summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.cpp45
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.h8
-rw-r--r--drivers/gles3/shader_gles3.h7
-rw-r--r--drivers/gles3/shaders/SCsub1
-rw-r--r--drivers/gles3/shaders/scene.glsl2315
-rw-r--r--drivers/gles3/shaders/stdlib_inc.glsl3
-rw-r--r--drivers/gles3/storage/material_storage.cpp398
-rw-r--r--drivers/gles3/storage/material_storage.h126
8 files changed, 1163 insertions, 1740 deletions
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp
index 8bb14e27e2..cabb06d837 100644
--- a/drivers/gles3/rasterizer_scene_gles3.cpp
+++ b/drivers/gles3/rasterizer_scene_gles3.cpp
@@ -708,6 +708,10 @@ void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *
//ERR_FAIL_COND(!rt);
}
+ ///////////
+ // Fill Light lists here
+ //////////
+
Color clear_color;
if (p_render_buffers.is_valid()) {
clear_color = texture_storage->render_target_get_clear_request_color(rb->render_target);
@@ -1053,6 +1057,38 @@ RasterizerSceneGLES3::RasterizerSceneGLES3(RasterizerStorageGLES3 *p_storage) {
storage = p_storage;
{
+ String global_defines;
+ global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now
+ material_storage->shaders.scene_shader.initialize(global_defines);
+ scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create();
+ material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR);
+ }
+
+ {
+ //default material and shader
+ scene_globals.default_shader = material_storage->shader_allocate();
+ material_storage->shader_initialize(scene_globals.default_shader);
+ material_storage->shader_set_code(scene_globals.default_shader, R"(
+// Default 3D material shader (clustered).
+
+shader_type spatial;
+
+void vertex() {
+ ROUGHNESS = 0.8;
+}
+
+void fragment() {
+ ALBEDO = vec3(0.6);
+ ROUGHNESS = 0.8;
+ METALLIC = 0.2;
+}
+)");
+ scene_globals.default_material = material_storage->material_allocate();
+ material_storage->material_initialize(scene_globals.default_material);
+ material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader);
+ }
+
+ {
// Initialize Sky stuff
sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers");
sky_globals.ggx_samples = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples");
@@ -1060,9 +1096,9 @@ RasterizerSceneGLES3::RasterizerSceneGLES3(RasterizerStorageGLES3 *p_storage) {
String global_defines;
global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now
global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n";
- GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.initialize(global_defines);
- sky_globals.shader_default_version = GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_create();
- GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_bind_shader(sky_globals.shader_default_version, SkyShaderGLES3::MODE_BACKGROUND);
+ material_storage->shaders.sky_shader.initialize(global_defines);
+ sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create();
+ material_storage->shaders.sky_shader.version_bind_shader(sky_globals.shader_default_version, SkyShaderGLES3::MODE_BACKGROUND);
}
{
@@ -1149,6 +1185,9 @@ void sky() {
}
RasterizerSceneGLES3::~RasterizerSceneGLES3() {
+ GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version);
+ storage->free(scene_globals.default_material);
+ storage->free(scene_globals.default_shader);
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version);
storage->free(sky_globals.default_material);
storage->free(sky_globals.default_shader);
diff --git a/drivers/gles3/rasterizer_scene_gles3.h b/drivers/gles3/rasterizer_scene_gles3.h
index 4c7502cda4..13b3b007a2 100644
--- a/drivers/gles3/rasterizer_scene_gles3.h
+++ b/drivers/gles3/rasterizer_scene_gles3.h
@@ -91,9 +91,7 @@ private:
RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED;
uint64_t scene_pass = 0;
- /* Sky */
struct SkyGlobals {
- RID shader_current_version;
RID shader_default_version;
RID default_material;
RID default_shader;
@@ -106,6 +104,12 @@ private:
uint32_t ggx_samples = 128;
} sky_globals;
+ struct SceneGlobals {
+ RID shader_default_version;
+ RID default_material;
+ RID default_shader;
+ } scene_globals;
+
protected:
double time;
double time_step = 0;
diff --git a/drivers/gles3/shader_gles3.h b/drivers/gles3/shader_gles3.h
index 15281064af..8d1b142dc6 100644
--- a/drivers/gles3/shader_gles3.h
+++ b/drivers/gles3/shader_gles3.h
@@ -73,10 +73,11 @@ private:
//versions
CharString general_defines;
- // A version is a high-level construct which is a combination of built-in and user-defined shader code
- // Variants use #idefs to toggle behaviour on and off to change behaviour of the shader
+ // A version is a high-level construct which is a combination of built-in and user-defined shader code, Each user-created Shader makes one version
+ // Variants use #ifdefs to toggle behaviour on and off to change behaviour of the shader
+ // All variants are compiled each time a new version is created
// Specializations use #ifdefs to toggle behaviour on and off for performance, on supporting hardware, they will compile a version with everything enabled, and then compile more copies to improve performance
- // Use specializations to enable and disabled advanced features, use variants to toggle behaviour when different data may be used (e.g. using a samplerArray vs a sampler)
+ // Use specializations to enable and disabled advanced features, use variants to toggle behaviour when different data may be used (e.g. using a samplerArray vs a sampler, or doing a depth prepass vs a color pass)
struct Version {
Vector<StringName> texture_uniforms;
CharString uniforms;
diff --git a/drivers/gles3/shaders/SCsub b/drivers/gles3/shaders/SCsub
index 79247f38d4..ec32badc19 100644
--- a/drivers/gles3/shaders/SCsub
+++ b/drivers/gles3/shaders/SCsub
@@ -8,4 +8,5 @@ env.Depends("#drivers/gles3/shaders/copy.glsl.gen.h", "#core/math/transform_2d.h
if "GLES3_GLSL" in env["BUILDERS"]:
env.GLES3_GLSL("canvas.glsl")
env.GLES3_GLSL("copy.glsl")
+ env.GLES3_GLSL("scene.glsl")
env.GLES3_GLSL("sky.glsl")
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index ebb00e81d0..16a9224fbb 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -1,108 +1,146 @@
/* clang-format off */
-[vertex]
+#[modes]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
+mode_color = #define BASE_PASS
+mode_additive = #define USE_ADDITIVE_LIGHTING
+mode_depth = #define MODE_RENDER_DEPTH
+
+#[specializations]
-#define SHADER_IS_SRGB true //TODO remove
+USE_LIGHTMAP = false
+USE_LIGHT_DIRECTIONAL = false
+USE_LIGHT_POSITIONAL = false
+
+
+#[vertex]
#define M_PI 3.14159265359
-//
-// attributes
-//
+#define SHADER_IS_SRGB true
+
+#include "stdlib_inc.glsl"
+
+/*
+from RenderingServer:
+ARRAY_VERTEX = 0, // RG32F or RGB32F (depending on 2D bit)
+ARRAY_COLOR = 3, // RGBA8
+ARRAY_TEX_UV = 4, // RG32F
+ARRAY_TANGENT = 2, // A2B10G10R10, A flips sign of binormal.
+ARRAY_NORMAL = 1, // A2B10G10R10, A is ignored.
+ARRAY_TEX_UV2 = 5, // RG32F
+ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat.
+ARRAY_CUSTOM1 = 7,
+ARRAY_CUSTOM2 = 8,
+ARRAY_CUSTOM3 = 9,
+ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights)
+ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights)
+ARRAY_INDEX = 12, // 16 or 32 bits depending on length > 0xFFFF.
+ARRAY_MAX = 13
+*/
+
+/* INPUT ATTRIBS */
-layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 0) in vec3 vertex_attrib;
/* clang-format on */
+
+#ifdef NORMAL_USED
layout(location = 1) in vec3 normal_attrib;
+#endif
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif
-#if defined(ENABLE_COLOR_INTERP)
+#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
-#if defined(ENABLE_UV_INTERP)
+#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
+#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 5) in vec2 uv2_attrib;
#endif
-#ifdef USE_SKELETON
-
-#ifdef USE_SKELETON_SOFTWARE
-
-layout(location = 13) in highp vec4 bone_transform_row_0;
-layout(location = 14) in highp vec4 bone_transform_row_1;
-layout(location = 15) in highp vec4 bone_transform_row_2;
+#if defined(CUSTOM0_USED)
+layout(location = 6) in vec4 custom0_attrib;
+#endif
-#else
+#if defined(CUSTOM1_USED)
+layout(location = 7) in vec4 custom1_attrib;
+#endif
-layout(location = 6) in vec4 bone_ids;
-layout(location = 7) in highp vec4 bone_weights;
+#if defined(CUSTOM2_USED)
+layout(location = 8) in vec4 custom2_attrib;
+#endif
-uniform highp sampler2D bone_transforms; // texunit:-1
-uniform ivec2 skeleton_texture_size;
+#if defined(CUSTOM3_USED)
+layout(location = 9) in vec4 custom3_attrib;
+#endif
+#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS)
+layout(location = 10) in uvec4 bone_attrib;
#endif
+#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS)
+layout(location = 11) in vec4 weight_attrib;
#endif
-#ifdef USE_INSTANCING
+layout(std140) uniform SceneData { // ubo:3
+ mat4 projection_matrix;
+ mat4 inv_projection_matrix;
+ mat4 inv_view_matrix;
+ mat4 view_matrix;
-layout(location = 8) in highp vec4 instance_xform_row_0;
-layout(location = 9) in highp vec4 instance_xform_row_1;
-layout(location = 10) in highp vec4 instance_xform_row_2;
+ vec2 viewport_size;
+ vec2 screen_pixel_size;
-layout(location = 11) in highp vec4 instance_color;
-layout(location = 12) in highp vec4 instance_custom_data;
+ mediump vec4 ambient_light_color_energy;
-#endif
+ mediump float ambient_color_sky_mix;
+ uint ambient_flags;
+ bool material_uv2_mode;
+ float opaque_prepass_threshold;
+ //bool use_ambient_light;
+ //bool use_ambient_cubemap;
+ //bool use_reflection_cubemap;
-//
-// uniforms
-//
+ mat3 radiance_inverse_xform;
-uniform highp mat4 inv_view_matrix;
-uniform highp mat4 view_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
+ uint directional_light_count;
+ float z_far;
+ float z_near;
+ float pad;
-uniform highp mat4 world_transform;
+ bool fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
-uniform highp float time;
+ vec3 fog_light_color;
+ float fog_sun_scatter;
-uniform highp vec2 viewport_size;
+ float fog_aerial_perspective;
-#ifdef RENDER_DEPTH
-uniform float light_bias;
-uniform float light_normal_bias;
-#endif
+ float time;
+ float reflection_multiplier; // one normally, zero when rendering reflections
-//
-// varyings
-//
+ bool pancake_shadows;
+}
+scene_data;
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-out highp vec4 position_interp;
+uniform highp mat4 world_transform;
+
+#ifdef USE_LIGHTMAP
+uniform highp vec4 lightmap_uv_rect;
#endif
+/* Varyings */
+
out highp vec3 vertex_interp;
+#ifdef NORMAL_USED
out vec3 normal_interp;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-out vec3 tangent_interp;
-out vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
@@ -113,537 +151,155 @@ out vec4 color_interp;
out vec2 uv_interp;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
+#if defined(ENABLE_UV2_INTERP)
out vec2 uv2_interp;
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-out highp float dp_clip;
-uniform highp float shadow_dual_paraboloid_render_zfar;
-uniform highp float shadow_dual_paraboloid_render_side;
-
-#endif
-
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
-uniform highp mat4 light_shadow_matrix;
-out highp vec4 shadow_coord;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-uniform highp mat4 light_shadow_matrix2;
-out highp vec4 shadow_coord2;
-#endif
-
-#if defined(LIGHT_USE_PSSM4)
-
-uniform highp mat4 light_shadow_matrix3;
-uniform highp mat4 light_shadow_matrix4;
-out highp vec4 shadow_coord3;
-out highp vec4 shadow_coord4;
-
-#endif
-
-#endif
-
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
-
-out highp vec3 diffuse_interp;
-out highp vec3 specular_interp;
-
-// general for all lights
-uniform highp vec4 light_color;
-uniform highp vec4 shadow_color;
-uniform highp float light_specular;
-
-// directional
-uniform highp vec3 light_direction;
-
-// omni
-uniform highp vec3 light_position;
-
-uniform highp float light_range;
-uniform highp float light_attenuation;
-
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 light_color,
- vec3 attenuation,
- float roughness) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
-
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
-
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
-
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-#else
- // lambert by default for everything else
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
+#ifdef USE_LIGHTMAP
+out vec2 uv2_interp;
#endif
-
- SRGB_APPROX(diffuse_brdf_NL)
-
- diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
-
- if (roughness > 0.0) {
- // D
- float specular_brdf_NL = 0.0;
-
-#if !defined(SPECULAR_DISABLED)
- //normalized blinn always unless disabled
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N, H), 0.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
#endif
- SRGB_APPROX(specular_brdf_NL)
- specular_interp += specular_brdf_NL * light_color * attenuation * (1.0 / M_PI);
- }
-}
-
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+out vec3 tangent_interp;
+out vec3 binormal_interp;
#endif
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
-
-uniform highp mat4 refprobe1_local_matrix;
-out mediump vec4 refprobe1_reflection_normal_blend;
-uniform highp vec3 refprobe1_box_extents;
+#if defined(USE_MATERIAL)
-#ifndef USE_LIGHTMAP
-out mediump vec3 refprobe1_ambient_normal;
-#endif
-
-#endif //reflection probe1
+/* clang-format off */
+layout(std140) uniform UniformData { // ubo:1
-#ifdef USE_REFLECTION_PROBE2
+#MATERIAL_UNIFORMS
-uniform highp mat4 refprobe2_local_matrix;
-out mediump vec4 refprobe2_reflection_normal_blend;
-uniform highp vec3 refprobe2_box_extents;
+};
+/* clang-format on */
-#ifndef USE_LIGHTMAP
-out mediump vec3 refprobe2_ambient_normal;
#endif
-#endif //reflection probe2
-
-#endif //vertex lighting for refprobes
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-out vec4 fog_interp;
-
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
-#endif
+/* clang-format off */
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
+#GLOBALS
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
-#endif
+/* clang-format on */
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
-#endif
+out highp vec4 position_interp;
-#endif //fog
+invariant gl_Position;
void main() {
- highp vec4 vertex = vertex_attrib;
+ highp vec3 vertex = vertex_attrib;
- mat4 model_matrix = world_transform;
-
-#ifdef USE_INSTANCING
- {
- highp mat4 m = mat4(
- instance_xform_row_0,
- instance_xform_row_1,
- instance_xform_row_2,
- vec4(0.0, 0.0, 0.0, 1.0));
- model_matrix = model_matrix * transpose(m);
- }
+ highp mat4 model_matrix = world_transform;
+#ifdef NORMAL_USED
+ vec3 normal = normal_attrib * 2.0 - 1.0;
#endif
+ mat3 model_normal_matrix = mat3(model_matrix);
- vec3 normal = normal_attrib;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 tangent = tangent_attrib.xyz;
- float binormalf = tangent_attrib.a;
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ vec3 tangent;
+ float binormalf;
+ tangent = normal_tangent_attrib.xyz;
+ binormalf = normal_tangent_attrib.a;
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
-#ifdef USE_INSTANCING
- color_interp *= instance_color;
#endif
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
+#ifdef USE_LIGHTMAP
+ uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy;
+#else
+#if defined(ENABLE_UV2_INTERP)
uv2_interp = uv2_attrib;
#endif
+#endif
#if defined(OVERRIDE_POSITION)
highp vec4 position;
#endif
+ mat4 projection_matrix = scene_data.projection_matrix;
+ mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = model_matrix * vertex;
- normal = normalize((model_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-
- tangent = normalize((model_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((model_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-#ifdef USE_SKELETON
-
- highp mat4 bone_transform = mat4(0.0);
-
-#ifdef USE_SKELETON_SOFTWARE
- // passing the transform as attributes
-
- bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
- bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
- bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
- bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
+ vec4 instance_custom = vec4(0.0);
-#else
- // look up transform from the "pose texture"
- {
- for (int i = 0; i < 4; i++) {
- ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
+ // Using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- highp mat4 b = mat4(
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
- vec4(0.0, 0.0, 0.0, 1.0));
-
- bone_transform += transpose(b) * bone_weights[i];
- }
- }
+ vertex = (model_matrix * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = model_normal_matrix * normal;
#endif
- model_matrix = model_matrix * bone_transform;
-
-#endif
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
-#ifdef USE_INSTANCING
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
+ tangent = model_normal_matrix * tangent;
+ binormal = model_normal_matrix * binormal;
#endif
+#endif
- mat4 local_projection_matrix = projection_matrix;
-
- mat4 modelview = view_matrix * model_matrix;
float roughness = 1.0;
-#define projection_matrix local_projection_matrix
-#define world_transform model_matrix
+ mat4 modelview = scene_data.view_matrix * model_matrix;
+ mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
float point_size = 1.0;
{
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
+#CODE : VERTEX
}
gl_PointSize = point_size;
- vec4 outvec = vertex;
- // use local coordinates
+ // Using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = modelview * vertex;
- normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = view_matrix * vertex;
- normal = normalize((view_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((view_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((view_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- vertex_interp = vertex.xyz;
- normal_interp = normal;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent_interp = tangent;
- binormal_interp = binormal;
-#endif
-
-#ifdef RENDER_DEPTH
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z *= shadow_dual_paraboloid_render_side;
- normal_interp.z *= shadow_dual_paraboloid_render_side;
-
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
- vtx.z = vtx.z * 2.0 - 1.0;
-
- vertex_interp = vtx;
-
-#else
- float z_ofs = light_bias;
- z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
-
- vertex_interp.z -= z_ofs;
-#endif //dual parabolloid
-
-#endif //depth
-
-//vertex lighting
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
- //vertex shaded version of lighting (more limited)
- vec3 L;
- vec3 light_att;
-
-#ifdef LIGHT_MODE_OMNI
- vec3 light_vec = light_position - vertex_interp;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- vec3 attenuation = vec3(omni_attenuation);
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_vec);
-
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- vec3 light_rel_vec = light_position - vertex_interp;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
-
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
-
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
+ vertex = (modelview * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = modelview_normal * normal;
#endif
-#ifdef LIGHT_MODE_DIRECTIONAL
- vec3 light_vec = -light_direction;
- light_att = vec3(1.0); //no base attenuation
- L = normalize(light_vec);
#endif
- diffuse_interp = vec3(0.0);
- specular_interp = vec3(0.0);
- light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
-
-#endif
-
-//shadows (for both vertex and fragment)
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
- vec4 vi4 = vec4(vertex_interp, 1.0);
- shadow_coord = light_shadow_matrix * vi4;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
- shadow_coord2 = light_shadow_matrix2 * vi4;
+ binormal = modelview_normal * binormal;
+ tangent = modelview_normal * tangent;
#endif
-#if defined(LIGHT_USE_PSSM4)
- shadow_coord3 = light_shadow_matrix3 * vi4;
- shadow_coord4 = light_shadow_matrix4 * vi4;
+ // Using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
+ vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif
-#endif //use shadow and use lighting
-
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe1_reflection_normal_blend.xyz = local_ref_vec;
- refprobe1_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
-
- refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
+ tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
- }
-
-#endif //USE_REFLECTION_PROBE1
-
-#ifdef USE_REFLECTION_PROBE2
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe2_reflection_normal_blend.xyz = local_ref_vec;
- refprobe2_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
-
- refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
- }
-
-#endif //USE_REFLECTION_PROBE2
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
-#endif
-
-#ifdef FOG_DEPTH_ENABLED
-
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
- }
+ vertex_interp = vertex;
+#ifdef NORMAL_USED
+ normal_interp = normal;
#endif
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (inv_view_matrix * vec4(vertex_interp, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ tangent_interp = tangent;
+ binormal_interp = binormal;
#endif
- fog_interp = vec4(fog_color, fog_amount);
-
-#endif //fog
-
-#endif //use vertex lighting
#if defined(OVERRIDE_POSITION)
gl_Position = position;
@@ -651,333 +307,230 @@ VERTEX_SHADER_CODE
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
- position_interp = gl_Position;
+#ifdef MODE_RENDER_DEPTH
+ if (scene_data.pancake_shadows) {
+ if (gl_Position.z <= 0.00001) {
+ gl_Position.z = 0.00001;
+ }
+ }
#endif
+
+ position_interp = gl_Position;
}
/* clang-format off */
-[fragment]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#define M_PI 3.14159265359
-#define SHADER_IS_SRGB true
-
-//
-// uniforms
-//
-
-uniform highp mat4 inv_view_matrix;
-/* clang-format on */
-uniform highp mat4 view_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
+#[fragment]
-uniform highp float time;
-uniform highp vec2 viewport_size;
-
-#if defined(SCREEN_UV_USED)
-uniform vec2 screen_pixel_size;
+// Default to SPECULAR_SCHLICK_GGX.
+#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
+#define SPECULAR_SCHLICK_GGX
#endif
-#if defined(SCREEN_TEXTURE_USED)
-uniform highp sampler2D screen_texture; //texunit:-4
-#endif
-#if defined(DEPTH_TEXTURE_USED)
-uniform highp sampler2D depth_texture; //texunit:-4
+#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#ifndef NORMAL_USED
+#define NORMAL_USED
#endif
-
-#ifdef USE_REFLECTION_PROBE1
-
-#ifdef USE_VERTEX_LIGHTING
-
-in mediump vec4 refprobe1_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-in mediump vec3 refprobe1_ambient_normal;
#endif
-#else
-
-uniform bool refprobe1_use_box_project;
-uniform highp vec3 refprobe1_box_extents;
-uniform vec3 refprobe1_box_offset;
-uniform highp mat4 refprobe1_local_matrix;
+#include "tonemap_inc.glsl"
+#include "stdlib_inc.glsl"
-#endif //use vertex lighting
+/* texture unit usage, N is max_texture_unity-N
-uniform bool refprobe1_exterior;
+1-color correction // In tonemap_inc.glsl
+2-radiance
+3-directional_shadow
+4-positional_shadow
+5-screen
+6-depth
-uniform highp samplerCube reflection_probe1; //texunit:-5
+*/
-uniform float refprobe1_intensity;
-uniform vec4 refprobe1_ambient;
+uniform highp mat4 world_transform;
+/* clang-format on */
-#endif //USE_REFLECTION_PROBE1
+#define M_PI 3.14159265359
+#define SHADER_IS_SRGB false
-#ifdef USE_REFLECTION_PROBE2
+/* Varyings */
-#ifdef USE_VERTEX_LIGHTING
+#if defined(ENABLE_COLOR_INTERP)
+in vec4 color_interp;
+#endif
-in mediump vec4 refprobe2_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-in mediump vec3 refprobe2_ambient_normal;
+#if defined(ENABLE_UV_INTERP)
+in vec2 uv_interp;
#endif
+#if defined(ENABLE_UV2_INTERP)
+in vec2 uv2_interp;
#else
-
-uniform bool refprobe2_use_box_project;
-uniform highp vec3 refprobe2_box_extents;
-uniform vec3 refprobe2_box_offset;
-uniform highp mat4 refprobe2_local_matrix;
-
-#endif //use vertex lighting
-
-uniform bool refprobe2_exterior;
-
-uniform highp samplerCube reflection_probe2; //texunit:-6
-
-uniform float refprobe2_intensity;
-uniform vec4 refprobe2_ambient;
-
-#endif //USE_REFLECTION_PROBE2
-
-#define RADIANCE_MAX_LOD 6.0
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
-void reflection_process(samplerCube reflection_map,
-#ifdef USE_VERTEX_LIGHTING
- vec3 ref_normal,
-#ifndef USE_LIGHTMAP
- vec3 amb_normal,
+#ifdef USE_LIGHTMAP
+in vec2 uv2_interp;
+#endif
#endif
- float ref_blend,
-
-#else //no vertex lighting
- vec3 normal, vec3 vertex,
- mat4 local_matrix,
- bool use_box_project, vec3 box_extents, vec3 box_offset,
-#endif //vertex lighting
- bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
- vec4 reflection;
-
-#ifdef USE_VERTEX_LIGHTING
-
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
-
- float blend = ref_blend; //crappier blend formula for vertex
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
-#else //fragment lighting
-
- vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
-
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
- //reflect and make local
- vec3 ref_normal = normalize(reflect(vertex, normal));
- ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
-
- if (use_box_project) { //box project
-
- vec3 nrdir = normalize(ref_normal);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- ref_normal = posonbox - box_offset.xyz;
- }
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+in vec3 tangent_interp;
+in vec3 binormal_interp;
#endif
- if (exterior) {
- reflection.rgb = mix(skybox, reflection.rgb, blend);
- }
- reflection.rgb *= intensity;
- reflection.a = blend;
- reflection.rgb *= blend;
+in highp vec3 vertex_interp;
+in vec3 normal_interp;
- reflection_accum += reflection;
+/* PBR CHANNELS */
-#ifndef USE_LIGHTMAP
+#ifdef USE_RADIANCE_MAP
- vec4 ambient_out;
-#ifndef USE_VERTEX_LIGHTING
+layout(std140) uniform Radiance { // ubo:2
- vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
-#endif
+ mat4 radiance_inverse_xform;
+ float radiance_ambient_contribution;
+};
- ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
- ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
- if (exterior) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
+#define RADIANCE_MAX_LOD 5.0
- ambient_out.a = blend;
- ambient_out.rgb *= blend;
- ambient_accum += ambient_out;
+uniform sampler2D radiance_map; // texunit:-2
-#endif
+vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
+ vec3 norm = normalize(p_vec);
+ norm.xy /= 1.0 + abs(norm.z);
+ norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
+ if (norm.z > 0.0) {
+ norm.y = 0.5 - norm.y + 0.5;
+ }
+ return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}
-#endif //use refprobe 1 or 2
-
-#ifdef USE_LIGHTMAP
-uniform mediump sampler2D lightmap; //texunit:-4
-uniform mediump float lightmap_energy;
#endif
-#ifdef USE_LIGHTMAP_CAPTURE
-uniform mediump vec4[12] lightmap_captures;
-uniform bool lightmap_capture_sky;
+/* Material Uniforms */
-#endif
+#if defined(USE_MATERIAL)
-#ifdef USE_RADIANCE_MAP
+/* clang-format off */
+layout(std140) uniform UniformData {
-uniform samplerCube radiance_map; // texunit:-2
+#MATERIAL_UNIFORMS
-uniform mat4 radiance_inverse_xform;
+};
+/* clang-format on */
#endif
-uniform vec4 bg_color;
-uniform float bg_energy;
-
-uniform float ambient_sky_contribution;
-uniform vec4 ambient_color;
-uniform float ambient_energy;
+layout(std140) uniform SceneData { // ubo:3
+ mat4 projection_matrix;
+ mat4 inv_projection_matrix;
+ mat4 inv_view_matrix;
+ mat4 view_matrix;
-#ifdef USE_LIGHTING
+ vec2 viewport_size;
+ vec2 screen_pixel_size;
-uniform highp vec4 shadow_color;
+ mediump vec4 ambient_light_color_energy;
-#ifdef USE_VERTEX_LIGHTING
+ mediump float ambient_color_sky_mix;
+ uint ambient_flags;
+ bool material_uv2_mode;
+ float opaque_prepass_threshold;
+ //bool use_ambient_light;
+ //bool use_ambient_cubemap;
+ //bool use_reflection_cubemap;
-//get from vertex
-in highp vec3 diffuse_interp;
-in highp vec3 specular_interp;
+ mat3 radiance_inverse_xform;
-uniform highp vec3 light_direction; //may be used by fog, so leave here
+ uint directional_light_count;
+ float z_far;
+ float z_near;
+ float pad;
-#else
-//done in fragment
-// general for all lights
-uniform highp vec4 light_color;
+ bool fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
-uniform highp float light_specular;
+ vec3 fog_light_color;
+ float fog_sun_scatter;
-// directional
-uniform highp vec3 light_direction;
-// omni
-uniform highp vec3 light_position;
+ float fog_aerial_perspective;
-uniform highp float light_attenuation;
+ float time;
+ float reflection_multiplier; // one normally, zero when rendering reflections
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-#endif
+ bool pancake_shadows;
+}
+scene_data;
-//this is needed outside above if because dual paraboloid wants it
-uniform highp float light_range;
+/* clang-format off */
-#ifdef USE_SHADOW
+#GLOBALS
-uniform highp vec2 shadow_pixel_size;
+/* clang-format on */
-#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
-uniform highp sampler2D light_shadow_atlas; //texunit:-3
-#endif
+//directional light data
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform highp sampler2D light_directional_shadow; // texunit:-3
-uniform highp vec4 light_split_offsets;
-#endif
+#ifdef USE_LIGHT_DIRECTIONAL
-in highp vec4 shadow_coord;
+struct DirectionalLightData {
+ mediump vec3 direction;
+ mediump float energy;
+ mediump vec3 color;
+ mediump float size;
+ mediump vec3 pad;
+ mediump float specular;
+};
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-in highp vec4 shadow_coord2;
#endif
-#if defined(LIGHT_USE_PSSM4)
-
-in highp vec4 shadow_coord3;
-in highp vec4 shadow_coord4;
+// omni and spot
+#ifdef USE_LIGHT_POSITIONAL
+struct LightData { //this structure needs to be as packed as possible
+ highp vec3 position;
+ highp float inv_radius;
-#endif
+ mediump vec3 direction;
+ highp float size;
-uniform vec4 light_clamp;
+ mediump vec3 color;
+ mediump float attenuation;
-#endif // light shadow
+ mediump float cone_attenuation;
+ mediump float cone_angle;
+ mediump float specular_amount;
+ bool shadow_enabled;
+};
-// directional shadow
+layout(std140) uniform OmniLightData { // ubo:4
-#endif
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+};
-//
-// varyings
-//
+layout(std140) uniform SpotLightData { // ubo:5
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-in highp vec4 position_interp;
-#endif
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+};
-in highp vec3 vertex_interp;
-in vec3 normal_interp;
+uniform highp samplerCubeShadow positional_shadow; // texunit:-6
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-in vec3 tangent_interp;
-in vec3 binormal_interp;
-#endif
+uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
+uniform int omni_light_count;
-#if defined(ENABLE_COLOR_INTERP)
-in vec4 color_interp;
-#endif
+uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
+uniform int spot_light_count;
-#if defined(ENABLE_UV_INTERP)
-in vec2 uv_interp;
-#endif
+uniform int reflection_indices[MAX_FORWARD_LIGHTS];
+uniform int reflection_count;
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-in vec2 uv2_interp;
#endif
-in vec3 view_interp;
+uniform highp sampler2D screen_texture; // texunit:-5
+uniform highp sampler2D depth_buffer; // texunit:-6
layout(location = 0) out vec4 frag_color;
+in highp vec4 position_interp;
+
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
@@ -985,95 +538,31 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, vec3(metallic));
}
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-in highp float dp_clip;
-
-#endif
-
-#ifdef USE_LIGHTING
-
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-/*
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-*/
-
-// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
-// See Filament docs, Specular G section.
-float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
- return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha);
-}
-
+#if defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL)
float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
-}
-
-/*
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
+ float a = cos_theta_m * alpha;
+ float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
+ return k * k * (1.0 / M_PI);
}
-*/
-// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
-// See Filament docs, Anisotropic specular BRDF section.
-float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
- float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
- float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
- return 0.5 / (Lambda_V + Lambda_L);
+// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
+float V_GGX(float NdotL, float NdotV, float alpha) {
+ return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
+float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float alpha2 = alpha_x * alpha_y;
- highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
+ highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
+}
- /* float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
+float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
+ float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
+ float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
+ return 0.5 / (Lambda_V + Lambda_L);
}
float SchlickFresnel(float u) {
@@ -1082,109 +571,64 @@ float SchlickFresnel(float u) {
return m2 * m2 * m; // pow(m,5)
}
-float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
+void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 B, vec3 T, float anisotropy,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 B,
- vec3 T,
- vec3 light_color,
- vec3 attenuation,
- vec3 diffuse_color,
- vec3 transmission,
- float specular_blob_intensity,
- float roughness,
- float metallic,
- float specular,
- float rim,
- float rim_tint,
- float clearcoat,
- float clearcoat_roughness,
- float anisotropy,
- inout vec3 diffuse_light,
- inout vec3 specular_light,
- inout float alpha) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
+ vec4 orms_unpacked = unpackUnorm4x8(orms);
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
+ float roughness = orms_unpacked.y;
+ float metallic = orms_unpacked.z;
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
- vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
-LIGHT_SHADER_CODE
+
+#CODE : LIGHT
/* clang-format on */
#else
- float NdotL = dot(N, L);
+ float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
- float cNdotV = max(abs(NdotV), 1e-6);
+ float cNdotV = max(NdotV, 0.0);
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cNdotH = max(dot(N, H), 0.0);
+#if defined(SPECULAR_SCHLICK_GGX)
+ float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cLdotH = max(dot(L, H), 0.0);
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+ float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
@@ -1196,230 +640,208 @@ LIGHT_SHADER_CODE
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
- SRGB_APPROX(diffuse_brdf_NL)
-
- diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
+ diffuse_light += light_color * diffuse_brdf_NL * attenuation;
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
+#if defined(LIGHT_BACKLIGHT_USED)
+ diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
-#if defined(LIGHT_USE_RIM)
+#if defined(LIGHT_RIM_USED)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
+ diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
#endif
}
- if (roughness > 0.0) {
-
-#if defined(SPECULAR_SCHLICK_GGX)
- vec3 specular_brdf_NL = vec3(0.0);
-#else
- float specular_brdf_NL = 0.0;
-#endif
+ if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
-#if defined(SPECULAR_BLINN)
-
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = max(0.0, dot(R, V));
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
+ // D
-#elif defined(SPECULAR_TOON)
+#if defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
- specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
+ float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
+ diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
+
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
-
-#if defined(LIGHT_USE_ANISOTROPY)
float alpha_ggx = roughness * roughness;
+#if defined(LIGHT_ANISOTROPY_USED)
+
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
- //float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
+ float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
-
-#else
- float alpha_ggx = roughness * roughness;
+#else // LIGHT_ANISOTROPY_USED
float D = D_GGX(cNdotH, alpha_ggx);
- //float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
-#endif
- // F
- vec3 f0 = F0(metallic, specular, diffuse_color);
+#endif // LIGHT_ANISOTROPY_USED
+ // F
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
- specular_brdf_NL = cNdotL * D * F * G;
+ vec3 specular_brdf_NL = cNdotL * D * F * G;
+ specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
- SRGB_APPROX(specular_brdf_NL)
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-
-#if defined(LIGHT_USE_CLEARCOAT)
+#if defined(LIGHT_CLEARCOAT_USED)
+ // Clearcoat ignores normal_map, use vertex normal instead
+ float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
+ float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
+ float ccNdotV = max(dot(vertex_normal, V), 1e-4);
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_roughness));
+ float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
+ float Gr = 0.25 / (cLdotH * cLdotH);
float Fr = mix(.04, 1.0, cLdotH5);
- //float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
- float Gr = V_GGX(cNdotL, cNdotV, 0.25);
-
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
+ float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
+ specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
+ // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
+ // but to do so we need to rearrange this entire function
+#endif // LIGHT_CLEARCOAT_USED
}
#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
+ alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
#endif
-#endif //defined(USE_LIGHT_SHADER_CODE)
+#endif //defined(LIGHT_CODE_USED)
}
-#endif
-// shadows
-
-#ifdef USE_SHADOW
-
-#ifdef USE_RGBA_SHADOWS
-
-#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
-
-#else
-
-#define SHADOW_DEPTH(m_val) (m_val).r
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
#endif
-
-#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture(p_shadow, p_pos)))
-#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(textureProj(p_shadow, p_pos)))
-
-float sample_shadow(highp sampler2D shadow, highp vec4 spos) {
-#ifdef SHADOW_MODE_PCF_13
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth);
- return avg * (1.0 / 13.0);
+#ifdef LIGHT_TRANSMITTANCE_USED
+ vec4 transmittance_color,
+ float transmittance_depth,
+ float transmittance_boost,
#endif
-
-#ifdef SHADOW_MODE_PCF_5
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- return avg * (1.0 / 5.0);
-
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
+ vec3 light_rel_vec = omni_lights[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation);
+ vec3 light_attenuation = vec3(omni_attenuation);
+ vec3 color = omni_lights[idx].color;
+ float size_A = 0.0;
+
+ if (omni_lights.data[idx].size > 0.0) {
+ float t = omni_lights[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
+ }
-#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
-
- return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, omni_lights[idx].specular_amount, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim * omni_attenuation, rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, vertex_normal,
#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
+#endif
+ diffuse_light,
+ specular_light);
}
+void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
#endif
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
-
-in vec4 fog_interp;
-
-#else
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+ inout vec3 diffuse_light,
+ inout vec3 specular_light) {
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
+ vec3 light_rel_vec = spot_lights[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation);
+ vec3 spot_dir = spot_lights[idx].direction;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle));
+ spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation);
+ float light_attenuation = spot_attenuation;
+ vec3 color = spot_lights[idx].color;
+
+ float size_A = 0.0;
+
+ if (spot_lights.data[idx].size > 0.0) {
+ float t = spot_lights.data[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
+ }
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, spot_lights[idx].specular_amount, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
-
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
+#ifdef LIGHT_RIM_USED
+ rim * spot_attenuation, rim_tint,
#endif
-
-#endif //vertex lit
-#endif //fog
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
+#endif
+ diffuse_light, specular_light);
+}
+#endif // defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL)
void main() {
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- if (dp_clip > 0.0)
- discard;
-#endif
- highp vec3 vertex = vertex_interp;
+ //lay out everything, whatever is unused is optimized away anyway
+ vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
- vec3 transmission = vec3(0.0);
+ vec3 backlight = vec3(0.0);
+ vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0);
+ float transmittance_depth = 0.0;
+ float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
@@ -1430,617 +852,235 @@ void main() {
float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
- float sss_strength = 0.0; //unused
- // gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a
- // compile error because DEPTH is not a variable.
- float m_DEPTH = 0.0;
-
- float alpha = 1.0;
- float side = 1.0;
-
- float specular_blob_intensity = 1.0;
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
+ vec4 fog = vec4(0.0);
+#if defined(CUSTOM_RADIANCE_USED)
+ vec4 custom_radiance = vec4(0.0);
+#endif
+#if defined(CUSTOM_IRRADIANCE_USED)
+ vec4 custom_irradiance = vec4(0.0);
#endif
-#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
-#endif
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 binormal = normalize(binormal_interp) * side;
- vec3 tangent = normalize(tangent_interp) * side;
+ float alpha = 1.0;
+
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ vec3 binormal = normalize(binormal_interp);
+ vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
- vec3 normal = normalize(normal_interp) * side;
-#if defined(ENABLE_NORMALMAP)
- vec3 normalmap = vec3(0.5);
+#ifdef NORMAL_USED
+ vec3 normal = normalize(normal_interp);
+
+#if defined(DO_SIDE_CHECK)
+ if (!gl_FrontFacing) {
+ normal = -normal;
+ }
#endif
- float normaldepth = 1.0;
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
+#endif //NORMAL_USED
+
+#ifdef UV_USED
+ vec2 uv = uv_interp;
#endif
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
+#if defined(UV2_USED) || defined(USE_LIGHTMAP)
+ vec2 uv2 = uv2_interp;
#endif
- {
- /* clang-format off */
+#if defined(COLOR_USED)
+ vec4 color = color_interp;
+#endif
-FRAGMENT_SHADER_CODE
+#if defined(NORMAL_MAP_USED)
- /* clang-format on */
- }
+ vec3 normal_map = vec3(0.5);
+#endif
-#if defined(ENABLE_NORMALMAP)
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
+ float normal_map_depth = 1.0;
- normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
- //normal = normalmap;
-#endif
+ vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
- normal = normalize(normal);
+ float sss_strength = 0.0;
- vec3 N = normal;
+#ifdef ALPHA_SCISSOR_USED
+ float alpha_scissor_threshold = 1.0;
+#endif // ALPHA_SCISSOR_USED
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
- vec3 ambient_light = vec3(0.0, 0.0, 0.0);
+#ifdef ALPHA_HASH_USED
+ float alpha_hash_scale = 1.0;
+#endif // ALPHA_HASH_USED
- vec3 eye_position = view;
+#ifdef ALPHA_ANTIALIASING_EDGE_USED
+ float alpha_antialiasing_edge = 0.0;
+ vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
+#endif // ALPHA_ANTIALIASING_EDGE_USED
+ {
+#CODE : FRAGMENT
+ }
-#if !defined(USE_SHADOW_TO_OPACITY)
+#ifndef USE_SHADOW_TO_OPACITY
#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
+ if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // ALPHA_SCISSOR_USED
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
+#ifdef USE_OPAQUE_PREPASS
+#if !defined(ALPHA_SCISSOR_USED)
+
+ if (alpha < scene_data.opaque_prepass_threshold) {
discard;
}
-#endif // USE_DEPTH_PREPASS
-#endif // !USE_SHADOW_TO_OPACITY
+#endif // not ALPHA_SCISSOR_USED
+#endif // USE_OPAQUE_PREPASS
-#ifdef BASE_PASS
-
- // IBL precalculations
- float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
- vec3 f0 = F0(metallic, specular, albedo);
- vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
-
-#ifdef USE_RADIANCE_MAP
-
- vec3 ref_vec = reflect(-eye_position, N);
- ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
-
- ref_vec.z *= -1.0;
-
- specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
-#ifndef USE_LIGHTMAP
- {
- vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
- vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
- env_ambient *= 1.0 - F;
+#endif // !USE_SHADOW_TO_OPACITY
- ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
- }
-#endif
+#ifdef NORMAL_MAP_USED
-#else
+ normal_map.xy = normal_map.xy * 2.0 - 1.0;
+ normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- ambient_light = ambient_color.rgb;
- specular_light = bg_color.rgb * bg_energy;
+ normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
-#endif // AMBIENT_LIGHT_DISABLED
- ambient_light *= ambient_energy;
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
- vec4 ambient_accum = vec4(0.0);
- vec4 reflection_accum = vec4(0.0);
+#ifdef LIGHT_ANISOTROPY_USED
-#ifdef USE_REFLECTION_PROBE1
+ if (anisotropy > 0.01) {
+ //rotation matrix
+ mat3 rot = mat3(tangent, binormal, normal);
+ //make local to space
+ tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
+ binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
+ }
- reflection_process(reflection_probe1,
-#ifdef USE_VERTEX_LIGHTING
- refprobe1_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe1_ambient_normal,
#endif
- refprobe1_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe1_local_matrix,
- refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
-#endif
- refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
-#endif // USE_REFLECTION_PROBE1
+#ifndef MODE_RENDER_DEPTH
+ vec3 f0 = F0(metallic, specular, albedo);
+ // Convert albedo to linear. Approximation from: http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
+ albedo = albedo * (albedo * (albedo * 0.305306011 + 0.682171111) + 0.012522878);
+ vec3 specular_light = vec3(0.0, 0.0, 0.0);
+ vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
+ vec3 ambient_light = vec3(0.0, 0.0, 0.0);
-#ifdef USE_REFLECTION_PROBE2
+#ifdef BASE_PASS
+ /////////////////////// LIGHTING //////////////////////////////
- reflection_process(reflection_probe2,
-#ifdef USE_VERTEX_LIGHTING
- refprobe2_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe2_ambient_normal,
-#endif
- refprobe2_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe2_local_matrix,
- refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
-#endif
- refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
+ // IBL precalculations
+ float ndotv = clamp(dot(normal, view), 0.0, 1.0);
+ vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-#endif // USE_REFLECTION_PROBE2
+ // Calculate IBL
+ // Calculate Reflection probes
+ // Caclculate Lightmaps
- if (reflection_accum.a > 0.0) {
- specular_light = reflection_accum.rgb / reflection_accum.a;
- }
+ float specular_blob_intensity = 1.0;
-#ifndef USE_LIGHTMAP
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
+#if defined(SPECULAR_TOON)
+ specular_blob_intensity *= specular * 2.0;
#endif
-#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
- // environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
- // scales the specular reflections, needs to be computed before lighting happens,
- // but after environment and reflection probes are added
- //TODO: this curve is not really designed for gammaspace, should be adjusted
+ // scales the specular reflections, needs to be be computed before lighting happens,
+ // but after environment, GI, and reflection probes are added
+ // Environment brdf approximation (Lazarov 2013)
+ // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
+ float ndotv = clamp(dot(normal, view), 0.0, 1.0);
+
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * F + env.y;
-
+ specular_light *= env.x * f0 + env.y;
#endif
}
-#ifdef USE_LIGHTMAP
- //ambient light will come entirely from lightmap is lightmap is used
- ambient_light = texture(lightmap, uv2_interp).rgb * lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
- {
- vec3 cone_dirs[12];
- cone_dirs[0] = vec3(0.0, 0.0, 1.0);
- cone_dirs[1] = vec3(0.866025, 0.0, 0.5);
- cone_dirs[2] = vec3(0.267617, 0.823639, 0.5);
- cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5);
- cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5);
- cone_dirs[5] = vec3(0.267617, -0.823639, 0.5);
- cone_dirs[6] = vec3(0.0, 0.0, -1.0);
- cone_dirs[7] = vec3(0.866025, 0.0, -0.5);
- cone_dirs[8] = vec3(0.267617, 0.823639, -0.5);
- cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5);
- cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5);
- cone_dirs[11] = vec3(0.267617, -0.823639, -0.5);
-
- vec3 local_normal = normalize(inv_view_matrix * vec4(normal, 0.0)).xyz;
- vec4 captured = vec4(0.0);
- float sum = 0.0;
- for (int i = 0; i < 12; i++) {
- float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i] * amount;
- sum += amount;
- }
-
- captured /= sum;
-
- if (lightmap_capture_sky) {
- ambient_light = mix(ambient_light, captured.rgb, captured.a);
- } else {
- ambient_light = captured.rgb;
- }
- }
-#endif
-
-#endif //BASE PASS
-
-//
-// Lighting
-//
-#ifdef USE_LIGHTING
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 L;
-#endif
- vec3 light_att = vec3(1.0);
-
-#ifdef LIGHT_MODE_OMNI
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = light_position - vertex;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- L = normalize(light_vec);
-
-#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
- float shadow_len = length(splane.xyz);
-
- splane.xyz = normalize(splane.xyz);
-
- vec4 clamp_rect = light_clamp;
-
- if (splane.z >= 0.0) {
- splane.z += 1.0;
-
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len / light_range;
-
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
-#endif
-
-#endif //SHADOWS_DISABLED
-
-#endif //type omni
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = -light_direction;
- L = normalize(light_vec);
-#endif
- float depth_z = -vertex.z;
-
-#if !defined(SHADOWS_DISABLED)
+#endif // BASE_PASS
-#ifdef USE_SHADOW
+ //this saves some VGPRs
+ uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
-#ifdef USE_VERTEX_LIGHTING
- //compute shadows in a mobile friendly way
+#ifdef USE_LIGHT_DIRECTIONAL
-#ifdef LIGHT_USE_PSSM4
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
- float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
- float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
+ float size_A = directional_lights[i].size;
- if (depth_z < light_split_offsets.w) {
- float pssm_fade = 0.0;
- float shadow_att = 1.0;
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
+ light_compute(normal, directional_lights[i].direction, normalize(view), size_A, directional_lights[i].color * directional_lights[i].energy, shadow, f0, orms, 1.0, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim, rim_tint,
#endif
- } else {
- shadow_att = shadow2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- shadow_att = shadow3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- shadow_att2 = shadow4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
-#endif
-
- } else {
- shadow_att = shadow4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-#if defined(LIGHT_USE_PSSM_BLEND)
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal,
+ tangent, anisotropy,
#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
- }
-
-#endif //LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
-
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
+ diffuse_light,
+ specular_light);
- if (depth_z < light_split_offsets.y) {
- float shadow_att = 1.0;
- float pssm_fade = 0.0;
+#endif //#USE_LIGHT_DIRECTIONAL
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
+#ifdef USE_LIGHT_POSITIONAL
+ float shadow = 0.0;
+ for (int i = 0; i < omni_light_count; i++) {
+ light_process_omni(omni_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- if (depth_z < light_split_offsets.x) {
- float pssm_fade = 0.0;
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
#endif
- } else {
- shadow_att = shadow2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
- }
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ tangent, binormal, anisotropy,
#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
+ diffuse_light, specular_light);
}
-#endif //LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord));
-#endif //orthogonal
-
-#else //fragment version of pssm
-
- {
-#ifdef LIGHT_USE_PSSM4
- if (depth_z < light_split_offsets.w) {
-#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < light_split_offsets.y) {
-#else
- if (depth_z < light_split_offsets.x) {
-#endif //pssm2
-
- highp vec4 pssm_coord;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- highp vec4 pssm_coord2;
- bool use_blend = true;
-#endif
-
-#ifdef LIGHT_USE_PSSM4
-
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- pssm_coord = shadow_coord2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- pssm_coord = shadow_coord3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- pssm_coord2 = shadow_coord4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
+ for (int i = 0; i < spot_light_count; i++) {
+ light_process_spot(spot_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
-
- } else {
- pssm_coord = shadow_coord4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-
-#endif // LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
#endif
- } else {
- pssm_coord = shadow_coord2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
- }
-
-#endif // LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- {
- pssm_coord = shadow_coord;
- }
-#endif
-
- float shadow = sample_shadow(light_directional_shadow, pssm_coord);
-
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ tangent,
+ binormal, anisotropy,
#endif
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
+ diffuse_light, specular_light);
}
-#endif //use vertex lighting
-
-#endif //use shadow
-
-#endif // SHADOWS_DISABLED
-
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- light_att = vec3(1.0);
-
-#ifndef USE_VERTEX_LIGHTING
-
- vec3 light_rel_vec = light_position - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
-#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
-#endif
-
-#endif // SHADOWS_DISABLED
-
-#endif // LIGHT_MODE_SPOT
-
-#ifdef USE_VERTEX_LIGHTING
- //vertex lighting
-
- specular_light += specular_interp * specular_blob_intensity * light_att;
- diffuse_light += diffuse_interp * albedo * light_att;
-
-#else
- //fragment lighting
- light_compute(
- normal,
- L,
- eye_position,
- binormal,
- tangent,
- light_color.xyz,
- light_att,
- albedo,
- transmission,
- specular_blob_intensity * light_specular,
- roughness,
- metallic,
- specular,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_roughness,
- anisotropy,
- diffuse_light,
- specular_light,
- alpha);
-
-#endif //vertex lighting
-
-#endif //USE_LIGHTING
- //compute and merge
-
-#ifdef USE_SHADOW_TO_OPACITY
+#endif // USE_LIGHT_POSITIONAL
+#endif //!MODE_RENDER_DEPTH
+#if defined(USE_SHADOW_TO_OPACITY)
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
@@ -2049,105 +1089,50 @@ FRAGMENT_SHADER_CODE
}
#endif // ALPHA_SCISSOR_USED
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
+#ifdef USE_OPAQUE_PREPASS
+#if !defined(ALPHA_SCISSOR_USED)
+
+ if (alpha < opaque_prepass_threshold) {
discard;
}
-#endif // USE_DEPTH_PREPASS
-#endif // !USE_SHADOW_TO_OPACITY
+#endif // not ALPHA_SCISSOR_USED
+#endif // USE_OPAQUE_PREPASS
-#ifndef RENDER_DEPTH
+#endif // USE_SHADOW_TO_OPACITY
-#ifdef SHADELESS
+#ifdef MODE_RENDER_DEPTH
+//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
+#else // !MODE_RENDER_DEPTH
- frag_color = vec4(albedo, alpha);
-#else
-
- ambient_light *= albedo;
-
-#if defined(ENABLE_AO)
- ambient_light *= ao;
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light *= ao_light_affect;
- diffuse_light *= ao_light_affect;
-#endif
+ specular_light *= scene_data.reflection_multiplier;
+ ambient_light *= albedo; //ambient must be multiplied by albedo at the end
+ // base color remapping
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
+#ifdef MODE_UNSHADED
+ frag_color = vec4(albedo, alpha);
+#else
frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha);
-
- //add emission if in base pass
#ifdef BASE_PASS
frag_color.rgb += emission;
#endif
- // frag_color = vec4(normal, 1.0);
-
-//apply fog
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
-
-#if defined(BASE_PASS)
- frag_color.rgb = mix(frag_color.rgb, fog_interp.rgb, fog_interp.a);
-#else
- frag_color.rgb *= (1.0 - fog_interp.a);
-#endif // BASE_PASS
-
-#else //pixel based fog
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
-#endif
-
-#ifdef FOG_DEPTH_ENABLED
+#endif //MODE_UNSHADED
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
+ // Tonemap before writing as we are writing to an sRGB framebuffer
+ frag_color.rgb *= exposure;
+ frag_color.rgb = apply_tonemapping(frag_color.rgb, white);
+ frag_color.rgb = linear_to_srgb(frag_color.rgb);
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
-
- if (fog_transmit_enabled) {
- vec3 total_light = frag_color.rgb;
- float transmit = pow(fog_z, fog_transmit_curve);
- fog_color = mix(max(total_light, fog_color), fog_color, transmit);
- }
- }
+#ifdef USE_BCS
+ frag_color.rgb = apply_bcs(frag_color.rgb, bcs);
#endif
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (inv_view_matrix * vec4(vertex, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
+#ifdef USE_COLOR_CORRECTION
+ frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction);
#endif
-#if defined(BASE_PASS)
- frag_color.rgb = mix(frag_color.rgb, fog_color, fog_amount);
-#else
- frag_color.rgb *= (1.0 - fog_amount);
-#endif // BASE_PASS
-
-#endif //use vertex lit
-
-#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#endif //unshaded
-
-#else // not RENDER_DEPTH
-//depth render
-#ifdef USE_RGBA_SHADOWS
-
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
- highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
- comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
- frag_color = comp;
-
-#endif
-#endif
+#endif //!MODE_RENDER_DEPTH
}
diff --git a/drivers/gles3/shaders/stdlib_inc.glsl b/drivers/gles3/shaders/stdlib_inc.glsl
index 2eddf9d479..3d976e9ab8 100644
--- a/drivers/gles3/shaders/stdlib_inc.glsl
+++ b/drivers/gles3/shaders/stdlib_inc.glsl
@@ -1,5 +1,5 @@
-//TODO: only needed by GLES_OVER_GL
+#ifdef USE_GLES_OVER_GL
uint float2half(uint f) {
return ((f >> uint(16)) & uint(0x8000)) |
((((f & uint(0x7f800000)) - uint(0x38000000)) >> uint(13)) & uint(0x7c00)) |
@@ -56,3 +56,4 @@ vec4 unpackSnorm4x8(uint p) {
vec4 v = vec4(float(p & uint(0xffff)), float((p >> uint(8)) & uint(0xffff)), float((p >> uint(16)) & uint(0xffff)), float(p >> uint(24)));
return clamp((v - vec4(127.0)) * vec4(0.00787401574), vec4(-1.0), vec4(1.0));
}
+#endif
diff --git a/drivers/gles3/storage/material_storage.cpp b/drivers/gles3/storage/material_storage.cpp
index 0641b4e87b..a3111da28a 100644
--- a/drivers/gles3/storage/material_storage.cpp
+++ b/drivers/gles3/storage/material_storage.cpp
@@ -900,6 +900,42 @@ _FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type,
///////////////////////////////////////////////////////////////////////////
// MaterialData
+// Look up table to translate ShaderLanguage::DataType to GL_TEXTURE_*
+static const GLenum target_from_type[ShaderLanguage::TYPE_MAX] = {
+ GL_TEXTURE_2D, // TYPE_VOID,
+ GL_TEXTURE_2D, // TYPE_BOOL,
+ GL_TEXTURE_2D, // TYPE_BVEC2,
+ GL_TEXTURE_2D, // TYPE_BVEC3,
+ GL_TEXTURE_2D, // TYPE_BVEC4,
+ GL_TEXTURE_2D, // TYPE_INT,
+ GL_TEXTURE_2D, // TYPE_IVEC2,
+ GL_TEXTURE_2D, // TYPE_IVEC3,
+ GL_TEXTURE_2D, // TYPE_IVEC4,
+ GL_TEXTURE_2D, // TYPE_UINT,
+ GL_TEXTURE_2D, // TYPE_UVEC2,
+ GL_TEXTURE_2D, // TYPE_UVEC3,
+ GL_TEXTURE_2D, // TYPE_UVEC4,
+ GL_TEXTURE_2D, // TYPE_FLOAT,
+ GL_TEXTURE_2D, // TYPE_VEC2,
+ GL_TEXTURE_2D, // TYPE_VEC3,
+ GL_TEXTURE_2D, // TYPE_VEC4,
+ GL_TEXTURE_2D, // TYPE_MAT2,
+ GL_TEXTURE_2D, // TYPE_MAT3,
+ GL_TEXTURE_2D, // TYPE_MAT4,
+ GL_TEXTURE_2D, // TYPE_SAMPLER2D,
+ GL_TEXTURE_2D, // TYPE_ISAMPLER2D,
+ GL_TEXTURE_2D, // TYPE_USAMPLER2D,
+ GL_TEXTURE_2D_ARRAY, // TYPE_SAMPLER2DARRAY,
+ GL_TEXTURE_2D_ARRAY, // TYPE_ISAMPLER2DARRAY,
+ GL_TEXTURE_2D_ARRAY, // TYPE_USAMPLER2DARRAY,
+ GL_TEXTURE_3D, // TYPE_SAMPLER3D,
+ GL_TEXTURE_3D, // TYPE_ISAMPLER3D,
+ GL_TEXTURE_3D, // TYPE_USAMPLER3D,
+ GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBE,
+ GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBEARRAY,
+ GL_TEXTURE_2D, // TYPE_STRUCT
+};
+
void MaterialData::update_uniform_buffer(const Map<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Map<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color) {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
bool uses_global_buffer = false;
@@ -1275,13 +1311,13 @@ MaterialStorage *MaterialStorage::get_singleton() {
MaterialStorage::MaterialStorage() {
singleton = this;
- shader_data_request_func[RS::SHADER_SPATIAL] = nullptr;
+ shader_data_request_func[RS::SHADER_SPATIAL] = _create_scene_shader_func;
shader_data_request_func[RS::SHADER_CANVAS_ITEM] = _create_canvas_shader_func;
shader_data_request_func[RS::SHADER_PARTICLES] = nullptr;
shader_data_request_func[RS::SHADER_SKY] = _create_sky_shader_func;
shader_data_request_func[RS::SHADER_FOG] = nullptr;
- material_data_request_func[RS::SHADER_SPATIAL] = nullptr;
+ material_data_request_func[RS::SHADER_SPATIAL] = _create_scene_material_func;
material_data_request_func[RS::SHADER_CANVAS_ITEM] = _create_canvas_material_func;
material_data_request_func[RS::SHADER_PARTICLES] = nullptr;
material_data_request_func[RS::SHADER_SKY] = _create_sky_material_func;
@@ -1365,16 +1401,12 @@ MaterialStorage::MaterialStorage() {
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
actions.render_mode_defines["light_only"] = "#define MODE_LIGHT_ONLY\n";
- actions.base_texture_binding_index = 0;
- actions.base_uniform_string = "";
- actions.global_buffer_array_variable = "";
-
shaders.compiler_canvas.initialize(actions);
}
{
// Setup Scene compiler
- /*
+
//shader compiler
ShaderCompiler::DefaultIdentifierActions actions;
@@ -1529,11 +1561,6 @@ MaterialStorage::MaterialStorage() {
actions.render_mode_defines["sss_mode_skin"] = "#define SSS_MODE_SKIN\n";
actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n";
-
- actions.custom_samplers["SCREEN_TEXTURE"] = "material_samplers[3]"; // linear filter with mipmaps
- actions.custom_samplers["DEPTH_TEXTURE"] = "material_samplers[3]";
- actions.custom_samplers["NORMAL_ROUGHNESS_TEXTURE"] = "material_samplers[1]"; // linear filter
-
actions.render_mode_defines["specular_toon"] = "#define SPECULAR_TOON\n";
actions.render_mode_defines["specular_disabled"] = "#define SPECULAR_DISABLED\n";
actions.render_mode_defines["shadows_disabled"] = "#define SHADOWS_DISABLED\n";
@@ -1541,19 +1568,10 @@ MaterialStorage::MaterialStorage() {
actions.render_mode_defines["shadow_to_opacity"] = "#define USE_SHADOW_TO_OPACITY\n";
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
- actions.sampler_array_name = "material_samplers";
- actions.base_texture_binding_index = 1;
- actions.texture_layout_set = RenderForwardClustered::MATERIAL_UNIFORM_SET;
- actions.base_uniform_string = "material.";
- actions.base_varying_index = 10;
-
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
- actions.global_buffer_array_variable = "global_variables.data";
- actions.instance_uniform_index_variable = "instances.data[instance_index].instance_uniforms_ofs";
- compiler.initialize(actions);
- */
+ shaders.compiler_scene.initialize(actions);
}
{
@@ -1664,13 +1682,8 @@ ShaderCompiler::DefaultIdentifierActions actions;
actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
- actions.base_texture_binding_index = 1;
- actions.texture_layout_set = 1;
- actions.base_varying_index = 10;
-
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
- actions.global_buffer_array_variable = "global_variables";
shaders.compiler_sky.initialize(actions);
}
@@ -2914,42 +2927,6 @@ void CanvasMaterialData::update_parameters(const Map<StringName, Variant> &p_par
return update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
-// Look up table to translate ShaderLanguage::DataType to GL_TEXTURE_*
-static const GLenum target_from_type[ShaderLanguage::TYPE_MAX] = {
- GL_TEXTURE_2D, // TYPE_VOID,
- GL_TEXTURE_2D, // TYPE_BOOL,
- GL_TEXTURE_2D, // TYPE_BVEC2,
- GL_TEXTURE_2D, // TYPE_BVEC3,
- GL_TEXTURE_2D, // TYPE_BVEC4,
- GL_TEXTURE_2D, // TYPE_INT,
- GL_TEXTURE_2D, // TYPE_IVEC2,
- GL_TEXTURE_2D, // TYPE_IVEC3,
- GL_TEXTURE_2D, // TYPE_IVEC4,
- GL_TEXTURE_2D, // TYPE_UINT,
- GL_TEXTURE_2D, // TYPE_UVEC2,
- GL_TEXTURE_2D, // TYPE_UVEC3,
- GL_TEXTURE_2D, // TYPE_UVEC4,
- GL_TEXTURE_2D, // TYPE_FLOAT,
- GL_TEXTURE_2D, // TYPE_VEC2,
- GL_TEXTURE_2D, // TYPE_VEC3,
- GL_TEXTURE_2D, // TYPE_VEC4,
- GL_TEXTURE_2D, // TYPE_MAT2,
- GL_TEXTURE_2D, // TYPE_MAT3,
- GL_TEXTURE_2D, // TYPE_MAT4,
- GL_TEXTURE_2D, // TYPE_SAMPLER2D,
- GL_TEXTURE_2D, // TYPE_ISAMPLER2D,
- GL_TEXTURE_2D, // TYPE_USAMPLER2D,
- GL_TEXTURE_2D_ARRAY, // TYPE_SAMPLER2DARRAY,
- GL_TEXTURE_2D_ARRAY, // TYPE_ISAMPLER2DARRAY,
- GL_TEXTURE_2D_ARRAY, // TYPE_USAMPLER2DARRAY,
- GL_TEXTURE_3D, // TYPE_SAMPLER3D,
- GL_TEXTURE_3D, // TYPE_ISAMPLER3D,
- GL_TEXTURE_3D, // TYPE_USAMPLER3D,
- GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBE,
- GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBEARRAY,
- GL_TEXTURE_2D, // TYPE_STRUCT
-};
-
void CanvasMaterialData::bind_uniforms() {
// Bind Material Uniforms
glBindBufferBase(GL_UNIFORM_BUFFER, RasterizerCanvasGLES3::MATERIAL_UNIFORM_BUFFER_OBJECT, uniform_buffer);
@@ -2958,7 +2935,7 @@ void CanvasMaterialData::bind_uniforms() {
ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
for (int ti = 0; ti < texture_cache.size(); ti++) {
Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
- glActiveTexture(GL_TEXTURE1 + ti);
+ glActiveTexture(GL_TEXTURE1 + ti); // Start at GL_TEXTURE1 because texture slot 0 is used by the base texture
glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
// Set sampler state here as the same texture can be used in multiple places with different flags
@@ -3203,4 +3180,297 @@ void SkyMaterialData::bind_uniforms() {
}
}
+////////////////////////////////////////////////////////////////////////////////
+// Scene SHADER
+
+void SceneShaderData::set_code(const String &p_code) {
+ //compile
+
+ code = p_code;
+ valid = false;
+ ubo_size = 0;
+ uniforms.clear();
+ uses_screen_texture = false;
+
+ if (code.is_empty()) {
+ return; //just invalid, but no error
+ }
+
+ ShaderCompiler::GeneratedCode gen_code;
+
+ int blend_modei = BLEND_MODE_MIX;
+ int depth_testi = DEPTH_TEST_ENABLED;
+ int alpha_antialiasing_modei = ALPHA_ANTIALIASING_OFF;
+ int cull_modei = CULL_BACK;
+ int depth_drawi = DEPTH_DRAW_OPAQUE;
+
+ uses_point_size = false;
+ uses_alpha = false;
+ uses_alpha_clip = false;
+ uses_blend_alpha = false;
+ uses_depth_pre_pass = false;
+ uses_discard = false;
+ uses_roughness = false;
+ uses_normal = false;
+ wireframe = false;
+
+ unshaded = false;
+ uses_vertex = false;
+ uses_position = false;
+ uses_sss = false;
+ uses_transmittance = false;
+ uses_screen_texture = false;
+ uses_depth_texture = false;
+ uses_normal_texture = false;
+ uses_time = false;
+ writes_modelview_or_projection = false;
+ uses_world_coordinates = false;
+ uses_particle_trails = false;
+
+ ShaderCompiler::IdentifierActions actions;
+ actions.entry_point_stages["vertex"] = ShaderCompiler::STAGE_VERTEX;
+ actions.entry_point_stages["fragment"] = ShaderCompiler::STAGE_FRAGMENT;
+ actions.entry_point_stages["light"] = ShaderCompiler::STAGE_FRAGMENT;
+
+ actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_modei, BLEND_MODE_ADD);
+ actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MIX);
+ actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_modei, BLEND_MODE_SUB);
+ actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MUL);
+
+ actions.render_mode_values["alpha_to_coverage"] = Pair<int *, int>(&alpha_antialiasing_modei, ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE);
+ actions.render_mode_values["alpha_to_coverage_and_one"] = Pair<int *, int>(&alpha_antialiasing_modei, ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE_AND_TO_ONE);
+
+ actions.render_mode_values["depth_draw_never"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_DISABLED);
+ actions.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_OPAQUE);
+ actions.render_mode_values["depth_draw_always"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_ALWAYS);
+
+ actions.render_mode_values["depth_test_disabled"] = Pair<int *, int>(&depth_testi, DEPTH_TEST_DISABLED);
+
+ actions.render_mode_values["cull_disabled"] = Pair<int *, int>(&cull_modei, CULL_DISABLED);
+ actions.render_mode_values["cull_front"] = Pair<int *, int>(&cull_modei, CULL_FRONT);
+ actions.render_mode_values["cull_back"] = Pair<int *, int>(&cull_modei, CULL_BACK);
+
+ actions.render_mode_flags["unshaded"] = &unshaded;
+ actions.render_mode_flags["wireframe"] = &wireframe;
+ actions.render_mode_flags["particle_trails"] = &uses_particle_trails;
+
+ actions.usage_flag_pointers["ALPHA"] = &uses_alpha;
+ actions.usage_flag_pointers["ALPHA_SCISSOR_THRESHOLD"] = &uses_alpha_clip;
+ actions.render_mode_flags["depth_prepass_alpha"] = &uses_depth_pre_pass;
+
+ actions.usage_flag_pointers["SSS_STRENGTH"] = &uses_sss;
+ actions.usage_flag_pointers["SSS_TRANSMITTANCE_DEPTH"] = &uses_transmittance;
+
+ actions.usage_flag_pointers["SCREEN_TEXTURE"] = &uses_screen_texture;
+ actions.usage_flag_pointers["DEPTH_TEXTURE"] = &uses_depth_texture;
+ actions.usage_flag_pointers["NORMAL_TEXTURE"] = &uses_normal_texture;
+ actions.usage_flag_pointers["DISCARD"] = &uses_discard;
+ actions.usage_flag_pointers["TIME"] = &uses_time;
+ actions.usage_flag_pointers["ROUGHNESS"] = &uses_roughness;
+ actions.usage_flag_pointers["NORMAL"] = &uses_normal;
+ actions.usage_flag_pointers["NORMAL_MAP"] = &uses_normal;
+
+ actions.usage_flag_pointers["POINT_SIZE"] = &uses_point_size;
+ actions.usage_flag_pointers["POINT_COORD"] = &uses_point_size;
+
+ actions.write_flag_pointers["MODELVIEW_MATRIX"] = &writes_modelview_or_projection;
+ actions.write_flag_pointers["PROJECTION_MATRIX"] = &writes_modelview_or_projection;
+ actions.write_flag_pointers["VERTEX"] = &uses_vertex;
+ actions.write_flag_pointers["POSITION"] = &uses_position;
+
+ actions.uniforms = &uniforms;
+
+ Error err = MaterialStorage::get_singleton()->shaders.compiler_scene.compile(RS::SHADER_SPATIAL, code, &actions, path, gen_code);
+ ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
+
+ if (version.is_null()) {
+ version = MaterialStorage::get_singleton()->shaders.scene_shader.version_create();
+ }
+
+ depth_draw = DepthDraw(depth_drawi);
+ depth_test = DepthTest(depth_testi);
+ cull_mode = Cull(cull_modei);
+ blend_mode = BlendMode(blend_modei);
+ alpha_antialiasing_mode = AlphaAntiAliasing(alpha_antialiasing_modei);
+
+#if 0
+ print_line("**compiling shader:");
+ print_line("**defines:\n");
+ for (int i = 0; i < gen_code.defines.size(); i++) {
+ print_line(gen_code.defines[i]);
+ }
+
+ Map<String, String>::Element *el = gen_code.code.front();
+ while (el) {
+ print_line("\n**code " + el->key() + ":\n" + el->value());
+
+ el = el->next();
+ }
+
+ print_line("\n**uniforms:\n" + gen_code.uniforms);
+ print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
+ print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
+#endif
+
+ Vector<StringName> texture_uniform_names;
+ for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
+ texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
+ }
+
+ MaterialStorage::get_singleton()->shaders.scene_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
+ ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.scene_shader.version_is_valid(version));
+
+ ubo_size = gen_code.uniform_total_size;
+ ubo_offsets = gen_code.uniform_offsets;
+ texture_uniforms = gen_code.texture_uniforms;
+
+ // if any form of Alpha Antialiasing is enabled, set the blend mode to alpha to coverage
+ if (alpha_antialiasing_mode != ALPHA_ANTIALIASING_OFF) {
+ blend_mode = BLEND_MODE_ALPHA_TO_COVERAGE;
+ }
+
+ valid = true;
+}
+
+void SceneShaderData::set_default_texture_param(const StringName &p_name, RID p_texture, int p_index) {
+ if (!p_texture.is_valid()) {
+ if (default_texture_params.has(p_name) && default_texture_params[p_name].has(p_index)) {
+ default_texture_params[p_name].erase(p_index);
+
+ if (default_texture_params[p_name].is_empty()) {
+ default_texture_params.erase(p_name);
+ }
+ }
+ } else {
+ if (!default_texture_params.has(p_name)) {
+ default_texture_params[p_name] = Map<int, RID>();
+ }
+ default_texture_params[p_name][p_index] = p_texture;
+ }
+}
+
+void SceneShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
+ Map<int, StringName> order;
+
+ for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
+ if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_LOCAL) {
+ continue;
+ }
+
+ if (E.value.texture_order >= 0) {
+ order[E.value.texture_order + 100000] = E.key;
+ } else {
+ order[E.value.order] = E.key;
+ }
+ }
+
+ for (const KeyValue<int, StringName> &E : order) {
+ PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E.value]);
+ pi.name = E.value;
+ p_param_list->push_back(pi);
+ }
+}
+
+void SceneShaderData::get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const {
+ for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
+ if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
+ continue;
+ }
+
+ RendererMaterialStorage::InstanceShaderParam p;
+ p.info = ShaderLanguage::uniform_to_property_info(E.value);
+ p.info.name = E.key; //supply name
+ p.index = E.value.instance_index;
+ p.default_value = ShaderLanguage::constant_value_to_variant(E.value.default_value, E.value.type, E.value.array_size, E.value.hint);
+ p_param_list->push_back(p);
+ }
+}
+
+bool SceneShaderData::is_param_texture(const StringName &p_param) const {
+ if (!uniforms.has(p_param)) {
+ return false;
+ }
+
+ return uniforms[p_param].texture_order >= 0;
+}
+
+bool SceneShaderData::is_animated() const {
+ return false;
+}
+
+bool SceneShaderData::casts_shadows() const {
+ return false;
+}
+
+Variant SceneShaderData::get_default_parameter(const StringName &p_parameter) const {
+ if (uniforms.has(p_parameter)) {
+ ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
+ Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
+ return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.array_size, uniform.hint);
+ }
+ return Variant();
+}
+
+RS::ShaderNativeSourceCode SceneShaderData::get_native_source_code() const {
+ return MaterialStorage::get_singleton()->shaders.scene_shader.version_get_native_source_code(version);
+}
+
+SceneShaderData::SceneShaderData() {
+ valid = false;
+ uses_screen_texture = false;
+}
+
+SceneShaderData::~SceneShaderData() {
+ if (version.is_valid()) {
+ MaterialStorage::get_singleton()->shaders.scene_shader.version_free(version);
+ }
+}
+
+GLES3::ShaderData *GLES3::_create_scene_shader_func() {
+ SceneShaderData *shader_data = memnew(SceneShaderData);
+ return shader_data;
+}
+
+void SceneMaterialData::set_render_priority(int p_priority) {
+ priority = p_priority - RS::MATERIAL_RENDER_PRIORITY_MIN; //8 bits
+}
+
+void SceneMaterialData::set_next_pass(RID p_pass) {
+ next_pass = p_pass;
+}
+
+void SceneMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
+ return update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
+}
+
+SceneMaterialData::~SceneMaterialData() {
+}
+
+GLES3::MaterialData *GLES3::_create_scene_material_func(ShaderData *p_shader) {
+ SceneMaterialData *material_data = memnew(SceneMaterialData);
+ material_data->shader_data = static_cast<SceneShaderData *>(p_shader);
+ //update will happen later anyway so do nothing.
+ return material_data;
+}
+
+void SceneMaterialData::bind_uniforms() {
+ // Bind Material Uniforms
+ glBindBufferBase(GL_UNIFORM_BUFFER, 3, uniform_buffer);
+
+ RID *textures = texture_cache.ptrw();
+ ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
+ for (int ti = 0; ti < texture_cache.size(); ti++) {
+ Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
+ glActiveTexture(GL_TEXTURE0 + ti);
+ glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
+
+ // Set sampler state here as the same texture can be used in multiple places with different flags
+ // Need to convert sampler state from ShaderLanguage::Texture* to RS::CanvasItemTexture*
+ RS::CanvasItemTextureFilter filter = RS::CanvasItemTextureFilter((int(texture_uniforms[ti].filter) + 1) % RS::CANVAS_ITEM_TEXTURE_FILTER_MAX);
+ RS::CanvasItemTextureRepeat repeat = RS::CanvasItemTextureRepeat((int(texture_uniforms[ti].repeat) + 1) % RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR);
+ texture->gl_set_filter(filter);
+ texture->gl_set_repeat(repeat);
+ }
+}
+
#endif // !GLES3_ENABLED
diff --git a/drivers/gles3/storage/material_storage.h b/drivers/gles3/storage/material_storage.h
index 1a7452f66a..f9901f0085 100644
--- a/drivers/gles3/storage/material_storage.h
+++ b/drivers/gles3/storage/material_storage.h
@@ -45,15 +45,17 @@
#include "drivers/gles3/shaders/copy.glsl.gen.h"
#include "../shaders/canvas.glsl.gen.h"
+#include "../shaders/scene.glsl.gen.h"
#include "../shaders/sky.glsl.gen.h"
namespace GLES3 {
-/* SHADER Structs */
+/* Shader Structs */
struct Shaders {
CanvasShaderGLES3 canvas_shader;
SkyShaderGLES3 sky_shader;
+ SceneShaderGLES3 scene_shader;
ShaderCompiler compiler_canvas;
ShaderCompiler compiler_scene;
@@ -141,7 +143,7 @@ struct Material {
update_element(this) {}
};
-// CanvasItem Materials
+/* CanvasItem Materials */
struct CanvasShaderData : public ShaderData {
enum BlendMode { //used internally
@@ -249,6 +251,126 @@ struct SkyMaterialData : public MaterialData {
MaterialData *_create_sky_material_func(ShaderData *p_shader);
+/* Scene Materials */
+
+struct SceneShaderData : public ShaderData {
+ enum BlendMode { //used internally
+ BLEND_MODE_MIX,
+ BLEND_MODE_ADD,
+ BLEND_MODE_SUB,
+ BLEND_MODE_MUL,
+ BLEND_MODE_ALPHA_TO_COVERAGE
+ };
+
+ enum DepthDraw {
+ DEPTH_DRAW_DISABLED,
+ DEPTH_DRAW_OPAQUE,
+ DEPTH_DRAW_ALWAYS
+ };
+
+ enum DepthTest {
+ DEPTH_TEST_DISABLED,
+ DEPTH_TEST_ENABLED
+ };
+
+ enum Cull {
+ CULL_DISABLED,
+ CULL_FRONT,
+ CULL_BACK
+ };
+
+ enum CullVariant {
+ CULL_VARIANT_NORMAL,
+ CULL_VARIANT_REVERSED,
+ CULL_VARIANT_DOUBLE_SIDED,
+ CULL_VARIANT_MAX
+
+ };
+
+ enum AlphaAntiAliasing {
+ ALPHA_ANTIALIASING_OFF,
+ ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE,
+ ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE_AND_TO_ONE
+ };
+
+ bool valid;
+ RID version;
+
+ String path;
+
+ Map<StringName, ShaderLanguage::ShaderNode::Uniform> uniforms;
+ Vector<ShaderCompiler::GeneratedCode::Texture> texture_uniforms;
+
+ Vector<uint32_t> ubo_offsets;
+ uint32_t ubo_size;
+
+ String code;
+ Map<StringName, Map<int, RID>> default_texture_params;
+
+ BlendMode blend_mode;
+ AlphaAntiAliasing alpha_antialiasing_mode;
+ DepthDraw depth_draw;
+ DepthTest depth_test;
+ Cull cull_mode;
+
+ bool uses_point_size;
+ bool uses_alpha;
+ bool uses_blend_alpha;
+ bool uses_alpha_clip;
+ bool uses_depth_pre_pass;
+ bool uses_discard;
+ bool uses_roughness;
+ bool uses_normal;
+ bool uses_particle_trails;
+ bool wireframe;
+
+ bool unshaded;
+ bool uses_vertex;
+ bool uses_position;
+ bool uses_sss;
+ bool uses_transmittance;
+ bool uses_screen_texture;
+ bool uses_depth_texture;
+ bool uses_normal_texture;
+ bool uses_time;
+ bool writes_modelview_or_projection;
+ bool uses_world_coordinates;
+
+ uint64_t last_pass = 0;
+ uint32_t index = 0;
+
+ virtual void set_code(const String &p_Code);
+ virtual void set_default_texture_param(const StringName &p_name, RID p_texture, int p_index);
+ virtual void get_param_list(List<PropertyInfo> *p_param_list) const;
+ virtual void get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const;
+
+ virtual bool is_param_texture(const StringName &p_param) const;
+ virtual bool is_animated() const;
+ virtual bool casts_shadows() const;
+ virtual Variant get_default_parameter(const StringName &p_parameter) const;
+ virtual RS::ShaderNativeSourceCode get_native_source_code() const;
+
+ SceneShaderData();
+ virtual ~SceneShaderData();
+};
+
+ShaderData *_create_scene_shader_func();
+
+struct SceneMaterialData : public MaterialData {
+ SceneShaderData *shader_data = nullptr;
+ uint64_t last_pass = 0;
+ uint32_t index = 0;
+ RID next_pass;
+ uint8_t priority = 0;
+ virtual void set_render_priority(int p_priority);
+ virtual void set_next_pass(RID p_pass);
+ virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty);
+ virtual void bind_uniforms();
+ virtual ~SceneMaterialData();
+};
+
+MaterialData *_create_scene_material_func(ShaderData *p_shader);
+
/* Global variable structs */
struct GlobalVariables {
enum {