summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/alsa/audio_driver_alsa.cpp4
-rw-r--r--drivers/gles2/rasterizer_scene_gles2.cpp6
-rw-r--r--drivers/gles2/rasterizer_storage_gles2.cpp11
-rw-r--r--drivers/gles2/rasterizer_storage_gles2.h2
-rw-r--r--drivers/gles2/shader_compiler_gles2.cpp2
-rw-r--r--drivers/gles2/shaders/canvas.glsl26
-rw-r--r--drivers/gles2/shaders/copy.glsl4
-rw-r--r--drivers/gles3/rasterizer_storage_gles3.cpp4
-rw-r--r--drivers/gles3/shader_compiler_gles3.cpp2
-rw-r--r--drivers/gles3/shaders/canvas.glsl26
10 files changed, 59 insertions, 28 deletions
diff --git a/drivers/alsa/audio_driver_alsa.cpp b/drivers/alsa/audio_driver_alsa.cpp
index 0611d7d4e0..42899c0f76 100644
--- a/drivers/alsa/audio_driver_alsa.cpp
+++ b/drivers/alsa/audio_driver_alsa.cpp
@@ -171,14 +171,14 @@ void AudioDriverALSA::thread_func(void *p_udata) {
ad->start_counting_ticks();
if (!ad->active) {
- for (unsigned int i = 0; i < ad->period_size * ad->channels; i++) {
+ for (uint64_t i = 0; i < ad->period_size * ad->channels; i++) {
ad->samples_out.write[i] = 0;
}
} else {
ad->audio_server_process(ad->period_size, ad->samples_in.ptrw());
- for (unsigned int i = 0; i < ad->period_size * ad->channels; i++) {
+ for (uint64_t i = 0; i < ad->period_size * ad->channels; i++) {
ad->samples_out.write[i] = ad->samples_in[i] >> 16;
}
}
diff --git a/drivers/gles2/rasterizer_scene_gles2.cpp b/drivers/gles2/rasterizer_scene_gles2.cpp
index cc414c26af..96878c86b4 100644
--- a/drivers/gles2/rasterizer_scene_gles2.cpp
+++ b/drivers/gles2/rasterizer_scene_gles2.cpp
@@ -1432,11 +1432,11 @@ void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, Raste
}
}
- bool clear_skeleton_buffer = !storage->config.float_texture_supported;
+ bool clear_skeleton_buffer = storage->config.use_skeleton_software;
if (p_skeleton) {
- if (storage->config.float_texture_supported) {
+ if (!storage->config.use_skeleton_software) {
//use float texture workflow
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
@@ -2452,7 +2452,7 @@ void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements,
if (skeleton) {
state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true);
- state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported);
+ state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, storage->config.use_skeleton_software);
} else {
state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false);
diff --git a/drivers/gles2/rasterizer_storage_gles2.cpp b/drivers/gles2/rasterizer_storage_gles2.cpp
index 5c02d8096d..0379aee561 100644
--- a/drivers/gles2/rasterizer_storage_gles2.cpp
+++ b/drivers/gles2/rasterizer_storage_gles2.cpp
@@ -2432,7 +2432,7 @@ void RasterizerStorageGLES2::mesh_add_surface(RID p_mesh, uint32_t p_format, VS:
// from surface->data.
// if USE_SKELETON_SOFTWARE is active
- if (!config.float_texture_supported) {
+ if (config.use_skeleton_software) {
// if this geometry is used specifically for skinning
if (p_format & (VS::ARRAY_FORMAT_BONES | VS::ARRAY_FORMAT_WEIGHTS))
surface->data = array;
@@ -3514,7 +3514,7 @@ void RasterizerStorageGLES2::skeleton_allocate(RID p_skeleton, int p_bones, bool
skeleton->size = p_bones;
skeleton->use_2d = p_2d_skeleton;
- if (config.float_texture_supported) {
+ if (!config.use_skeleton_software) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, skeleton->tex_id);
@@ -3699,7 +3699,7 @@ void RasterizerStorageGLES2::_update_skeleton_transform_buffer(const PoolVector<
void RasterizerStorageGLES2::update_dirty_skeletons() {
- if (!config.float_texture_supported)
+ if (config.use_skeleton_software)
return;
glActiveTexture(GL_TEXTURE0);
@@ -5751,9 +5751,14 @@ void RasterizerStorageGLES2::initialize() {
frame.current_rt = NULL;
frame.clear_request = false;
+ glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &config.max_vertex_texture_image_units);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units);
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size);
+ // the use skeleton software path should be used if either float texture is not supported,
+ // OR max_vertex_texture_image_units is zero
+ config.use_skeleton_software = (config.float_texture_supported == false) || (config.max_vertex_texture_image_units == 0);
+
shaders.copy.init();
shaders.cubemap_filter.init();
bool ggx_hq = GLOBAL_GET("rendering/quality/reflections/high_quality_ggx");
diff --git a/drivers/gles2/rasterizer_storage_gles2.h b/drivers/gles2/rasterizer_storage_gles2.h
index d139697b86..e6cdcac59f 100644
--- a/drivers/gles2/rasterizer_storage_gles2.h
+++ b/drivers/gles2/rasterizer_storage_gles2.h
@@ -60,7 +60,9 @@ public:
bool shrink_textures_x2;
bool use_fast_texture_filter;
+ bool use_skeleton_software;
+ int max_vertex_texture_image_units;
int max_texture_image_units;
int max_texture_size;
diff --git a/drivers/gles2/shader_compiler_gles2.cpp b/drivers/gles2/shader_compiler_gles2.cpp
index 92bf0e29e2..1db8a870a2 100644
--- a/drivers/gles2/shader_compiler_gles2.cpp
+++ b/drivers/gles2/shader_compiler_gles2.cpp
@@ -948,6 +948,7 @@ ShaderCompilerGLES2::ShaderCompilerGLES2() {
actions[VS::SHADER_CANVAS_ITEM].renames["LIGHT_UV"] = "light_uv";
actions[VS::SHADER_CANVAS_ITEM].renames["LIGHT"] = "light";
actions[VS::SHADER_CANVAS_ITEM].renames["SHADOW_COLOR"] = "shadow_color";
+ actions[VS::SHADER_CANVAS_ITEM].renames["SHADOW_VEC"] = "shadow_vec";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["COLOR"] = "#define COLOR_USED\n";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["SCREEN_TEXTURE"] = "#define SCREEN_TEXTURE_USED\n";
@@ -957,6 +958,7 @@ ShaderCompilerGLES2::ShaderCompilerGLES2() {
actions[VS::SHADER_CANVAS_ITEM].usage_defines["NORMALMAP"] = "#define NORMALMAP_USED\n";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n";
actions[VS::SHADER_CANVAS_ITEM].render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
+ actions[VS::SHADER_CANVAS_ITEM].usage_defines["SHADOW_VEC"] = "#define SHADOW_VEC_USED\n";
// Ported from GLES3
diff --git a/drivers/gles2/shaders/canvas.glsl b/drivers/gles2/shaders/canvas.glsl
index fa0b315e29..08548ded17 100644
--- a/drivers/gles2/shaders/canvas.glsl
+++ b/drivers/gles2/shaders/canvas.glsl
@@ -331,6 +331,7 @@ void light_compute(
inout vec4 light_color,
vec2 light_uv,
inout vec4 shadow_color,
+ inout vec2 shadow_vec,
vec3 normal,
vec2 uv,
#if defined(SCREEN_UV_USED)
@@ -407,6 +408,7 @@ FRAGMENT_SHADER_CODE
#ifdef USE_LIGHTING
vec2 light_vec = transformed_light_uv;
+ vec2 shadow_vec = transformed_light_uv;
if (normal_used) {
normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy;
@@ -434,6 +436,7 @@ FRAGMENT_SHADER_CODE
real_light_color,
light_uv,
real_light_shadow_color,
+ shadow_vec,
normal,
uv,
#if defined(SCREEN_UV_USED)
@@ -452,11 +455,18 @@ FRAGMENT_SHADER_CODE
color *= light;
#ifdef USE_SHADOWS
- // Reset light_vec to compute shadows, the shadow map is created from the light origin, so it only
- // makes sense to compute shadows from there.
- light_vec = light_uv_interp.zw;
- float angle_to_light = -atan(light_vec.x, light_vec.y);
+#ifdef SHADOW_VEC_USED
+ mat3 inverse_light_matrix = mat3(light_matrix);
+ inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
+ inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
+ inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
+ shadow_vec = (inverse_light_matrix * vec3(shadow_vec, 0.0)).xy;
+#else
+ shadow_vec = light_uv_interp.zw;
+#endif
+
+ float angle_to_light = -atan(shadow_vec.x, shadow_vec.y);
float PI = 3.14159265358979323846264;
/*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays
float ang*/
@@ -467,18 +477,18 @@ FRAGMENT_SHADER_CODE
vec2 point;
float sh;
if (abs_angle < 45.0 * PI / 180.0) {
- point = light_vec;
+ point = shadow_vec;
sh = 0.0 + (1.0 / 8.0);
} else if (abs_angle > 135.0 * PI / 180.0) {
- point = -light_vec;
+ point = -shadow_vec;
sh = 0.5 + (1.0 / 8.0);
} else if (angle_to_light > 0.0) {
- point = vec2(light_vec.y, -light_vec.x);
+ point = vec2(shadow_vec.y, -shadow_vec.x);
sh = 0.25 + (1.0 / 8.0);
} else {
- point = vec2(-light_vec.y, light_vec.x);
+ point = vec2(-shadow_vec.y, shadow_vec.x);
sh = 0.75 + (1.0 / 8.0);
}
diff --git a/drivers/gles2/shaders/copy.glsl b/drivers/gles2/shaders/copy.glsl
index 195db7c45f..aa967115da 100644
--- a/drivers/gles2/shaders/copy.glsl
+++ b/drivers/gles2/shaders/copy.glsl
@@ -144,11 +144,11 @@ void main() {
#elif defined(USE_ASYM_PANO)
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
- // Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
+ // Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
vec3 cube_normal;
- cube_normal.z = -1000000.0;
+ cube_normal.z = -1.0;
cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
diff --git a/drivers/gles3/rasterizer_storage_gles3.cpp b/drivers/gles3/rasterizer_storage_gles3.cpp
index 5f4acbc2de..3b6bb81ac5 100644
--- a/drivers/gles3/rasterizer_storage_gles3.cpp
+++ b/drivers/gles3/rasterizer_storage_gles3.cpp
@@ -2955,7 +2955,9 @@ _FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type,
case ShaderLanguage::TYPE_BVEC3:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_UVEC3:
- case ShaderLanguage::TYPE_VEC3:
+ case ShaderLanguage::TYPE_VEC3: {
+ zeromem(data, 12);
+ } break;
case ShaderLanguage::TYPE_BVEC4:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC4:
diff --git a/drivers/gles3/shader_compiler_gles3.cpp b/drivers/gles3/shader_compiler_gles3.cpp
index 3f21be8dd3..7499962da3 100644
--- a/drivers/gles3/shader_compiler_gles3.cpp
+++ b/drivers/gles3/shader_compiler_gles3.cpp
@@ -941,6 +941,7 @@ ShaderCompilerGLES3::ShaderCompilerGLES3() {
actions[VS::SHADER_CANVAS_ITEM].renames["LIGHT_UV"] = "light_uv";
actions[VS::SHADER_CANVAS_ITEM].renames["LIGHT"] = "light";
actions[VS::SHADER_CANVAS_ITEM].renames["SHADOW_COLOR"] = "shadow_color";
+ actions[VS::SHADER_CANVAS_ITEM].renames["SHADOW_VEC"] = "shadow_vec";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["COLOR"] = "#define COLOR_USED\n";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["SCREEN_TEXTURE"] = "#define SCREEN_TEXTURE_USED\n";
@@ -949,6 +950,7 @@ ShaderCompilerGLES3::ShaderCompilerGLES3() {
actions[VS::SHADER_CANVAS_ITEM].usage_defines["NORMAL"] = "#define NORMAL_USED\n";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["NORMALMAP"] = "#define NORMALMAP_USED\n";
actions[VS::SHADER_CANVAS_ITEM].usage_defines["LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n";
+ actions[VS::SHADER_CANVAS_ITEM].usage_defines["SHADOW_VEC"] = "#define SHADOW_VEC_USED\n";
actions[VS::SHADER_CANVAS_ITEM].render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
/** SPATIAL SHADER **/
diff --git a/drivers/gles3/shaders/canvas.glsl b/drivers/gles3/shaders/canvas.glsl
index 10c8764b8e..e83f53d648 100644
--- a/drivers/gles3/shaders/canvas.glsl
+++ b/drivers/gles3/shaders/canvas.glsl
@@ -345,6 +345,7 @@ void light_compute(
inout vec4 light_color,
vec2 light_uv,
inout vec4 shadow_color,
+ inout vec2 shadow_vec,
vec3 normal,
vec2 uv,
#if defined(SCREEN_UV_USED)
@@ -512,6 +513,7 @@ FRAGMENT_SHADER_CODE
#ifdef USE_LIGHTING
vec2 light_vec = transformed_light_uv;
+ vec2 shadow_vec = transformed_light_uv;
if (normal_used) {
normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy;
@@ -539,6 +541,7 @@ FRAGMENT_SHADER_CODE
real_light_color,
light_uv,
real_light_shadow_color,
+ shadow_vec,
normal,
uv,
#if defined(SCREEN_UV_USED)
@@ -557,11 +560,16 @@ FRAGMENT_SHADER_CODE
color *= light;
#ifdef USE_SHADOWS
- // Reset light_vec to compute shadows, the shadow map is created from the light origin, so it only
- // makes sense to compute shadows from there.
- light_vec = light_uv_interp.zw;
-
- float angle_to_light = -atan(light_vec.x, light_vec.y);
+#ifdef SHADOW_VEC_USED
+ mat3 inverse_light_matrix = mat3(light_matrix);
+ inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
+ inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
+ inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
+ shadow_vec = (mat3(inverse_light_matrix) * vec3(shadow_vec, 0.0)).xy;
+#else
+ shadow_vec = light_uv_interp.zw;
+#endif
+ float angle_to_light = -atan(shadow_vec.x, shadow_vec.y);
float PI = 3.14159265358979323846264;
/*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays
float ang*/
@@ -572,18 +580,18 @@ FRAGMENT_SHADER_CODE
vec2 point;
float sh;
if (abs_angle < 45.0 * PI / 180.0) {
- point = light_vec;
+ point = shadow_vec;
sh = 0.0 + (1.0 / 8.0);
} else if (abs_angle > 135.0 * PI / 180.0) {
- point = -light_vec;
+ point = -shadow_vec;
sh = 0.5 + (1.0 / 8.0);
} else if (angle_to_light > 0.0) {
- point = vec2(light_vec.y, -light_vec.x);
+ point = vec2(shadow_vec.y, -shadow_vec.x);
sh = 0.25 + (1.0 / 8.0);
} else {
- point = vec2(-light_vec.y, light_vec.x);
+ point = vec2(-shadow_vec.y, shadow_vec.x);
sh = 0.75 + (1.0 / 8.0);
}