvas_gles3.h b/drivers/gles3/rasterizer_canvas_gles3.h
index b77b295de9..aedde7c265 100644
--- a/drivers/gles3/rasterizer_canvas_gles3.h
+++ b/drivers/gles3/rasterizer_canvas_gles3.h
@@ -97,13 +97,12 @@ class RasterizerCanvasGLES3 : public RendererCanvasRender {
};
public:
- //TODO move to Material storage
enum {
- BASE_UNIFORM_BUFFER_OBJECT = 0,
- GLOBAL_UNIFORM_BUFFER_OBJECT = 1,
- LIGHT_UNIFORM_BUFFER_OBJECT = 2,
- INSTANCE_UNIFORM_BUFFER_OBJECT = 3,
- MATERIAL_UNIFORM_BUFFER_OBJECT = 4,
+ BASE_UNIFORM_LOCATION = 0,
+ GLOBAL_UNIFORM_LOCATION = 1,
+ LIGHT_UNIFORM_LOCATION = 2,
+ INSTANCE_UNIFORM_LOCATION = 3,
+ MATERIAL_UNIFORM_LOCATION = 4,
};
struct StateBuffer {
diff --git a/drivers/gles3/rasterizer_gles3.cpp b/drivers/gles3/rasterizer_gles3.cpp
index e09355e433..787c4b8c49 100644
--- a/drivers/gles3/rasterizer_gles3.cpp
+++ b/drivers/gles3/rasterizer_gles3.cpp
@@ -268,10 +268,6 @@ RasterizerGLES3::RasterizerGLES3() {
storage = memnew(RasterizerStorageGLES3);
canvas = memnew(RasterizerCanvasGLES3(storage));
scene = memnew(RasterizerSceneGLES3(storage));
-
- texture_storage->set_main_thread_id(Thread::get_caller_id());
- // make sure the OS knows to only access the renderer from the main thread
- OS::get_singleton()->set_render_main_thread_mode(OS::RENDER_MAIN_THREAD_ONLY);
}
RasterizerGLES3::~RasterizerGLES3() {
diff --git a/drivers/gles3/rasterizer_gles3.h b/drivers/gles3/rasterizer_gles3.h
index 33bb97d105..ad3d3d7325 100644
--- a/drivers/gles3/rasterizer_gles3.h
+++ b/drivers/gles3/rasterizer_gles3.h
@@ -92,9 +92,9 @@ public:
static void make_current() {
_create_func = _create_current;
+ low_end = true;
}
- virtual bool is_low_end() const { return true; }
uint64_t get_frame_number() const { return frame; }
double get_frame_delta_time() const { return delta; }
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp
index 09a02b786c..68657b9152 100644
--- a/drivers/gles3/rasterizer_scene_gles3.cpp
+++ b/drivers/gles3/rasterizer_scene_gles3.cpp
@@ -31,6 +31,7 @@
#include "rasterizer_scene_gles3.h"
#include "core/config/project_settings.h"
#include "servers/rendering/rendering_server_default.h"
+#include "storage/config.h"
#ifdef GLES3_ENABLED
@@ -42,66 +43,169 @@ RasterizerSceneGLES3 *RasterizerSceneGLES3::get_singleton() {
return singleton;
}
-RasterizerSceneGLES3::GeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) {
- return nullptr;
+RendererSceneRender::GeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) {
+ RS::InstanceType type = storage->get_base_type(p_base);
+ ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr);
+
+ GeometryInstanceGLES3 *ginstance = geometry_instance_alloc.alloc();
+ ginstance->data = memnew(GeometryInstanceGLES3::Data);
+
+ ginstance->data->base = p_base;
+ ginstance->data->base_type = type;
+
+ _geometry_instance_mark_dirty(ginstance);
+
+ return ginstance;
}
void RasterizerSceneGLES3::geometry_instance_set_skeleton(GeometryInstance *p_geometry_instance, RID p_skeleton) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->skeleton = p_skeleton;
+
+ _geometry_instance_mark_dirty(ginstance);
+ ginstance->data->dirty_dependencies = true;
}
void RasterizerSceneGLES3::geometry_instance_set_material_override(GeometryInstance *p_geometry_instance, RID p_override) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->material_override = p_override;
+
+ _geometry_instance_mark_dirty(ginstance);
+ ginstance->data->dirty_dependencies = true;
}
void RasterizerSceneGLES3::geometry_instance_set_material_overlay(GeometryInstance *p_geometry_instance, RID p_overlay) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->material_overlay = p_overlay;
+
+ _geometry_instance_mark_dirty(ginstance);
+ ginstance->data->dirty_dependencies = true;
}
-void RasterizerSceneGLES3::geometry_instance_set_surface_materials(GeometryInstance *p_geometry_instance, const Vector<RID> &p_material) {
+void RasterizerSceneGLES3::geometry_instance_set_surface_materials(GeometryInstance *p_geometry_instance, const Vector<RID> &p_materials) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->surface_materials = p_materials;
+
+ _geometry_instance_mark_dirty(ginstance);
+ ginstance->data->dirty_dependencies = true;
}
void RasterizerSceneGLES3::geometry_instance_set_mesh_instance(GeometryInstance *p_geometry_instance, RID p_mesh_instance) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->mesh_instance = p_mesh_instance;
+
+ _geometry_instance_mark_dirty(ginstance);
}
-void RasterizerSceneGLES3::geometry_instance_set_transform(GeometryInstance *p_geometry_instance, const Transform3D &p_transform, const AABB &p_aabb, const AABB &p_transformed_aabbb) {
+void RasterizerSceneGLES3::geometry_instance_set_transform(GeometryInstance *p_geometry_instance, const Transform3D &p_transform, const AABB &p_aabb, const AABB &p_transformed_aabb) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->transform = p_transform;
+ ginstance->mirror = p_transform.basis.determinant() < 0;
+ ginstance->data->aabb = p_aabb;
+ ginstance->transformed_aabb = p_transformed_aabb;
+
+ Vector3 model_scale_vec = p_transform.basis.get_scale_abs();
+ // handle non uniform scale here
+
+ float max_scale = MAX(model_scale_vec.x, MAX(model_scale_vec.y, model_scale_vec.z));
+ float min_scale = MIN(model_scale_vec.x, MIN(model_scale_vec.y, model_scale_vec.z));
+ ginstance->non_uniform_scale = max_scale >= 0.0 && (min_scale / max_scale) < 0.9;
+
+ ginstance->lod_model_scale = max_scale;
}
void RasterizerSceneGLES3::geometry_instance_set_layer_mask(GeometryInstance *p_geometry_instance, uint32_t p_layer_mask) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->layer_mask = p_layer_mask;
}
void RasterizerSceneGLES3::geometry_instance_set_lod_bias(GeometryInstance *p_geometry_instance, float p_lod_bias) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->lod_bias = p_lod_bias;
}
void RasterizerSceneGLES3::geometry_instance_set_transparency(GeometryInstance *p_geometry_instance, float p_transparency) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->force_alpha = CLAMP(1.0 - p_transparency, 0, 1);
}
void RasterizerSceneGLES3::geometry_instance_set_fade_range(GeometryInstance *p_geometry_instance, bool p_enable_near, float p_near_begin, float p_near_end, bool p_enable_far, float p_far_begin, float p_far_end) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->fade_near = p_enable_near;
+ ginstance->fade_near_begin = p_near_begin;
+ ginstance->fade_near_end = p_near_end;
+ ginstance->fade_far = p_enable_far;
+ ginstance->fade_far_begin = p_far_begin;
+ ginstance->fade_far_end = p_far_end;
}
void RasterizerSceneGLES3::geometry_instance_set_parent_fade_alpha(GeometryInstance *p_geometry_instance, float p_alpha) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->parent_fade_alpha = p_alpha;
}
void RasterizerSceneGLES3::geometry_instance_set_use_baked_light(GeometryInstance *p_geometry_instance, bool p_enable) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->use_baked_light = p_enable;
+
+ _geometry_instance_mark_dirty(ginstance);
}
void RasterizerSceneGLES3::geometry_instance_set_use_dynamic_gi(GeometryInstance *p_geometry_instance, bool p_enable) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->use_dynamic_gi = p_enable;
+ _geometry_instance_mark_dirty(ginstance);
}
void RasterizerSceneGLES3::geometry_instance_set_use_lightmap(GeometryInstance *p_geometry_instance, RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
}
void RasterizerSceneGLES3::geometry_instance_set_lightmap_capture(GeometryInstance *p_geometry_instance, const Color *p_sh9) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
}
void RasterizerSceneGLES3::geometry_instance_set_instance_shader_parameters_offset(GeometryInstance *p_geometry_instance, int32_t p_offset) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->shader_parameters_offset = p_offset;
+ _geometry_instance_mark_dirty(ginstance);
}
void RasterizerSceneGLES3::geometry_instance_set_cast_double_sided_shadows(GeometryInstance *p_geometry_instance, bool p_enable) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ ginstance->data->cast_double_sided_shadows = p_enable;
+ _geometry_instance_mark_dirty(ginstance);
}
uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() {
- return 0;
+ return 0; //(1 << RS::INSTANCE_LIGHT);
+ // For now, nothing is paired
}
void RasterizerSceneGLES3::geometry_instance_pair_light_instances(GeometryInstance *p_geometry_instance, const RID *p_light_instances, uint32_t p_light_instance_count) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+
+ ginstance->omni_light_count = 0;
+ ginstance->spot_light_count = 0;
}
void RasterizerSceneGLES3::geometry_instance_pair_reflection_probe_instances(GeometryInstance *p_geometry_instance, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count) {
@@ -114,9 +218,314 @@ void RasterizerSceneGLES3::geometry_instance_pair_voxel_gi_instances(GeometryIns
}
void RasterizerSceneGLES3::geometry_instance_set_softshadow_projector_pairing(GeometryInstance *p_geometry_instance, bool p_softshadow, bool p_projector) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
}
void RasterizerSceneGLES3::geometry_instance_free(GeometryInstance *p_geometry_instance) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ ERR_FAIL_COND(!ginstance);
+ GeometryInstanceSurface *surf = ginstance->surface_caches;
+ while (surf) {
+ GeometryInstanceSurface *next = surf->next;
+ geometry_instance_surface_alloc.free(surf);
+ surf = next;
+ }
+ memdelete(ginstance->data);
+ geometry_instance_alloc.free(ginstance);
+}
+
+void RasterizerSceneGLES3::_geometry_instance_mark_dirty(GeometryInstance *p_geometry_instance) {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+ if (ginstance->dirty_list_element.in_list()) {
+ return;
+ }
+
+ //clear surface caches
+ GeometryInstanceSurface *surf = ginstance->surface_caches;
+
+ while (surf) {
+ GeometryInstanceSurface *next = surf->next;
+ geometry_instance_surface_alloc.free(surf);
+ surf = next;
+ }
+
+ ginstance->surface_caches = nullptr;
+
+ geometry_instance_dirty_list.add(&ginstance->dirty_list_element);
+}
+
+void RasterizerSceneGLES3::_update_dirty_geometry_instances() {
+ while (geometry_instance_dirty_list.first()) {
+ _geometry_instance_update(geometry_instance_dirty_list.first()->self());
+ }
+}
+
+void RasterizerSceneGLES3::_geometry_instance_dependency_changed(RendererStorage::DependencyChangedNotification p_notification, RendererStorage::DependencyTracker *p_tracker) {
+ switch (p_notification) {
+ case RendererStorage::DEPENDENCY_CHANGED_MATERIAL:
+ case RendererStorage::DEPENDENCY_CHANGED_MESH:
+ case RendererStorage::DEPENDENCY_CHANGED_PARTICLES:
+ case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH:
+ case RendererStorage::DEPENDENCY_CHANGED_SKELETON_DATA: {
+ static_cast<RasterizerSceneGLES3 *>(singleton)->_geometry_instance_mark_dirty(static_cast<GeometryInstance *>(p_tracker->userdata));
+ } break;
+ case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: {
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata);
+ if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) {
+ ginstance->instance_count = GLES3::MeshStorage::get_singleton()->multimesh_get_instances_to_draw(ginstance->data->base);
+ }
+ } break;
+ default: {
+ //rest of notifications of no interest
+ } break;
+ }
+}
+
+void RasterizerSceneGLES3::_geometry_instance_dependency_deleted(const RID &p_dependency, RendererStorage::DependencyTracker *p_tracker) {
+ static_cast<RasterizerSceneGLES3 *>(singleton)->_geometry_instance_mark_dirty(static_cast<GeometryInstance *>(p_tracker->userdata));
+}
+
+void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) {
+ GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
+
+ bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture;
+ bool has_base_alpha = ((p_material->shader_data->uses_alpha && !p_material->shader_data->uses_alpha_clip) || has_read_screen_alpha);
+ bool has_blend_alpha = p_material->shader_data->uses_blend_alpha;
+ bool has_alpha = has_base_alpha || has_blend_alpha;
+
+ uint32_t flags = 0;
+
+ if (p_material->shader_data->uses_screen_texture) {
+ flags |= GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE;
+ }
+
+ if (p_material->shader_data->uses_depth_texture) {
+ flags |= GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE;
+ }
+
+ if (p_material->shader_data->uses_normal_texture) {
+ flags |= GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE;
+ }
+
+ if (ginstance->data->cast_double_sided_shadows) {
+ flags |= GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS;
+ }
+
+ if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) {
+ //material is only meant for alpha pass
+ flags |= GeometryInstanceSurface::FLAG_PASS_ALPHA;
+ if (p_material->shader_data->uses_depth_pre_pass && !(p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED)) {
+ flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH;
+ flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW;
+ }
+ } else {
+ flags |= GeometryInstanceSurface::FLAG_PASS_OPAQUE;
+ flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH;
+ flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW;
+ }
+
+ GLES3::SceneMaterialData *material_shadow = nullptr;
+ void *surface_shadow = nullptr;
+ if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_pre_pass && !p_material->shader_data->uses_alpha_clip) {
+ flags |= GeometryInstanceSurface::FLAG_USES_SHARED_SHADOW_MATERIAL;
+ material_shadow = static_cast<GLES3::SceneMaterialData *>(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
+
+ RID shadow_mesh = mesh_storage->mesh_get_shadow_mesh(p_mesh);
+
+ if (shadow_mesh.is_valid()) {
+ surface_shadow = mesh_storage->mesh_get_surface(shadow_mesh, p_surface);
+ }
+
+ } else {
+ material_shadow = p_material;
+ }
+
+ GeometryInstanceSurface *sdcache = geometry_instance_surface_alloc.alloc();
+
+ sdcache->flags = flags;
+
+ sdcache->shader = p_material->shader_data;
+ sdcache->material = p_material;
+ sdcache->surface = mesh_storage->mesh_get_surface(p_mesh, p_surface);
+ sdcache->primitive = mesh_storage->mesh_surface_get_primitive(sdcache->surface);
+ sdcache->surface_index = p_surface;
+
+ if (ginstance->data->dirty_dependencies) {
+ storage->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker);
+ }
+
+ //shadow
+ sdcache->shader_shadow = material_shadow->shader_data;
+ sdcache->material_shadow = material_shadow;
+
+ sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface;
+
+ sdcache->owner = ginstance;
+
+ sdcache->next = ginstance->surface_caches;
+ ginstance->surface_caches = sdcache;
+
+ //sortkey
+
+ sdcache->sort.sort_key1 = 0;
+ sdcache->sort.sort_key2 = 0;
+
+ sdcache->sort.surface_index = p_surface;
+ sdcache->sort.material_id_low = p_material_id & 0x0000FFFF;
+ sdcache->sort.material_id_hi = p_material_id >> 16;
+ sdcache->sort.shader_id = p_shader_id;
+ sdcache->sort.geometry_id = p_mesh.get_local_index();
+ sdcache->sort.priority = p_material->priority;
+}
+
+void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material_data, RID p_mat_src, RID p_mesh) {
+ GLES3::SceneMaterialData *material_data = p_material_data;
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+
+ _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, p_mat_src.get_local_index(), material_storage->material_get_shader_id(p_mat_src), p_mesh);
+
+ while (material_data->next_pass.is_valid()) {
+ RID next_pass = material_data->next_pass;
+ material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(next_pass, RS::SHADER_SPATIAL));
+ if (!material_data || !material_data->shader_data->valid) {
+ break;
+ }
+ if (ginstance->data->dirty_dependencies) {
+ material_storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker);
+ }
+ _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, next_pass.get_local_index(), material_storage->material_get_shader_id(next_pass), p_mesh);
+ }
+}
+
+void RasterizerSceneGLES3::_geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) {
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+ RID m_src;
+
+ m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material;
+
+ GLES3::SceneMaterialData *material_data = nullptr;
+
+ if (m_src.is_valid()) {
+ material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL));
+ if (!material_data || !material_data->shader_data->valid) {
+ material_data = nullptr;
+ }
+ }
+
+ if (material_data) {
+ if (ginstance->data->dirty_dependencies) {
+ material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker);
+ }
+ } else {
+ material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
+ m_src = scene_globals.default_material;
+ }
+
+ ERR_FAIL_COND(!material_data);
+
+ _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh);
+
+ if (ginstance->data->material_overlay.is_valid()) {
+ m_src = ginstance->data->material_overlay;
+
+ material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL));
+ if (material_data && material_data->shader_data->valid) {
+ if (ginstance->data->dirty_dependencies) {
+ material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker);
+ }
+
+ _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh);
+ }
+ }
+}
+
+void RasterizerSceneGLES3::_geometry_instance_update(GeometryInstance *p_geometry_instance) {
+ GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
+ GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
+
+ if (ginstance->data->dirty_dependencies) {
+ ginstance->data->dependency_tracker.update_begin();
+ }
+
+ //add geometry for drawing
+ switch (ginstance->data->base_type) {
+ case RS::INSTANCE_MESH: {
+ const RID *materials = nullptr;
+ uint32_t surface_count;
+ RID mesh = ginstance->data->base;
+
+ materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
+ if (materials) {
+ //if no materials, no surfaces.
+ const RID *inst_materials = ginstance->data->surface_materials.ptr();
+ uint32_t surf_mat_count = ginstance->data->surface_materials.size();
+
+ for (uint32_t j = 0; j < surface_count; j++) {
+ RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j];
+ _geometry_instance_add_surface(ginstance, j, material, mesh);
+ }
+ }
+
+ ginstance->instance_count = 1;
+
+ } break;
+
+ case RS::INSTANCE_MULTIMESH: {
+ RID mesh = mesh_storage->multimesh_get_mesh(ginstance->data->base);
+ if (mesh.is_valid()) {
+ const RID *materials = nullptr;
+ uint32_t surface_count;
+
+ materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
+ if (materials) {
+ for (uint32_t j = 0; j < surface_count; j++) {
+ _geometry_instance_add_surface(ginstance, j, materials[j], mesh);
+ }
+ }
+
+ ginstance->instance_count = mesh_storage->multimesh_get_instances_to_draw(ginstance->data->base);
+ }
+
+ } break;
+ case RS::INSTANCE_PARTICLES: {
+ } break;
+
+ default: {
+ }
+ }
+
+ //Fill push constant
+
+ bool store_transform = true;
+ ginstance->base_flags = 0;
+
+ if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) {
+ ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH;
+ if (mesh_storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) {
+ ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D;
+ }
+ if (mesh_storage->multimesh_uses_colors(ginstance->data->base)) {
+ ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR;
+ }
+ if (mesh_storage->multimesh_uses_custom_data(ginstance->data->base)) {
+ ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA;
+ }
+
+ //ginstance->transforms_uniform_set = mesh_storage->multimesh_get_3d_uniform_set(ginstance->data->base, scene_globals.default_shader_rd, TRANSFORMS_UNIFORM_SET);
+
+ } else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) {
+ } else if (ginstance->data->base_type == RS::INSTANCE_MESH) {
+ }
+
+ ginstance->store_transform_cache = store_transform;
+
+ if (ginstance->data->dirty_dependencies) {
+ ginstance->data->dependency_tracker.update_end();
+ ginstance->data->dirty_dependencies = false;
+ }
+
+ ginstance->dirty_list_element.remove_from_list();
}
/* SHADOW ATLAS API */
@@ -238,36 +647,70 @@ void RasterizerSceneGLES3::_update_dirty_skys() {
dirty_sky_list = nullptr;
}
-void RasterizerSceneGLES3::_draw_sky(Sky *p_sky, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
- ERR_FAIL_COND(!p_sky);
+void RasterizerSceneGLES3::_draw_sky(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform) {
+ GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
+ ERR_FAIL_COND(!p_env);
- glDepthMask(GL_TRUE);
- glEnable(GL_DEPTH_TEST);
- glDisable(GL_CULL_FACE);
- glDisable(GL_BLEND);
- glDepthFunc(GL_LEQUAL);
- glColorMask(1, 1, 1, 1);
+ Sky *sky = sky_owner.get_or_null(p_env->sky);
+ ERR_FAIL_COND(!sky);
+
+ GLES3::SkyMaterialData *material_data = nullptr;
+ RID sky_material;
+
+ RS::EnvironmentBG background = p_env->background;
+
+ if (sky) {
+ ERR_FAIL_COND(!sky);
+ sky_material = sky->material;
+
+ if (sky_material.is_valid()) {
+ material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ if (!material_data || !material_data->shader_data->valid) {
+ material_data = nullptr;
+ }
+ }
+
+ if (!material_data) {
+ sky_material = sky_globals.default_material;
+ material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ }
+ } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
+ sky_material = sky_globals.fog_material;
+ material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
+ }
+
+ ERR_FAIL_COND(!material_data);
+ material_data->bind_uniforms();
+
+ GLES3::SkyShaderData *shader_data = material_data->shader_data;
- //state.sky_shader.version_bind_shader(sky_globals.default_shader, SkyShaderGLES3::MODE_BACKGROUND);
- //glBindBufferBase(GL_UNIFORM_BUFFER, 0, state.canvas_instance_data_buffers[state.current_buffer]); // Canvas data updated here
- //glBindBufferBase(GL_UNIFORM_BUFFER, 1, state.canvas_instance_data_buffers[state.current_buffer]); // Global data
- //glBindBufferBase(GL_UNIFORM_BUFFER, 2, state.canvas_instance_data_buffers[state.current_buffer]); // Directional light data
- //glBindBufferBase(GL_UNIFORM_BUFFER, 3, state.canvas_instance_data_buffers[state.current_buffer]); // Material uniforms
+ ERR_FAIL_COND(!shader_data);
+
+ //glBindBufferBase(GL_UNIFORM_BUFFER, 2, p_sky.directional light data); // Directional light data
// Camera
CameraMatrix camera;
- if (p_custom_fov) {
+ if (p_env->sky_custom_fov) {
float near_plane = p_projection.get_z_near();
float far_plane = p_projection.get_z_far();
float aspect = p_projection.get_aspect();
- camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
-
+ camera.set_perspective(p_env->sky_custom_fov, aspect, near_plane, far_plane);
} else {
camera = p_projection;
}
-
+ Basis sky_transform = p_env->sky_orientation;
+ sky_transform.invert();
+ sky_transform = p_transform.basis * sky_transform;
+
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, sky_transform, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND);
+ // Bind a vertex array or else OpenGL complains. We won't actually use it
+ glBindVertexArray(sky_globals.quad_array);
glDrawArrays(GL_TRIANGLES, 0, 3);
}
@@ -599,20 +1042,267 @@ void RasterizerSceneGLES3::voxel_gi_update(RID p_probe, bool p_update_light_inst
void RasterizerSceneGLES3::voxel_gi_set_quality(RS::VoxelGIQuality) {
}
+void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append) {
+ GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
+
+ if (p_render_list == RENDER_LIST_OPAQUE) {
+ scene_state.used_screen_texture = false;
+ scene_state.used_normal_texture = false;
+ scene_state.used_depth_texture = false;
+ }
+
+ Plane near_plane;
+ if (p_render_data->cam_orthogonal) {
+ near_plane = Plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin);
+ near_plane.d += p_render_data->cam_projection.get_z_near();
+ }
+ float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near();
+
+ RenderList *rl = &render_list[p_render_list];
+
+ // Parse any updates on our geometry, updates surface caches and such
+ _update_dirty_geometry_instances();
+
+ if (!p_append) {
+ rl->clear();
+ if (p_render_list == RENDER_LIST_OPAQUE) {
+ render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too
+ }
+ }
+
+ //fill list
+
+ for (int i = 0; i < (int)p_render_data->instances->size(); i++) {
+ GeometryInstanceGLES3 *inst = static_cast<GeometryInstanceGLES3 *>((*p_render_data->instances)[i]);
+
+ if (p_render_data->cam_orthogonal) {
+ Vector3 support_min = inst->transformed_aabb.get_support(-near_plane.normal);
+ inst->depth = near_plane.distance_to(support_min);
+ } else {
+ Vector3 aabb_center = inst->transformed_aabb.position + (inst->transformed_aabb.size * 0.5);
+ inst->depth = p_render_data->cam_transform.origin.distance_to(aabb_center);
+ }
+ uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15);
+
+ uint32_t flags = inst->base_flags; //fill flags if appropriate
+
+ if (inst->non_uniform_scale) {
+ flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE;
+ }
+
+ //Process lights here, determine if they need extra passes
+ if (p_pass_mode == PASS_MODE_COLOR) {
+ }
+
+ inst->flags_cache = flags;
+
+ GeometryInstanceSurface *surf = inst->surface_caches;
+
+ while (surf) {
+ // LOD
+
+ if (p_render_data->screen_mesh_lod_threshold > 0.0 && mesh_storage->mesh_surface_has_lod(surf->surface)) {
+ //lod
+ Vector3 lod_support_min = inst->transformed_aabb.get_support(-p_render_data->lod_camera_plane.normal);
+ Vector3 lod_support_max = inst->transformed_aabb.get_support(p_render_data->lod_camera_plane.normal);
+
+ float distance_min = p_render_data->lod_camera_plane.distance_to(lod_support_min);
+ float distance_max = p_render_data->lod_camera_plane.distance_to(lod_support_max);
+
+ float distance = 0.0;
+
+ if (distance_min * distance_max < 0.0) {
+ //crossing plane
+ distance = 0.0;
+ } else if (distance_min >= 0.0) {
+ distance = distance_min;
+ } else if (distance_max <= 0.0) {
+ distance = -distance_max;
+ }
+
+ if (p_render_data->cam_orthogonal) {
+ distance = 1.0;
+ }
+
+ uint32_t indices;
+ surf->lod_index = mesh_storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, distance * p_render_data->lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, &indices);
+ /*
+ if (p_render_data->render_info) {
+ indices = _indices_to_primitives(surf->primitive, indices);
+ if (p_render_list == RENDER_LIST_OPAQUE) { //opaque
+ p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices;
+ } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow
+ p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices;
+ }
+ }
+ */
+ } else {
+ surf->lod_index = 0;
+ /*
+ if (p_render_data->render_info) {
+ uint32_t to_draw = mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface);
+ to_draw = _indices_to_primitives(surf->primitive, to_draw);
+ to_draw *= inst->instance_count;
+ if (p_render_list == RENDER_LIST_OPAQUE) { //opaque
+ p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface);
+ } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow
+ p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface);
+ }
+ }
+ */
+ }
+
+ // ADD Element
+ if (p_pass_mode == PASS_MODE_COLOR) {
+#ifdef DEBUG_ENABLED
+ bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW);
+#else
+ bool force_alpha = false;
+#endif
+ if (!force_alpha && (surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
+ rl->add_element(surf);
+ }
+ if (force_alpha || (surf->flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) {
+ render_list[RENDER_LIST_ALPHA].add_element(surf);
+ }
+
+ if (surf->flags & GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE) {
+ scene_state.used_screen_texture = true;
+ }
+ if (surf->flags & GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE) {
+ scene_state.used_normal_texture = true;
+ }
+ if (surf->flags & GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE) {
+ scene_state.used_depth_texture = true;
+ }
+
+ /*
+ Add elements here if there are shadows
+ */
+
+ } else if (p_pass_mode == PASS_MODE_SHADOW) {
+ if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) {
+ rl->add_element(surf);
+ }
+ } else {
+ if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
+ rl->add_element(surf);
+ }
+ }
+
+ surf->sort.depth_layer = depth_layer;
+
+ surf = surf->next;
+ }
+ }
+}
+
+void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows) {
+ CameraMatrix correction;
+ correction.set_depth_correction(p_flip_y);
+ CameraMatrix projection = correction * p_render_data->cam_projection;
+ //store camera into ubo
+ RasterizerStorageGLES3::store_camera(projection, scene_state.ubo.projection_matrix);
+ RasterizerStorageGLES3::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix);
+ RasterizerStorageGLES3::store_transform(p_render_data->cam_transform, scene_state.ubo.inv_view_matrix);
+ RasterizerStorageGLES3::store_transform(p_render_data->cam_transform.affine_inverse(), scene_state.ubo.view_matrix);
+
+ scene_state.ubo.directional_light_count = 1;
+
+ scene_state.ubo.z_far = p_render_data->z_far;
+ scene_state.ubo.z_near = p_render_data->z_near;
+
+ scene_state.ubo.pancake_shadows = p_pancake_shadows;
+
+ scene_state.ubo.viewport_size[0] = p_screen_size.x;
+ scene_state.ubo.viewport_size[1] = p_screen_size.y;
+
+ Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size);
+ scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x;
+ scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y;
+
+ //time global variables
+ scene_state.ubo.time = time;
+
+ if (is_environment(p_render_data->environment)) {
+ Environment *env = environment_owner.get_or_null(p_render_data->environment);
+ RS::EnvironmentBG env_bg = env->background;
+ RS::EnvironmentAmbientSource ambient_src = env->ambient_source;
+
+ float bg_energy = env->bg_energy;
+ scene_state.ubo.ambient_light_color_energy[3] = bg_energy;
+
+ scene_state.ubo.ambient_color_sky_mix = env->ambient_sky_contribution;
+
+ //ambient
+ if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) {
+ Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : env->bg_color;
+ color = color.srgb_to_linear();
+
+ scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy;
+ scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy;
+ scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy;
+ } else {
+ float energy = env->ambient_light_energy;
+ Color color = env->ambient_light;
+ color = color.srgb_to_linear();
+ scene_state.ubo.ambient_light_color_energy[0] = color.r * energy;
+ scene_state.ubo.ambient_light_color_energy[1] = color.g * energy;
+ scene_state.ubo.ambient_light_color_energy[2] = color.b * energy;
+
+ Basis sky_transform = env->sky_orientation;
+ sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis;
+ RasterizerStorageGLES3::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform);
+ }
+
+ scene_state.ubo.fog_enabled = env->fog_enabled;
+ scene_state.ubo.fog_density = env->fog_density;
+ scene_state.ubo.fog_height = env->fog_height;
+ scene_state.ubo.fog_height_density = env->fog_height_density;
+ scene_state.ubo.fog_aerial_perspective = env->fog_aerial_perspective;
+
+ Color fog_color = env->fog_light_color.srgb_to_linear();
+ float fog_energy = env->fog_light_energy;
+
+ scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy;
+ scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy;
+ scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy;
+
+ scene_state.ubo.fog_sun_scatter = env->fog_sun_scatter;
+
+ } else {
+ }
+
+ if (scene_state.ubo_buffer == 0) {
+ glGenBuffers(1, &scene_state.ubo_buffer);
+ }
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer);
+ glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW);
+ glBindBuffer(GL_UNIFORM_BUFFER, 0);
+}
+
void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RendererScene::RenderInfo *r_render_info) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
+ GLES3::Config *config = GLES3::Config::get_singleton();
RENDER_TIMESTAMP("Setup 3D Scene");
- // assign render data
+
+ RenderBuffers *rb = nullptr;
+ if (p_render_buffers.is_valid()) {
+ rb = render_buffers_owner.get_or_null(p_render_buffers);
+ ERR_FAIL_COND(!rb);
+ }
+
+ // Assign render data
// Use the format from rendererRD
RenderDataGLES3 render_data;
{
render_data.render_buffers = p_render_buffers;
-
+ render_data.transparent_bg = rb->is_transparent;
// Our first camera is used by default
render_data.cam_transform = p_camera_data->main_transform;
render_data.cam_projection = p_camera_data->main_projection;
render_data.view_projection[0] = p_camera_data->main_projection;
- render_data.cam_ortogonal = p_camera_data->is_orthogonal;
+ render_data.cam_orthogonal = p_camera_data->is_orthogonal;
render_data.view_count = p_camera_data->view_count;
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
@@ -625,10 +1315,6 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
render_data.instances = &p_instances;
render_data.lights = &p_lights;
render_data.reflection_probes = &p_reflection_probes;
- //render_data.voxel_gi_instances = &p_voxel_gi_instances;
- //render_data.decals = &p_decals;
- //render_data.lightmaps = &p_lightmaps;
- //render_data.fog_volumes = &p_fog_volumes;
render_data.environment = p_environment;
render_data.camera_effects = p_camera_effects;
render_data.shadow_atlas = p_shadow_atlas;
@@ -638,7 +1324,7 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
// this should be the same for all cameras..
render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
- render_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_axis(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin());
+ render_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin());
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
render_data.screen_mesh_lod_threshold = 0.0;
@@ -655,14 +1341,14 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
render_data.reflection_probes = &empty;
}
- RenderBuffers *rb = nullptr;
- //RasterizerStorageGLES3::RenderTarget *rt = nullptr;
- if (p_render_buffers.is_valid()) {
- rb = render_buffers_owner.get_or_null(p_render_buffers);
- ERR_FAIL_COND(!rb);
- //rt = texture_storage->render_target_owner.get_or_null(rb->render_target);
- //ERR_FAIL_COND(!rt);
- }
+ bool reverse_cull = false;
+
+ ///////////
+ // Fill Light lists here
+ //////////
+
+ GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_variables_get_uniform_buffer();
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
Color clear_color;
if (p_render_buffers.is_valid()) {
@@ -675,11 +1361,84 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
bool fb_cleared = false;
- glDepthFunc(GL_LEQUAL);
+ Size2i screen_size;
+ screen_size.x = rb->width;
+ screen_size.y = rb->height;
- /* Depth Prepass */
+ SceneState::TonemapUBO tonemap_ubo;
+ if (is_environment(p_environment)) {
+ tonemap_ubo.exposure = env->exposure;
+ tonemap_ubo.white = env->white;
+ tonemap_ubo.tonemapper = int32_t(env->tone_mapper);
+ }
+
+ if (scene_state.tonemap_buffer == 0) {
+ // Only create if using 3D
+ glGenBuffers(1, &scene_state.tonemap_buffer);
+ }
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer);
+ glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW);
+
+ _setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, !render_data.reflection_probe.is_valid(), clear_color, false);
+
+ _fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR);
+ render_list[RENDER_LIST_OPAQUE].sort_by_key();
+ render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority();
glBindFramebuffer(GL_FRAMEBUFFER, rb->framebuffer);
+ glViewport(0, 0, rb->width, rb->height);
+
+ // Do depth prepass if it's explicitly enabled
+ bool use_depth_prepass = config->use_depth_prepass;
+
+ // Don't do depth prepass we are rendering overdraw
+ use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW;
+
+ if (use_depth_prepass) {
+ //pre z pass
+
+ glDisable(GL_BLEND);
+ glDepthMask(GL_TRUE);
+ glEnable(GL_DEPTH_TEST);
+ glDepthFunc(GL_LEQUAL);
+ glDisable(GL_SCISSOR_TEST);
+ glCullFace(GL_BACK);
+ glEnable(GL_CULL_FACE);
+ scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
+
+ glColorMask(0, 0, 0, 0);
+ glClearDepth(1.0f);
+ glClear(GL_DEPTH_BUFFER_BIT);
+
+ uint32_t spec_constant_base_flags = 0;
+
+ RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, render_data.lod_camera_plane, render_data.lod_distance_multiplier, render_data.screen_mesh_lod_threshold);
+ _render_list_template<PASS_MODE_DEPTH>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
+
+ glColorMask(1, 1, 1, 1);
+
+ fb_cleared = true;
+ scene_state.used_depth_prepass = true;
+ } else {
+ scene_state.used_depth_prepass = false;
+ }
+
+ glBlendEquation(GL_FUNC_ADD);
+
+ if (render_data.transparent_bg) {
+ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
+ glEnable(GL_BLEND);
+ } else {
+ glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
+ glDisable(GL_BLEND);
+ }
+ scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
+
+ glEnable(GL_DEPTH_TEST);
+ glDepthFunc(GL_LEQUAL);
+ glDepthMask(GL_TRUE);
+ scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED;
+ scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE;
if (!fb_cleared) {
glClearDepth(1.0f);
@@ -690,9 +1449,6 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
bool keep_color = false;
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
- clear_color = Color(0, 0, 0, 1);
- }
- if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black
} else if (is_environment(p_environment)) {
RS::EnvironmentBG bg_mode = environment_get_background(p_environment);
@@ -723,16 +1479,43 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
default: {
}
}
+ // Draw sky cubemap
}
if (!keep_color) {
glClearBufferfv(GL_COLOR, 0, clear_color.components);
}
+ uint32_t spec_constant_base_flags = 0;
+ //Render Opaque Objects
+ RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, render_data.lod_camera_plane, render_data.lod_distance_multiplier, render_data.screen_mesh_lod_threshold);
+
+ _render_list_template<PASS_MODE_COLOR>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
+
if (draw_sky) {
- //_draw_sky(sky, render_data.cam_projection, render_data.cam_transform, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
+ if (scene_state.current_depth_test != GLES3::SceneShaderData::DEPTH_TEST_ENABLED) {
+ glEnable(GL_DEPTH_TEST);
+ scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED;
+ }
+ glEnable(GL_DEPTH_TEST);
+ glDepthMask(GL_FALSE);
+ glDisable(GL_BLEND);
+ glEnable(GL_CULL_FACE);
+ glCullFace(GL_BACK);
+ scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED;
+ scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_DISABLED;
+ scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
+
+ _draw_sky(env, render_data.cam_projection, render_data.cam_transform);
}
+ glEnable(GL_BLEND);
+
+ //Render transparent pass
+ RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, render_data.lod_camera_plane, render_data.lod_distance_multiplier, render_data.screen_mesh_lod_threshold);
+
+ _render_list_template<PASS_MODE_COLOR_TRANSPARENT>(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true);
+
if (p_render_buffers.is_valid()) {
/*
RENDER_TIMESTAMP("Tonemap");
@@ -741,9 +1524,225 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
_render_buffers_debug_draw(p_render_buffers, p_shadow_atlas, p_occluder_debug_tex);
}
+ glDisable(GL_BLEND);
texture_storage->render_target_disable_clear_request(rb->render_target);
}
+template <PassMode p_pass_mode>
+void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) {
+ GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
+
+ GLuint prev_vertex_array_gl = 0;
+ GLuint prev_index_array_gl = 0;
+
+ GLES3::SceneMaterialData *prev_material_data = nullptr;
+ GLES3::SceneShaderData *prev_shader = nullptr;
+
+ SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized.
+
+ switch (p_pass_mode) {
+ case PASS_MODE_COLOR:
+ case PASS_MODE_COLOR_TRANSPARENT: {
+ } break;
+ case PASS_MODE_COLOR_ADDITIVE: {
+ shader_variant = SceneShaderGLES3::MODE_ADDITIVE;
+ } break;
+ case PASS_MODE_SHADOW:
+ case PASS_MODE_DEPTH: {
+ shader_variant = SceneShaderGLES3::MODE_DEPTH;
+ } break;
+ }
+
+ for (uint32_t i = p_from_element; i < p_to_element; i++) {
+ const GeometryInstanceSurface *surf = p_params->elements[i];
+ const GeometryInstanceGLES3 *inst = surf->owner;
+
+ if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
+ continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass
+ }
+
+ if (inst->instance_count == 0) {
+ continue;
+ }
+
+ //uint32_t base_spec_constants = p_params->spec_constant_base_flags;
+
+ GLES3::SceneShaderData *shader;
+ GLES3::SceneMaterialData *material_data;
+ void *mesh_surface;
+
+ if (p_pass_mode == PASS_MODE_SHADOW) {
+ shader = surf->shader_shadow;
+ material_data = surf->material_shadow;
+ mesh_surface = surf->surface_shadow;
+ } else {
+ shader = surf->shader;
+ material_data = surf->material;
+ mesh_surface = surf->surface;
+ }
+
+ if (!mesh_surface) {
+ continue;
+ }
+
+ if (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
+ if (scene_state.current_depth_test != shader->depth_test) {
+ if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) {
+ glDisable(GL_DEPTH_TEST);
+ } else {
+ glEnable(GL_DEPTH_TEST);
+ }
+ scene_state.current_depth_test = shader->depth_test;
+ }
+ }
+
+ if (scene_state.current_depth_draw != shader->depth_draw) {
+ switch (shader->depth_draw) {
+ case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: {
+ glDepthMask(p_pass_mode == PASS_MODE_COLOR);
+ } break;
+ case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: {
+ glDepthMask(GL_TRUE);
+ } break;
+ case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: {
+ glDepthMask(GL_FALSE);
+ } break;
+ }
+
+ scene_state.current_depth_draw = shader->depth_draw;
+ }
+
+ if (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT || p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
+ GLES3::SceneShaderData::BlendMode desired_blend_mode;
+ if (p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
+ desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD;
+ } else {
+ desired_blend_mode = shader->blend_mode;
+ }
+
+ if (desired_blend_mode != scene_state.current_blend_mode) {
+ switch (desired_blend_mode) {
+ case GLES3::SceneShaderData::BLEND_MODE_MIX: {
+ glBlendEquation(GL_FUNC_ADD);
+ if (p_render_data->transparent_bg) {
+ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
+ } else {
+ glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
+ }
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_ADD: {
+ glBlendEquation(GL_FUNC_ADD);
+ glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_SUB: {
+ glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
+ glBlendFunc(GL_SRC_ALPHA, GL_ONE);
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_MUL: {
+ glBlendEquation(GL_FUNC_ADD);
+ if (p_render_data->transparent_bg) {
+ glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
+ } else {
+ glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
+ }
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: {
+ // Do nothing for now.
+ } break;
+ }
+ scene_state.current_blend_mode = desired_blend_mode;
+ }
+ }
+
+ //find cull variant
+ GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode;
+
+ if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) {
+ cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
+ } else {
+ bool mirror = inst->mirror;
+ if (p_params->reverse_cull) {
+ mirror = !mirror;
+ }
+ if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) {
+ cull_mode = GLES3::SceneShaderData::CULL_BACK;
+ } else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) {
+ cull_mode = GLES3::SceneShaderData::CULL_FRONT;
+ }
+ }
+
+ if (scene_state.cull_mode != cull_mode) {
+ if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
+ glDisable(GL_CULL_FACE);
+ } else {
+ if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
+ // Last time was disabled, so enable and set proper face.
+ glEnable(GL_CULL_FACE);
+ }
+ glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK);
+ }
+ scene_state.cull_mode = cull_mode;
+ }
+
+ RS::PrimitiveType primitive = surf->primitive;
+ static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP };
+ GLenum primitive_gl = prim[int(primitive)];
+
+ GLuint vertex_array_gl = 0;
+ GLuint index_array_gl = 0;
+
+ //skeleton and blend shape
+ if (surf->owner->mesh_instance.is_valid()) {
+ mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, shader->vertex_input_mask, vertex_array_gl);
+ } else {
+ mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, shader->vertex_input_mask, vertex_array_gl);
+ }
+
+ index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index);
+
+ if (prev_vertex_array_gl != vertex_array_gl) {
+ glBindVertexArray(vertex_array_gl);
+ prev_vertex_array_gl = vertex_array_gl;
+ }
+
+ bool use_index_buffer = false;
+ if (prev_index_array_gl != index_array_gl) {
+ if (index_array_gl != 0) {
+ // Bind index each time so we can use LODs
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl);
+ use_index_buffer = true;
+ }
+ prev_index_array_gl = index_array_gl;
+ }
+
+ // Update pipeline information here
+
+ Transform3D world_transform;
+ if (inst->store_transform_cache) {
+ world_transform = inst->transform;
+ }
+
+ if (prev_material_data != material_data) {
+ material_data->bind_uniforms();
+ }
+
+ if (prev_shader != shader) {
+ GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_bind_shader(shader->version, shader_variant);
+ }
+
+ GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, shader_variant);
+
+ if (use_index_buffer) {
+ glDrawElements(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface), mesh_storage->mesh_surface_get_index_type(mesh_surface), 0);
+ } else {
+ glDrawArrays(primitive_gl, 0, mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface));
+ }
+ }
+}
+
void RasterizerSceneGLES3::render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
}
@@ -879,6 +1878,8 @@ void RasterizerSceneGLES3::render_buffers_configure(RID p_render_buffers, RID p_
GLES3::RenderTarget *rt = texture_storage->get_render_target(p_render_target);
+ rb->is_transparent = rt->flags[RendererTextureStorage::RENDER_TARGET_TRANSPARENT];
+
// framebuffer
glGenFramebuffers(1, &rb->framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, rb->framebuffer);
@@ -1007,6 +2008,38 @@ RasterizerSceneGLES3::RasterizerSceneGLES3(RasterizerStorageGLES3 *p_storage) {
storage = p_storage;
{
+ String global_defines;
+ global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now
+ material_storage->shaders.scene_shader.initialize(global_defines);
+ scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create();
+ material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR);
+ }
+
+ {
+ //default material and shader
+ scene_globals.default_shader = material_storage->shader_allocate();
+ material_storage->shader_initialize(scene_globals.default_shader);
+ material_storage->shader_set_code(scene_globals.default_shader, R"(
+// Default 3D material shader (clustered).
+
+shader_type spatial;
+
+void vertex() {
+ ROUGHNESS = 0.8;
+}
+
+void fragment() {
+ ALBEDO = vec3(0.6);
+ ROUGHNESS = 0.8;
+ METALLIC = 0.2;
+}
+)");
+ scene_globals.default_material = material_storage->material_allocate();
+ material_storage->material_initialize(scene_globals.default_material);
+ material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader);
+ }
+
+ {
// Initialize Sky stuff
sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers");
sky_globals.ggx_samples = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples");
@@ -1014,9 +2047,9 @@ RasterizerSceneGLES3::RasterizerSceneGLES3(RasterizerStorageGLES3 *p_storage) {
String global_defines;
global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now
global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n";
- state.sky_shader.initialize(global_defines);
- sky_globals.shader_default_version = state.sky_shader.version_create();
- state.sky_shader.version_bind_shader(sky_globals.shader_default_version, SkyShaderGLES3::MODE_BACKGROUND);
+ material_storage->shaders.sky_shader.initialize(global_defines);
+ sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create();
+ material_storage->shaders.sky_shader.version_bind_shader(sky_globals.shader_default_version, SkyShaderGLES3::MODE_BACKGROUND);
}
{
@@ -1038,12 +2071,79 @@ void sky() {
material_storage->material_set_shader(sky_globals.default_material, sky_globals.default_shader);
}
+ {
+ sky_globals.fog_shader = material_storage->shader_allocate();
+ material_storage->shader_initialize(sky_globals.fog_shader);
+
+ material_storage->shader_set_code(sky_globals.fog_shader, R"(
+// Default clear color sky shader.
+
+shader_type sky;
+
+uniform vec4 clear_color;
+
+void sky() {
+ COLOR = clear_color.rgb;
+}
+)");
+ sky_globals.fog_material = material_storage->material_allocate();
+ material_storage->material_initialize(sky_globals.fog_material);
+
+ material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader);
+ }
+ {
+ {
+ //quad buffers
+
+ glGenBuffers(1, &sky_globals.quad);
+ glBindBuffer(GL_ARRAY_BUFFER, sky_globals.quad);
+ {
+ const float qv[16] = {
+ -1,
+ -1,
+ 0,
+ 0,
+ -1,
+ 1,
+ 0,
+ 1,
+ 1,
+ 1,
+ 1,
+ 1,
+ 1,
+ -1,
+ 1,
+ 0,
+ };
+
+ glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
+ }
+
+ glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+
+ glGenVertexArrays(1, &sky_globals.quad_array);
+ glBindVertexArray(sky_globals.quad_array);
+ glBindBuffer(GL_ARRAY_BUFFER, sky_globals.quad);
+ glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr);
+ glEnableVertexAttribArray(RS::ARRAY_VERTEX);
+ glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
+ glEnableVertexAttribArray(RS::ARRAY_TEX_UV);
+ glBindVertexArray(0);
+ glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+ }
+ }
}
RasterizerSceneGLES3::~RasterizerSceneGLES3() {
- state.sky_shader.version_free(sky_globals.shader_default_version);
+ GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version);
+ storage->free(scene_globals.default_material);
+ storage->free(scene_globals.default_shader);
+ GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version);
storage->free(sky_globals.default_material);
storage->free(sky_globals.default_shader);
+ storage->free(sky_globals.fog_material);
+ storage->free(sky_globals.fog_shader);
}
#endif // GLES3_ENABLED
diff --git a/drivers/gles3/rasterizer_scene_gles3.h b/drivers/gles3/rasterizer_scene_gles3.h
index ed529beb25..ac2f3c932a 100644
--- a/drivers/gles3/rasterizer_scene_gles3.h
+++ b/drivers/gles3/rasterizer_scene_gles3.h
@@ -34,6 +34,7 @@
#ifdef GLES3_ENABLED
#include "core/math/camera_matrix.h"
+#include "core/templates/paged_allocator.h"
#include "core/templates/rid_owner.h"
#include "core/templates/self_list.h"
#include "rasterizer_storage_gles3.h"
@@ -44,13 +45,47 @@
#include "shader_gles3.h"
#include "shaders/sky.glsl.gen.h"
-// Copied from renderer_scene_render_rd
+enum RenderListType {
+ RENDER_LIST_OPAQUE, //used for opaque objects
+ RENDER_LIST_ALPHA, //used for transparent objects
+ RENDER_LIST_SECONDARY, //used for shadows and other objects
+ RENDER_LIST_MAX
+};
+
+enum PassMode {
+ PASS_MODE_COLOR,
+ PASS_MODE_COLOR_TRANSPARENT,
+ PASS_MODE_COLOR_ADDITIVE,
+ PASS_MODE_SHADOW,
+ PASS_MODE_DEPTH,
+};
+
+// These should share as much as possible with SkyUniform Location
+enum SceneUniformLocation {
+ SCENE_TONEMAP_UNIFORM_LOCATION,
+ SCENE_GLOBALS_UNIFORM_LOCATION,
+ SCENE_DATA_UNIFORM_LOCATION,
+ SCENE_MATERIAL_UNIFORM_LOCATION,
+ SCENE_RADIANCE_UNIFORM_LOCATION,
+ SCENE_OMNILIGHT_UNIFORM_LOCATION,
+ SCENE_SPOTLIGHT_UNIFORM_LOCATION,
+};
+
+enum SkyUniformLocation {
+ SKY_TONEMAP_UNIFORM_LOCATION,
+ SKY_GLOBALS_UNIFORM_LOCATION,
+ SKY_SCENE_DATA_UNIFORM_LOCATION,
+ SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION,
+ SKY_MATERIAL_UNIFORM_LOCATION,
+};
+
struct RenderDataGLES3 {
RID render_buffers = RID();
+ bool transparent_bg = false;
Transform3D cam_transform = Transform3D();
CameraMatrix cam_projection = CameraMatrix();
- bool cam_ortogonal = false;
+ bool cam_orthogonal = false;
// For stereo rendering
uint32_t view_count = 1;
@@ -91,17 +126,324 @@ private:
RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED;
uint64_t scene_pass = 0;
- /* Sky */
struct SkyGlobals {
- RID shader_current_version;
RID shader_default_version;
RID default_material;
RID default_shader;
+ RID fog_material;
+ RID fog_shader;
+ GLuint quad = 0;
+ GLuint quad_array = 0;
uint32_t max_directional_lights = 4;
uint32_t roughness_layers = 8;
uint32_t ggx_samples = 128;
} sky_globals;
+ struct SceneGlobals {
+ RID shader_default_version;
+ RID default_material;
+ RID default_shader;
+ } scene_globals;
+
+ struct SceneState {
+ struct UBO {
+ float projection_matrix[16];
+ float inv_projection_matrix[16];
+ float inv_view_matrix[16];
+ float view_matrix[16];
+
+ float viewport_size[2];
+ float screen_pixel_size[2];
+
+ float ambient_light_color_energy[4];
+
+ float ambient_color_sky_mix;
+ uint32_t ambient_flags;
+ uint32_t material_uv2_mode;
+ float opaque_prepass_threshold;
+ //bool use_ambient_light;
+ //bool use_ambient_cubemap;
+ //bool use_reflection_cubemap;
+
+ float radiance_inverse_xform[12];
+
+ uint32_t directional_light_count;
+ float z_far;
+ float z_near;
+ uint32_t pancake_shadows;
+
+ uint32_t fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
+
+ float fog_light_color[3];
+ float fog_sun_scatter;
+
+ float fog_aerial_perspective;
+ float time;
+ uint32_t pad[2];
+ };
+ static_assert(sizeof(UBO) % 16 == 0, "Scene UBO size must be a multiple of 16 bytes");
+
+ struct TonemapUBO {
+ float exposure = 1.0;
+ float white = 1.0;
+ int32_t tonemapper = 0;
+ int32_t pad = 0;
+ };
+ static_assert(sizeof(TonemapUBO) % 16 == 0, "Tonemap UBO size must be a multiple of 16 bytes");
+
+ UBO ubo;
+ GLuint ubo_buffer = 0;
+ GLuint tonemap_buffer = 0;
+
+ bool used_depth_prepass = false;
+
+ GLES3::SceneShaderData::BlendMode current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
+ GLES3::SceneShaderData::DepthDraw current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE;
+ GLES3::SceneShaderData::DepthTest current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED;
+ GLES3::SceneShaderData::Cull cull_mode = GLES3::SceneShaderData::CULL_BACK;
+
+ bool texscreen_copied = false;
+ bool used_screen_texture = false;
+ bool used_normal_texture = false;
+ bool used_depth_texture = false;
+ } scene_state;
+
+ struct GeometryInstanceGLES3;
+
+ // Cached data for drawing surfaces
+ struct GeometryInstanceSurface {
+ enum {
+ FLAG_PASS_DEPTH = 1,
+ FLAG_PASS_OPAQUE = 2,
+ FLAG_PASS_ALPHA = 4,
+ FLAG_PASS_SHADOW = 8,
+ FLAG_USES_SHARED_SHADOW_MATERIAL = 128,
+ FLAG_USES_SCREEN_TEXTURE = 2048,
+ FLAG_USES_DEPTH_TEXTURE = 4096,
+ FLAG_USES_NORMAL_TEXTURE = 8192,
+ FLAG_USES_DOUBLE_SIDED_SHADOWS = 16384,
+ };
+
+ union {
+ struct {
+ uint64_t lod_index : 8;
+ uint64_t surface_index : 8;
+ uint64_t geometry_id : 32;
+ uint64_t material_id_low : 16;
+
+ uint64_t material_id_hi : 16;
+ uint64_t shader_id : 32;
+ uint64_t uses_softshadow : 1;
+ uint64_t uses_projector : 1;
+ uint64_t uses_forward_gi : 1;
+ uint64_t uses_lightmap : 1;
+ uint64_t depth_layer : 4;
+ uint64_t priority : 8;
+ };
+ struct {
+ uint64_t sort_key1;
+ uint64_t sort_key2;
+ };
+ } sort;
+
+ RS::PrimitiveType primitive = RS::PRIMITIVE_MAX;
+ uint32_t flags = 0;
+ uint32_t surface_index = 0;
+ uint32_t lod_index = 0;
+
+ void *surface = nullptr;
+ GLES3::SceneShaderData *shader = nullptr;
+ GLES3::SceneMaterialData *material = nullptr;
+
+ void *surface_shadow = nullptr;
+ GLES3::SceneShaderData *shader_shadow = nullptr;
+ GLES3::SceneMaterialData *material_shadow = nullptr;
+
+ GeometryInstanceSurface *next = nullptr;
+ GeometryInstanceGLES3 *owner = nullptr;
+ };
+
+ struct GeometryInstanceGLES3 : public GeometryInstance {
+ //used during rendering
+ bool mirror = false;
+ bool non_uniform_scale = false;
+ float lod_bias = 0.0;
+ float lod_model_scale = 1.0;
+ AABB transformed_aabb; //needed for LOD
+ float depth = 0;
+ uint32_t flags_cache = 0;
+ bool store_transform_cache = true;
+ int32_t shader_parameters_offset = -1;
+
+ uint32_t layer_mask = 1;
+ uint32_t instance_count = 0;
+
+ RID mesh_instance;
+ bool can_sdfgi = false;
+ bool using_projectors = false;
+ bool using_softshadows = false;
+ bool fade_near = false;
+ float fade_near_begin = 0;
+ float fade_near_end = 0;
+ bool fade_far = false;
+ float fade_far_begin = 0;
+ float fade_far_end = 0;
+ float force_alpha = 1.0;
+ float parent_fade_alpha = 1.0;
+
+ uint32_t omni_light_count = 0;
+ uint32_t omni_lights[8];
+ uint32_t spot_light_count = 0;
+ uint32_t spot_lights[8];
+
+ //used during setup
+ uint32_t base_flags = 0;
+ Transform3D transform;
+ GeometryInstanceSurface *surface_caches = nullptr;
+ SelfList<GeometryInstanceGLES3> dirty_list_element;
+
+ struct Data {
+ //data used less often goes into regular heap
+ RID base;
+ RS::InstanceType base_type;
+
+ RID skeleton;
+ Vector<RID> surface_materials;
+ RID material_override;
+ RID material_overlay;
+ AABB aabb;
+
+ bool use_dynamic_gi = false;
+ bool use_baked_light = false;
+ bool cast_double_sided_shadows = false;
+ bool mirror = false;
+ bool dirty_dependencies = false;
+
+ RendererStorage::DependencyTracker dependency_tracker;
+ };
+
+ Data *data = nullptr;
+
+ GeometryInstanceGLES3() :
+ dirty_list_element(this) {}
+ };
+
+ enum {
+ INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 5,
+ INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 6,
+ INSTANCE_DATA_FLAG_USE_LIGHTMAP_CAPTURE = 1 << 8,
+ INSTANCE_DATA_FLAG_USE_LIGHTMAP = 1 << 9,
+ INSTANCE_DATA_FLAG_USE_SH_LIGHTMAP = 1 << 10,
+ INSTANCE_DATA_FLAG_USE_VOXEL_GI = 1 << 11,
+ INSTANCE_DATA_FLAG_MULTIMESH = 1 << 12,
+ INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D = 1 << 13,
+ INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR = 1 << 14,
+ INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA = 1 << 15,
+ };
+
+ static void _geometry_instance_dependency_changed(RendererStorage::DependencyChangedNotification p_notification, RendererStorage::DependencyTracker *p_tracker);
+ static void _geometry_instance_dependency_deleted(const RID &p_dependency, RendererStorage::DependencyTracker *p_tracker);
+
+ SelfList<GeometryInstanceGLES3>::List geometry_instance_dirty_list;
+
+ // Use PagedAllocator instead of RID to maximize performance
+ PagedAllocator<GeometryInstanceGLES3> geometry_instance_alloc;
+ PagedAllocator<GeometryInstanceSurface> geometry_instance_surface_alloc;
+
+ void _geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh);
+ void _geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, RID p_mat_src, RID p_mesh);
+ void _geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh);
+ void _geometry_instance_mark_dirty(GeometryInstance *p_geometry_instance);
+ void _geometry_instance_update(GeometryInstance *p_geometry_instance);
+ void _update_dirty_geometry_instances();
+
+ struct RenderListParameters {
+ GeometryInstanceSurface **elements = nullptr;
+ int element_count = 0;
+ bool reverse_cull = false;
+ uint32_t spec_constant_base_flags = 0;
+ bool force_wireframe = false;
+ Plane lod_plane;
+ float lod_distance_multiplier = 0.0;
+ float screen_mesh_lod_threshold = 0.0;
+
+ RenderListParameters(GeometryInstanceSurface **p_elements, int p_element_count, bool p_reverse_cull, uint32_t p_spec_constant_base_flags, bool p_force_wireframe = false, const Plane &p_lod_plane = Plane(), float p_lod_distance_multiplier = 0.0, float p_screen_mesh_lod_threshold = 0.0) {
+ elements = p_elements;
+ element_count = p_element_count;
+ reverse_cull = p_reverse_cull;
+ spec_constant_base_flags = p_spec_constant_base_flags;
+ force_wireframe = p_force_wireframe;
+ lod_plane = p_lod_plane;
+ lod_distance_multiplier = p_lod_distance_multiplier;
+ screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
+ }
+ };
+
+ struct RenderList {
+ LocalVector<GeometryInstanceSurface *> elements;
+
+ void clear() {
+ elements.clear();
+ }
+
+ //should eventually be replaced by radix
+
+ struct SortByKey {
+ _FORCE_INLINE_ bool operator()(const GeometryInstanceSurface *A, const GeometryInstanceSurface *B) const {
+ return (A->sort.sort_key2 == B->sort.sort_key2) ? (A->sort.sort_key1 < B->sort.sort_key1) : (A->sort.sort_key2 < B->sort.sort_key2);
+ }
+ };
+
+ void sort_by_key() {
+ SortArray<GeometryInstanceSurface *, SortByKey> sorter;
+ sorter.sort(elements.ptr(), elements.size());
+ }
+
+ void sort_by_key_range(uint32_t p_from, uint32_t p_size) {
+ SortArray<GeometryInstanceSurface *, SortByKey> sorter;
+ sorter.sort(elements.ptr() + p_from, p_size);
+ }
+
+ struct SortByDepth {
+ _FORCE_INLINE_ bool operator()(const GeometryInstanceSurface *A, const GeometryInstanceSurface *B) const {
+ return (A->owner->depth < B->owner->depth);
+ }
+ };
+
+ void sort_by_depth() { //used for shadows
+
+ SortArray<GeometryInstanceSurface *, SortByDepth> sorter;
+ sorter.sort(elements.ptr(), elements.size());
+ }
+
+ struct SortByReverseDepthAndPriority {
+ _FORCE_INLINE_ bool operator()(const GeometryInstanceSurface *A, const GeometryInstanceSurface *B) const {
+ return (A->sort.priority == B->sort.priority) ? (A->owner->depth > B->owner->depth) : (A->sort.priority < B->sort.priority);
+ }
+ };
+
+ void sort_by_reverse_depth_and_priority() { //used for alpha
+
+ SortArray<GeometryInstanceSurface *, SortByReverseDepthAndPriority> sorter;
+ sorter.sort(elements.ptr(), elements.size());
+ }
+
+ _FORCE_INLINE_ void add_element(GeometryInstanceSurface *p_element) {
+ elements.push_back(p_element);
+ }
+ };
+
+ RenderList render_list[RENDER_LIST_MAX];
+
+ void _setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows);
+ void _fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append = false);
+
+ template <PassMode p_pass_mode>
+ _FORCE_INLINE_ void _render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass = false);
+
protected:
double time;
double time_step = 0;
@@ -117,6 +459,8 @@ protected:
//bool use_debanding = false;
//uint32_t view_count = 1;
+ bool is_transparent = false;
+
RID render_target;
GLuint internal_texture = 0; // Used for rendering when post effects are enabled
GLuint depth_texture = 0; // Main depth texture
@@ -319,7 +663,7 @@ protected:
Sky *dirty_list = nullptr;
//State to track when radiance cubemap needs updating
- //SkyMaterialData *prev_material;
+ GLES3::SkyMaterialData *prev_material;
Vector3 prev_position = Vector3(0.0, 0.0, 0.0);
float prev_time = 0.0f;
@@ -335,17 +679,12 @@ protected:
void _invalidate_sky(Sky *p_sky);
void _update_dirty_skys();
- void _draw_sky(Sky *p_sky, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_custom_fov, float p_energy, const Basis &p_sky_orientation);
+ void _draw_sky(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform);
public:
RasterizerStorageGLES3 *storage;
RasterizerCanvasGLES3 *canvas;
- // References to shaders are needed in public space so they can be accessed in RasterizerStorageGLES3
- struct State {
- SkyShaderGLES3 sky_shader;
- } state;
-
GeometryInstance *geometry_instance_create(RID p_base) override;
void geometry_instance_set_skeleton(GeometryInstance *p_geometry_instance, RID p_skeleton) override;
void geometry_instance_set_material_override(GeometryInstance *p_geometry_instance, RID p_override) override;
@@ -388,9 +727,15 @@ public:
/* SDFGI UPDATE */
void sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) override {}
- int sdfgi_get_pending_region_count(RID p_render_buffers) const override { return 0; }
- AABB sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const override { return AABB(); }
- uint32_t sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const override { return 0; }
+ int sdfgi_get_pending_region_count(RID p_render_buffers) const override {
+ return 0;
+ }
+ AABB sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const override {
+ return AABB();
+ }
+ uint32_t sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const override {
+ return 0;
+ }
/* SKY API */
diff --git a/drivers/gles3/rasterizer_storage_gles3.cpp b/drivers/gles3/rasterizer_storage_gles3.cpp
index 0049e74a7c..3c28289bd0 100644
--- a/drivers/gles3/rasterizer_storage_gles3.cpp
+++ b/drivers/gles3/rasterizer_storage_gles3.cpp
@@ -342,25 +342,14 @@ void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder,
*/
RS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const {
- return RS::INSTANCE_NONE;
-
- /*
- if (mesh_owner.owns(p_rid)) {
+ if (GLES3::MeshStorage::get_singleton()->owns_mesh(p_rid)) {
return RS::INSTANCE_MESH;
- } else if (light_owner.owns(p_rid)) {
- return RS::INSTANCE_LIGHT;
- } else if (multimesh_owner.owns(p_rid)) {
+ } else if (GLES3::MeshStorage::get_singleton()->owns_multimesh(p_rid)) {
return RS::INSTANCE_MULTIMESH;
- } else if (immediate_owner.owns(p_rid)) {
- return RS::INSTANCE_IMMEDIATE;
- } else if (reflection_probe_owner.owns(p_rid)) {
- return RS::INSTANCE_REFLECTION_PROBE;
- } else if (lightmap_capture_data_owner.owns(p_rid)) {
- return RS::INSTANCE_LIGHTMAP_CAPTURE;
- } else {
- return RS::INSTANCE_NONE;
+ } else if (GLES3::LightStorage::get_singleton()->owns_light(p_rid)) {
+ return RS::INSTANCE_LIGHT;
}
-*/
+ return RS::INSTANCE_NONE;
}
bool RasterizerStorageGLES3::free(RID p_rid) {
@@ -379,89 +368,23 @@ bool RasterizerStorageGLES3::free(RID p_rid) {
} else if (GLES3::MaterialStorage::get_singleton()->owns_material(p_rid)) {
GLES3::MaterialStorage::get_singleton()->material_free(p_rid);
return true;
- } else {
- return false;
- }
- /*
- } else if (skeleton_owner.owns(p_rid)) {
- Skeleton *s = skeleton_owner.get_or_null(p_rid);
-
- if (s->update_list.in_list()) {
- skeleton_update_list.remove(&s->update_list);
- }
-
- for (Set<InstanceBaseDependency *>::Element *E = s->instances.front(); E; E = E->next()) {
- E->get()->skeleton = RID();
- }
-
- skeleton_allocate(p_rid, 0, false);
-
- if (s->tex_id) {
- glDeleteTextures(1, &s->tex_id);
- }
-
- skeleton_owner.free(p_rid);
- memdelete(s);
-
+ } else if (GLES3::MeshStorage::get_singleton()->owns_mesh(p_rid)) {
+ GLES3::MeshStorage::get_singleton()->mesh_free(p_rid);
return true;
- } else if (mesh_owner.owns(p_rid)) {
- Mesh *mesh = mesh_owner.get_or_null(p_rid);
-
- mesh->instance_remove_deps();
- mesh_clear(p_rid);
-
- while (mesh->multimeshes.first()) {
- MultiMesh *multimesh = mesh->multimeshes.first()->self();
- multimesh->mesh = RID();
- multimesh->dirty_aabb = true;
-
- mesh->multimeshes.remove(mesh->multimeshes.first());
-
- if (!multimesh->update_list.in_list()) {
- multimesh_update_list.add(&multimesh->update_list);
- }
- }
-
- mesh_owner.free(p_rid);
- memdelete(mesh);
-
- return true;
- } else if (multimesh_owner.owns(p_rid)) {
- MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
- multimesh->instance_remove_deps();
-
- if (multimesh->mesh.is_valid()) {
- Mesh *mesh = mesh_owner.get_or_null(multimesh->mesh);
- if (mesh) {
- mesh->multimeshes.remove(&multimesh->mesh_list);
- }
- }
-
- multimesh_allocate(p_rid, 0, RS::MULTIMESH_TRANSFORM_3D, RS::MULTIMESH_COLOR_NONE);
-
- _update_dirty_multimeshes();
-
- multimesh_owner.free(p_rid);
- memdelete(multimesh);
-
+ } else if (GLES3::MeshStorage::get_singleton()->owns_multimesh(p_rid)) {
+ GLES3::MeshStorage::get_singleton()->multimesh_free(p_rid);
return true;
- } else if (immediate_owner.owns(p_rid)) {
- Immediate *im = immediate_owner.get_or_null(p_rid);
- im->instance_remove_deps();
-
- immediate_owner.free(p_rid);
- memdelete(im);
-
+ } else if (GLES3::MeshStorage::get_singleton()->owns_mesh_instance(p_rid)) {
+ GLES3::MeshStorage::get_singleton()->mesh_instance_free(p_rid);
return true;
- } else if (light_owner.owns(p_rid)) {
- Light *light = light_owner.get_or_null(p_rid);
- light->instance_remove_deps();
-
- light_owner.free(p_rid);
- memdelete(light);
-
+ } else if (GLES3::LightStorage::get_singleton()->owns_light(p_rid)) {
+ GLES3::LightStorage::get_singleton()->light_free(p_rid);
return true;
- } else if (reflection_probe_owner.owns(p_rid)) {
+ } else {
+ return false;
+ }
+ /*
+ else if (reflection_probe_owner.owns(p_rid)) {
// delete the texture
ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid);
reflection_probe->instance_remove_deps();
@@ -627,6 +550,10 @@ RenderingDevice::DeviceType RasterizerStorageGLES3::get_video_adapter_type() con
return RenderingDevice::DeviceType::DEVICE_TYPE_OTHER;
}
+String RasterizerStorageGLES3::get_video_adapter_api_version() const {
+ return (const char *)glGetString(GL_VERSION);
+}
+
void RasterizerStorageGLES3::initialize() {
config = GLES3::Config::get_singleton();
diff --git a/drivers/gles3/rasterizer_storage_gles3.h b/drivers/gles3/rasterizer_storage_gles3.h
index 0aa486cbb5..fa74fbd5f6 100644
--- a/drivers/gles3/rasterizer_storage_gles3.h
+++ b/drivers/gles3/rasterizer_storage_gles3.h
@@ -41,6 +41,7 @@
#include "servers/rendering/shader_compiler.h"
#include "servers/rendering/shader_language.h"
#include "storage/config.h"
+#include "storage/light_storage.h"
#include "storage/material_storage.h"
#include "storage/mesh_storage.h"
#include "storage/texture_storage.h"
@@ -53,7 +54,49 @@ public:
// RasterizerCanvasGLES3 *canvas;
// RasterizerSceneGLES3 *scene;
- GLES3::Config *config;
+ GLES3::Config *config = nullptr;
+
+ static _FORCE_INLINE_ void store_transform(const Transform3D &p_mtx, float *p_array) {
+ p_array[0] = p_mtx.basis.rows[0][0];
+ p_array[1] = p_mtx.basis.rows[1][0];
+ p_array[2] = p_mtx.basis.rows[2][0];
+ p_array[3] = 0;
+ p_array[4] = p_mtx.basis.rows[0][1];
+ p_array[5] = p_mtx.basis.rows[1][1];
+ p_array[6] = p_mtx.basis.rows[2][1];
+ p_array[7] = 0;
+ p_array[8] = p_mtx.basis.rows[0][2];
+ p_array[9] = p_mtx.basis.rows[1][2];
+ p_array[10] = p_mtx.basis.rows[2][2];
+ p_array[11] = 0;
+ p_array[12] = p_mtx.origin.x;
+ p_array[13] = p_mtx.origin.y;
+ p_array[14] = p_mtx.origin.z;
+ p_array[15] = 1;
+ }
+
+ static _FORCE_INLINE_ void store_transform_3x3(const Basis &p_mtx, float *p_array) {
+ p_array[0] = p_mtx.rows[0][0];
+ p_array[1] = p_mtx.rows[1][0];
+ p_array[2] = p_mtx.rows[2][0];
+ p_array[3] = 0;
+ p_array[4] = p_mtx.rows[0][1];
+ p_array[5] = p_mtx.rows[1][1];
+ p_array[6] = p_mtx.rows[2][1];
+ p_array[7] = 0;
+ p_array[8] = p_mtx.rows[0][2];
+ p_array[9] = p_mtx.rows[1][2];
+ p_array[10] = p_mtx.rows[2][2];
+ p_array[11] = 0;
+ }
+
+ static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) {
+ for (int i = 0; i < 4; i++) {
+ for (int j = 0; j < 4; j++) {
+ p_array[i * 4 + j] = p_mtx.matrix[i][j];
+ }
+ }
+ }
struct Resources {
GLuint mipmap_blur_fbo;
@@ -234,6 +277,7 @@ public:
String get_video_adapter_name() const override;
String get_video_adapter_vendor() const override;
RenderingDevice::DeviceType get_video_adapter_type() const override;
+ String get_video_adapter_api_version() const override;
void capture_timestamps_begin() override {}
void capture_timestamp(const String &p_name) override {}
@@ -301,7 +345,7 @@ inline void RasterizerStorageGLES3::buffer_orphan_and_upload(unsigned int p_buff
}
inline String RasterizerStorageGLES3::get_framebuffer_error(GLenum p_status) {
-#ifdef DEBUG_ENABLED
+#if defined(DEBUG_ENABLED) && defined(GLES_OVER_GL)
if (p_status == GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT) {
return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
} else if (p_status == GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT) {
diff --git a/drivers/gles3/shader_gles3.cpp b/drivers/gles3/shader_gles3.cpp
index e356fa8c1f..b3f37207da 100644
--- a/drivers/gles3/shader_gles3.cpp
+++ b/drivers/gles3/shader_gles3.cpp
@@ -171,6 +171,15 @@ void ShaderGLES3::_build_variant_code(StringBuilder &builder, uint32_t p_variant
}
builder.append("\n"); //make sure defines begin at newline
+ // Default to highp precision unless specified otherwise.
+ builder.append("precision highp float;\n");
+ builder.append("precision highp int;\n");
+#ifndef GLES_OVER_GL
+ builder.append("precision highp sampler2D;\n");
+ builder.append("precision highp samplerCube;\n");
+ builder.append("precision highp sampler2DArray;\n");
+#endif
+
for (uint32_t i = 0; i < p_template.chunks.size(); i++) {
const StageTemplate::Chunk &chunk = p_template.chunks[i];
switch (chunk.type) {
diff --git a/drivers/gles3/shader_gles3.h b/drivers/gles3/shader_gles3.h
index 14579e6535..763d3bfa8b 100644
--- a/drivers/gles3/shader_gles3.h
+++ b/drivers/gles3/shader_gles3.h
@@ -73,10 +73,11 @@ private:
//versions
CharString general_defines;
- // A version is a high-level construct which is a combination of built-in and user-defined shader code
- // Variants use #idefs to toggle behaviour on and off to change behaviour of the shader
+ // A version is a high-level construct which is a combination of built-in and user-defined shader code, Each user-created Shader makes one version
+ // Variants use #ifdefs to toggle behaviour on and off to change behaviour of the shader
+ // All variants are compiled each time a new version is created
// Specializations use #ifdefs to toggle behaviour on and off for performance, on supporting hardware, they will compile a version with everything enabled, and then compile more copies to improve performance
- // Use specializations to enable and disabled advanced features, use variants to toggle behaviour when different data may be used (e.g. using a samplerArray vs a sampler)
+ // Use specializations to enable and disabled advanced features, use variants to toggle behaviour when different data may be used (e.g. using a samplerArray vs a sampler, or doing a depth prepass vs a color pass)
struct Version {
Vector<StringName> texture_uniforms;
CharString uniforms;
@@ -141,7 +142,7 @@ private:
static bool shader_cache_save_debug;
bool shader_cache_dir_valid = false;
- GLint max_image_units;
+ GLint max_image_units = 0;
enum StageType {
STAGE_TYPE_VERTEX,
@@ -217,6 +218,7 @@ protected:
ERR_FAIL_INDEX_V(p_which, uniform_count, -1);
Version *version = version_owner.get_or_null(p_version);
ERR_FAIL_COND_V(!version, -1);
+ ERR_FAIL_INDEX_V(p_variant, int(version->variants.size()), -1);
return version->variants[p_variant].lookup_ptr(p_specialization)->uniform_location[p_which];
}
diff --git a/drivers/gles3/shaders/SCsub b/drivers/gles3/shaders/SCsub
index 8443b5df85..ec32badc19 100644
--- a/drivers/gles3/shaders/SCsub
+++ b/drivers/gles3/shaders/SCsub
@@ -2,7 +2,11 @@
Import("env")
+env.Depends("#drivers/gles3/shaders/copy.glsl.gen.h", "#core/math/basis.h")
+env.Depends("#drivers/gles3/shaders/copy.glsl.gen.h", "#core/math/transform_2d.h")
+
if "GLES3_GLSL" in env["BUILDERS"]:
env.GLES3_GLSL("canvas.glsl")
env.GLES3_GLSL("copy.glsl")
+ env.GLES3_GLSL("scene.glsl")
env.GLES3_GLSL("sky.glsl")
diff --git a/drivers/gles3/shaders/canvas.glsl b/drivers/gles3/shaders/canvas.glsl
index 41d308b776..381a0e8a73 100644
--- a/drivers/gles3/shaders/canvas.glsl
+++ b/drivers/gles3/shaders/canvas.glsl
@@ -21,6 +21,15 @@ layout(location = 10) in uvec4 bone_attrib;
layout(location = 11) in vec4 weight_attrib;
#endif
+
+// This needs to be outside clang-format so the ubo comment is in the right place
+#ifdef MATERIAL_UNIFORMS_USED
+layout(std140) uniform MaterialUniforms{ //ubo:4
+
+#MATERIAL_UNIFORMS
+
+};
+#endif
/* clang-format on */
#include "canvas_uniforms_inc.glsl"
#include "stdlib_inc.glsl"
@@ -38,15 +47,6 @@ out vec2 pixel_size_interp;
#endif
-#ifdef MATERIAL_UNIFORMS_USED
-layout(std140) uniform MaterialUniforms{
-//ubo:4
-
-#MATERIAL_UNIFORMS
-
-};
-#endif
-
#GLOBALS
void main() {
@@ -518,8 +518,8 @@ void main() {
float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
- if (outline_thickness > 0) {
- float cr = clamp(outline_thickness, 0.0, px_range / 2) / px_range;
+ if (outline_thickness > 0.0) {
+ float cr = clamp(outline_thickness, 0.0, px_range / 2.0) / px_range;
float a = clamp((d + cr) * px_size, 0.0, 1.0);
color.a = a * color.a;
} else {
@@ -710,8 +710,8 @@ void main() {
vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
float tex_ofs;
float distance;
- if (pos_rot.y > 0) {
- if (pos_rot.x > 0) {
+ if (pos_rot.y > 0.0) {
+ if (pos_rot.x > 0.0) {
tex_ofs = pos_box.y * 0.125 + 0.125;
distance = shadow_pos.x;
} else {
@@ -719,7 +719,7 @@ void main() {
distance = shadow_pos.y;
}
} else {
- if (pos_rot.x < 0) {
+ if (pos_rot.x < 0.0) {
tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
distance = -shadow_pos.x;
} else {
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index ebb00e81d0..ea28685be7 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -1,983 +1,553 @@
/* clang-format off */
-[vertex]
+#[modes]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-#define SHADER_IS_SRGB true //TODO remove
-
-#define M_PI 3.14159265359
-
-//
-// attributes
-//
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-layout(location = 2) in vec4 tangent_attrib;
-#endif
+mode_color = #define BASE_PASS
+mode_additive = #define USE_ADDITIVE_LIGHTING
+mode_depth = #define MODE_RENDER_DEPTH
-#if defined(ENABLE_COLOR_INTERP)
-layout(location = 3) in vec4 color_attrib;
-#endif
+#[specializations]
-#if defined(ENABLE_UV_INTERP)
-layout(location = 4) in vec2 uv_attrib;
-#endif
+USE_LIGHTMAP = false
+USE_LIGHT_DIRECTIONAL = false
+USE_LIGHT_POSITIONAL = false
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-layout(location = 5) in vec2 uv2_attrib;
-#endif
-
-#ifdef USE_SKELETON
-
-#ifdef USE_SKELETON_SOFTWARE
-layout(location = 13) in highp vec4 bone_transform_row_0;
-layout(location = 14) in highp vec4 bone_transform_row_1;
-layout(location = 15) in highp vec4 bone_transform_row_2;
+#[vertex]
-#else
+#define M_PI 3.14159265359
-layout(location = 6) in vec4 bone_ids;
-layout(location = 7) in highp vec4 bone_weights;
+#define SHADER_IS_SRGB true
-uniform highp sampler2D bone_transforms; // texunit:-1
-uniform ivec2 skeleton_texture_size;
+#include "stdlib_inc.glsl"
+#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
+#ifndef NORMAL_USED
+#define NORMAL_USED
#endif
-
#endif
-#ifdef USE_INSTANCING
+/*
+from RenderingServer:
+ARRAY_VERTEX = 0, // RG32F or RGB32F (depending on 2D bit)
+ARRAY_NORMAL = 1, // A2B10G10R10, A is ignored.
+ARRAY_TANGENT = 2, // A2B10G10R10, A flips sign of binormal.
+ARRAY_COLOR = 3, // RGBA8
+ARRAY_TEX_UV = 4, // RG32F
+ARRAY_TEX_UV2 = 5, // RG32F
+ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat.
+ARRAY_CUSTOM1 = 7,
+ARRAY_CUSTOM2 = 8,
+ARRAY_CUSTOM3 = 9,
+ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights)
+ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights)
+ARRAY_INDEX = 12, // 16 or 32 bits depending on length > 0xFFFF.
+ARRAY_MAX = 13
+*/
-layout(location = 8) in highp vec4 instance_xform_row_0;
-layout(location = 9) in highp vec4 instance_xform_row_1;
-layout(location = 10) in highp vec4 instance_xform_row_2;
+/* INPUT ATTRIBS */
-layout(location = 11) in highp vec4 instance_color;
-layout(location = 12) in highp vec4 instance_custom_data;
+layout(location = 0) in highp vec3 vertex_attrib;
+/* clang-format on */
+#ifdef NORMAL_USED
+layout(location = 1) in vec3 normal_attrib;
#endif
-//
-// uniforms
-//
-
-uniform highp mat4 inv_view_matrix;
-uniform highp mat4 view_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
-
-uniform highp float time;
-
-uniform highp vec2 viewport_size;
-
-#ifdef RENDER_DEPTH
-uniform float light_bias;
-uniform float light_normal_bias;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+layout(location = 2) in vec4 tangent_attrib;
#endif
-//
-// varyings
-//
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-out highp vec4 position_interp;
+#if defined(COLOR_USED)
+layout(location = 3) in vec4 color_attrib;
#endif
-out highp vec3 vertex_interp;
-out vec3 normal_interp;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-out vec3 tangent_interp;
-out vec3 binormal_interp;
+#ifdef UV_USED
+layout(location = 4) in vec2 uv_attrib;
#endif
-#if defined(ENABLE_COLOR_INTERP)
-out vec4 color_interp;
+#if defined(UV2_USED) || defined(USE_LIGHTMAP)
+layout(location = 5) in vec2 uv2_attrib;
#endif
-#if defined(ENABLE_UV_INTERP)
-out vec2 uv_interp;
+#if defined(CUSTOM0_USED)
+layout(location = 6) in vec4 custom0_attrib;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-out vec2 uv2_interp;
+#if defined(CUSTOM1_USED)
+layout(location = 7) in vec4 custom1_attrib;
#endif
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-out highp float dp_clip;
-uniform highp float shadow_dual_paraboloid_render_zfar;
-uniform highp float shadow_dual_paraboloid_render_side;
-
+#if defined(CUSTOM2_USED)
+layout(location = 8) in vec4 custom2_attrib;
#endif
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
-uniform highp mat4 light_shadow_matrix;
-out highp vec4 shadow_coord;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-uniform highp mat4 light_shadow_matrix2;
-out highp vec4 shadow_coord2;
+#if defined(CUSTOM3_USED)
+layout(location = 9) in vec4 custom3_attrib;
#endif
-#if defined(LIGHT_USE_PSSM4)
-
-uniform highp mat4 light_shadow_matrix3;
-uniform highp mat4 light_shadow_matrix4;
-out highp vec4 shadow_coord3;
-out highp vec4 shadow_coord4;
-
+#if defined(BONES_USED)
+layout(location = 10) in uvec4 bone_attrib;
#endif
+#if defined(WEIGHTS_USED)
+layout(location = 11) in vec4 weight_attrib;
#endif
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
+layout(std140) uniform GlobalVariableData { //ubo:1
+ vec4 global_variables[MAX_GLOBAL_VARIABLES];
+};
-out highp vec3 diffuse_interp;
-out highp vec3 specular_interp;
+layout(std140) uniform SceneData { // ubo:2
+ highp mat4 projection_matrix;
+ highp mat4 inv_projection_matrix;
+ highp mat4 inv_view_matrix;
+ highp mat4 view_matrix;
-// general for all lights
-uniform highp vec4 light_color;
-uniform highp vec4 shadow_color;
-uniform highp float light_specular;
+ vec2 viewport_size;
+ vec2 screen_pixel_size;
-// directional
-uniform highp vec3 light_direction;
+ mediump vec4 ambient_light_color_energy;
-// omni
-uniform highp vec3 light_position;
+ mediump float ambient_color_sky_mix;
+ uint ambient_flags;
+ bool material_uv2_mode;
+ float opaque_prepass_threshold;
+ //bool use_ambient_light;
+ //bool use_ambient_cubemap;
+ //bool use_reflection_cubemap;
-uniform highp float light_range;
-uniform highp float light_attenuation;
-
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 light_color,
- vec3 attenuation,
- float roughness) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
-
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
+ mat3 radiance_inverse_xform;
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
+ uint directional_light_count;
+ float z_far;
+ float z_near;
+ float pad;
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
+ bool fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
+ vec3 fog_light_color;
+ float fog_sun_scatter;
-#elif defined(DIFFUSE_OREN_NAYAR)
+ float fog_aerial_perspective;
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
+ float time;
+ float reflection_multiplier; // one normally, zero when rendering reflections
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
+ bool pancake_shadows;
+}
+scene_data;
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
+uniform highp mat4 world_transform;
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-#else
- // lambert by default for everything else
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
+#ifdef USE_LIGHTMAP
+uniform highp vec4 lightmap_uv_rect;
#endif
- SRGB_APPROX(diffuse_brdf_NL)
-
- diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
-
- if (roughness > 0.0) {
- // D
- float specular_brdf_NL = 0.0;
+/* Varyings */
-#if !defined(SPECULAR_DISABLED)
- //normalized blinn always unless disabled
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N, H), 0.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
+out highp vec3 vertex_interp;
+#ifdef NORMAL_USED
+out vec3 normal_interp;
#endif
- SRGB_APPROX(specular_brdf_NL)
- specular_interp += specular_brdf_NL * light_color * attenuation * (1.0 / M_PI);
- }
-}
-
+#if defined(COLOR_USED)
+out vec4 color_interp;
#endif
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
-
-uniform highp mat4 refprobe1_local_matrix;
-out mediump vec4 refprobe1_reflection_normal_blend;
-uniform highp vec3 refprobe1_box_extents;
-
-#ifndef USE_LIGHTMAP
-out mediump vec3 refprobe1_ambient_normal;
+#if defined(UV_USED)
+out vec2 uv_interp;
#endif
-#endif //reflection probe1
-
-#ifdef USE_REFLECTION_PROBE2
-
-uniform highp mat4 refprobe2_local_matrix;
-out mediump vec4 refprobe2_reflection_normal_blend;
-uniform highp vec3 refprobe2_box_extents;
+#if defined(UV2_USED)
+out vec2 uv2_interp;
+#else
+#ifdef USE_LIGHTMAP
+out vec2 uv2_interp;
+#endif
+#endif
-#ifndef USE_LIGHTMAP
-out mediump vec3 refprobe2_ambient_normal;
+#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+out vec3 tangent_interp;
+out vec3 binormal_interp;
#endif
-#endif //reflection probe2
+#if defined(MATERIAL_UNIFORMS_USED)
-#endif //vertex lighting for refprobes
+/* clang-format off */
+layout(std140) uniform MaterialUniforms { // ubo:3
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
+#MATERIAL_UNIFORMS
-out vec4 fog_interp;
+};
+/* clang-format on */
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
#endif
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
+/* clang-format off */
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
-#endif
+#GLOBALS
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
-#endif
+/* clang-format on */
-#endif //fog
+out highp vec4 position_interp;
-void main() {
- highp vec4 vertex = vertex_attrib;
+invariant gl_Position;
- mat4 model_matrix = world_transform;
+void main() {
+ highp vec3 vertex = vertex_attrib;
-#ifdef USE_INSTANCING
- {
- highp mat4 m = mat4(
- instance_xform_row_0,
- instance_xform_row_1,
- instance_xform_row_2,
- vec4(0.0, 0.0, 0.0, 1.0));
- model_matrix = model_matrix * transpose(m);
- }
+ highp mat4 model_matrix = world_transform;
+#ifdef NORMAL_USED
+ vec3 normal = normal_attrib * 2.0 - 1.0;
#endif
+ highp mat3 model_normal_matrix = mat3(model_matrix);
- vec3 normal = normal_attrib;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 tangent = tangent_attrib.xyz;
- float binormalf = tangent_attrib.a;
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
+#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ vec3 tangent;
+ float binormalf;
+ tangent = normal_tangent_attrib.xyz;
+ binormalf = normal_tangent_attrib.a;
#endif
-#if defined(ENABLE_COLOR_INTERP)
+#if defined(COLOR_USED)
color_interp = color_attrib;
-#ifdef USE_INSTANCING
- color_interp *= instance_color;
#endif
+
+#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
-#if defined(ENABLE_UV_INTERP)
+#if defined(UV_USED)
uv_interp = uv_attrib;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
+#ifdef USE_LIGHTMAP
+ uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy;
+#else
+#if defined(UV2_USED)
uv2_interp = uv2_attrib;
#endif
+#endif
#if defined(OVERRIDE_POSITION)
highp vec4 position;
#endif
+ highp mat4 projection_matrix = scene_data.projection_matrix;
+ highp mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = model_matrix * vertex;
- normal = normalize((model_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-
- tangent = normalize((model_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((model_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-#ifdef USE_SKELETON
-
- highp mat4 bone_transform = mat4(0.0);
-
-#ifdef USE_SKELETON_SOFTWARE
- // passing the transform as attributes
-
- bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
- bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
- bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
- bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
-
-#else
- // look up transform from the "pose texture"
- {
- for (int i = 0; i < 4; i++) {
- ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
+ vec4 instance_custom = vec4(0.0);
- highp mat4 b = mat4(
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
- vec4(0.0, 0.0, 0.0, 1.0));
+ // Using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- bone_transform += transpose(b) * bone_weights[i];
- }
- }
+ vertex = (model_matrix * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = model_normal_matrix * normal;
#endif
- model_matrix = model_matrix * bone_transform;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
-#endif
-
-#ifdef USE_INSTANCING
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
+ tangent = model_normal_matrix * tangent;
+ binormal = model_normal_matrix * binormal;
#endif
+#endif
- mat4 local_projection_matrix = projection_matrix;
-
- mat4 modelview = view_matrix * model_matrix;
float roughness = 1.0;
-#define projection_matrix local_projection_matrix
-#define world_transform model_matrix
+ highp mat4 modelview = scene_data.view_matrix * model_matrix;
+ highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
float point_size = 1.0;
{
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
+#CODE : VERTEX
}
gl_PointSize = point_size;
- vec4 outvec = vertex;
- // use local coordinates
+ // Using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = modelview * vertex;
- normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
-#endif
+ vertex = (modelview * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = modelview_normal * normal;
#endif
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = view_matrix * vertex;
- normal = normalize((view_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((view_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((view_matrix * vec4(binormal, 0.0)).xyz);
-#endif
#endif
- vertex_interp = vertex.xyz;
- normal_interp = normal;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent_interp = tangent;
- binormal_interp = binormal;
+ binormal = modelview_normal * binormal;
+ tangent = modelview_normal * tangent;
#endif
-#ifdef RENDER_DEPTH
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z *= shadow_dual_paraboloid_render_side;
- normal_interp.z *= shadow_dual_paraboloid_render_side;
-
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
- vtx.z = vtx.z * 2.0 - 1.0;
-
- vertex_interp = vtx;
-
-#else
- float z_ofs = light_bias;
- z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
-
- vertex_interp.z -= z_ofs;
-#endif //dual parabolloid
-
-#endif //depth
-
-//vertex lighting
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
- //vertex shaded version of lighting (more limited)
- vec3 L;
- vec3 light_att;
-
-#ifdef LIGHT_MODE_OMNI
- vec3 light_vec = light_position - vertex_interp;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- vec3 attenuation = vec3(omni_attenuation);
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_vec);
+ // Using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
+ vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif
-#ifdef LIGHT_MODE_SPOT
-
- vec3 light_rel_vec = light_position - vertex_interp;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
-
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
-
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
+ tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
-
-#ifdef LIGHT_MODE_DIRECTIONAL
- vec3 light_vec = -light_direction;
- light_att = vec3(1.0); //no base attenuation
- L = normalize(light_vec);
#endif
- diffuse_interp = vec3(0.0);
- specular_interp = vec3(0.0);
- light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
-
+ vertex_interp = vertex;
+#ifdef NORMAL_USED
+ normal_interp = normal;
#endif
-//shadows (for both vertex and fragment)
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
- vec4 vi4 = vec4(vertex_interp, 1.0);
- shadow_coord = light_shadow_matrix * vi4;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
- shadow_coord2 = light_shadow_matrix2 * vi4;
+#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ tangent_interp = tangent;
+ binormal_interp = binormal;
#endif
-#if defined(LIGHT_USE_PSSM4)
- shadow_coord3 = light_shadow_matrix3 * vi4;
- shadow_coord4 = light_shadow_matrix4 * vi4;
-
+#if defined(OVERRIDE_POSITION)
+ gl_Position = position;
+#else
+ gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
-#endif //use shadow and use lighting
-
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe1_reflection_normal_blend.xyz = local_ref_vec;
- refprobe1_reflection_normal_blend.a = blend;
+#ifdef MODE_RENDER_DEPTH
+ if (scene_data.pancake_shadows) {
+ if (gl_Position.z <= 0.00001) {
+ gl_Position.z = 0.00001;
}
-#ifndef USE_LIGHTMAP
-
- refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
-#endif
}
-
-#endif //USE_REFLECTION_PROBE1
-
-#ifdef USE_REFLECTION_PROBE2
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe2_reflection_normal_blend.xyz = local_ref_vec;
- refprobe2_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
-
- refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
- }
-#endif //USE_REFLECTION_PROBE2
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
+ position_interp = gl_Position;
+}
- float fog_amount = 0.0;
+/* clang-format off */
+#[fragment]
-#ifdef LIGHT_MODE_DIRECTIONAL
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
+// Default to SPECULAR_SCHLICK_GGX.
+#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
+#define SPECULAR_SCHLICK_GGX
#endif
-#ifdef FOG_DEPTH_ENABLED
-
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
- }
+#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
+#ifndef NORMAL_USED
+#define NORMAL_USED
#endif
-
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (inv_view_matrix * vec4(vertex_interp, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
#endif
- fog_interp = vec4(fog_color, fog_amount);
-#endif //fog
+#include "tonemap_inc.glsl"
+#include "stdlib_inc.glsl"
-#endif //use vertex lighting
+/* texture unit usage, N is max_texture_unity-N
-#if defined(OVERRIDE_POSITION)
- gl_Position = position;
-#else
- gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
-#endif
+1-color correction // In tonemap_inc.glsl
+2-radiance
+3-directional_shadow
+4-positional_shadow
+5-screen
+6-depth
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
- position_interp = gl_Position;
-#endif
-}
-
-/* clang-format off */
-[fragment]
+*/
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
+uniform highp mat4 world_transform;
+/* clang-format on */
#define M_PI 3.14159265359
#define SHADER_IS_SRGB true
-//
-// uniforms
-//
-
-uniform highp mat4 inv_view_matrix;
-/* clang-format on */
-uniform highp mat4 view_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
-
-uniform highp float time;
+/* Varyings */
-uniform highp vec2 viewport_size;
-
-#if defined(SCREEN_UV_USED)
-uniform vec2 screen_pixel_size;
-#endif
-
-#if defined(SCREEN_TEXTURE_USED)
-uniform highp sampler2D screen_texture; //texunit:-4
-#endif
-#if defined(DEPTH_TEXTURE_USED)
-uniform highp sampler2D depth_texture; //texunit:-4
+#if defined(COLOR_USED)
+in vec4 color_interp;
#endif
-#ifdef USE_REFLECTION_PROBE1
-
-#ifdef USE_VERTEX_LIGHTING
-
-in mediump vec4 refprobe1_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-in mediump vec3 refprobe1_ambient_normal;
+#if defined(UV_USED)
+in vec2 uv_interp;
#endif
+#if defined(UV2_USED)
+in vec2 uv2_interp;
#else
-
-uniform bool refprobe1_use_box_project;
-uniform highp vec3 refprobe1_box_extents;
-uniform vec3 refprobe1_box_offset;
-uniform highp mat4 refprobe1_local_matrix;
-
-#endif //use vertex lighting
-
-uniform bool refprobe1_exterior;
-
-uniform highp samplerCube reflection_probe1; //texunit:-5
-
-uniform float refprobe1_intensity;
-uniform vec4 refprobe1_ambient;
-
-#endif //USE_REFLECTION_PROBE1
-
-#ifdef USE_REFLECTION_PROBE2
-
-#ifdef USE_VERTEX_LIGHTING
-
-in mediump vec4 refprobe2_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-in mediump vec3 refprobe2_ambient_normal;
+#ifdef USE_LIGHTMAP
+in vec2 uv2_interp;
#endif
-
-#else
-
-uniform bool refprobe2_use_box_project;
-uniform highp vec3 refprobe2_box_extents;
-uniform vec3 refprobe2_box_offset;
-uniform highp mat4 refprobe2_local_matrix;
-
-#endif //use vertex lighting
-
-uniform bool refprobe2_exterior;
-
-uniform highp samplerCube reflection_probe2; //texunit:-6
-
-uniform float refprobe2_intensity;
-uniform vec4 refprobe2_ambient;
-
-#endif //USE_REFLECTION_PROBE2
-
-#define RADIANCE_MAX_LOD 6.0
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
-void reflection_process(samplerCube reflection_map,
-#ifdef USE_VERTEX_LIGHTING
- vec3 ref_normal,
-#ifndef USE_LIGHTMAP
- vec3 amb_normal,
#endif
- float ref_blend,
-
-#else //no vertex lighting
- vec3 normal, vec3 vertex,
- mat4 local_matrix,
- bool use_box_project, vec3 box_extents, vec3 box_offset,
-#endif //vertex lighting
- bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
- vec4 reflection;
-
-#ifdef USE_VERTEX_LIGHTING
-
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
-
- float blend = ref_blend; //crappier blend formula for vertex
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
-#else //fragment lighting
- vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
-
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
- //reflect and make local
- vec3 ref_normal = normalize(reflect(vertex, normal));
- ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
-
- if (use_box_project) { //box project
-
- vec3 nrdir = normalize(ref_normal);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- ref_normal = posonbox - box_offset.xyz;
- }
+#if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+in vec3 tangent_interp;
+in vec3 binormal_interp;
+#endif
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
+#ifdef NORMAL_USED
+in vec3 normal_interp;
#endif
- if (exterior) {
- reflection.rgb = mix(skybox, reflection.rgb, blend);
- }
- reflection.rgb *= intensity;
- reflection.a = blend;
- reflection.rgb *= blend;
+in highp vec3 vertex_interp;
- reflection_accum += reflection;
+/* PBR CHANNELS */
-#ifndef USE_LIGHTMAP
+#ifdef USE_RADIANCE_MAP
- vec4 ambient_out;
-#ifndef USE_VERTEX_LIGHTING
+layout(std140) uniform Radiance { // ubo:4
- vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
-#endif
+ mat4 radiance_inverse_xform;
+ float radiance_ambient_contribution;
+};
- ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
- ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
- if (exterior) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
+#define RADIANCE_MAX_LOD 5.0
- ambient_out.a = blend;
- ambient_out.rgb *= blend;
- ambient_accum += ambient_out;
+uniform sampler2D radiance_map; // texunit:-2
-#endif
+vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
+ vec3 norm = normalize(p_vec);
+ norm.xy /= 1.0 + abs(norm.z);
+ norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
+ if (norm.z > 0.0) {
+ norm.y = 0.5 - norm.y + 0.5;
+ }
+ return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}
-#endif //use refprobe 1 or 2
-
-#ifdef USE_LIGHTMAP
-uniform mediump sampler2D lightmap; //texunit:-4
-uniform mediump float lightmap_energy;
#endif
-#ifdef USE_LIGHTMAP_CAPTURE
-uniform mediump vec4[12] lightmap_captures;
-uniform bool lightmap_capture_sky;
+layout(std140) uniform GlobalVariableData { //ubo:1
+ vec4 global_variables[MAX_GLOBAL_VARIABLES];
+};
-#endif
+ /* Material Uniforms */
-#ifdef USE_RADIANCE_MAP
+#if defined(MATERIAL_UNIFORMS_USED)
-uniform samplerCube radiance_map; // texunit:-2
+/* clang-format off */
+layout(std140) uniform MaterialUniforms { // ubo:3
-uniform mat4 radiance_inverse_xform;
+#MATERIAL_UNIFORMS
-#endif
+};
+/* clang-format on */
-uniform vec4 bg_color;
-uniform float bg_energy;
+#endif
-uniform float ambient_sky_contribution;
-uniform vec4 ambient_color;
-uniform float ambient_energy;
+layout(std140) uniform SceneData { // ubo:2
+ highp mat4 projection_matrix;
+ highp mat4 inv_projection_matrix;
+ highp mat4 inv_view_matrix;
+ highp mat4 view_matrix;
-#ifdef USE_LIGHTING
+ vec2 viewport_size;
+ vec2 screen_pixel_size;
-uniform highp vec4 shadow_color;
+ mediump vec4 ambient_light_color_energy;
-#ifdef USE_VERTEX_LIGHTING
+ mediump float ambient_color_sky_mix;
+ uint ambient_flags;
+ bool material_uv2_mode;
+ float opaque_prepass_threshold;
+ //bool use_ambient_light;
+ //bool use_ambient_cubemap;
+ //bool use_reflection_cubemap;
-//get from vertex
-in highp vec3 diffuse_interp;
-in highp vec3 specular_interp;
+ mat3 radiance_inverse_xform;
-uniform highp vec3 light_direction; //may be used by fog, so leave here
+ uint directional_light_count;
+ float z_far;
+ float z_near;
+ float pad;
-#else
-//done in fragment
-// general for all lights
-uniform highp vec4 light_color;
+ bool fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
-uniform highp float light_specular;
+ vec3 fog_light_color;
+ float fog_sun_scatter;
-// directional
-uniform highp vec3 light_direction;
-// omni
-uniform highp vec3 light_position;
+ float fog_aerial_perspective;
-uniform highp float light_attenuation;
+ float time;
+ float reflection_multiplier; // one normally, zero when rendering reflections
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-#endif
+ bool pancake_shadows;
+}
+scene_data;
-//this is needed outside above if because dual paraboloid wants it
-uniform highp float light_range;
+/* clang-format off */
-#ifdef USE_SHADOW
+#GLOBALS
-uniform highp vec2 shadow_pixel_size;
+/* clang-format on */
-#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
-uniform highp sampler2D light_shadow_atlas; //texunit:-3
-#endif
+//directional light data
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform highp sampler2D light_directional_shadow; // texunit:-3
-uniform highp vec4 light_split_offsets;
-#endif
+#ifdef USE_LIGHT_DIRECTIONAL
-in highp vec4 shadow_coord;
+struct DirectionalLightData {
+ mediump vec3 direction;
+ mediump float energy;
+ mediump vec3 color;
+ mediump float size;
+ mediump vec3 pad;
+ mediump float specular;
+};
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-in highp vec4 shadow_coord2;
#endif
-#if defined(LIGHT_USE_PSSM4)
+// omni and spot
+#ifdef USE_LIGHT_POSITIONAL
+struct LightData { //this structure needs to be as packed as possible
+ highp vec3 position;
+ highp float inv_radius;
-in highp vec4 shadow_coord3;
-in highp vec4 shadow_coord4;
-
-#endif
+ mediump vec3 direction;
+ highp float size;
-uniform vec4 light_clamp;
+ mediump vec3 color;
+ mediump float attenuation;
-#endif // light shadow
+ mediump float cone_attenuation;
+ mediump float cone_angle;
+ mediump float specular_amount;
+ bool shadow_enabled;
+};
-// directional shadow
+layout(std140) uniform OmniLightData { // ubo:5
-#endif
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+};
-//
-// varyings
-//
+layout(std140) uniform SpotLightData { // ubo:6
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-in highp vec4 position_interp;
-#endif
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+};
-in highp vec3 vertex_interp;
-in vec3 normal_interp;
+uniform highp samplerCubeShadow positional_shadow; // texunit:-6
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-in vec3 tangent_interp;
-in vec3 binormal_interp;
-#endif
+uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
+uniform int omni_light_count;
-#if defined(ENABLE_COLOR_INTERP)
-in vec4 color_interp;
-#endif
+uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
+uniform int spot_light_count;
-#if defined(ENABLE_UV_INTERP)
-in vec2 uv_interp;
-#endif
+uniform int reflection_indices[MAX_FORWARD_LIGHTS];
+uniform int reflection_count;
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-in vec2 uv2_interp;
#endif
-in vec3 view_interp;
+uniform highp sampler2D screen_texture; // texunit:-5
+uniform highp sampler2D depth_buffer; // texunit:-6
layout(location = 0) out vec4 frag_color;
+in highp vec4 position_interp;
+
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
@@ -985,95 +555,31 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, vec3(metallic));
}
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-in highp float dp_clip;
-
-#endif
-
-#ifdef USE_LIGHTING
-
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-/*
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-*/
-
-// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
-// See Filament docs, Specular G section.
-float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
- return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha);
-}
-
+#if defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL)
float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
+ float a = cos_theta_m * alpha;
+ float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
+ return k * k * (1.0 / M_PI);
}
-/*
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
-}
-*/
-
-// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
-// See Filament docs, Anisotropic specular BRDF section.
-float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
- float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
- float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
- return 0.5 / (Lambda_V + Lambda_L);
+// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
+float V_GGX(float NdotL, float NdotV, float alpha) {
+ return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
+float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float alpha2 = alpha_x * alpha_y;
- highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
+ highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
+}
- /* float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
+float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
+ float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
+ float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
+ return 0.5 / (Lambda_V + Lambda_L);
}
float SchlickFresnel(float u) {
@@ -1082,109 +588,64 @@ float SchlickFresnel(float u) {
return m2 * m2 * m; // pow(m,5)
}
-float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
+void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 B, vec3 T, float anisotropy,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 B,
- vec3 T,
- vec3 light_color,
- vec3 attenuation,
- vec3 diffuse_color,
- vec3 transmission,
- float specular_blob_intensity,
- float roughness,
- float metallic,
- float specular,
- float rim,
- float rim_tint,
- float clearcoat,
- float clearcoat_roughness,
- float anisotropy,
- inout vec3 diffuse_light,
- inout vec3 specular_light,
- inout float alpha) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
+ vec4 orms_unpacked = unpackUnorm4x8(orms);
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
+ float roughness = orms_unpacked.y;
+ float metallic = orms_unpacked.z;
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
- vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
-LIGHT_SHADER_CODE
+
+#CODE : LIGHT
/* clang-format on */
#else
- float NdotL = dot(N, L);
+ float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
- float cNdotV = max(abs(NdotV), 1e-6);
+ float cNdotV = max(NdotV, 0.0);
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cNdotH = max(dot(N, H), 0.0);
+#if defined(SPECULAR_SCHLICK_GGX)
+ float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cLdotH = max(dot(L, H), 0.0);
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+ float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
@@ -1196,230 +657,208 @@ LIGHT_SHADER_CODE
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
- SRGB_APPROX(diffuse_brdf_NL)
+ diffuse_light += light_color * diffuse_brdf_NL * attenuation;
- diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
-
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
+#if defined(LIGHT_BACKLIGHT_USED)
+ diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
-#if defined(LIGHT_USE_RIM)
+#if defined(LIGHT_RIM_USED)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
+ diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
#endif
}
- if (roughness > 0.0) {
+ if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
-#if defined(SPECULAR_SCHLICK_GGX)
- vec3 specular_brdf_NL = vec3(0.0);
-#else
- float specular_brdf_NL = 0.0;
-#endif
-
-#if defined(SPECULAR_BLINN)
-
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = max(0.0, dot(R, V));
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
+ // D
-#elif defined(SPECULAR_TOON)
+#if defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
- specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
+ float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
+ diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
+
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
-
-#if defined(LIGHT_USE_ANISOTROPY)
float alpha_ggx = roughness * roughness;
+#if defined(LIGHT_ANISOTROPY_USED)
+
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
- //float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
+ float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
-
-#else
- float alpha_ggx = roughness * roughness;
+#else // LIGHT_ANISOTROPY_USED
float D = D_GGX(cNdotH, alpha_ggx);
- //float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
-#endif
- // F
- vec3 f0 = F0(metallic, specular, diffuse_color);
+#endif // LIGHT_ANISOTROPY_USED
+ // F
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
- specular_brdf_NL = cNdotL * D * F * G;
+ vec3 specular_brdf_NL = cNdotL * D * F * G;
+ specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
- SRGB_APPROX(specular_brdf_NL)
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-
-#if defined(LIGHT_USE_CLEARCOAT)
+#if defined(LIGHT_CLEARCOAT_USED)
+ // Clearcoat ignores normal_map, use vertex normal instead
+ float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
+ float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
+ float ccNdotV = max(dot(vertex_normal, V), 1e-4);
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_roughness));
+ float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
+ float Gr = 0.25 / (cLdotH * cLdotH);
float Fr = mix(.04, 1.0, cLdotH5);
- //float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
- float Gr = V_GGX(cNdotL, cNdotV, 0.25);
-
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
+ float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
+ specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
+ // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
+ // but to do so we need to rearrange this entire function
+#endif // LIGHT_CLEARCOAT_USED
}
#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
+ alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
#endif
-#endif //defined(USE_LIGHT_SHADER_CODE)
+#endif //defined(LIGHT_CODE_USED)
}
-#endif
-// shadows
-
-#ifdef USE_SHADOW
-
-#ifdef USE_RGBA_SHADOWS
-
-#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
-
-#else
-
-#define SHADOW_DEPTH(m_val) (m_val).r
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
#endif
-
-#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture(p_shadow, p_pos)))
-#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(textureProj(p_shadow, p_pos)))
-
-float sample_shadow(highp sampler2D shadow, highp vec4 spos) {
-#ifdef SHADOW_MODE_PCF_13
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth);
- return avg * (1.0 / 13.0);
+#ifdef LIGHT_TRANSMITTANCE_USED
+ vec4 transmittance_color,
+ float transmittance_depth,
+ float transmittance_boost,
#endif
-
-#ifdef SHADOW_MODE_PCF_5
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- return avg * (1.0 / 5.0);
-
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
+ vec3 light_rel_vec = omni_lights[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation);
+ vec3 light_attenuation = vec3(omni_attenuation);
+ vec3 color = omni_lights[idx].color;
+ float size_A = 0.0;
+
+ if (omni_lights.data[idx].size > 0.0) {
+ float t = omni_lights[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
+ }
-#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
-
- return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, omni_lights[idx].specular_amount, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim * omni_attenuation, rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, vertex_normal,
#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
+#endif
+ diffuse_light,
+ specular_light);
}
+void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
#endif
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
-
-in vec4 fog_interp;
-
-#else
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
#endif
+ inout vec3 diffuse_light,
+ inout vec3 specular_light) {
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
+ vec3 light_rel_vec = spot_lights[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation);
+ vec3 spot_dir = spot_lights[idx].direction;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle));
+ spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation);
+ float light_attenuation = spot_attenuation;
+ vec3 color = spot_lights[idx].color;
+
+ float size_A = 0.0;
+
+ if (spot_lights.data[idx].size > 0.0) {
+ float t = spot_lights.data[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
+ }
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, spot_lights[idx].specular_amount, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
-
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
+#ifdef LIGHT_RIM_USED
+ rim * spot_attenuation, rim_tint,
#endif
-
-#endif //vertex lit
-#endif //fog
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
+#endif
+ diffuse_light, specular_light);
+}
+#endif // defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL)
void main() {
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- if (dp_clip > 0.0)
- discard;
-#endif
- highp vec3 vertex = vertex_interp;
+ //lay out everything, whatever is unused is optimized away anyway
+ vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
- vec3 transmission = vec3(0.0);
+ vec3 backlight = vec3(0.0);
+ vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0);
+ float transmittance_depth = 0.0;
+ float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
@@ -1430,617 +869,235 @@ void main() {
float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
- float sss_strength = 0.0; //unused
- // gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a
- // compile error because DEPTH is not a variable.
- float m_DEPTH = 0.0;
-
- float alpha = 1.0;
- float side = 1.0;
-
- float specular_blob_intensity = 1.0;
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
+ vec4 fog = vec4(0.0);
+#if defined(CUSTOM_RADIANCE_USED)
+ vec4 custom_radiance = vec4(0.0);
+#endif
+#if defined(CUSTOM_IRRADIANCE_USED)
+ vec4 custom_irradiance = vec4(0.0);
#endif
-#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
-#endif
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 binormal = normalize(binormal_interp) * side;
- vec3 tangent = normalize(tangent_interp) * side;
+ float alpha = 1.0;
+
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ vec3 binormal = normalize(binormal_interp);
+ vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
- vec3 normal = normalize(normal_interp) * side;
-#if defined(ENABLE_NORMALMAP)
- vec3 normalmap = vec3(0.5);
+#ifdef NORMAL_USED
+ vec3 normal = normalize(normal_interp);
+
+#if defined(DO_SIDE_CHECK)
+ if (!gl_FrontFacing) {
+ normal = -normal;
+ }
#endif
- float normaldepth = 1.0;
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
+#endif //NORMAL_USED
+
+#ifdef UV_USED
+ vec2 uv = uv_interp;
#endif
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
+#if defined(UV2_USED) || defined(USE_LIGHTMAP)
+ vec2 uv2 = uv2_interp;
#endif
- {
- /* clang-format off */
+#if defined(COLOR_USED)
+ vec4 color = color_interp;
+#endif
-FRAGMENT_SHADER_CODE
+#if defined(NORMAL_MAP_USED)
- /* clang-format on */
- }
+ vec3 normal_map = vec3(0.5);
+#endif
-#if defined(ENABLE_NORMALMAP)
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
+ float normal_map_depth = 1.0;
- normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
- //normal = normalmap;
-#endif
+ vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
- normal = normalize(normal);
+ float sss_strength = 0.0;
- vec3 N = normal;
+#ifdef ALPHA_SCISSOR_USED
+ float alpha_scissor_threshold = 1.0;
+#endif // ALPHA_SCISSOR_USED
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
- vec3 ambient_light = vec3(0.0, 0.0, 0.0);
+#ifdef ALPHA_HASH_USED
+ float alpha_hash_scale = 1.0;
+#endif // ALPHA_HASH_USED
- vec3 eye_position = view;
+#ifdef ALPHA_ANTIALIASING_EDGE_USED
+ float alpha_antialiasing_edge = 0.0;
+ vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
+#endif // ALPHA_ANTIALIASING_EDGE_USED
+ {
+#CODE : FRAGMENT
+ }
-#if !defined(USE_SHADOW_TO_OPACITY)
+#ifndef USE_SHADOW_TO_OPACITY
#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
+ if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // ALPHA_SCISSOR_USED
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
+#ifdef USE_OPAQUE_PREPASS
+#if !defined(ALPHA_SCISSOR_USED)
+
+ if (alpha < scene_data.opaque_prepass_threshold) {
discard;
}
-#endif // USE_DEPTH_PREPASS
-#endif // !USE_SHADOW_TO_OPACITY
+#endif // not ALPHA_SCISSOR_USED
+#endif // USE_OPAQUE_PREPASS
-#ifdef BASE_PASS
-
- // IBL precalculations
- float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
- vec3 f0 = F0(metallic, specular, albedo);
- vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
-
-#ifdef USE_RADIANCE_MAP
-
- vec3 ref_vec = reflect(-eye_position, N);
- ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
-
- ref_vec.z *= -1.0;
-
- specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
-#ifndef USE_LIGHTMAP
- {
- vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
- vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
- env_ambient *= 1.0 - F;
+#endif // !USE_SHADOW_TO_OPACITY
- ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
- }
-#endif
+#ifdef NORMAL_MAP_USED
-#else
+ normal_map.xy = normal_map.xy * 2.0 - 1.0;
+ normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- ambient_light = ambient_color.rgb;
- specular_light = bg_color.rgb * bg_energy;
+ normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
-#endif // AMBIENT_LIGHT_DISABLED
- ambient_light *= ambient_energy;
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
- vec4 ambient_accum = vec4(0.0);
- vec4 reflection_accum = vec4(0.0);
+#ifdef LIGHT_ANISOTROPY_USED
-#ifdef USE_REFLECTION_PROBE1
+ if (anisotropy > 0.01) {
+ //rotation matrix
+ mat3 rot = mat3(tangent, binormal, normal);
+ //make local to space
+ tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
+ binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
+ }
- reflection_process(reflection_probe1,
-#ifdef USE_VERTEX_LIGHTING
- refprobe1_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe1_ambient_normal,
-#endif
- refprobe1_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe1_local_matrix,
- refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
#endif
- refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
-#endif // USE_REFLECTION_PROBE1
+#ifndef MODE_RENDER_DEPTH
+ vec3 f0 = F0(metallic, specular, albedo);
+ // Convert albedo to linear. Approximation from: http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
+ albedo = albedo * (albedo * (albedo * 0.305306011 + 0.682171111) + 0.012522878);
+ vec3 specular_light = vec3(0.0, 0.0, 0.0);
+ vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
+ vec3 ambient_light = vec3(0.0, 0.0, 0.0);
-#ifdef USE_REFLECTION_PROBE2
+#ifdef BASE_PASS
+ /////////////////////// LIGHTING //////////////////////////////
- reflection_process(reflection_probe2,
-#ifdef USE_VERTEX_LIGHTING
- refprobe2_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe2_ambient_normal,
-#endif
- refprobe2_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe2_local_matrix,
- refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
-#endif
- refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
+ // IBL precalculations
+ float ndotv = clamp(dot(normal, view), 0.0, 1.0);
+ vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-#endif // USE_REFLECTION_PROBE2
+ // Calculate IBL
+ // Calculate Reflection probes
+ // Caclculate Lightmaps
- if (reflection_accum.a > 0.0) {
- specular_light = reflection_accum.rgb / reflection_accum.a;
- }
+ float specular_blob_intensity = 1.0;
-#ifndef USE_LIGHTMAP
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
+#if defined(SPECULAR_TOON)
+ specular_blob_intensity *= specular * 2.0;
#endif
-#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
- // environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
- // scales the specular reflections, needs to be computed before lighting happens,
- // but after environment and reflection probes are added
- //TODO: this curve is not really designed for gammaspace, should be adjusted
+ // scales the specular reflections, needs to be be computed before lighting happens,
+ // but after environment, GI, and reflection probes are added
+ // Environment brdf approximation (Lazarov 2013)
+ // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
+ float ndotv = clamp(dot(normal, view), 0.0, 1.0);
+
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * F + env.y;
-
-#endif
- }
-
-#ifdef USE_LIGHTMAP
- //ambient light will come entirely from lightmap is lightmap is used
- ambient_light = texture(lightmap, uv2_interp).rgb * lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
- {
- vec3 cone_dirs[12];
- cone_dirs[0] = vec3(0.0, 0.0, 1.0);
- cone_dirs[1] = vec3(0.866025, 0.0, 0.5);
- cone_dirs[2] = vec3(0.267617, 0.823639, 0.5);
- cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5);
- cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5);
- cone_dirs[5] = vec3(0.267617, -0.823639, 0.5);
- cone_dirs[6] = vec3(0.0, 0.0, -1.0);
- cone_dirs[7] = vec3(0.866025, 0.0, -0.5);
- cone_dirs[8] = vec3(0.267617, 0.823639, -0.5);
- cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5);
- cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5);
- cone_dirs[11] = vec3(0.267617, -0.823639, -0.5);
-
- vec3 local_normal = normalize(inv_view_matrix * vec4(normal, 0.0)).xyz;
- vec4 captured = vec4(0.0);
- float sum = 0.0;
- for (int i = 0; i < 12; i++) {
- float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i] * amount;
- sum += amount;
- }
-
- captured /= sum;
-
- if (lightmap_capture_sky) {
- ambient_light = mix(ambient_light, captured.rgb, captured.a);
- } else {
- ambient_light = captured.rgb;
- }
- }
-#endif
-
-#endif //BASE PASS
-
-//
-// Lighting
-//
-#ifdef USE_LIGHTING
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 L;
-#endif
- vec3 light_att = vec3(1.0);
-
-#ifdef LIGHT_MODE_OMNI
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = light_position - vertex;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- L = normalize(light_vec);
-
+ specular_light *= env.x * f0 + env.y;
#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
- float shadow_len = length(splane.xyz);
-
- splane.xyz = normalize(splane.xyz);
-
- vec4 clamp_rect = light_clamp;
-
- if (splane.z >= 0.0) {
- splane.z += 1.0;
-
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len / light_range;
-
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
}
-#endif
-
-#endif //SHADOWS_DISABLED
-
-#endif //type omni
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = -light_direction;
- L = normalize(light_vec);
-#endif
- float depth_z = -vertex.z;
-
-#if !defined(SHADOWS_DISABLED)
+#endif // BASE_PASS
-#ifdef USE_SHADOW
+ //this saves some VGPRs
+ uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
-#ifdef USE_VERTEX_LIGHTING
- //compute shadows in a mobile friendly way
+#ifdef USE_LIGHT_DIRECTIONAL
-#ifdef LIGHT_USE_PSSM4
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
- float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
- float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
+ float size_A = directional_lights[i].size;
- if (depth_z < light_split_offsets.w) {
- float pssm_fade = 0.0;
- float shadow_att = 1.0;
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
+ light_compute(normal, directional_lights[i].direction, normalize(view), size_A, directional_lights[i].color * directional_lights[i].energy, shadow, f0, orms, 1.0, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim, rim_tint,
#endif
- } else {
- shadow_att = shadow2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- shadow_att = shadow3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- shadow_att2 = shadow4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
-
- } else {
- shadow_att = shadow4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-#if defined(LIGHT_USE_PSSM_BLEND)
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal,
+ tangent, anisotropy,
#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
- }
-
-#endif //LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
-
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
+ diffuse_light,
+ specular_light);
- if (depth_z < light_split_offsets.y) {
- float shadow_att = 1.0;
- float pssm_fade = 0.0;
+#endif //#USE_LIGHT_DIRECTIONAL
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
+#ifdef USE_LIGHT_POSITIONAL
+ float shadow = 0.0;
+ for (int i = 0; i < omni_light_count; i++) {
+ light_process_omni(omni_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- if (depth_z < light_split_offsets.x) {
- float pssm_fade = 0.0;
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
#endif
- } else {
- shadow_att = shadow2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
- }
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ tangent, binormal, anisotropy,
#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
+ diffuse_light, specular_light);
}
-#endif //LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord));
-#endif //orthogonal
-
-#else //fragment version of pssm
-
- {
-#ifdef LIGHT_USE_PSSM4
- if (depth_z < light_split_offsets.w) {
-#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < light_split_offsets.y) {
-#else
- if (depth_z < light_split_offsets.x) {
-#endif //pssm2
-
- highp vec4 pssm_coord;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- highp vec4 pssm_coord2;
- bool use_blend = true;
-#endif
-
-#ifdef LIGHT_USE_PSSM4
-
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- pssm_coord = shadow_coord2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- pssm_coord = shadow_coord3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- pssm_coord2 = shadow_coord4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
-#endif
-
- } else {
- pssm_coord = shadow_coord4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-
-#endif // LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+ for (int i = 0; i < spot_light_count; i++) {
+ light_process_spot(spot_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- } else {
- pssm_coord = shadow_coord2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
#endif
- }
-
-#endif // LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- {
- pssm_coord = shadow_coord;
- }
-#endif
-
- float shadow = sample_shadow(light_directional_shadow, pssm_coord);
-
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
- }
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
- }
-#endif //use vertex lighting
-
-#endif //use shadow
-
-#endif // SHADOWS_DISABLED
-
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- light_att = vec3(1.0);
-
-#ifndef USE_VERTEX_LIGHTING
-
- vec3 light_rel_vec = light_position - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
+#ifdef LIGHT_ANISOTROPY_USED
+ tangent,
+ binormal, anisotropy,
#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
+ diffuse_light, specular_light);
}
-#endif
-
-#endif // SHADOWS_DISABLED
-
-#endif // LIGHT_MODE_SPOT
-
-#ifdef USE_VERTEX_LIGHTING
- //vertex lighting
-
- specular_light += specular_interp * specular_blob_intensity * light_att;
- diffuse_light += diffuse_interp * albedo * light_att;
-
-#else
- //fragment lighting
- light_compute(
- normal,
- L,
- eye_position,
- binormal,
- tangent,
- light_color.xyz,
- light_att,
- albedo,
- transmission,
- specular_blob_intensity * light_specular,
- roughness,
- metallic,
- specular,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_roughness,
- anisotropy,
- diffuse_light,
- specular_light,
- alpha);
-
-#endif //vertex lighting
-#endif //USE_LIGHTING
- //compute and merge
-
-#ifdef USE_SHADOW_TO_OPACITY
+#endif // USE_LIGHT_POSITIONAL
+#endif //!MODE_RENDER_DEPTH
+#if defined(USE_SHADOW_TO_OPACITY)
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
@@ -2049,105 +1106,50 @@ FRAGMENT_SHADER_CODE
}
#endif // ALPHA_SCISSOR_USED
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
+#ifdef USE_OPAQUE_PREPASS
+#if !defined(ALPHA_SCISSOR_USED)
+
+ if (alpha < opaque_prepass_threshold) {
discard;
}
-#endif // USE_DEPTH_PREPASS
-#endif // !USE_SHADOW_TO_OPACITY
+#endif // not ALPHA_SCISSOR_USED
+#endif // USE_OPAQUE_PREPASS
-#ifndef RENDER_DEPTH
+#endif // USE_SHADOW_TO_OPACITY
-#ifdef SHADELESS
+#ifdef MODE_RENDER_DEPTH
+//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
+#else // !MODE_RENDER_DEPTH
- frag_color = vec4(albedo, alpha);
-#else
-
- ambient_light *= albedo;
-
-#if defined(ENABLE_AO)
- ambient_light *= ao;
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light *= ao_light_affect;
- diffuse_light *= ao_light_affect;
-#endif
+ specular_light *= scene_data.reflection_multiplier;
+ ambient_light *= albedo; //ambient must be multiplied by albedo at the end
+ // base color remapping
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
+#ifdef MODE_UNSHADED
+ frag_color = vec4(albedo, alpha);
+#else
frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha);
-
- //add emission if in base pass
#ifdef BASE_PASS
frag_color.rgb += emission;
#endif
- // frag_color = vec4(normal, 1.0);
-
-//apply fog
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
-
-#if defined(BASE_PASS)
- frag_color.rgb = mix(frag_color.rgb, fog_interp.rgb, fog_interp.a);
-#else
- frag_color.rgb *= (1.0 - fog_interp.a);
-#endif // BASE_PASS
-
-#else //pixel based fog
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
-#endif
-
-#ifdef FOG_DEPTH_ENABLED
+#endif //MODE_UNSHADED
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
+ // Tonemap before writing as we are writing to an sRGB framebuffer
+ frag_color.rgb *= exposure;
+ frag_color.rgb = apply_tonemapping(frag_color.rgb, white);
+ frag_color.rgb = linear_to_srgb(frag_color.rgb);
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
-
- if (fog_transmit_enabled) {
- vec3 total_light = frag_color.rgb;
- float transmit = pow(fog_z, fog_transmit_curve);
- fog_color = mix(max(total_light, fog_color), fog_color, transmit);
- }
- }
+#ifdef USE_BCS
+ frag_color.rgb = apply_bcs(frag_color.rgb, bcs);
#endif
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (inv_view_matrix * vec4(vertex, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
+#ifdef USE_COLOR_CORRECTION
+ frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction);
#endif
-#if defined(BASE_PASS)
- frag_color.rgb = mix(frag_color.rgb, fog_color, fog_amount);
-#else
- frag_color.rgb *= (1.0 - fog_amount);
-#endif // BASE_PASS
-
-#endif //use vertex lit
-
-#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#endif //unshaded
-
-#else // not RENDER_DEPTH
-//depth render
-#ifdef USE_RGBA_SHADOWS
-
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
- highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
- comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
- frag_color = comp;
-
-#endif
-#endif
+#endif //!MODE_RENDER_DEPTH
}
diff --git a/drivers/gles3/shaders/sky.glsl b/drivers/gles3/shaders/sky.glsl
index 0faa3eb70c..3a1bcd3b28 100644
--- a/drivers/gles3/shaders/sky.glsl
+++ b/drivers/gles3/shaders/sky.glsl
@@ -12,21 +12,12 @@ mode_cubemap_quarter_res = #define USE_CUBEMAP_PASS \n#define USE_QUARTER_RES_PA
#[vertex]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
out vec2 uv_interp;
/* clang-format on */
void main() {
// One big triangle to cover the whole screen
- vec2 base_arr[3] = vec2[](vec2(-1.0, -2.0), vec2(-1.0, 2.0), vec2(2.0, 2.0));
+ vec2 base_arr[3] = vec2[](vec2(-1.0, -1.0), vec2(3.0, -1.0), vec2(-1.0, 3.0));
uv_interp = base_arr[gl_VertexID];
gl_Position = vec4(uv_interp, 1.0, 1.0);
}
@@ -36,19 +27,7 @@ void main() {
#define M_PI 3.14159265359
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
+#include "tonemap_inc.glsl"
in vec2 uv_interp;
@@ -63,40 +42,36 @@ uniform sampler2D half_res; //texunit:-2
uniform sampler2D quarter_res; //texunit:-3
#endif
-layout(std140) uniform CanvasData { //ubo:0
- mat3 orientation;
- vec4 projection;
- vec4 position_multiplier;
- float time;
- float luminance_multiplier;
- float pad1;
- float pad2;
-};
-
layout(std140) uniform GlobalVariableData { //ubo:1
vec4 global_variables[MAX_GLOBAL_VARIABLES];
};
+layout(std140) uniform SceneData { //ubo:2
+ float pad1;
+ float pad2;
+};
+
struct DirectionalLightData {
vec4 direction_energy;
vec4 color_size;
bool enabled;
};
-layout(std140) uniform DirectionalLights { //ubo:2
+layout(std140) uniform DirectionalLights { //ubo:3
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
+/* clang-format off */
+
#ifdef MATERIAL_UNIFORMS_USED
-layout(std140) uniform MaterialUniforms{
-//ubo:3
+layout(std140) uniform MaterialUniforms{ //ubo:4
#MATERIAL_UNIFORMS
-} material;
+};
#endif
-
+/* clang-format on */
#GLOBALS
#ifdef USE_CUBEMAP_PASS
@@ -117,6 +92,12 @@ layout(std140) uniform MaterialUniforms{
#define AT_QUARTER_RES_PASS false
#endif
+// mat4 is a waste of space, but we don't have an easy way to set a mat3 uniform for now
+uniform mat4 orientation;
+uniform vec4 projection;
+uniform vec3 position;
+uniform float time;
+
layout(location = 0) out vec4 frag_color;
void main() {
@@ -128,7 +109,7 @@ void main() {
cube_normal.z = -cube_normal.z;
cube_normal = normalize(cube_normal);
- vec2 uv = uv_interp * 0.5 + 0.5;
+ vec2 uv = gl_FragCoord.xy; // uv_interp * 0.5 + 0.5;
vec2 panorama_coords = vec2(atan(cube_normal.x, cube_normal.z), acos(cube_normal.y));
@@ -148,17 +129,17 @@ void main() {
vec3 inverted_cube_normal = cube_normal;
inverted_cube_normal.z *= -1.0;
#ifdef USES_HALF_RES_COLOR
- half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal) * luminance_multiplier;
+ half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal);
#endif
#ifdef USES_QUARTER_RES_COLOR
- quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal) * luminance_multiplier;
+ quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal);
#endif
#else
#ifdef USES_HALF_RES_COLOR
- half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) * luminance_multiplier;
+ half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0);
#endif
#ifdef USES_QUARTER_RES_COLOR
- quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) * luminance_multiplier;
+ quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0);
#endif
#endif
@@ -168,12 +149,19 @@ void main() {
}
- frag_color.rgb = color * position_multiplier.w / luminance_multiplier;
- frag_color.a = alpha;
+ // Tonemap before writing as we are writing to an sRGB framebuffer
+ color *= exposure;
+ color = apply_tonemapping(color, white);
+ color = linear_to_srgb(color);
- // Blending is disabled for Sky, so alpha doesn't blend
- // alpha is used for subsurface scattering so make sure it doesn't get applied to Sky
- if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) {
- frag_color.a = 0.0;
- }
+#ifdef USE_BCS
+ color = apply_bcs(color, bcs);
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+ color = apply_color_correction(color, color_correction);
+#endif
+
+ frag_color.rgb = color;
+ frag_color.a = alpha;
}
diff --git a/drivers/gles3/shaders/stdlib_inc.glsl b/drivers/gles3/shaders/stdlib_inc.glsl
index 2eddf9d479..6cce6c12bd 100644
--- a/drivers/gles3/shaders/stdlib_inc.glsl
+++ b/drivers/gles3/shaders/stdlib_inc.glsl
@@ -1,5 +1,6 @@
-//TODO: only needed by GLES_OVER_GL
+#ifdef USE_GLES_OVER_GL
+// Floating point pack/unpack functions are part of the GLSL ES 300 specification used by web and mobile.
uint float2half(uint f) {
return ((f >> uint(16)) & uint(0x8000)) |
((((f & uint(0x7f800000)) - uint(0x38000000)) >> uint(13)) & uint(0x7c00)) |
@@ -37,6 +38,7 @@ vec2 unpackSnorm2x16(uint p) {
vec2 v = vec2(float(p & uint(0xffff)), float(p >> uint(16)));
return clamp((v - 32767.0) * vec2(0.00003051851), vec2(-1.0), vec2(1.0));
}
+#endif
uint packUnorm4x8(vec4 v) {
uvec4 uv = uvec4(round(clamp(v, vec4(0.0), vec4(1.0)) * 255.0));
diff --git a/drivers/gles3/shaders/tonemap_inc.glsl b/drivers/gles3/shaders/tonemap_inc.glsl
new file mode 100644
index 0000000000..ea15c05359
--- /dev/null
+++ b/drivers/gles3/shaders/tonemap_inc.glsl
@@ -0,0 +1,119 @@
+#ifdef USE_BCS
+uniform vec3 bcs;
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+#ifdef USE_1D_LUT
+uniform sampler2D source_color_correction; //texunit:-1
+#else
+uniform sampler3D source_color_correction; //texunit:-1
+#endif
+#endif
+
+layout(std140) uniform TonemapData { //ubo:0
+ float exposure;
+ float white;
+ int tonemapper;
+ int pad;
+};
+
+vec3 apply_bcs(vec3 color, vec3 bcs) {
+ color = mix(vec3(0.0), color, bcs.x);
+ color = mix(vec3(0.5), color, bcs.y);
+ color = mix(vec3(dot(vec3(1.0), color) * 0.33333), color, bcs.z);
+
+ return color;
+}
+#ifdef USE_COLOR_CORRECTION
+#ifdef USE_1D_LUT
+vec3 apply_color_correction(vec3 color) {
+ color.r = texture(source_color_correction, vec2(color.r, 0.0f)).r;
+ color.g = texture(source_color_correction, vec2(color.g, 0.0f)).g;
+ color.b = texture(source_color_correction, vec2(color.b, 0.0f)).b;
+ return color;
+}
+#else
+vec3 apply_color_correction(vec3 color) {
+ return textureLod(source_color_correction, color, 0.0).rgb;
+}
+#endif
+#endif
+
+vec3 tonemap_filmic(vec3 color, float p_white) {
+ // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
+ // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
+ // has no effect on the curve's general shape or visual properties
+ const float exposure_bias = 2.0f;
+ const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
+ const float B = 0.30f * exposure_bias;
+ const float C = 0.10f;
+ const float D = 0.20f;
+ const float E = 0.01f;
+ const float F = 0.30f;
+
+ vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
+ float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F;
+
+ return color_tonemapped / p_white_tonemapped;
+}
+
+// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
+// (MIT License).
+vec3 tonemap_aces(vec3 color, float p_white) {
+ const float exposure_bias = 1.8f;
+ const float A = 0.0245786f;
+ const float B = 0.000090537f;
+ const float C = 0.983729f;
+ const float D = 0.432951f;
+ const float E = 0.238081f;
+
+ // Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
+ const mat3 rgb_to_rrt = mat3(
+ vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
+ vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
+ vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
+
+ const mat3 odt_to_rgb = mat3(
+ vec3(1.60475f, -0.53108f, -0.07367f),
+ vec3(-0.10208f, 1.10813f, -0.00605f),
+ vec3(-0.00327f, -0.07276f, 1.07602f));
+
+ color *= rgb_to_rrt;
+ vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
+ color_tonemapped *= odt_to_rgb;
+
+ p_white *= exposure_bias;
+ float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E);
+
+ return color_tonemapped / p_white_tonemapped;
+}
+
+vec3 tonemap_reinhard(vec3 color, float p_white) {
+ return (p_white * color + color) / (color * p_white + p_white);
+}
+
+vec3 linear_to_srgb(vec3 color) {
+ //if going to srgb, clamp from 0 to 1.
+ color = clamp(color, vec3(0.0), vec3(1.0));
+ const vec3 a = vec3(0.055f);
+ return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
+}
+
+#define TONEMAPPER_LINEAR 0
+#define TONEMAPPER_REINHARD 1
+#define TONEMAPPER_FILMIC 2
+#define TONEMAPPER_ACES 3
+
+vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR, always outputs clamped [0;1] color
+ // Ensure color values passed to tonemappers are positive.
+ // They can be negative in the case of negative lights, which leads to undesired behavior.
+ if (tonemapper == TONEMAPPER_LINEAR) {
+ return color;
+ } else if (tonemapper == TONEMAPPER_REINHARD) {
+ return tonemap_reinhard(max(vec3(0.0f), color), p_white);
+ } else if (tonemapper == TONEMAPPER_FILMIC) {
+ return tonemap_filmic(max(vec3(0.0f), color), p_white);
+ } else { // TONEMAPPER_ACES
+ return tonemap_aces(max(vec3(0.0f), color), p_white);
+ }
+}
diff --git a/drivers/gles3/storage/config.cpp b/drivers/gles3/storage/config.cpp
index 369e523cc4..7280868564 100644
--- a/drivers/gles3/storage/config.cpp
+++ b/drivers/gles3/storage/config.cpp
@@ -120,16 +120,6 @@ Config::Config() {
support_write_depth = extensions.has("GL_EXT_frag_depth");
#endif
- support_half_float_vertices = true;
-//every platform should support this except web, iOS has issues with their support, so add option to disable
-#ifdef JAVASCRIPT_ENABLED
- support_half_float_vertices = false;
-#endif
- bool disable_half_float = false; //GLOBAL_GET("rendering/opengl/compatibility/disable_half_float");
- if (disable_half_float) {
- support_half_float_vertices = false;
- }
-
//picky requirements for these
support_shadow_cubemaps = support_write_depth && support_depth_cubemaps;
// the use skeleton software path should be used if either float texture is not supported,
@@ -149,6 +139,27 @@ Config::Config() {
force_vertex_shading = false; //GLOBAL_GET("rendering/quality/shading/force_vertex_shading");
use_nearest_mip_filter = GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter");
+
+ use_depth_prepass = bool(GLOBAL_GET("rendering/driver/depth_prepass/enable"));
+ if (use_depth_prepass) {
+ String vendors = GLOBAL_GET("rendering/driver/depth_prepass/disable_for_vendors");
+ Vector<String> vendor_match = vendors.split(",");
+ String renderer = (const char *)glGetString(GL_RENDERER);
+ for (int i = 0; i < vendor_match.size(); i++) {
+ String v = vendor_match[i].strip_edges();
+ if (v == String()) {
+ continue;
+ }
+
+ if (renderer.findn(v) != -1) {
+ use_depth_prepass = false;
+ }
+ }
+ }
+
+ max_renderable_elements = GLOBAL_GET("rendering/limits/opengl/max_renderable_elements");
+ max_renderable_lights = GLOBAL_GET("rendering/limits/opengl/max_renderable_lights");
+ max_lights_per_object = GLOBAL_GET("rendering/limits/opengl/max_lights_per_object");
}
Config::~Config() {
diff --git a/drivers/gles3/storage/config.h b/drivers/gles3/storage/config.h
index bb4352ce9a..7e143c1c1e 100644
--- a/drivers/gles3/storage/config.h
+++ b/drivers/gles3/storage/config.h
@@ -51,52 +51,56 @@ private:
static Config *singleton;
public:
- bool use_nearest_mip_filter;
- bool use_skeleton_software;
+ bool use_nearest_mip_filter = false;
+ bool use_skeleton_software = false;
- int max_vertex_texture_image_units;
- int max_texture_image_units;
- int max_texture_size;
- int max_uniform_buffer_size;
+ int max_vertex_texture_image_units = 0;
+ int max_texture_image_units = 0;
+ int max_texture_size = 0;
+ int max_uniform_buffer_size = 0;
+ int max_renderable_elements = 0;
+ int max_renderable_lights = 0;
+ int max_lights_per_object = 0;
// TODO implement wireframe in OpenGL
// bool generate_wireframes;
Set<String> extensions;
- bool float_texture_supported;
- bool s3tc_supported;
- bool latc_supported;
- bool rgtc_supported;
- bool bptc_supported;
- bool etc_supported;
- bool etc2_supported;
- bool srgb_decode_supported;
+ bool float_texture_supported = false;
+ bool s3tc_supported = false;
+ bool latc_supported = false;
+ bool rgtc_supported = false;
+ bool bptc_supported = false;
+ bool etc_supported = false;
+ bool etc2_supported = false;
+ bool srgb_decode_supported = false;
- bool keep_original_textures;
+ bool keep_original_textures = false;
- bool force_vertex_shading;
+ bool force_vertex_shading = false;
- bool use_rgba_2d_shadows;
- bool use_rgba_3d_shadows;
+ bool use_rgba_2d_shadows = false;
+ bool use_rgba_3d_shadows = false;
- bool support_32_bits_indices;
- bool support_write_depth;
- bool support_half_float_vertices;
- bool support_npot_repeat_mipmap;
- bool support_depth_cubemaps;
- bool support_shadow_cubemaps;
- bool support_anisotropic_filter;
- float anisotropic_level;
+ bool support_32_bits_indices = false;
+ bool support_write_depth = false;
+ bool support_npot_repeat_mipmap = false;
+ bool support_depth_cubemaps = false;
+ bool support_shadow_cubemaps = false;
+ bool support_anisotropic_filter = false;
+ float anisotropic_level = 0.0f;
- GLuint depth_internalformat;
- GLuint depth_type;
- GLuint depth_buffer_internalformat;
+ GLuint depth_internalformat = 0;
+ GLuint depth_type = 0;
+ GLuint depth_buffer_internalformat = 0;
// in some cases the legacy render didn't orphan. We will mark these
// so the user can switch orphaning off for them.
bool should_orphan = true;
+ bool use_depth_prepass = true;
+
static Config *get_singleton() { return singleton; };
Config();
diff --git a/drivers/gles3/storage/light_storage.cpp b/drivers/gles3/storage/light_storage.cpp
index 7395611d71..954aa11c0d 100644
--- a/drivers/gles3/storage/light_storage.cpp
+++ b/drivers/gles3/storage/light_storage.cpp
@@ -32,6 +32,7 @@
#include "light_storage.h"
#include "config.h"
+#include "texture_storage.h"
using namespace GLES3;
@@ -51,122 +52,284 @@ LightStorage::~LightStorage() {
/* Light API */
+void LightStorage::_light_initialize(RID p_light, RS::LightType p_type) {
+ Light light;
+ light.type = p_type;
+
+ light.param[RS::LIGHT_PARAM_ENERGY] = 1.0;
+ light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
+ light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5;
+ light.param[RS::LIGHT_PARAM_RANGE] = 1.0;
+ light.param[RS::LIGHT_PARAM_SIZE] = 0.0;
+ light.param[RS::LIGHT_PARAM_ATTENUATION] = 1.0;
+ light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45;
+ light.param[RS::LIGHT_PARAM_SPOT_ATTENUATION] = 1.0;
+ light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
+ light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;
+ light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3;
+ light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6;
+ light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8;
+ light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0;
+ light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02;
+ light.param[RS::LIGHT_PARAM_SHADOW_BLUR] = 0;
+ light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0;
+ light.param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE] = 0.1;
+ light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05;
+
+ light_owner.initialize_rid(p_light, light);
+}
+
RID LightStorage::directional_light_allocate() {
- return RID();
+ return light_owner.allocate_rid();
}
void LightStorage::directional_light_initialize(RID p_rid) {
+ _light_initialize(p_rid, RS::LIGHT_DIRECTIONAL);
}
RID LightStorage::omni_light_allocate() {
- return RID();
+ return light_owner.allocate_rid();
}
void LightStorage::omni_light_initialize(RID p_rid) {
+ _light_initialize(p_rid, RS::LIGHT_OMNI);
}
RID LightStorage::spot_light_allocate() {
- return RID();
+ return light_owner.allocate_rid();
}
void LightStorage::spot_light_initialize(RID p_rid) {
+ _light_initialize(p_rid, RS::LIGHT_SPOT);
}
void LightStorage::light_free(RID p_rid) {
+ light_set_projector(p_rid, RID()); //clear projector
+
+ // delete the texture
+ Light *light = light_owner.get_or_null(p_rid);
+ light->dependency.deleted_notify(p_rid);
+ light_owner.free(p_rid);
}
void LightStorage::light_set_color(RID p_light, const Color &p_color) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->color = p_color;
}
void LightStorage::light_set_param(RID p_light, RS::LightParam p_param, float p_value) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+ ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX);
+
+ if (light->param[p_param] == p_value) {
+ return;
+ }
+
+ switch (p_param) {
+ case RS::LIGHT_PARAM_RANGE:
+ case RS::LIGHT_PARAM_SPOT_ANGLE:
+ case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE:
+ case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET:
+ case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET:
+ case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET:
+ case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS:
+ case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE:
+ case RS::LIGHT_PARAM_SHADOW_BIAS: {
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
+ } break;
+ case RS::LIGHT_PARAM_SIZE: {
+ if ((light->param[p_param] > CMP_EPSILON) != (p_value > CMP_EPSILON)) {
+ //changing from no size to size and the opposite
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR);
+ }
+ } break;
+ default: {
+ }
+ }
+
+ light->param[p_param] = p_value;
}
void LightStorage::light_set_shadow(RID p_light, bool p_enabled) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+ light->shadow = p_enabled;
+
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_projector(RID p_light, RID p_texture) {
+ GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ if (light->projector == p_texture) {
+ return;
+ }
+
+ if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) {
+ texture_storage->texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
+ }
+
+ light->projector = p_texture;
+
+ if (light->type != RS::LIGHT_DIRECTIONAL) {
+ if (light->projector.is_valid()) {
+ texture_storage->texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
+ }
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR);
+ }
}
void LightStorage::light_set_negative(RID p_light, bool p_enable) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->negative = p_enable;
}
void LightStorage::light_set_cull_mask(RID p_light, uint32_t p_mask) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->cull_mask = p_mask;
+
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->distance_fade = p_enabled;
+ light->distance_fade_begin = p_begin;
+ light->distance_fade_shadow = p_shadow;
+ light->distance_fade_length = p_length;
}
void LightStorage::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->reverse_cull = p_enabled;
+
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) {
-}
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->bake_mode = p_bake_mode;
-void LightStorage::light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) {
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {
-}
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
-void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
-}
+ light->omni_shadow_mode = p_mode;
-void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) {
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
-bool LightStorage::light_directional_get_blend_splits(RID p_light) const {
- return false;
-}
+RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE);
-void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) {
+ return light->omni_shadow_mode;
}
-RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const {
- return RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY;
-}
+void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
-RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) {
- return RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
+ light->directional_shadow_mode = p_mode;
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
-RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) {
- return RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
-}
+void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
-bool LightStorage::light_has_shadow(RID p_light) const {
- return false;
+ light->directional_blend_splits = p_enable;
+ light->version++;
+ light->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_LIGHT);
}
-bool LightStorage::light_has_projector(RID p_light) const {
- return false;
-}
+bool LightStorage::light_directional_get_blend_splits(RID p_light) const {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, false);
-RS::LightType LightStorage::light_get_type(RID p_light) const {
- return RS::LIGHT_OMNI;
+ return light->directional_blend_splits;
}
-AABB LightStorage::light_get_aabb(RID p_light) const {
- return AABB();
+void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) {
+ Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->directional_sky_mode = p_mode;
}
-float LightStorage::light_get_param(RID p_light, RS::LightParam p_param) {
- return 0.0;
+RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY);
+
+ return light->directional_sky_mode;
}
-Color LightStorage::light_get_color(RID p_light) {
- return Color();
+RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
+
+ return light->directional_shadow_mode;
}
RS::LightBakeMode LightStorage::light_get_bake_mode(RID p_light) {
- return RS::LIGHT_BAKE_DISABLED;
-}
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_BAKE_DISABLED);
-uint32_t LightStorage::light_get_max_sdfgi_cascade(RID p_light) {
- return 0;
+ return light->bake_mode;
}
uint64_t LightStorage::light_get_version(RID p_light) const {
- return 0;
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, 0);
+
+ return light->version;
+}
+
+AABB LightStorage::light_get_aabb(RID p_light) const {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, AABB());
+
+ switch (light->type) {
+ case RS::LIGHT_SPOT: {
+ float len = light->param[RS::LIGHT_PARAM_RANGE];
+ float size = Math::tan(Math::deg2rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len;
+ return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
+ };
+ case RS::LIGHT_OMNI: {
+ float r = light->param[RS::LIGHT_PARAM_RANGE];
+ return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
+ };
+ case RS::LIGHT_DIRECTIONAL: {
+ return AABB();
+ };
+ }
+
+ ERR_FAIL_V(AABB());
}
/* PROBE API */
diff --git a/drivers/gles3/storage/light_storage.h b/drivers/gles3/storage/light_storage.h
index 6f24e467bc..5acaf45aa3 100644
--- a/drivers/gles3/storage/light_storage.h
+++ b/drivers/gles3/storage/light_storage.h
@@ -40,12 +40,100 @@
#include "servers/rendering/renderer_storage.h"
#include "servers/rendering/storage/light_storage.h"
+#include "platform_config.h"
+#ifndef OPENGL_INCLUDE_H
+#include <GLES3/gl3.h>
+#else
+#include OPENGL_INCLUDE_H
+#endif
+
namespace GLES3 {
+/* LIGHT */
+
+struct Light {
+ RS::LightType type;
+ float param[RS::LIGHT_PARAM_MAX];
+ Color color = Color(1, 1, 1, 1);
+ RID projector;
+ bool shadow = false;
+ bool negative = false;
+ bool reverse_cull = false;
+ RS::LightBakeMode bake_mode = RS::LIGHT_BAKE_DYNAMIC;
+ uint32_t max_sdfgi_cascade = 2;
+ uint32_t cull_mask = 0xFFFFFFFF;
+ bool distance_fade = false;
+ real_t distance_fade_begin = 40.0;
+ real_t distance_fade_shadow = 50.0;
+ real_t distance_fade_length = 10.0;
+ RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
+ RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
+ bool directional_blend_splits = false;
+ RS::LightDirectionalSkyMode directional_sky_mode = RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY;
+ uint64_t version = 0;
+
+ RendererStorage::Dependency dependency;
+};
+
+/* REFLECTION PROBE */
+
+struct ReflectionProbe {
+ RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE;
+ int resolution = 256;
+ float intensity = 1.0;
+ RS::ReflectionProbeAmbientMode ambient_mode = RS::REFLECTION_PROBE_AMBIENT_ENVIRONMENT;
+ Color ambient_color;
+ float ambient_color_energy = 1.0;
+ float max_distance = 0;
+ Vector3 extents = Vector3(1, 1, 1);
+ Vector3 origin_offset;
+ bool interior = false;
+ bool box_projection = false;
+ bool enable_shadows = false;
+ uint32_t cull_mask = (1 << 20) - 1;
+ float mesh_lod_threshold = 0.01;
+
+ RendererStorage::Dependency dependency;
+};
+
+/* LIGHTMAP */
+
+struct Lightmap {
+ RID light_texture;
+ bool uses_spherical_harmonics = false;
+ bool interior = false;
+ AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
+ int32_t array_index = -1; //unassigned
+ PackedVector3Array points;
+ PackedColorArray point_sh;
+ PackedInt32Array tetrahedra;
+ PackedInt32Array bsp_tree;
+
+ struct BSP {
+ static const int32_t EMPTY_LEAF = INT32_MIN;
+ float plane[4];
+ int32_t over = EMPTY_LEAF, under = EMPTY_LEAF;
+ };
+
+ RendererStorage::Dependency dependency;
+};
+
class LightStorage : public RendererLightStorage {
private:
static LightStorage *singleton;
+ /* LIGHT */
+ mutable RID_Owner<Light, true> light_owner;
+
+ /* REFLECTION PROBE */
+ mutable RID_Owner<ReflectionProbe, true> reflection_probe_owner;
+
+ /* LIGHTMAP */
+
+ Vector<RID> lightmap_textures;
+
+ mutable RID_Owner<Lightmap, true> lightmap_owner;
+
public:
static LightStorage *get_singleton();
@@ -54,6 +142,11 @@ public:
/* Light API */
+ Light *get_light(RID p_rid) { return light_owner.get_or_null(p_rid); };
+ bool owns_light(RID p_rid) { return light_owner.owns(p_rid); };
+
+ void _light_initialize(RID p_rid, RS::LightType p_type);
+
virtual RID directional_light_allocate() override;
virtual void directional_light_initialize(RID p_rid) override;
virtual RID omni_light_allocate() override;
@@ -72,7 +165,7 @@ public:
virtual void light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) override;
virtual void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) override;
virtual void light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) override;
- virtual void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) override;
+ virtual void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) override {}
virtual void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) override;
@@ -84,16 +177,99 @@ public:
virtual RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) override;
virtual RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) override;
+ virtual RS::LightType light_get_type(RID p_light) const override {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
- virtual bool light_has_shadow(RID p_light) const override;
- virtual bool light_has_projector(RID p_light) const override;
-
- virtual RS::LightType light_get_type(RID p_light) const override;
+ return light->type;
+ }
virtual AABB light_get_aabb(RID p_light) const override;
- virtual float light_get_param(RID p_light, RS::LightParam p_param) override;
- virtual Color light_get_color(RID p_light) override;
+
+ virtual float light_get_param(RID p_light, RS::LightParam p_param) override {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, 0);
+
+ return light->param[p_param];
+ }
+
+ _FORCE_INLINE_ RID light_get_projector(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RID());
+
+ return light->projector;
+ }
+
+ virtual Color light_get_color(RID p_light) override {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, Color());
+
+ return light->color;
+ }
+
+ _FORCE_INLINE_ uint32_t light_get_cull_mask(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, 0);
+
+ return light->cull_mask;
+ }
+
+ _FORCE_INLINE_ bool light_is_distance_fade_enabled(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ return light->distance_fade;
+ }
+
+ _FORCE_INLINE_ float light_get_distance_fade_begin(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ return light->distance_fade_begin;
+ }
+
+ _FORCE_INLINE_ float light_get_distance_fade_shadow(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ return light->distance_fade_shadow;
+ }
+
+ _FORCE_INLINE_ float light_get_distance_fade_length(RID p_light) {
+ const Light *light = light_owner.get_or_null(p_light);
+ return light->distance_fade_length;
+ }
+
+ virtual bool light_has_shadow(RID p_light) const override {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
+
+ return light->shadow;
+ }
+
+ virtual bool light_has_projector(RID p_light) const override {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
+
+ return light_owner.owns(light->projector);
+ }
+
+ _FORCE_INLINE_ bool light_is_negative(RID p_light) const {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
+
+ return light->negative;
+ }
+
+ _FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, 0.0);
+
+ return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
+ }
+
+ _FORCE_INLINE_ float light_get_shadow_volumetric_fog_fade(RID p_light) const {
+ const Light *light = light_owner.get_or_null(p_light);
+ ERR_FAIL_COND_V(!light, 0.0);
+
+ return light->param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE];
+ }
+
virtual RS::LightBakeMode light_get_bake_mode(RID p_light) override;
- virtual uint32_t light_get_max_sdfgi_cascade(RID p_light) override;
+ virtual uint32_t light_get_max_sdfgi_cascade(RID p_light) override { return 0; }
virtual uint64_t light_get_version(RID p_light) const override;
/* PROBE API */
diff --git a/drivers/gles3/storage/material_storage.cpp b/drivers/gles3/storage/material_storage.cpp
index 1b97e268df..fa50e10f96 100644
--- a/drivers/gles3/storage/material_storage.cpp
+++ b/drivers/gles3/storage/material_storage.cpp
@@ -43,7 +43,7 @@ using namespace GLES3;
///////////////////////////////////////////////////////////////////////////
// UBI helper functions
-_FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, int p_array_size, const Variant &value, uint8_t *data, bool p_linear_color) {
+_FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, int p_array_size, const Variant &value, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
uint32_t *gui = (uint32_t *)data;
@@ -399,9 +399,6 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
Color color = a[i];
- if (p_linear_color) {
- color = color.srgb_to_linear();
- }
gui[j] = color.r;
gui[j + 1] = color.g;
gui[j + 2] = color.b;
@@ -433,10 +430,6 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
if (value.get_type() == Variant::COLOR) {
Color v = value;
- if (p_linear_color) {
- v = v.srgb_to_linear();
- }
-
gui[0] = v.r;
gui[1] = v.g;
gui[2] = v.b;
@@ -459,9 +452,6 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
Color color = a[i];
- if (p_linear_color) {
- color = color.srgb_to_linear();
- }
gui[j] = color.r;
gui[j + 1] = color.g;
gui[j + 2] = color.b;
@@ -496,10 +486,6 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
if (value.get_type() == Variant::COLOR) {
Color v = value;
- if (p_linear_color) {
- v = v.srgb_to_linear();
- }
-
gui[0] = v.r;
gui[1] = v.g;
gui[2] = v.b;
@@ -558,13 +544,13 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
Transform2D v = value;
//in std140 members of mat2 are treated as vec4s
- gui[0] = v.elements[0][0];
- gui[1] = v.elements[0][1];
+ gui[0] = v.columns[0][0];
+ gui[1] = v.columns[0][1];
gui[2] = 0; // ignored
gui[3] = 0; // ignored
- gui[4] = v.elements[1][0];
- gui[5] = v.elements[1][1];
+ gui[4] = v.columns[1][0];
+ gui[5] = v.columns[1][1];
gui[6] = 0; // ignored
gui[7] = 0; // ignored
}
@@ -608,19 +594,19 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
}
} else {
Basis v = value;
- gui[0] = v.elements[0][0];
- gui[1] = v.elements[1][0];
- gui[2] = v.elements[2][0];
+ gui[0] = v.rows[0][0];
+ gui[1] = v.rows[1][0];
+ gui[2] = v.rows[2][0];
gui[3] = 0; // ignored
- gui[4] = v.elements[0][1];
- gui[5] = v.elements[1][1];
- gui[6] = v.elements[2][1];
+ gui[4] = v.rows[0][1];
+ gui[5] = v.rows[1][1];
+ gui[6] = v.rows[2][1];
gui[7] = 0; // ignored
- gui[8] = v.elements[0][2];
- gui[9] = v.elements[1][2];
- gui[10] = v.elements[2][2];
+ gui[8] = v.rows[0][2];
+ gui[9] = v.rows[1][2];
+ gui[10] = v.rows[2][2];
gui[11] = 0; // ignored
}
} break;
@@ -676,19 +662,19 @@ _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataTy
}
} else {
Transform3D v = value;
- gui[0] = v.basis.elements[0][0];
- gui[1] = v.basis.elements[1][0];
- gui[2] = v.basis.elements[2][0];
+ gui[0] = v.basis.rows[0][0];
+ gui[1] = v.basis.rows[1][0];
+ gui[2] = v.basis.rows[2][0];
gui[3] = 0;
- gui[4] = v.basis.elements[0][1];
- gui[5] = v.basis.elements[1][1];
- gui[6] = v.basis.elements[2][1];
+ gui[4] = v.basis.rows[0][1];
+ gui[5] = v.basis.rows[1][1];
+ gui[6] = v.basis.rows[2][1];
gui[7] = 0;
- gui[8] = v.basis.elements[0][2];
- gui[9] = v.basis.elements[1][2];
- gui[10] = v.basis.elements[2][2];
+ gui[8] = v.basis.rows[0][2];
+ gui[9] = v.basis.rows[1][2];
+ gui[10] = v.basis.rows[2][2];
gui[11] = 0;
gui[12] = v.origin.x;
@@ -900,6 +886,42 @@ _FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type,
///////////////////////////////////////////////////////////////////////////
// MaterialData
+// Look up table to translate ShaderLanguage::DataType to GL_TEXTURE_*
+static const GLenum target_from_type[ShaderLanguage::TYPE_MAX] = {
+ GL_TEXTURE_2D, // TYPE_VOID,
+ GL_TEXTURE_2D, // TYPE_BOOL,
+ GL_TEXTURE_2D, // TYPE_BVEC2,
+ GL_TEXTURE_2D, // TYPE_BVEC3,
+ GL_TEXTURE_2D, // TYPE_BVEC4,
+ GL_TEXTURE_2D, // TYPE_INT,
+ GL_TEXTURE_2D, // TYPE_IVEC2,
+ GL_TEXTURE_2D, // TYPE_IVEC3,
+ GL_TEXTURE_2D, // TYPE_IVEC4,
+ GL_TEXTURE_2D, // TYPE_UINT,
+ GL_TEXTURE_2D, // TYPE_UVEC2,
+ GL_TEXTURE_2D, // TYPE_UVEC3,
+ GL_TEXTURE_2D, // TYPE_UVEC4,
+ GL_TEXTURE_2D, // TYPE_FLOAT,
+ GL_TEXTURE_2D, // TYPE_VEC2,
+ GL_TEXTURE_2D, // TYPE_VEC3,
+ GL_TEXTURE_2D, // TYPE_VEC4,
+ GL_TEXTURE_2D, // TYPE_MAT2,
+ GL_TEXTURE_2D, // TYPE_MAT3,
+ GL_TEXTURE_2D, // TYPE_MAT4,
+ GL_TEXTURE_2D, // TYPE_SAMPLER2D,
+ GL_TEXTURE_2D, // TYPE_ISAMPLER2D,
+ GL_TEXTURE_2D, // TYPE_USAMPLER2D,
+ GL_TEXTURE_2D_ARRAY, // TYPE_SAMPLER2DARRAY,
+ GL_TEXTURE_2D_ARRAY, // TYPE_ISAMPLER2DARRAY,
+ GL_TEXTURE_2D_ARRAY, // TYPE_USAMPLER2DARRAY,
+ GL_TEXTURE_3D, // TYPE_SAMPLER3D,
+ GL_TEXTURE_3D, // TYPE_ISAMPLER3D,
+ GL_TEXTURE_3D, // TYPE_USAMPLER3D,
+ GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBE,
+ GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBEARRAY,
+ GL_TEXTURE_2D, // TYPE_STRUCT
+};
+
void MaterialData::update_uniform_buffer(const Map<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Map<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color) {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
bool uses_global_buffer = false;
@@ -951,7 +973,7 @@ void MaterialData::update_uniform_buffer(const Map<StringName, ShaderLanguage::S
if (V) {
//user provided
- _fill_std140_variant_ubo_value(E.value.type, E.value.array_size, V->get(), data, p_use_linear_color);
+ _fill_std140_variant_ubo_value(E.value.type, E.value.array_size, V->get(), data);
} else if (E.value.default_value.size()) {
//default value
@@ -961,7 +983,7 @@ void MaterialData::update_uniform_buffer(const Map<StringName, ShaderLanguage::S
//zero because it was not provided
if ((E.value.type == ShaderLanguage::TYPE_VEC3 || E.value.type == ShaderLanguage::TYPE_VEC4) && E.value.hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) {
//colors must be set as black, with alpha as 1.0
- _fill_std140_variant_ubo_value(E.value.type, E.value.array_size, Color(0, 0, 0, 1), data, p_use_linear_color);
+ _fill_std140_variant_ubo_value(E.value.type, E.value.array_size, Color(0, 0, 0, 1), data);
} else {
//else just zero it out
_fill_std140_ubo_empty(E.value.type, E.value.array_size, data);
@@ -1275,16 +1297,16 @@ MaterialStorage *MaterialStorage::get_singleton() {
MaterialStorage::MaterialStorage() {
singleton = this;
- shader_data_request_func[RS::SHADER_SPATIAL] = nullptr;
+ shader_data_request_func[RS::SHADER_SPATIAL] = _create_scene_shader_func;
shader_data_request_func[RS::SHADER_CANVAS_ITEM] = _create_canvas_shader_func;
shader_data_request_func[RS::SHADER_PARTICLES] = nullptr;
- shader_data_request_func[RS::SHADER_SKY] = nullptr;
+ shader_data_request_func[RS::SHADER_SKY] = _create_sky_shader_func;
shader_data_request_func[RS::SHADER_FOG] = nullptr;
- material_data_request_func[RS::SHADER_SPATIAL] = nullptr;
+ material_data_request_func[RS::SHADER_SPATIAL] = _create_scene_material_func;
material_data_request_func[RS::SHADER_CANVAS_ITEM] = _create_canvas_material_func;
material_data_request_func[RS::SHADER_PARTICLES] = nullptr;
- material_data_request_func[RS::SHADER_SKY] = nullptr;
+ material_data_request_func[RS::SHADER_SKY] = _create_sky_material_func;
material_data_request_func[RS::SHADER_FOG] = nullptr;
static_assert(sizeof(GlobalVariables::Value) == 16);
@@ -1365,16 +1387,12 @@ MaterialStorage::MaterialStorage() {
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
actions.render_mode_defines["light_only"] = "#define MODE_LIGHT_ONLY\n";
- actions.base_texture_binding_index = 1;
- actions.base_uniform_string = "";
- actions.global_buffer_array_variable = "";
-
shaders.compiler_canvas.initialize(actions);
}
{
// Setup Scene compiler
- /*
+
//shader compiler
ShaderCompiler::DefaultIdentifierActions actions;
@@ -1529,11 +1547,6 @@ MaterialStorage::MaterialStorage() {
actions.render_mode_defines["sss_mode_skin"] = "#define SSS_MODE_SKIN\n";
actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n";
-
- actions.custom_samplers["SCREEN_TEXTURE"] = "material_samplers[3]"; // linear filter with mipmaps
- actions.custom_samplers["DEPTH_TEXTURE"] = "material_samplers[3]";
- actions.custom_samplers["NORMAL_ROUGHNESS_TEXTURE"] = "material_samplers[1]"; // linear filter
-
actions.render_mode_defines["specular_toon"] = "#define SPECULAR_TOON\n";
actions.render_mode_defines["specular_disabled"] = "#define SPECULAR_DISABLED\n";
actions.render_mode_defines["shadows_disabled"] = "#define SHADOWS_DISABLED\n";
@@ -1541,19 +1554,10 @@ MaterialStorage::MaterialStorage() {
actions.render_mode_defines["shadow_to_opacity"] = "#define USE_SHADOW_TO_OPACITY\n";
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
- actions.sampler_array_name = "material_samplers";
- actions.base_texture_binding_index = 1;
- actions.texture_layout_set = RenderForwardClustered::MATERIAL_UNIFORM_SET;
- actions.base_uniform_string = "material.";
- actions.base_varying_index = 10;
-
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
- actions.global_buffer_array_variable = "global_variables.data";
- actions.instance_uniform_index_variable = "instances.data[instance_index].instance_uniforms_ofs";
- compiler.initialize(actions);
- */
+ shaders.compiler_scene.initialize(actions);
}
{
@@ -1626,10 +1630,10 @@ ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["COLOR"] = "color";
actions.renames["ALPHA"] = "alpha";
actions.renames["EYEDIR"] = "cube_normal";
- actions.renames["POSITION"] = "params.position_multiplier.xyz";
+ actions.renames["POSITION"] = "position";
actions.renames["SKY_COORDS"] = "panorama_coords";
actions.renames["SCREEN_UV"] = "uv";
- actions.renames["TIME"] = "params.time";
+ actions.renames["TIME"] = "time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
@@ -1660,20 +1664,12 @@ ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
- actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
- actions.sampler_array_name = "material_samplers";
- actions.base_texture_binding_index = 1;
- actions.texture_layout_set = 1;
- actions.base_uniform_string = "material.";
- actions.base_varying_index = 10;
-
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
- actions.global_buffer_array_variable = "global_variables";
shaders.compiler_sky.initialize(actions);
}
@@ -1873,7 +1869,7 @@ void MaterialStorage::_global_variable_store_in_buffer(int32_t p_index, RS::Glob
bv.w = v.a;
GlobalVariables::Value &bv_linear = global_variables.buffer_values[p_index + 1];
- v = v.srgb_to_linear();
+ //v = v.srgb_to_linear();
bv_linear.x = v.r;
bv_linear.y = v.g;
bv_linear.z = v.b;
@@ -1908,19 +1904,19 @@ void MaterialStorage::_global_variable_store_in_buffer(int32_t p_index, RS::Glob
case RS::GLOBAL_VAR_TYPE_MAT3: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Basis v = p_value;
- bv[0].x = v.elements[0][0];
- bv[0].y = v.elements[1][0];
- bv[0].z = v.elements[2][0];
+ bv[0].x = v.rows[0][0];
+ bv[0].y = v.rows[1][0];
+ bv[0].z = v.rows[2][0];
bv[0].w = 0;
- bv[1].x = v.elements[0][1];
- bv[1].y = v.elements[1][1];
- bv[1].z = v.elements[2][1];
+ bv[1].x = v.rows[0][1];
+ bv[1].y = v.rows[1][1];
+ bv[1].z = v.rows[2][1];
bv[1].w = 0;
- bv[2].x = v.elements[0][2];
- bv[2].y = v.elements[1][2];
- bv[2].z = v.elements[2][2];
+ bv[2].x = v.rows[0][2];
+ bv[2].y = v.rows[1][2];
+ bv[2].z = v.rows[2][2];
bv[2].w = 0;
} break;
@@ -1956,18 +1952,18 @@ void MaterialStorage::_global_variable_store_in_buffer(int32_t p_index, RS::Glob
case RS::GLOBAL_VAR_TYPE_TRANSFORM_2D: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Transform2D v = p_value;
- bv[0].x = v.elements[0][0];
- bv[0].y = v.elements[0][1];
+ bv[0].x = v.columns[0][0];
+ bv[0].y = v.columns[0][1];
bv[0].z = 0;
bv[0].w = 0;
- bv[1].x = v.elements[1][0];
- bv[1].y = v.elements[1][1];
+ bv[1].x = v.columns[1][0];
+ bv[1].y = v.columns[1][1];
bv[1].z = 0;
bv[1].w = 0;
- bv[2].x = v.elements[2][0];
- bv[2].y = v.elements[2][1];
+ bv[2].x = v.columns[2][0];
+ bv[2].y = v.columns[2][1];
bv[2].z = 1;
bv[2].w = 0;
@@ -1975,19 +1971,19 @@ void MaterialStorage::_global_variable_store_in_buffer(int32_t p_index, RS::Glob
case RS::GLOBAL_VAR_TYPE_TRANSFORM: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Transform3D v = p_value;
- bv[0].x = v.basis.elements[0][0];
- bv[0].y = v.basis.elements[1][0];
- bv[0].z = v.basis.elements[2][0];
+ bv[0].x = v.basis.rows[0][0];
+ bv[0].y = v.basis.rows[1][0];
+ bv[0].z = v.basis.rows[2][0];
bv[0].w = 0;
- bv[1].x = v.basis.elements[0][1];
- bv[1].y = v.basis.elements[1][1];
- bv[1].z = v.basis.elements[2][1];
+ bv[1].x = v.basis.rows[0][1];
+ bv[1].y = v.basis.rows[1][1];
+ bv[1].z = v.basis.rows[2][1];
bv[1].w = 0;
- bv[2].x = v.basis.elements[0][2];
- bv[2].y = v.basis.elements[1][2];
- bv[2].z = v.basis.elements[2][2];
+ bv[2].x = v.basis.rows[0][2];
+ bv[2].y = v.basis.rows[1][2];
+ bv[2].z = v.basis.rows[2][2];
bv[2].w = 0;
bv[3].x = v.origin.x;
@@ -2077,10 +2073,9 @@ Vector<StringName> MaterialStorage::global_variable_get_list() const {
ERR_FAIL_V_MSG(Vector<StringName>(), "This function should never be used outside the editor, it can severely damage performance.");
}
- const StringName *K = nullptr;
Vector<StringName> names;
- while ((K = global_variables.variables.next(K))) {
- names.push_back(*K);
+ for (const KeyValue<StringName, GlobalVariables::Variable> &E : global_variables.variables) {
+ names.push_back(E.key);
}
names.sort_custom<StringName::AlphCompare>();
return names;
@@ -2232,7 +2227,7 @@ void MaterialStorage::global_variables_load_settings(bool p_load_textures) {
}
String path = value;
- RES resource = ResourceLoader::load(path);
+ Ref<Resource> resource = ResourceLoader::load(path);
ERR_CONTINUE(resource.is_null());
value = resource;
}
@@ -2312,7 +2307,7 @@ void MaterialStorage::global_variables_instance_update(RID p_instance, int p_ind
pos += p_index;
- _fill_std140_variant_ubo_value(datatype, 0, p_value, (uint8_t *)&global_variables.buffer_values[pos], true); //instances always use linear color in this renderer
+ _fill_std140_variant_ubo_value(datatype, 0, p_value, (uint8_t *)&global_variables.buffer_values[pos]);
_global_variable_mark_buffer_dirty(pos, 1);
}
@@ -2739,7 +2734,8 @@ void MaterialStorage::material_update_dependency(RID p_material, RendererStorage
}
}
-// Canvas Shader Data
+/* Canvas Shader Data */
+
void CanvasShaderData::set_code(const String &p_code) {
// compile the shader
@@ -2916,51 +2912,15 @@ void CanvasMaterialData::update_parameters(const Map<StringName, Variant> &p_par
return update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
-// Look up table to translate ShaderLanguage::DataType to GL_TEXTURE_*
-static const GLenum target_from_type[ShaderLanguage::TYPE_MAX] = {
- GL_TEXTURE_2D, // TYPE_VOID,
- GL_TEXTURE_2D, // TYPE_BOOL,
- GL_TEXTURE_2D, // TYPE_BVEC2,
- GL_TEXTURE_2D, // TYPE_BVEC3,
- GL_TEXTURE_2D, // TYPE_BVEC4,
- GL_TEXTURE_2D, // TYPE_INT,
- GL_TEXTURE_2D, // TYPE_IVEC2,
- GL_TEXTURE_2D, // TYPE_IVEC3,
- GL_TEXTURE_2D, // TYPE_IVEC4,
- GL_TEXTURE_2D, // TYPE_UINT,
- GL_TEXTURE_2D, // TYPE_UVEC2,
- GL_TEXTURE_2D, // TYPE_UVEC3,
- GL_TEXTURE_2D, // TYPE_UVEC4,
- GL_TEXTURE_2D, // TYPE_FLOAT,
- GL_TEXTURE_2D, // TYPE_VEC2,
- GL_TEXTURE_2D, // TYPE_VEC3,
- GL_TEXTURE_2D, // TYPE_VEC4,
- GL_TEXTURE_2D, // TYPE_MAT2,
- GL_TEXTURE_2D, // TYPE_MAT3,
- GL_TEXTURE_2D, // TYPE_MAT4,
- GL_TEXTURE_2D, // TYPE_SAMPLER2D,
- GL_TEXTURE_2D, // TYPE_ISAMPLER2D,
- GL_TEXTURE_2D, // TYPE_USAMPLER2D,
- GL_TEXTURE_2D_ARRAY, // TYPE_SAMPLER2DARRAY,
- GL_TEXTURE_2D_ARRAY, // TYPE_ISAMPLER2DARRAY,
- GL_TEXTURE_2D_ARRAY, // TYPE_USAMPLER2DARRAY,
- GL_TEXTURE_3D, // TYPE_SAMPLER3D,
- GL_TEXTURE_3D, // TYPE_ISAMPLER3D,
- GL_TEXTURE_3D, // TYPE_USAMPLER3D,
- GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBE,
- GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBEARRAY,
- GL_TEXTURE_2D, // TYPE_STRUCT
-};
-
void CanvasMaterialData::bind_uniforms() {
// Bind Material Uniforms
- glBindBufferBase(GL_UNIFORM_BUFFER, RasterizerCanvasGLES3::MATERIAL_UNIFORM_BUFFER_OBJECT, uniform_buffer);
+ glBindBufferBase(GL_UNIFORM_BUFFER, RasterizerCanvasGLES3::MATERIAL_UNIFORM_LOCATION, uniform_buffer);
RID *textures = texture_cache.ptrw();
ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
for (int ti = 0; ti < texture_cache.size(); ti++) {
Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
- glActiveTexture(GL_TEXTURE1 + ti);
+ glActiveTexture(GL_TEXTURE1 + ti); // Start at GL_TEXTURE1 because texture slot 0 is used by the base texture
glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
// Set sampler state here as the same texture can be used in multiple places with different flags
@@ -2982,4 +2942,543 @@ GLES3::MaterialData *GLES3::_create_canvas_material_func(ShaderData *p_shader) {
return material_data;
}
+////////////////////////////////////////////////////////////////////////////////
+// SKY SHADER
+
+void SkyShaderData::set_code(const String &p_code) {
+ //compile
+
+ code = p_code;
+ valid = false;
+ ubo_size = 0;
+ uniforms.clear();
+
+ if (code.is_empty()) {
+ return; //just invalid, but no error
+ }
+
+ ShaderCompiler::GeneratedCode gen_code;
+ ShaderCompiler::IdentifierActions actions;
+ actions.entry_point_stages["sky"] = ShaderCompiler::STAGE_FRAGMENT;
+
+ uses_time = false;
+ uses_half_res = false;
+ uses_quarter_res = false;
+ uses_position = false;
+ uses_light = false;
+
+ actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
+ actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
+
+ actions.usage_flag_pointers["TIME"] = &uses_time;
+ actions.usage_flag_pointers["POSITION"] = &uses_position;
+ actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
+ actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light;
+
+ actions.uniforms = &uniforms;
+
+ Error err = MaterialStorage::get_singleton()->shaders.compiler_sky.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
+ ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
+
+ if (version.is_null()) {
+ version = MaterialStorage::get_singleton()->shaders.sky_shader.version_create();
+ }
+
+#if 0
+ print_line("**compiling shader:");
+ print_line("**defines:\n");
+ for (int i = 0; i < gen_code.defines.size(); i++) {
+ print_line(gen_code.defines[i]);
+ }
+ print_line("\n**uniforms:\n" + gen_code.uniforms);
+ // print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
+ // print_line("\n**vertex_code:\n" + gen_code.vertex);
+ print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
+ print_line("\n**fragment_code:\n" + gen_code.fragment);
+ print_line("\n**light_code:\n" + gen_code.light);
+#endif
+
+ Vector<StringName> texture_uniform_names;
+ for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
+ texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
+ }
+
+ MaterialStorage::get_singleton()->shaders.sky_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
+ ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.sky_shader.version_is_valid(version));
+
+ ubo_size = gen_code.uniform_total_size;
+ ubo_offsets = gen_code.uniform_offsets;
+ texture_uniforms = gen_code.texture_uniforms;
+
+ valid = true;
+}
+
+void SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture, int p_index) {
+ if (!p_texture.is_valid()) {
+ if (default_texture_params.has(p_name) && default_texture_params[p_name].has(p_index)) {
+ default_texture_params[p_name].erase(p_index);
+
+ if (default_texture_params[p_name].is_empty()) {
+ default_texture_params.erase(p_name);
+ }
+ }
+ } else {
+ if (!default_texture_params.has(p_name)) {
+ default_texture_params[p_name] = Map<int, RID>();
+ }
+ default_texture_params[p_name][p_index] = p_texture;
+ }
+}
+
+void SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
+ Map<int, StringName> order;
+
+ for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
+ if (E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
+ continue;
+ }
+
+ if (E.value.texture_order >= 0) {
+ order[E.value.texture_order + 100000] = E.key;
+ } else {
+ order[E.value.order] = E.key;
+ }
+ }
+
+ for (const KeyValue<int, StringName> &E : order) {
+ PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E.value]);
+ pi.name = E.value;
+ p_param_list->push_back(pi);
+ }
+}
+
+void SkyShaderData::get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const {
+ for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
+ if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
+ continue;
+ }
+
+ RendererMaterialStorage::InstanceShaderParam p;
+ p.info = ShaderLanguage::uniform_to_property_info(E.value);
+ p.info.name = E.key; //supply name
+ p.index = E.value.instance_index;
+ p.default_value = ShaderLanguage::constant_value_to_variant(E.value.default_value, E.value.type, E.value.array_size, E.value.hint);
+ p_param_list->push_back(p);
+ }
+}
+
+bool SkyShaderData::is_param_texture(const StringName &p_param) const {
+ if (!uniforms.has(p_param)) {
+ return false;
+ }
+
+ return uniforms[p_param].texture_order >= 0;
+}
+
+bool SkyShaderData::is_animated() const {
+ return false;
+}
+
+bool SkyShaderData::casts_shadows() const {
+ return false;
+}
+
+Variant SkyShaderData::get_default_parameter(const StringName &p_parameter) const {
+ if (uniforms.has(p_parameter)) {
+ ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
+ Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
+ return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.array_size, uniform.hint);
+ }
+ return Variant();
+}
+
+RS::ShaderNativeSourceCode SkyShaderData::get_native_source_code() const {
+ return MaterialStorage::get_singleton()->shaders.sky_shader.version_get_native_source_code(version);
+}
+
+SkyShaderData::SkyShaderData() {
+ valid = false;
+}
+
+SkyShaderData::~SkyShaderData() {
+ if (version.is_valid()) {
+ MaterialStorage::get_singleton()->shaders.sky_shader.version_free(version);
+ }
+}
+
+GLES3::ShaderData *GLES3::_create_sky_shader_func() {
+ SkyShaderData *shader_data = memnew(SkyShaderData);
+ return shader_data;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Sky material
+
+void SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
+ return update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
+}
+
+SkyMaterialData::~SkyMaterialData() {
+}
+GLES3::MaterialData *GLES3::_create_sky_material_func(ShaderData *p_shader) {
+ SkyMaterialData *material_data = memnew(SkyMaterialData);
+ material_data->shader_data = static_cast<SkyShaderData *>(p_shader);
+ //update will happen later anyway so do nothing.
+ return material_data;
+}
+
+void SkyMaterialData::bind_uniforms() {
+ // Bind Material Uniforms
+ glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MATERIAL_UNIFORM_LOCATION, uniform_buffer);
+
+ RID *textures = texture_cache.ptrw();
+ ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
+ for (int ti = 0; ti < texture_cache.size(); ti++) {
+ Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
+ glActiveTexture(GL_TEXTURE0 + ti);
+ glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
+
+ // Set sampler state here as the same texture can be used in multiple places with different flags
+ // Need to convert sampler state from ShaderLanguage::Texture* to RS::CanvasItemTexture*
+ RS::CanvasItemTextureFilter filter = RS::CanvasItemTextureFilter((int(texture_uniforms[ti].filter) + 1) % RS::CANVAS_ITEM_TEXTURE_FILTER_MAX);
+ RS::CanvasItemTextureRepeat repeat = RS::CanvasItemTextureRepeat((int(texture_uniforms[ti].repeat) + 1) % RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR);
+ texture->gl_set_filter(filter);
+ texture->gl_set_repeat(repeat);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Scene SHADER
+
+void SceneShaderData::set_code(const String &p_code) {
+ //compile
+
+ code = p_code;
+ valid = false;
+ ubo_size = 0;
+ uniforms.clear();
+ uses_screen_texture = false;
+
+ if (code.is_empty()) {
+ return; //just invalid, but no error
+ }
+
+ ShaderCompiler::GeneratedCode gen_code;
+
+ int blend_modei = BLEND_MODE_MIX;
+ int depth_testi = DEPTH_TEST_ENABLED;
+ int alpha_antialiasing_modei = ALPHA_ANTIALIASING_OFF;
+ int cull_modei = CULL_BACK;
+ int depth_drawi = DEPTH_DRAW_OPAQUE;
+
+ uses_point_size = false;
+ uses_alpha = false;
+ uses_alpha_clip = false;
+ uses_blend_alpha = false;
+ uses_depth_pre_pass = false;
+ uses_discard = false;
+ uses_roughness = false;
+ uses_normal = false;
+ wireframe = false;
+
+ unshaded = false;
+ uses_vertex = false;
+ uses_position = false;
+ uses_sss = false;
+ uses_transmittance = false;
+ uses_screen_texture = false;
+ uses_depth_texture = false;
+ uses_normal_texture = false;
+ uses_time = false;
+ writes_modelview_or_projection = false;
+ uses_world_coordinates = false;
+ uses_particle_trails = false;
+
+ ShaderCompiler::IdentifierActions actions;
+ actions.entry_point_stages["vertex"] = ShaderCompiler::STAGE_VERTEX;
+ actions.entry_point_stages["fragment"] = ShaderCompiler::STAGE_FRAGMENT;
+ actions.entry_point_stages["light"] = ShaderCompiler::STAGE_FRAGMENT;
+
+ actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_modei, BLEND_MODE_ADD);
+ actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MIX);
+ actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_modei, BLEND_MODE_SUB);
+ actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MUL);
+
+ actions.render_mode_values["alpha_to_coverage"] = Pair<int *, int>(&alpha_antialiasing_modei, ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE);
+ actions.render_mode_values["alpha_to_coverage_and_one"] = Pair<int *, int>(&alpha_antialiasing_modei, ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE_AND_TO_ONE);
+
+ actions.render_mode_values["depth_draw_never"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_DISABLED);
+ actions.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_OPAQUE);
+ actions.render_mode_values["depth_draw_always"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_ALWAYS);
+
+ actions.render_mode_values["depth_test_disabled"] = Pair<int *, int>(&depth_testi, DEPTH_TEST_DISABLED);
+
+ actions.render_mode_values["cull_disabled"] = Pair<int *, int>(&cull_modei, CULL_DISABLED);
+ actions.render_mode_values["cull_front"] = Pair<int *, int>(&cull_modei, CULL_FRONT);
+ actions.render_mode_values["cull_back"] = Pair<int *, int>(&cull_modei, CULL_BACK);
+
+ actions.render_mode_flags["unshaded"] = &unshaded;
+ actions.render_mode_flags["wireframe"] = &wireframe;
+ actions.render_mode_flags["particle_trails"] = &uses_particle_trails;
+
+ actions.usage_flag_pointers["ALPHA"] = &uses_alpha;
+ actions.usage_flag_pointers["ALPHA_SCISSOR_THRESHOLD"] = &uses_alpha_clip;
+ actions.render_mode_flags["depth_prepass_alpha"] = &uses_depth_pre_pass;
+
+ actions.usage_flag_pointers["SSS_STRENGTH"] = &uses_sss;
+ actions.usage_flag_pointers["SSS_TRANSMITTANCE_DEPTH"] = &uses_transmittance;
+
+ actions.usage_flag_pointers["SCREEN_TEXTURE"] = &uses_screen_texture;
+ actions.usage_flag_pointers["DEPTH_TEXTURE"] = &uses_depth_texture;
+ actions.usage_flag_pointers["NORMAL_TEXTURE"] = &uses_normal_texture;
+ actions.usage_flag_pointers["DISCARD"] = &uses_discard;
+ actions.usage_flag_pointers["TIME"] = &uses_time;
+ actions.usage_flag_pointers["ROUGHNESS"] = &uses_roughness;
+ actions.usage_flag_pointers["NORMAL"] = &uses_normal;
+ actions.usage_flag_pointers["NORMAL_MAP"] = &uses_normal;
+
+ actions.usage_flag_pointers["POINT_SIZE"] = &uses_point_size;
+ actions.usage_flag_pointers["POINT_COORD"] = &uses_point_size;
+
+ actions.write_flag_pointers["MODELVIEW_MATRIX"] = &writes_modelview_or_projection;
+ actions.write_flag_pointers["PROJECTION_MATRIX"] = &writes_modelview_or_projection;
+ actions.write_flag_pointers["VERTEX"] = &uses_vertex;
+ actions.write_flag_pointers["POSITION"] = &uses_position;
+
+ actions.usage_flag_pointers["TANGENT"] = &uses_tangent;
+ actions.usage_flag_pointers["BINORMAL"] = &uses_tangent;
+ actions.usage_flag_pointers["COLOR"] = &uses_color;
+ actions.usage_flag_pointers["UV"] = &uses_uv;
+ actions.usage_flag_pointers["UV2"] = &uses_uv2;
+ actions.usage_flag_pointers["CUSTOM0"] = &uses_custom0;
+ actions.usage_flag_pointers["CUSTOM1"] = &uses_custom1;
+ actions.usage_flag_pointers["CUSTOM2"] = &uses_custom2;
+ actions.usage_flag_pointers["CUSTOM3"] = &uses_custom3;
+ actions.usage_flag_pointers["BONE_INDICES"] = &uses_bones;
+ actions.usage_flag_pointers["BONE_WEIGHTS"] = &uses_weights;
+
+ actions.uniforms = &uniforms;
+
+ Error err = MaterialStorage::get_singleton()->shaders.compiler_scene.compile(RS::SHADER_SPATIAL, code, &actions, path, gen_code);
+ ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
+
+ if (version.is_null()) {
+ version = MaterialStorage::get_singleton()->shaders.scene_shader.version_create();
+ }
+
+ depth_draw = DepthDraw(depth_drawi);
+ depth_test = DepthTest(depth_testi);
+ cull_mode = Cull(cull_modei);
+ blend_mode = BlendMode(blend_modei);
+ alpha_antialiasing_mode = AlphaAntiAliasing(alpha_antialiasing_modei);
+ vertex_input_mask = uint32_t(uses_normal);
+ vertex_input_mask |= uses_tangent << 1;
+ vertex_input_mask |= uses_color << 2;
+ vertex_input_mask |= uses_uv << 3;
+ vertex_input_mask |= uses_uv2 << 4;
+ vertex_input_mask |= uses_custom0 << 5;
+ vertex_input_mask |= uses_custom1 << 6;
+ vertex_input_mask |= uses_custom2 << 7;
+ vertex_input_mask |= uses_custom3 << 8;
+ vertex_input_mask |= uses_bones << 9;
+ vertex_input_mask |= uses_weights << 10;
+
+#if 0
+ print_line("**compiling shader:");
+ print_line("**defines:\n");
+ for (int i = 0; i < gen_code.defines.size(); i++) {
+ print_line(gen_code.defines[i]);
+ }
+
+ Map<String, String>::Element *el = gen_code.code.front();
+ while (el) {
+ print_line("\n**code " + el->key() + ":\n" + el->value());
+
+ el = el->next();
+ }
+
+ print_line("\n**uniforms:\n" + gen_code.uniforms);
+ print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
+ print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
+#endif
+
+ Vector<StringName> texture_uniform_names;
+ for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
+ texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
+ }
+
+ MaterialStorage::get_singleton()->shaders.scene_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
+ ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.scene_shader.version_is_valid(version));
+
+ ubo_size = gen_code.uniform_total_size;
+ ubo_offsets = gen_code.uniform_offsets;
+ texture_uniforms = gen_code.texture_uniforms;
+
+ // if any form of Alpha Antialiasing is enabled, set the blend mode to alpha to coverage
+ if (alpha_antialiasing_mode != ALPHA_ANTIALIASING_OFF) {
+ blend_mode = BLEND_MODE_ALPHA_TO_COVERAGE;
+ }
+
+ valid = true;
+}
+
+void SceneShaderData::set_default_texture_param(const StringName &p_name, RID p_texture, int p_index) {
+ if (!p_texture.is_valid()) {
+ if (default_texture_params.has(p_name) && default_texture_params[p_name].has(p_index)) {
+ default_texture_params[p_name].erase(p_index);
+
+ if (default_texture_params[p_name].is_empty()) {
+ default_texture_params.erase(p_name);
+ }
+ }
+ } else {
+ if (!default_texture_params.has(p_name)) {
+ default_texture_params[p_name] = Map<int, RID>();
+ }
+ default_texture_params[p_name][p_index] = p_texture;
+ }
+}
+
+void SceneShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
+ Map<int, StringName> order;
+
+ for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
+ if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_LOCAL) {
+ continue;
+ }
+
+ if (E.value.texture_order >= 0) {
+ order[E.value.texture_order + 100000] = E.key;
+ } else {
+ order[E.value.order] = E.key;
+ }
+ }
+
+ for (const KeyValue<int, StringName> &E : order) {
+ PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E.value]);
+ pi.name = E.value;
+ p_param_list->push_back(pi);
+ }
+}
+
+void SceneShaderData::get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const {
+ for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
+ if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
+ continue;
+ }
+
+ RendererMaterialStorage::InstanceShaderParam p;
+ p.info = ShaderLanguage::uniform_to_property_info(E.value);
+ p.info.name = E.key; //supply name
+ p.index = E.value.instance_index;
+ p.default_value = ShaderLanguage::constant_value_to_variant(E.value.default_value, E.value.type, E.value.array_size, E.value.hint);
+ p_param_list->push_back(p);
+ }
+}
+
+bool SceneShaderData::is_param_texture(const StringName &p_param) const {
+ if (!uniforms.has(p_param)) {
+ return false;
+ }
+
+ return uniforms[p_param].texture_order >= 0;
+}
+
+bool SceneShaderData::is_animated() const {
+ return false;
+}
+
+bool SceneShaderData::casts_shadows() const {
+ return false;
+}
+
+Variant SceneShaderData::get_default_parameter(const StringName &p_parameter) const {
+ if (uniforms.has(p_parameter)) {
+ ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
+ Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
+ return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.array_size, uniform.hint);
+ }
+ return Variant();
+}
+
+RS::ShaderNativeSourceCode SceneShaderData::get_native_source_code() const {
+ return MaterialStorage::get_singleton()->shaders.scene_shader.version_get_native_source_code(version);
+}
+
+SceneShaderData::SceneShaderData() {
+ valid = false;
+ uses_screen_texture = false;
+}
+
+SceneShaderData::~SceneShaderData() {
+ if (version.is_valid()) {
+ MaterialStorage::get_singleton()->shaders.scene_shader.version_free(version);
+ }
+}
+
+GLES3::ShaderData *GLES3::_create_scene_shader_func() {
+ SceneShaderData *shader_data = memnew(SceneShaderData);
+ return shader_data;
+}
+
+void SceneMaterialData::set_render_priority(int p_priority) {
+ priority = p_priority - RS::MATERIAL_RENDER_PRIORITY_MIN; //8 bits
+}
+
+void SceneMaterialData::set_next_pass(RID p_pass) {
+ next_pass = p_pass;
+}
+
+void SceneMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
+ return update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
+}
+
+SceneMaterialData::~SceneMaterialData() {
+}
+
+GLES3::MaterialData *GLES3::_create_scene_material_func(ShaderData *p_shader) {
+ SceneMaterialData *material_data = memnew(SceneMaterialData);
+ material_data->shader_data = static_cast<SceneShaderData *>(p_shader);
+ //update will happen later anyway so do nothing.
+ return material_data;
+}
+
+void SceneMaterialData::bind_uniforms() {
+ // Bind Material Uniforms
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MATERIAL_UNIFORM_LOCATION, uniform_buffer);
+
+ RID *textures = texture_cache.ptrw();
+ ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
+ for (int ti = 0; ti < texture_cache.size(); ti++) {
+ Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
+ glActiveTexture(GL_TEXTURE0 + ti);
+ glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
+
+ // Set sampler state here as the same texture can be used in multiple places with different flags
+ // Need to convert sampler state from ShaderLanguage::Texture* to RS::CanvasItemTexture*
+ RS::CanvasItemTextureFilter filter = RS::CanvasItemTextureFilter((int(texture_uniforms[ti].filter) + 1) % RS::CANVAS_ITEM_TEXTURE_FILTER_MAX);
+ RS::CanvasItemTextureRepeat repeat = RS::CanvasItemTextureRepeat((int(texture_uniforms[ti].repeat) + 1) % RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR);
+ texture->gl_set_filter(filter);
+ texture->gl_set_repeat(repeat);
+ }
+}
+
#endif // !GLES3_ENABLED
diff --git a/drivers/gles3/storage/material_storage.h b/drivers/gles3/storage/material_storage.h
index cc6cbdc152..aa36dda4e6 100644
--- a/drivers/gles3/storage/material_storage.h
+++ b/drivers/gles3/storage/material_storage.h
@@ -45,15 +45,17 @@
#include "drivers/gles3/shaders/copy.glsl.gen.h"
#include "../shaders/canvas.glsl.gen.h"
+#include "../shaders/scene.glsl.gen.h"
#include "../shaders/sky.glsl.gen.h"
namespace GLES3 {
-/* SHADER Structs */
+/* Shader Structs */
struct Shaders {
CanvasShaderGLES3 canvas_shader;
SkyShaderGLES3 sky_shader;
+ SceneShaderGLES3 scene_shader;
ShaderCompiler compiler_canvas;
ShaderCompiler compiler_scene;
@@ -141,7 +143,7 @@ struct Material {
update_element(this) {}
};
-// CanvasItem Materials
+/* CanvasItem Materials */
struct CanvasShaderData : public ShaderData {
enum BlendMode { //used internally
@@ -200,6 +202,179 @@ struct CanvasMaterialData : public MaterialData {
MaterialData *_create_canvas_material_func(ShaderData *p_shader);
+/* Sky Materials */
+
+struct SkyShaderData : public ShaderData {
+ bool valid;
+ RID version;
+
+ Map<StringName, ShaderLanguage::ShaderNode::Uniform> uniforms;
+ Vector<ShaderCompiler::GeneratedCode::Texture> texture_uniforms;
+
+ Vector<uint32_t> ubo_offsets;
+ uint32_t ubo_size;
+
+ String path;
+ String code;
+ Map<StringName, Map<int, RID>> default_texture_params;
+
+ bool uses_time;
+ bool uses_position;
+ bool uses_half_res;
+ bool uses_quarter_res;
+ bool uses_light;
+
+ virtual void set_code(const String &p_Code);
+ virtual void set_default_texture_param(const StringName &p_name, RID p_texture, int p_index);
+ virtual void get_param_list(List<PropertyInfo> *p_param_list) const;
+ virtual void get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const;
+ virtual bool is_param_texture(const StringName &p_param) const;
+ virtual bool is_animated() const;
+ virtual bool casts_shadows() const;
+ virtual Variant get_default_parameter(const StringName &p_parameter) const;
+ virtual RS::ShaderNativeSourceCode get_native_source_code() const;
+ SkyShaderData();
+ virtual ~SkyShaderData();
+};
+
+ShaderData *_create_sky_shader_func();
+
+struct SkyMaterialData : public MaterialData {
+ SkyShaderData *shader_data = nullptr;
+
+ virtual void set_render_priority(int p_priority) {}
+ virtual void set_next_pass(RID p_pass) {}
+ virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty);
+ virtual void bind_uniforms();
+ virtual ~SkyMaterialData();
+};
+
+MaterialData *_create_sky_material_func(ShaderData *p_shader);
+
+/* Scene Materials */
+
+struct SceneShaderData : public ShaderData {
+ enum BlendMode { //used internally
+ BLEND_MODE_MIX,
+ BLEND_MODE_ADD,
+ BLEND_MODE_SUB,
+ BLEND_MODE_MUL,
+ BLEND_MODE_ALPHA_TO_COVERAGE
+ };
+
+ enum DepthDraw {
+ DEPTH_DRAW_DISABLED,
+ DEPTH_DRAW_OPAQUE,
+ DEPTH_DRAW_ALWAYS
+ };
+
+ enum DepthTest {
+ DEPTH_TEST_DISABLED,
+ DEPTH_TEST_ENABLED
+ };
+
+ enum Cull {
+ CULL_DISABLED,
+ CULL_FRONT,
+ CULL_BACK
+ };
+
+ enum AlphaAntiAliasing {
+ ALPHA_ANTIALIASING_OFF,
+ ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE,
+ ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE_AND_TO_ONE
+ };
+
+ bool valid;
+ RID version;
+
+ String path;
+
+ Map<StringName, ShaderLanguage::ShaderNode::Uniform> uniforms;
+ Vector<ShaderCompiler::GeneratedCode::Texture> texture_uniforms;
+
+ Vector<uint32_t> ubo_offsets;
+ uint32_t ubo_size;
+
+ String code;
+ Map<StringName, Map<int, RID>> default_texture_params;
+
+ BlendMode blend_mode;
+ AlphaAntiAliasing alpha_antialiasing_mode;
+ DepthDraw depth_draw;
+ DepthTest depth_test;
+ Cull cull_mode;
+
+ bool uses_point_size;
+ bool uses_alpha;
+ bool uses_blend_alpha;
+ bool uses_alpha_clip;
+ bool uses_depth_pre_pass;
+ bool uses_discard;
+ bool uses_roughness;
+ bool uses_normal;
+ bool uses_particle_trails;
+ bool wireframe;
+
+ bool unshaded;
+ bool uses_vertex;
+ bool uses_position;
+ bool uses_sss;
+ bool uses_transmittance;
+ bool uses_screen_texture;
+ bool uses_depth_texture;
+ bool uses_normal_texture;
+ bool uses_time;
+ bool writes_modelview_or_projection;
+ bool uses_world_coordinates;
+ bool uses_tangent;
+ bool uses_color;
+ bool uses_uv;
+ bool uses_uv2;
+ bool uses_custom0;
+ bool uses_custom1;
+ bool uses_custom2;
+ bool uses_custom3;
+ bool uses_bones;
+ bool uses_weights;
+
+ uint32_t vertex_input_mask = 0;
+
+ uint64_t last_pass = 0;
+ uint32_t index = 0;
+
+ virtual void set_code(const String &p_Code);
+ virtual void set_default_texture_param(const StringName &p_name, RID p_texture, int p_index);
+ virtual void get_param_list(List<PropertyInfo> *p_param_list) const;
+ virtual void get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const;
+
+ virtual bool is_param_texture(const StringName &p_param) const;
+ virtual bool is_animated() const;
+ virtual bool casts_shadows() const;
+ virtual Variant get_default_parameter(const StringName &p_parameter) const;
+ virtual RS::ShaderNativeSourceCode get_native_source_code() const;
+
+ SceneShaderData();
+ virtual ~SceneShaderData();
+};
+
+ShaderData *_create_scene_shader_func();
+
+struct SceneMaterialData : public MaterialData {
+ SceneShaderData *shader_data = nullptr;
+ uint64_t last_pass = 0;
+ uint32_t index = 0;
+ RID next_pass;
+ uint8_t priority = 0;
+ virtual void set_render_priority(int p_priority);
+ virtual void set_next_pass(RID p_pass);
+ virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty);
+ virtual void bind_uniforms();
+ virtual ~SceneMaterialData();
+};
+
+MaterialData *_create_scene_material_func(ShaderData *p_shader);
+
/* Global variable structs */
struct GlobalVariables {
enum {
diff --git a/drivers/gles3/storage/mesh_storage.cpp b/drivers/gles3/storage/mesh_storage.cpp
index 934f746423..a2b9cb6a62 100644
--- a/drivers/gles3/storage/mesh_storage.cpp
+++ b/drivers/gles3/storage/mesh_storage.cpp
@@ -194,6 +194,7 @@ void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface)
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
glBufferData(GL_ARRAY_BUFFER, p_surface.attribute_data.size(), p_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
+ s->attribute_buffer_size = p_surface.attribute_data.size();
}
if (p_surface.skin_data.size()) {
glGenBuffers(1, &s->skin_buffer);
@@ -216,6 +217,7 @@ void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.index_data.size(), p_surface.index_data.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
s->index_count = p_surface.index_count;
+ s->index_buffer_size = p_surface.index_data.size();
if (p_surface.lods.size()) {
s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
@@ -323,7 +325,97 @@ RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
}
RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
- return RS::SurfaceData();
+ Mesh *mesh = mesh_owner.get_or_null(p_mesh);
+ ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
+ ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
+
+ Mesh::Surface &s = *mesh->surfaces[p_surface];
+
+ RS::SurfaceData sd;
+ sd.format = s.format;
+ {
+ Vector<uint8_t> ret;
+ ret.resize(s.vertex_buffer_size);
+ glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffer);
+
+#if defined(__EMSCRIPTEN__)
+ {
+ uint8_t *w = ret.ptrw();
+ glGetBufferSubData(GL_ARRAY_BUFFER, 0, s.vertex_buffer_size, w);
+ }
+#else
+ void *data = glMapBufferRange(GL_ARRAY_BUFFER, 0, s.vertex_buffer_size, GL_MAP_READ_BIT);
+ ERR_FAIL_NULL_V(data, RS::SurfaceData());
+ {
+ uint8_t *w = ret.ptrw();
+ memcpy(w, data, s.vertex_buffer_size);
+ }
+ glUnmapBuffer(GL_ARRAY_BUFFER);
+#endif
+ sd.vertex_data = ret;
+ }
+
+ if (s.attribute_buffer != 0) {
+ Vector<uint8_t> ret;
+ ret.resize(s.attribute_buffer_size);
+ glBindBuffer(GL_ARRAY_BUFFER, s.attribute_buffer);
+
+#if defined(__EMSCRIPTEN__)
+ {
+ uint8_t *w = ret.ptrw();
+ glGetBufferSubData(GL_ARRAY_BUFFER, 0, s.attribute_buffer_size, w);
+ }
+#else
+ void *data = glMapBufferRange(GL_ARRAY_BUFFER, 0, s.attribute_buffer_size, GL_MAP_READ_BIT);
+ ERR_FAIL_NULL_V(data, RS::SurfaceData());
+ {
+ uint8_t *w = ret.ptrw();
+ memcpy(w, data, s.attribute_buffer_size);
+ }
+ glUnmapBuffer(GL_ARRAY_BUFFER);
+#endif
+ sd.attribute_data = ret;
+ }
+
+ sd.vertex_count = s.vertex_count;
+ sd.index_count = s.index_count;
+ sd.primitive = s.primitive;
+
+ if (sd.index_count) {
+ Vector<uint8_t> ret;
+ ret.resize(s.index_buffer_size);
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer);
+
+#if defined(__EMSCRIPTEN__)
+ {
+ uint8_t *w = ret.ptrw();
+ glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, s.index_buffer_size, w);
+ }
+#else
+ void *data = glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, s.index_buffer_size, GL_MAP_READ_BIT);
+ ERR_FAIL_NULL_V(data, RS::SurfaceData());
+ {
+ uint8_t *w = ret.ptrw();
+ memcpy(w, data, s.index_buffer_size);
+ }
+ glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
+#endif
+ sd.index_data = ret;
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
+ }
+
+ sd.aabb = s.aabb;
+ for (uint32_t i = 0; i < s.lod_count; i++) {
+ RS::SurfaceData::LOD lod;
+ lod.edge_length = s.lods[i].edge_length;
+ //lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
+ sd.lods.push_back(lod);
+ }
+
+ sd.bone_aabbs = s.bone_aabbs;
+ glBindBuffer(GL_ARRAY_BUFFER, 0);
+
+ return sd;
}
int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
@@ -384,12 +476,12 @@ AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
Transform3D mtx;
- mtx.basis.elements[0].x = dataptr[0];
- mtx.basis.elements[1].x = dataptr[1];
+ mtx.basis.rows[0].x = dataptr[0];
+ mtx.basis.rows[1].x = dataptr[1];
mtx.origin.x = dataptr[3];
- mtx.basis.elements[0].y = dataptr[4];
- mtx.basis.elements[1].y = dataptr[5];
+ mtx.basis.rows[0].y = dataptr[4];
+ mtx.basis.rows[1].y = dataptr[5];
mtx.origin.y = dataptr[7];
AABB baabb = mtx.xform(skbones[j]);
@@ -411,17 +503,17 @@ AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
Transform3D mtx;
- mtx.basis.elements[0][0] = dataptr[0];
- mtx.basis.elements[0][1] = dataptr[1];
- mtx.basis.elements[0][2] = dataptr[2];
+ mtx.basis.rows[0][0] = dataptr[0];
+ mtx.basis.rows[0][1] = dataptr[1];
+ mtx.basis.rows[0][2] = dataptr[2];
mtx.origin.x = dataptr[3];
- mtx.basis.elements[1][0] = dataptr[4];
- mtx.basis.elements[1][1] = dataptr[5];
- mtx.basis.elements[1][2] = dataptr[6];
+ mtx.basis.rows[1][0] = dataptr[4];
+ mtx.basis.rows[1][1] = dataptr[5];
+ mtx.basis.rows[1][2] = dataptr[6];
mtx.origin.y = dataptr[7];
- mtx.basis.elements[2][0] = dataptr[8];
- mtx.basis.elements[2][1] = dataptr[9];
- mtx.basis.elements[2][2] = dataptr[10];
+ mtx.basis.rows[2][0] = dataptr[8];
+ mtx.basis.rows[2][1] = dataptr[9];
+ mtx.basis.rows[2][2] = dataptr[10];
mtx.origin.z = dataptr[11];
AABB baabb = mtx.xform(skbones[j]);
@@ -496,7 +588,6 @@ void MeshStorage::mesh_clear(RID p_mesh) {
if (s.index_buffer != 0) {
glDeleteBuffers(1, &s.index_buffer);
- glDeleteVertexArrays(1, &s.index_array);
}
memdelete(mesh->surfaces[i]);
}
@@ -553,14 +644,14 @@ void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::V
case RS::ARRAY_NORMAL: {
attribs[i].offset = vertex_stride;
// Will need to change to accommodate octahedral compression
- attribs[i].size = 1;
+ attribs[i].size = 4;
attribs[i].type = GL_UNSIGNED_INT_2_10_10_10_REV;
vertex_stride += sizeof(float);
attribs[i].normalized = GL_TRUE;
} break;
case RS::ARRAY_TANGENT: {
attribs[i].offset = vertex_stride;
- attribs[i].size = 1;
+ attribs[i].size = 4;
attribs[i].type = GL_UNSIGNED_INT_2_10_10_10_REV;
vertex_stride += sizeof(float);
attribs[i].normalized = GL_TRUE;
@@ -629,14 +720,17 @@ void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::V
continue;
}
if (i <= RS::ARRAY_TANGENT) {
+ attribs[i].stride = vertex_stride;
if (mis) {
glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer);
} else {
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
}
} else if (i <= RS::ARRAY_CUSTOM3) {
+ attribs[i].stride = attributes_stride;
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
} else {
+ attribs[i].stride = skin_stride;
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
}
@@ -645,7 +739,7 @@ void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::V
} else {
glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
}
- glEnableVertexAttribArray(attribs[i].index);
+ glEnableVertexAttribArray(i);
}
// Do not bind index here as we want to switch between index buffers for LOD
@@ -975,26 +1069,26 @@ void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p
Transform3D t;
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
- t.basis.elements[0][0] = data[0];
- t.basis.elements[0][1] = data[1];
- t.basis.elements[0][2] = data[2];
+ t.basis.rows[0][0] = data[0];
+ t.basis.rows[0][1] = data[1];
+ t.basis.rows[0][2] = data[2];
t.origin.x = data[3];
- t.basis.elements[1][0] = data[4];
- t.basis.elements[1][1] = data[5];
- t.basis.elements[1][2] = data[6];
+ t.basis.rows[1][0] = data[4];
+ t.basis.rows[1][1] = data[5];
+ t.basis.rows[1][2] = data[6];
t.origin.y = data[7];
- t.basis.elements[2][0] = data[8];
- t.basis.elements[2][1] = data[9];
- t.basis.elements[2][2] = data[10];
+ t.basis.rows[2][0] = data[8];
+ t.basis.rows[2][1] = data[9];
+ t.basis.rows[2][2] = data[10];
t.origin.z = data[11];
} else {
- t.basis.elements[0].x = data[0];
- t.basis.elements[1].x = data[1];
+ t.basis.rows[0].x = data[0];
+ t.basis.rows[1].x = data[1];
t.origin.x = data[3];
- t.basis.elements[0].y = data[4];
- t.basis.elements[1].y = data[5];
+ t.basis.rows[0].y = data[4];
+ t.basis.rows[1].y = data[5];
t.origin.y = data[7];
}
@@ -1021,17 +1115,17 @@ void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index,
float *dataptr = w + p_index * multimesh->stride_cache;
- dataptr[0] = p_transform.basis.elements[0][0];
- dataptr[1] = p_transform.basis.elements[0][1];
- dataptr[2] = p_transform.basis.elements[0][2];
+ dataptr[0] = p_transform.basis.rows[0][0];
+ dataptr[1] = p_transform.basis.rows[0][1];
+ dataptr[2] = p_transform.basis.rows[0][2];
dataptr[3] = p_transform.origin.x;
- dataptr[4] = p_transform.basis.elements[1][0];
- dataptr[5] = p_transform.basis.elements[1][1];
- dataptr[6] = p_transform.basis.elements[1][2];
+ dataptr[4] = p_transform.basis.rows[1][0];
+ dataptr[5] = p_transform.basis.rows[1][1];
+ dataptr[6] = p_transform.basis.rows[1][2];
dataptr[7] = p_transform.origin.y;
- dataptr[8] = p_transform.basis.elements[2][0];
- dataptr[9] = p_transform.basis.elements[2][1];
- dataptr[10] = p_transform.basis.elements[2][2];
+ dataptr[8] = p_transform.basis.rows[2][0];
+ dataptr[9] = p_transform.basis.rows[2][1];
+ dataptr[10] = p_transform.basis.rows[2][2];
dataptr[11] = p_transform.origin.z;
}
@@ -1051,14 +1145,14 @@ void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_ind
float *dataptr = w + p_index * multimesh->stride_cache;
- dataptr[0] = p_transform.elements[0][0];
- dataptr[1] = p_transform.elements[1][0];
+ dataptr[0] = p_transform.columns[0][0];
+ dataptr[1] = p_transform.columns[1][0];
dataptr[2] = 0;
- dataptr[3] = p_transform.elements[2][0];
- dataptr[4] = p_transform.elements[0][1];
- dataptr[5] = p_transform.elements[1][1];
+ dataptr[3] = p_transform.columns[2][0];
+ dataptr[4] = p_transform.columns[0][1];
+ dataptr[5] = p_transform.columns[1][1];
dataptr[6] = 0;
- dataptr[7] = p_transform.elements[2][1];
+ dataptr[7] = p_transform.columns[2][1];
}
_multimesh_mark_dirty(multimesh, p_index, true);
@@ -1138,17 +1232,17 @@ Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p
const float *dataptr = r + p_index * multimesh->stride_cache;
- t.basis.elements[0][0] = dataptr[0];
- t.basis.elements[0][1] = dataptr[1];
- t.basis.elements[0][2] = dataptr[2];
+ t.basis.rows[0][0] = dataptr[0];
+ t.basis.rows[0][1] = dataptr[1];
+ t.basis.rows[0][2] = dataptr[2];
t.origin.x = dataptr[3];
- t.basis.elements[1][0] = dataptr[4];
- t.basis.elements[1][1] = dataptr[5];
- t.basis.elements[1][2] = dataptr[6];
+ t.basis.rows[1][0] = dataptr[4];
+ t.basis.rows[1][1] = dataptr[5];
+ t.basis.rows[1][2] = dataptr[6];
t.origin.y = dataptr[7];
- t.basis.elements[2][0] = dataptr[8];
- t.basis.elements[2][1] = dataptr[9];
- t.basis.elements[2][2] = dataptr[10];
+ t.basis.rows[2][0] = dataptr[8];
+ t.basis.rows[2][1] = dataptr[9];
+ t.basis.rows[2][2] = dataptr[10];
t.origin.z = dataptr[11];
}
@@ -1169,12 +1263,12 @@ Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, in
const float *dataptr = r + p_index * multimesh->stride_cache;
- t.elements[0][0] = dataptr[0];
- t.elements[1][0] = dataptr[1];
- t.elements[2][0] = dataptr[3];
- t.elements[0][1] = dataptr[4];
- t.elements[1][1] = dataptr[5];
- t.elements[2][1] = dataptr[7];
+ t.columns[0][0] = dataptr[0];
+ t.columns[1][0] = dataptr[1];
+ t.columns[2][0] = dataptr[3];
+ t.columns[0][1] = dataptr[4];
+ t.columns[1][1] = dataptr[5];
+ t.columns[2][1] = dataptr[7];
}
return t;
diff --git a/drivers/gles3/storage/mesh_storage.h b/drivers/gles3/storage/mesh_storage.h
index f51ec6edbe..dfb9046e7b 100644
--- a/drivers/gles3/storage/mesh_storage.h
+++ b/drivers/gles3/storage/mesh_storage.h
@@ -54,7 +54,6 @@ struct Mesh {
struct Attrib {
bool enabled;
bool integer;
- GLuint index;
GLint size;
GLenum type;
GLboolean normalized;
@@ -69,6 +68,7 @@ struct Mesh {
GLuint skin_buffer = 0;
uint32_t vertex_count = 0;
uint32_t vertex_buffer_size = 0;
+ uint32_t attribute_buffer_size = 0;
uint32_t skin_buffer_size = 0;
// Cache vertex arrays so they can be created
@@ -84,8 +84,8 @@ struct Mesh {
uint32_t version_count = 0;
GLuint index_buffer = 0;
- GLuint index_array = 0;
uint32_t index_count = 0;
+ uint32_t index_buffer_size = 0;
struct LOD {
float edge_length = 0.0;
@@ -357,6 +357,12 @@ public:
}
}
+ _FORCE_INLINE_ GLenum mesh_surface_get_index_type(void *p_surface) const {
+ Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
+
+ return s->vertex_count <= 65536 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT;
+ }
+
// Use this to cache Vertex Array Objects so they are only generated once
_FORCE_INLINE_ void mesh_surface_get_vertex_arrays_and_format(void *p_surface, uint32_t p_input_mask, GLuint &r_vertex_array_gl) {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
@@ -388,6 +394,9 @@ public:
/* MESH INSTANCE API */
+ MeshInstance *get_mesh_instance(RID p_rid) { return mesh_instance_owner.get_or_null(p_rid); };
+ bool owns_mesh_instance(RID p_rid) { return mesh_instance_owner.owns(p_rid); };
+
virtual RID mesh_instance_create(RID p_base) override;
virtual void mesh_instance_free(RID p_rid) override;
virtual void mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) override;
@@ -431,6 +440,9 @@ public:
/* MULTIMESH API */
+ MultiMesh *get_multimesh(RID p_rid) { return multimesh_owner.get_or_null(p_rid); };
+ bool owns_multimesh(RID p_rid) { return multimesh_owner.owns(p_rid); };
+
virtual RID multimesh_allocate() override;
virtual void multimesh_initialize(RID p_rid) override;
virtual void multimesh_free(RID p_rid) override;
@@ -483,6 +495,9 @@ public:
/* SKELETON API */
+ Skeleton *get_skeleton(RID p_rid) { return skeleton_owner.get_or_null(p_rid); };
+ bool owns_skeleton(RID p_rid) { return skeleton_owner.owns(p_rid); };
+
virtual RID skeleton_allocate() override;
virtual void skeleton_initialize(RID p_rid) override;
virtual void skeleton_free(RID p_rid) override;
diff --git a/drivers/gles3/storage/texture_storage.cpp b/drivers/gles3/storage/texture_storage.cpp
index 6f2dc391d8..4396ca4f93 100644
--- a/drivers/gles3/storage/texture_storage.cpp
+++ b/drivers/gles3/storage/texture_storage.cpp
@@ -62,8 +62,9 @@ TextureStorage::TextureStorage() {
Ref<Image> image;
image.instantiate();
- image->create(4, 4, false, Image::FORMAT_RGBA8);
+ image->create(4, 4, true, Image::FORMAT_RGBA8);
image->fill(Color(1, 1, 1, 1));
+ image->generate_mipmaps();
default_gl_textures[DEFAULT_GL_TEXTURE_WHITE] = texture_allocate();
texture_2d_initialize(default_gl_textures[DEFAULT_GL_TEXTURE_WHITE], image);
@@ -92,8 +93,9 @@ TextureStorage::TextureStorage() {
{ // black
Ref<Image> image;
image.instantiate();
- image->create(4, 4, false, Image::FORMAT_RGBA8);
+ image->create(4, 4, true, Image::FORMAT_RGBA8);
image->fill(Color(0, 0, 0, 1));
+ image->generate_mipmaps();
default_gl_textures[DEFAULT_GL_TEXTURE_BLACK] = texture_allocate();
texture_2d_initialize(default_gl_textures[DEFAULT_GL_TEXTURE_BLACK], image);
@@ -117,8 +119,9 @@ TextureStorage::TextureStorage() {
{
Ref<Image> image;
image.instantiate();
- image->create(4, 4, false, Image::FORMAT_RGBA8);
+ image->create(4, 4, true, Image::FORMAT_RGBA8);
image->fill(Color(0.5, 0.5, 1, 1));
+ image->generate_mipmaps();
default_gl_textures[DEFAULT_GL_TEXTURE_NORMAL] = texture_allocate();
texture_2d_initialize(default_gl_textures[DEFAULT_GL_TEXTURE_NORMAL], image);
@@ -127,8 +130,9 @@ TextureStorage::TextureStorage() {
{
Ref<Image> image;
image.instantiate();
- image->create(4, 4, false, Image::FORMAT_RGBA8);
+ image->create(4, 4, true, Image::FORMAT_RGBA8);
image->fill(Color(1.0, 0.5, 1, 1));
+ image->generate_mipmaps();
default_gl_textures[DEFAULT_GL_TEXTURE_ANISO] = texture_allocate();
texture_2d_initialize(default_gl_textures[DEFAULT_GL_TEXTURE_ANISO], image);
@@ -189,18 +193,7 @@ TextureStorage::~TextureStorage() {
}
}
-void TextureStorage::set_main_thread_id(Thread::ID p_id) {
- _main_thread_id = p_id;
-}
-
-bool TextureStorage::_is_main_thread() {
- //#if defined DEBUG_ENABLED && defined TOOLS_ENABLED
- // must be called from main thread in OpenGL
- bool is_main_thread = _main_thread_id == Thread::get_caller_id();
- //#endif
- return is_main_thread;
-}
-
+//TODO, move back to storage
bool TextureStorage::can_create_resources_async() const {
return false;
}
@@ -644,10 +637,14 @@ void TextureStorage::texture_2d_initialize(RID p_texture, const Ref<Image> &p_im
Texture texture;
texture.width = p_image->get_width();
texture.height = p_image->get_height();
+ texture.alloc_width = texture.width;
+ texture.alloc_height = texture.height;
+ texture.mipmaps = p_image->get_mipmap_count();
texture.format = p_image->get_format();
texture.type = Texture::TYPE_2D;
texture.target = GL_TEXTURE_2D;
- texture.image_cache_2d = p_image; //TODO, remove this once texture_2d_get is implemented
+ _get_gl_image_and_format(Ref<Image>(), texture.format, 0, texture.real_format, texture.gl_format_cache, texture.gl_internal_format_cache, texture.gl_type_cache, texture.compressed, false);
+ //texture.total_data_size = p_image->get_image_data_size(); // verify that this returns size in bytes
texture.active = true;
glGenTextures(1, &texture.tex_id);
texture_owner.initialize_rid(p_texture, texture);
@@ -740,49 +737,66 @@ void TextureStorage::texture_3d_placeholder_initialize(RID p_texture) {
}
Ref<Image> TextureStorage::texture_2d_get(RID p_texture) const {
- Texture *tex = texture_owner.get_or_null(p_texture);
- ERR_FAIL_COND_V(!tex, Ref<Image>());
+ Texture *texture = texture_owner.get_or_null(p_texture);
+ ERR_FAIL_COND_V(!texture, Ref<Image>());
#ifdef TOOLS_ENABLED
- if (tex->image_cache_2d.is_valid() && !tex->is_render_target) {
- return tex->image_cache_2d;
+ if (texture->image_cache_2d.is_valid() && !texture->is_render_target) {
+ return texture->image_cache_2d;
}
#endif
- /*
-#ifdef TOOLS_ENABLED
- if (tex->image_cache_2d.is_valid()) {
- return tex->image_cache_2d;
+#ifdef GLES_OVER_GL
+ // OpenGL 3.3 supports glGetTexImage which is faster and simpler than glReadPixels.
+ Vector<uint8_t> data;
+
+ int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, texture->real_format, texture->mipmaps > 1);
+
+ data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
+ uint8_t *w = data.ptrw();
+
+ glActiveTexture(GL_TEXTURE0);
+
+ glBindTexture(texture->target, texture->tex_id);
+
+ glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
+
+ for (int i = 0; i < texture->mipmaps; i++) {
+ int ofs = Image::get_image_mipmap_offset(texture->alloc_width, texture->alloc_height, texture->real_format, i);
+
+ if (texture->compressed) {
+ glPixelStorei(GL_PACK_ALIGNMENT, 4);
+ glGetCompressedTexImage(texture->target, i, &w[ofs]);
+
+ } else {
+ glPixelStorei(GL_PACK_ALIGNMENT, 1);
+
+ glGetTexImage(texture->target, i, texture->gl_format_cache, texture->gl_type_cache, &w[ofs]);
+ }
}
-#endif
- Vector<uint8_t> data = RD::get_singleton()->texture_get_data(tex->rd_texture, 0);
+
+ data.resize(data_size);
+
ERR_FAIL_COND_V(data.size() == 0, Ref<Image>());
Ref<Image> image;
- image.instance();
- image->create(tex->width, tex->height, tex->mipmaps > 1, tex->validated_format, data);
- ERR_FAIL_COND_V(image->empty(), Ref<Image>());
- if (tex->format != tex->validated_format) {
- image->convert(tex->format);
+ image.instantiate();
+ image->create(texture->width, texture->height, texture->mipmaps > 1, texture->real_format, data);
+ ERR_FAIL_COND_V(image->is_empty(), Ref<Image>());
+ if (texture->format != texture->real_format) {
+ image->convert(texture->format);
}
+#else
+ // Support for Web and Mobile will come later.
+ Ref<Image> image;
+#endif
#ifdef TOOLS_ENABLED
- if (Engine::get_singleton()->is_editor_hint()) {
- tex->image_cache_2d = image;
+ if (Engine::get_singleton()->is_editor_hint() && !texture->is_render_target) {
+ texture->image_cache_2d = image;
}
#endif
-*/
-
- /*
- #ifdef TOOLS_ENABLED
- if (Engine::get_singleton()->is_editor_hint() && !tex->is_render_target) {
- tex->image_cache_2d = image;
- }
- #endif
- */
-
- // return image;
- return Ref<Image>();
+ return image;
}
void TextureStorage::texture_replace(RID p_texture, RID p_by_texture) {
@@ -1357,6 +1371,9 @@ void TextureStorage::_update_render_target(RenderTarget *rt) {
}
texture->format = rt->image_format;
+ texture->real_format = rt->image_format;
+ texture->type = Texture::TYPE_2D;
+ texture->target = GL_TEXTURE_2D;
texture->gl_format_cache = rt->color_format;
texture->gl_type_cache = GL_UNSIGNED_BYTE;
texture->gl_internal_format_cache = rt->color_internal_format;
diff --git a/drivers/gles3/storage/texture_storage.h b/drivers/gles3/storage/texture_storage.h
index 1e1cd3f9bf..8281b8c596 100644
--- a/drivers/gles3/storage/texture_storage.h
+++ b/drivers/gles3/storage/texture_storage.h
@@ -141,6 +141,7 @@ struct Texture {
int alloc_width = 0;
int alloc_height = 0;
Image::Format format = Image::FORMAT_R8;
+ Image::Format real_format = Image::FORMAT_R8;
enum Type {
TYPE_2D,
@@ -370,9 +371,6 @@ private:
RID default_gl_textures[DEFAULT_GL_TEXTURE_MAX];
- Thread::ID _main_thread_id = 0;
- bool _is_main_thread();
-
/* Canvas Texture API */
RID_Owner<CanvasTexture, true> canvas_texture_owner;
@@ -440,8 +438,6 @@ public:
};
bool owns_texture(RID p_rid) { return texture_owner.owns(p_rid); };
- void set_main_thread_id(Thread::ID p_id);
-
virtual bool can_create_resources_async() const override;
RID texture_create();
@@ -574,7 +570,7 @@ public:
};
inline String TextureStorage::get_framebuffer_error(GLenum p_status) {
-#ifdef DEBUG_ENABLED
+#if defined(DEBUG_ENABLED) && defined(GLES_OVER_GL)
if (p_status == GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT) {
return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
} else if (p_status == GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT) {
diff --git a/drivers/gles3/texture_loader_gles3.cpp b/drivers/gles3/texture_loader_gles3.cpp
index 8c8724686d..ba4ddb3b37 100644
--- a/drivers/gles3/texture_loader_gles3.cpp
+++ b/drivers/gles3/texture_loader_gles3.cpp
@@ -37,7 +37,7 @@
#include <string.h>
-RES ResourceFormatGLES2Texture::load(const String &p_path, const String &p_original_path, Error *r_error, bool p_use_sub_threads, float *r_progress, CacheMode p_cache_mode) {
+Ref<Resource> ResourceFormatGLES2Texture::load(const String &p_path, const String &p_original_path, Error *r_error, bool p_use_sub_threads, float *r_progress, CacheMode p_cache_mode) {
unsigned int width = 8;
unsigned int height = 8;
diff --git a/drivers/gles3/texture_loader_gles3.h b/drivers/gles3/texture_loader_gles3.h
index 54ddf80a96..6873858b89 100644
--- a/drivers/gles3/texture_loader_gles3.h
+++ b/drivers/gles3/texture_loader_gles3.h
@@ -38,7 +38,7 @@
class ResourceFormatGLES2Texture : public ResourceFormatLoader {
public:
- virtual RES load(const String &p_path, const String &p_original_path = "", Error *r_error = nullptr, bool p_use_sub_threads = false, float *r_progress = nullptr, CacheMode p_cache_mode = CACHE_MODE_REUSE);
+ virtual Ref<Resource> load(const String &p_path, const String &p_original_path = "", Error *r_error = nullptr, bool p_use_sub_threads = false, float *r_progress = nullptr, CacheMode p_cache_mode = CACHE_MODE_REUSE);
virtual void get_recognized_extensions(List<String> *p_extensions) const;
virtual bool handles_type(const String &p_type) const;
virtual String get_resource_type(const String &p_path) const;
diff --git a/drivers/png/resource_saver_png.cpp b/drivers/png/resource_saver_png.cpp
index 8633d2dc4e..704ddca726 100644
--- a/drivers/png/resource_saver_png.cpp
+++ b/drivers/png/resource_saver_png.cpp
@@ -35,7 +35,7 @@
#include "drivers/png/png_driver_common.h"
#include "scene/resources/texture.h"
-Error ResourceSaverPNG::save(const String &p_path, const RES &p_resource, uint32_t p_flags) {
+Error ResourceSaverPNG::save(const String &p_path, const Ref<Resource> &p_resource, uint32_t p_flags) {
Ref<ImageTexture> texture = p_resource;
ERR_FAIL_COND_V_MSG(!texture.is_valid(), ERR_INVALID_PARAMETER, "Can't save invalid texture as PNG.");
@@ -72,11 +72,11 @@ Vector<uint8_t> ResourceSaverPNG::save_image_to_buffer(const Ref<Image> &p_img)
return buffer;
}
-bool ResourceSaverPNG::recognize(const RES &p_resource) const {
+bool ResourceSaverPNG::recognize(const Ref<Resource> &p_resource) const {
return (p_resource.is_valid() && p_resource->is_class("ImageTexture"));
}
-void ResourceSaverPNG::get_recognized_extensions(const RES &p_resource, List<String> *p_extensions) const {
+void ResourceSaverPNG::get_recognized_extensions(const Ref<Resource> &p_resource, List<String> *p_extensions) const {
if (Object::cast_to<ImageTexture>(*p_resource)) {
p_extensions->push_back("png");
}
diff --git a/drivers/png/resource_saver_png.h b/drivers/png/resource_saver_png.h
index f39e52c7ec..1a681faaec 100644
--- a/drivers/png/resource_saver_png.h
+++ b/drivers/png/resource_saver_png.h
@@ -39,9 +39,9 @@ public:
static Error save_image(const String &p_path, const Ref<Image> &p_img);
static Vector<uint8_t> save_image_to_buffer(const Ref<Image> &p_img);
- virtual Error save(const String &p_path, const RES &p_resource, uint32_t p_flags = 0);
- virtual bool recognize(const RES &p_resource) const;
- virtual void get_recognized_extensions(const RES &p_resource, List<String> *p_extensions) const;
+ virtual Error save(const String &p_path, const Ref<Resource> &p_resource, uint32_t p_flags = 0);
+ virtual bool recognize(const Ref<Resource> &p_resource) const;
+ virtual void get_recognized_extensions(const Ref<Resource> &p_resource, List<String> *p_extensions) const;
ResourceSaverPNG();
};
diff --git a/drivers/register_driver_types.cpp b/drivers/register_driver_types.cpp
index 1047e89e85..504ef9843a 100644
--- a/drivers/register_driver_types.cpp
+++ b/drivers/register_driver_types.cpp
@@ -55,9 +55,7 @@ void unregister_core_driver_types() {
}
void register_driver_types() {
- NativeExtensionManager::get_singleton()->initialize_extensions(NativeExtension::INITIALIZATION_LEVEL_DRIVER);
}
void unregister_driver_types() {
- NativeExtensionManager::get_singleton()->deinitialize_extensions(NativeExtension::INITIALIZATION_LEVEL_DRIVER);
}
diff --git a/drivers/unix/dir_access_unix.h b/drivers/unix/dir_access_unix.h
index 4fea7cd154..69530de337 100644
--- a/drivers/unix/dir_access_unix.h
+++ b/drivers/unix/dir_access_unix.h
@@ -46,8 +46,8 @@ class DirAccessUnix : public DirAccess {
static Ref<DirAccess> create_fs();
String current_dir;
- bool _cisdir;
- bool _cishidden;
+ bool _cisdir = false;
+ bool _cishidden = false;
protected:
virtual String fix_unicode_name(const char *p_name) const { return String::utf8(p_name); }
diff --git a/drivers/unix/os_unix.cpp b/drivers/unix/os_unix.cpp
index 3b5e1bf91d..52a4d538e1 100644
--- a/drivers/unix/os_unix.cpp
+++ b/drivers/unix/os_unix.cpp
@@ -412,6 +412,15 @@ int OS_Unix::get_process_id() const {
return getpid();
}
+bool OS_Unix::is_process_running(const ProcessID &p_pid) const {
+ int status = 0;
+ if (waitpid(p_pid, &status, WNOHANG) != 0) {
+ return false;
+ }
+
+ return true;
+}
+
bool OS_Unix::has_environment(const String &p_var) const {
return getenv(p_var.utf8().get_data()) != nullptr;
}
@@ -429,7 +438,7 @@ String OS_Unix::get_locale() const {
return locale;
}
-Error OS_Unix::open_dynamic_library(const String p_path, void *&p_library_handle, bool p_also_set_library_path) {
+Error OS_Unix::open_dynamic_library(const String p_path, void *&p_library_handle, bool p_also_set_library_path, String *r_resolved_path) {
String path = p_path;
if (FileAccess::exists(path) && path.is_relative_path()) {
@@ -450,6 +459,11 @@ Error OS_Unix::open_dynamic_library(const String p_path, void *&p_library_handle
p_library_handle = dlopen(path.utf8().get_data(), RTLD_NOW);
ERR_FAIL_COND_V_MSG(!p_library_handle, ERR_CANT_OPEN, "Can't open dynamic library: " + p_path + ". Error: " + dlerror());
+
+ if (r_resolved_path != nullptr) {
+ *r_resolved_path = path;
+ }
+
return OK;
}
diff --git a/drivers/unix/os_unix.h b/drivers/unix/os_unix.h
index 460ba4b9e1..a1ed4bd501 100644
--- a/drivers/unix/os_unix.h
+++ b/drivers/unix/os_unix.h
@@ -55,7 +55,7 @@ public:
virtual Error get_entropy(uint8_t *r_buffer, int p_bytes) override; // Should return cryptographycally-safe random bytes.
- virtual Error open_dynamic_library(const String p_path, void *&p_library_handle, bool p_also_set_library_path = false) override;
+ virtual Error open_dynamic_library(const String p_path, void *&p_library_handle, bool p_also_set_library_path = false, String *r_resolved_path = nullptr) override;
virtual Error close_dynamic_library(void *p_library_handle) override;
virtual Error get_dynamic_library_symbol_handle(void *p_library_handle, const String p_name, void *&p_symbol_handle, bool p_optional = false) override;
@@ -76,6 +76,7 @@ public:
virtual Error create_process(const String &p_path, const List<String> &p_arguments, ProcessID *r_child_id = nullptr, bool p_open_console = false) override;
virtual Error kill(const ProcessID &p_pid) override;
virtual int get_process_id() const override;
+ virtual bool is_process_running(const ProcessID &p_pid) const override;
virtual bool has_environment(const String &p_var) const override;
virtual String get_environment(const String &p_var) const override;
diff --git a/drivers/vulkan/rendering_device_vulkan.cpp b/drivers/vulkan/rendering_device_vulkan.cpp
index 59b4c34c3f..5102eab979 100644
--- a/drivers/vulkan/rendering_device_vulkan.cpp
+++ b/drivers/vulkan/rendering_device_vulkan.cpp
@@ -8649,6 +8649,7 @@ void RenderingDeviceVulkan::draw_command_end_label() {
String RenderingDeviceVulkan::get_device_vendor_name() const {
return context->get_device_vendor_name();
}
+
String RenderingDeviceVulkan::get_device_name() const {
return context->get_device_name();
}
@@ -8657,6 +8658,10 @@ RenderingDevice::DeviceType RenderingDeviceVulkan::get_device_type() const {
return context->get_device_type();
}
+String RenderingDeviceVulkan::get_device_api_version() const {
+ return context->get_device_api_version();
+}
+
String RenderingDeviceVulkan::get_device_pipeline_cache_uuid() const {
return context->get_device_pipeline_cache_uuid();
}
diff --git a/drivers/vulkan/rendering_device_vulkan.h b/drivers/vulkan/rendering_device_vulkan.h
index 7d9bd19309..236742c15d 100644
--- a/drivers/vulkan/rendering_device_vulkan.h
+++ b/drivers/vulkan/rendering_device_vulkan.h
@@ -886,8 +886,8 @@ class RenderingDeviceVulkan : public RenderingDevice {
DrawList *draw_list = nullptr; // One for regular draw lists, multiple for split.
uint32_t draw_list_subpass_count = 0;
uint32_t draw_list_count = 0;
- VkRenderPass draw_list_render_pass;
- VkFramebuffer draw_list_vkframebuffer;
+ VkRenderPass draw_list_render_pass = VK_NULL_HANDLE;
+ VkFramebuffer draw_list_vkframebuffer = VK_NULL_HANDLE;
#ifdef DEBUG_ENABLED
FramebufferFormatID draw_list_framebuffer_format = INVALID_ID;
#endif
@@ -1229,6 +1229,7 @@ public:
virtual String get_device_vendor_name() const;
virtual String get_device_name() const;
virtual RenderingDevice::DeviceType get_device_type() const;
+ virtual String get_device_api_version() const;
virtual String get_device_pipeline_cache_uuid() const;
virtual uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0);
diff --git a/drivers/vulkan/vulkan_context.cpp b/drivers/vulkan/vulkan_context.cpp
index a09a757842..7944057041 100644
--- a/drivers/vulkan/vulkan_context.cpp
+++ b/drivers/vulkan/vulkan_context.cpp
@@ -2364,6 +2364,7 @@ void VulkanContext::set_object_name(VkObjectType p_object_type, uint64_t p_objec
String VulkanContext::get_device_vendor_name() const {
return device_vendor;
}
+
String VulkanContext::get_device_name() const {
return device_name;
}
@@ -2372,6 +2373,10 @@ RenderingDevice::DeviceType VulkanContext::get_device_type() const {
return RenderingDevice::DeviceType(device_type);
}
+String VulkanContext::get_device_api_version() const {
+ return vformat("%d.%d.%d", vulkan_major, vulkan_minor, vulkan_patch);
+}
+
String VulkanContext::get_device_pipeline_cache_uuid() const {
return pipeline_cache_id;
}
diff --git a/drivers/vulkan/vulkan_context.h b/drivers/vulkan/vulkan_context.h
index 8c0111714c..6858eb7524 100644
--- a/drivers/vulkan/vulkan_context.h
+++ b/drivers/vulkan/vulkan_context.h
@@ -185,27 +185,27 @@ private:
*/
bool enabled_debug_report = false;
- PFN_vkCreateDebugUtilsMessengerEXT CreateDebugUtilsMessengerEXT;
- PFN_vkDestroyDebugUtilsMessengerEXT DestroyDebugUtilsMessengerEXT;
- PFN_vkSubmitDebugUtilsMessageEXT SubmitDebugUtilsMessageEXT;
- PFN_vkCmdBeginDebugUtilsLabelEXT CmdBeginDebugUtilsLabelEXT;
- PFN_vkCmdEndDebugUtilsLabelEXT CmdEndDebugUtilsLabelEXT;
- PFN_vkCmdInsertDebugUtilsLabelEXT CmdInsertDebugUtilsLabelEXT;
- PFN_vkSetDebugUtilsObjectNameEXT SetDebugUtilsObjectNameEXT;
- PFN_vkCreateDebugReportCallbackEXT CreateDebugReportCallbackEXT;
- PFN_vkDebugReportMessageEXT DebugReportMessageEXT;
- PFN_vkDestroyDebugReportCallbackEXT DestroyDebugReportCallbackEXT;
- PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR;
- PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR fpGetPhysicalDeviceSurfaceCapabilitiesKHR;
- PFN_vkGetPhysicalDeviceSurfaceFormatsKHR fpGetPhysicalDeviceSurfaceFormatsKHR;
- PFN_vkGetPhysicalDeviceSurfacePresentModesKHR fpGetPhysicalDeviceSurfacePresentModesKHR;
- PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR;
- PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR;
- PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR;
- PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR;
- PFN_vkQueuePresentKHR fpQueuePresentKHR;
- PFN_vkGetRefreshCycleDurationGOOGLE fpGetRefreshCycleDurationGOOGLE;
- PFN_vkGetPastPresentationTimingGOOGLE fpGetPastPresentationTimingGOOGLE;
+ PFN_vkCreateDebugUtilsMessengerEXT CreateDebugUtilsMessengerEXT = nullptr;
+ PFN_vkDestroyDebugUtilsMessengerEXT DestroyDebugUtilsMessengerEXT = nullptr;
+ PFN_vkSubmitDebugUtilsMessageEXT SubmitDebugUtilsMessageEXT = nullptr;
+ PFN_vkCmdBeginDebugUtilsLabelEXT CmdBeginDebugUtilsLabelEXT = nullptr;
+ PFN_vkCmdEndDebugUtilsLabelEXT CmdEndDebugUtilsLabelEXT = nullptr;
+ PFN_vkCmdInsertDebugUtilsLabelEXT CmdInsertDebugUtilsLabelEXT = nullptr;
+ PFN_vkSetDebugUtilsObjectNameEXT SetDebugUtilsObjectNameEXT = nullptr;
+ PFN_vkCreateDebugReportCallbackEXT CreateDebugReportCallbackEXT = nullptr;
+ PFN_vkDebugReportMessageEXT DebugReportMessageEXT = nullptr;
+ PFN_vkDestroyDebugReportCallbackEXT DestroyDebugReportCallbackEXT = nullptr;
+ PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR = nullptr;
+ PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR fpGetPhysicalDeviceSurfaceCapabilitiesKHR = nullptr;
+ PFN_vkGetPhysicalDeviceSurfaceFormatsKHR fpGetPhysicalDeviceSurfaceFormatsKHR = nullptr;
+ PFN_vkGetPhysicalDeviceSurfacePresentModesKHR fpGetPhysicalDeviceSurfacePresentModesKHR = nullptr;
+ PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR = nullptr;
+ PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR = nullptr;
+ PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR = nullptr;
+ PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR = nullptr;
+ PFN_vkQueuePresentKHR fpQueuePresentKHR = nullptr;
+ PFN_vkGetRefreshCycleDurationGOOGLE fpGetRefreshCycleDurationGOOGLE = nullptr;
+ PFN_vkGetPastPresentationTimingGOOGLE fpGetPastPresentationTimingGOOGLE = nullptr;
VkDebugUtilsMessengerEXT dbg_messenger = VK_NULL_HANDLE;
VkDebugReportCallbackEXT dbg_debug_report = VK_NULL_HANDLE;
@@ -305,6 +305,7 @@ public:
String get_device_vendor_name() const;
String get_device_name() const;
RenderingDevice::DeviceType get_device_type() const;
+ String get_device_api_version() const;
String get_device_pipeline_cache_uuid() const;
void set_vsync_mode(DisplayServer::WindowID p_window, DisplayServer::VSyncMode p_mode);