summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gles3/shaders/blend_shape.glsl39
-rw-r--r--drivers/gles3/shaders/canvas.glsl414
-rw-r--r--drivers/gles3/shaders/canvas_shadow.glsl24
-rw-r--r--drivers/gles3/shaders/copy.glsl92
-rw-r--r--drivers/gles3/shaders/cube_to_dp.glsl68
-rw-r--r--drivers/gles3/shaders/cubemap_filter.glsl249
-rw-r--r--drivers/gles3/shaders/effect_blur.glsl178
-rw-r--r--drivers/gles3/shaders/exposure.glsl60
-rw-r--r--drivers/gles3/shaders/particles.glsl109
-rw-r--r--drivers/gles3/shaders/resolve.glsl20
-rw-r--r--drivers/gles3/shaders/scene.glsl1283
-rw-r--r--drivers/gles3/shaders/screen_space_reflection.glsl240
-rw-r--r--drivers/gles3/shaders/ssao.glsl173
-rw-r--r--drivers/gles3/shaders/ssao_blur.glsl55
-rw-r--r--drivers/gles3/shaders/ssao_minify.glsl17
-rw-r--r--drivers/gles3/shaders/subsurf_scattering.glsl158
-rw-r--r--drivers/gles3/shaders/tonemap.glsl336
17 files changed, 1572 insertions, 1943 deletions
diff --git a/drivers/gles3/shaders/blend_shape.glsl b/drivers/gles3/shaders/blend_shape.glsl
index 4e0d066823..d019062ba0 100644
--- a/drivers/gles3/shaders/blend_shape.glsl
+++ b/drivers/gles3/shaders/blend_shape.glsl
@@ -1,6 +1,5 @@
[vertex]
-
/*
from VisualServer:
@@ -23,56 +22,56 @@ ARRAY_INDEX=8,
/* INPUT ATTRIBS */
-layout(location=0) in highp VFORMAT vertex_attrib;
-layout(location=1) in vec3 normal_attrib;
+layout(location = 0) in highp VFORMAT vertex_attrib;
+layout(location = 1) in vec3 normal_attrib;
#ifdef ENABLE_TANGENT
-layout(location=2) in vec4 tangent_attrib;
+layout(location = 2) in vec4 tangent_attrib;
#endif
#ifdef ENABLE_COLOR
-layout(location=3) in vec4 color_attrib;
+layout(location = 3) in vec4 color_attrib;
#endif
#ifdef ENABLE_UV
-layout(location=4) in vec2 uv_attrib;
+layout(location = 4) in vec2 uv_attrib;
#endif
#ifdef ENABLE_UV2
-layout(location=5) in vec2 uv2_attrib;
+layout(location = 5) in vec2 uv2_attrib;
#endif
#ifdef ENABLE_SKELETON
-layout(location=6) in ivec4 bone_attrib;
-layout(location=7) in vec4 weight_attrib;
+layout(location = 6) in ivec4 bone_attrib;
+layout(location = 7) in vec4 weight_attrib;
#endif
/* BLEND ATTRIBS */
#ifdef ENABLE_BLEND
-layout(location=8) in highp VFORMAT vertex_attrib_blend;
-layout(location=9) in vec3 normal_attrib_blend;
+layout(location = 8) in highp VFORMAT vertex_attrib_blend;
+layout(location = 9) in vec3 normal_attrib_blend;
#ifdef ENABLE_TANGENT
-layout(location=10) in vec4 tangent_attrib_blend;
+layout(location = 10) in vec4 tangent_attrib_blend;
#endif
#ifdef ENABLE_COLOR
-layout(location=11) in vec4 color_attrib_blend;
+layout(location = 11) in vec4 color_attrib_blend;
#endif
#ifdef ENABLE_UV
-layout(location=12) in vec2 uv_attrib_blend;
+layout(location = 12) in vec2 uv_attrib_blend;
#endif
#ifdef ENABLE_UV2
-layout(location=13) in vec2 uv2_attrib_blend;
+layout(location = 13) in vec2 uv2_attrib_blend;
#endif
#ifdef ENABLE_SKELETON
-layout(location=14) in ivec4 bone_attrib_blend;
-layout(location=15) in vec4 weight_attrib_blend;
+layout(location = 14) in ivec4 bone_attrib_blend;
+layout(location = 15) in vec4 weight_attrib_blend;
#endif
#endif
@@ -110,7 +109,6 @@ uniform float blend_amount;
void main() {
-
#ifdef ENABLE_BLEND
vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
@@ -140,7 +138,6 @@ void main() {
uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
#endif
-
#ifdef ENABLE_SKELETON
bone_out = bone_attrib_blend;
@@ -149,7 +146,6 @@ void main() {
#else //ENABLE_BLEND
-
vertex_out = vertex_attrib * blend_amount;
#ifdef ENABLE_NORMAL
@@ -177,7 +173,6 @@ void main() {
uv2_out = uv2_attrib * blend_amount;
#endif
-
#ifdef ENABLE_SKELETON
bone_out = bone_attrib;
@@ -190,8 +185,6 @@ void main() {
[fragment]
-
void main() {
}
-
diff --git a/drivers/gles3/shaders/canvas.glsl b/drivers/gles3/shaders/canvas.glsl
index e7828d265c..9e99305fe7 100644
--- a/drivers/gles3/shaders/canvas.glsl
+++ b/drivers/gles3/shaders/canvas.glsl
@@ -1,12 +1,11 @@
[vertex]
-
-layout(location=0) in highp vec2 vertex;
-layout(location=3) in vec4 color_attrib;
+layout(location = 0) in highp vec2 vertex;
+layout(location = 3) in vec4 color_attrib;
#ifdef USE_SKELETON
-layout(location=6) in uvec4 bone_indices; // attrib:6
-layout(location=7) in vec4 bone_weights; // attrib:7
+layout(location = 6) in uvec4 bone_indices; // attrib:6
+layout(location = 7) in vec4 bone_weights; // attrib:7
#endif
#ifdef USE_TEXTURE_RECT
@@ -18,25 +17,24 @@ uniform vec4 src_rect;
#ifdef USE_INSTANCING
-layout(location=8) in highp vec4 instance_xform0;
-layout(location=9) in highp vec4 instance_xform1;
-layout(location=10) in highp vec4 instance_xform2;
-layout(location=11) in lowp vec4 instance_color;
+layout(location = 8) in highp vec4 instance_xform0;
+layout(location = 9) in highp vec4 instance_xform1;
+layout(location = 10) in highp vec4 instance_xform2;
+layout(location = 11) in lowp vec4 instance_color;
#ifdef USE_INSTANCE_CUSTOM
-layout(location=12) in highp vec4 instance_custom_data;
+layout(location = 12) in highp vec4 instance_custom_data;
#endif
#endif
-layout(location=4) in highp vec2 uv_attrib;
+layout(location = 4) in highp vec2 uv_attrib;
-//skeletn
+// skeleton
#endif
uniform highp vec2 color_texpixel_size;
-
layout(std140) uniform CanvasItemData { //ubo:0
highp mat4 projection_matrix;
@@ -46,7 +44,6 @@ layout(std140) uniform CanvasItemData { //ubo:0
uniform highp mat4 modelview_matrix;
uniform highp mat4 extra_matrix;
-
out highp vec2 uv_interp;
out mediump vec4 color_interp;
@@ -55,7 +52,6 @@ out mediump vec4 color_interp;
out highp vec2 pixel_size_interp;
#endif
-
#ifdef USE_SKELETON
uniform mediump sampler2D skeleton_texture; // texunit:-1
uniform highp mat4 skeleton_transform;
@@ -66,7 +62,7 @@ uniform highp mat4 skeleton_transform_inverse;
layout(std140) uniform LightData { //ubo:1
- //light matrices
+ // light matrices
highp mat4 light_matrix;
highp mat4 light_local_matrix;
highp mat4 shadow_matrix;
@@ -80,11 +76,9 @@ layout(std140) uniform LightData { //ubo:1
highp float shadow_distance_mult;
};
-
out vec4 light_uv_interp;
out vec2 transformed_light_uv;
-
out vec4 local_rot;
#ifdef USE_SHADOWS
@@ -101,7 +95,6 @@ uniform int h_frames;
uniform int v_frames;
#endif
-
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData { //ubo:2
@@ -112,7 +105,6 @@ MATERIAL_UNIFORMS
#endif
-
VERTEX_SHADER_GLOBALS
void main() {
@@ -120,8 +112,8 @@ void main() {
vec4 color = color_attrib;
#ifdef USE_INSTANCING
- mat4 extra_matrix2 = extra_matrix * transpose(mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0)));
- color*=instance_color;
+ mat4 extra_matrix2 = extra_matrix * transpose(mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)));
+ color *= instance_color;
vec4 instance_custom = instance_custom_data;
#else
@@ -136,29 +128,27 @@ void main() {
} else {
uv_interp = src_rect.xy + abs(src_rect.zw) * vertex;
}
- highp vec4 outvec = vec4(dst_rect.xy + abs(dst_rect.zw) * mix(vertex,vec2(1.0,1.0)-vertex,lessThan(src_rect.zw,vec2(0.0,0.0))),0.0,1.0);
+ highp vec4 outvec = vec4(dst_rect.xy + abs(dst_rect.zw) * mix(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0))), 0.0, 1.0);
#else
uv_interp = uv_attrib;
- highp vec4 outvec = vec4(vertex,0.0,1.0);
+ highp vec4 outvec = vec4(vertex, 0.0, 1.0);
#endif
-
#ifdef USE_PARTICLES
//scale by texture size
- outvec.xy/=color_texpixel_size;
+ outvec.xy /= color_texpixel_size;
//compute h and v frames and adjust UV interp for animation
int total_frames = h_frames * v_frames;
- int frame = min(int(float(total_frames) *instance_custom.z),total_frames-1);
- float frame_w = 1.0/float(h_frames);
- float frame_h = 1.0/float(v_frames);
+ int frame = min(int(float(total_frames) * instance_custom.z), total_frames - 1);
+ float frame_w = 1.0 / float(h_frames);
+ float frame_h = 1.0 / float(v_frames);
uv_interp.x = uv_interp.x * frame_w + frame_w * float(frame % h_frames);
uv_interp.y = uv_interp.y * frame_h + frame_h * float(frame / h_frames);
#endif
-
#define extra_matrix extra_matrix2
{
@@ -167,10 +157,9 @@ VERTEX_SHADER_CODE
}
-
#ifdef USE_NINEPATCH
- pixel_size_interp=abs(dst_rect.zw) * vertex;
+ pixel_size_interp = abs(dst_rect.zw) * vertex;
#endif
#if !defined(SKIP_TRANSFORM_USED)
@@ -184,47 +173,46 @@ VERTEX_SHADER_CODE
#ifdef USE_PIXEL_SNAP
- outvec.xy=floor(outvec+0.5).xy;
+ outvec.xy = floor(outvec + 0.5).xy;
#endif
-
#ifdef USE_SKELETON
- if (bone_weights!=vec4(0.0)){ //must be a valid bone
+ if (bone_weights != vec4(0.0)) { //must be a valid bone
//skeleton transform
ivec4 bone_indicesi = ivec4(bone_indices);
- ivec2 tex_ofs = ivec2( bone_indicesi.x%256, (bone_indicesi.x/256)*2 );
+ ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 2);
- highp mat2x4 m = mat2x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
- ) * bone_weights.x;
+ highp mat2x4 m;
+ m = mat2x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
+ * bone_weights.x;
- tex_ofs = ivec2( bone_indicesi.y%256, (bone_indicesi.y/256)*2 );
+ tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 2);
- m+= mat2x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
- ) * bone_weights.y;
+ m += mat2x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
+ * bone_weights.y;
- tex_ofs = ivec2( bone_indicesi.z%256, (bone_indicesi.z/256)*2 );
+ tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 2);
- m+= mat2x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
- ) * bone_weights.z;
+ m += mat2x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
+ * bone_weights.z;
+ tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 2);
- tex_ofs = ivec2( bone_indicesi.w%256, (bone_indicesi.w/256)*2 );
+ m += mat2x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
+ * bone_weights.w;
- m+= mat2x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
- ) * bone_weights.w;
-
- mat4 bone_matrix = skeleton_transform * transpose(mat4(m[0],m[1],vec4(0.0,0.0,1.0,0.0),vec4(0.0,0.0,0.0,1.0))) * skeleton_transform_inverse;
+ mat4 bone_matrix = skeleton_transform * transpose(mat4(m[0], m[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))) * skeleton_transform_inverse;
outvec = bone_matrix * outvec;
}
@@ -236,45 +224,37 @@ VERTEX_SHADER_CODE
#ifdef USE_LIGHTING
light_uv_interp.xy = (light_matrix * outvec).xy;
- light_uv_interp.zw =(light_local_matrix * outvec).xy;
+ light_uv_interp.zw = (light_local_matrix * outvec).xy;
mat3 inverse_light_matrix = mat3(inverse(light_matrix));
inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
- transformed_light_uv = (inverse_light_matrix * vec3(light_uv_interp.zw,0.0)).xy; //for normal mapping
+ transformed_light_uv = (inverse_light_matrix * vec3(light_uv_interp.zw, 0.0)).xy; //for normal mapping
#ifdef USE_SHADOWS
- pos=outvec.xy;
+ pos = outvec.xy;
#endif
-
- local_rot.xy=normalize( (modelview_matrix * ( extra_matrix * vec4(1.0,0.0,0.0,0.0) )).xy );
- local_rot.zw=normalize( (modelview_matrix * ( extra_matrix * vec4(0.0,1.0,0.0,0.0) )).xy );
+ local_rot.xy = normalize((modelview_matrix * (extra_matrix * vec4(1.0, 0.0, 0.0, 0.0))).xy);
+ local_rot.zw = normalize((modelview_matrix * (extra_matrix * vec4(0.0, 1.0, 0.0, 0.0))).xy);
#ifdef USE_TEXTURE_RECT
- local_rot.xy*=sign(src_rect.z);
- local_rot.zw*=sign(src_rect.w);
+ local_rot.xy *= sign(src_rect.z);
+ local_rot.zw *= sign(src_rect.w);
#endif
-
-
#endif
-
}
[fragment]
-
-
uniform mediump sampler2D color_texture; // texunit:0
uniform highp vec2 color_texpixel_size;
uniform mediump sampler2D normal_texture; // texunit:1
-
in highp vec2 uv_interp;
in mediump vec4 color_interp;
-
#if defined(SCREEN_TEXTURE_USED)
uniform sampler2D screen_texture; // texunit:-3
@@ -292,7 +272,6 @@ layout(std140) uniform CanvasItemData {
highp float time;
};
-
#ifdef USE_LIGHTING
layout(std140) uniform LightData {
@@ -314,10 +293,8 @@ uniform lowp sampler2D light_texture; // texunit:-1
in vec4 light_uv_interp;
in vec2 transformed_light_uv;
-
in vec4 local_rot;
-
#ifdef USE_SHADOWS
uniform highp sampler2D shadow_texture; // texunit:-2
@@ -332,11 +309,7 @@ const bool at_light_pass = false;
uniform mediump vec4 final_modulate;
-
-
-
-layout(location=0) out mediump vec4 frag_color;
-
+layout(location = 0) out mediump vec4 frag_color;
#if defined(USE_MATERIAL)
@@ -351,25 +324,24 @@ MATERIAL_UNIFORMS
FRAGMENT_SHADER_GLOBALS
void light_compute(
- inout vec4 light,
- inout vec2 light_vec,
- inout float light_height,
- inout vec4 light_color,
- vec2 light_uv,
- inout vec4 shadow_color,
- vec3 normal,
- vec2 uv,
+ inout vec4 light,
+ inout vec2 light_vec,
+ inout float light_height,
+ inout vec4 light_color,
+ vec2 light_uv,
+ inout vec4 shadow_color,
+ vec3 normal,
+ vec2 uv,
#if defined(SCREEN_UV_USED)
- vec2 screen_uv,
+ vec2 screen_uv,
#endif
- vec4 color) {
+ vec4 color) {
#if defined(USE_LIGHT_SHADER_CODE)
LIGHT_SHADER_CODE
#endif
-
}
#ifdef USE_TEXTURE_RECT
@@ -385,48 +357,44 @@ in highp vec2 pixel_size_interp;
uniform int np_repeat_v;
uniform int np_repeat_h;
uniform bool np_draw_center;
-//left top right bottom in pixel coordinates
+// left top right bottom in pixel coordinates
uniform vec4 np_margins;
+float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
-
-float map_ninepatch_axis(float pixel, float draw_size,float tex_pixel_size,float margin_begin,float margin_end,int np_repeat,inout int draw_center) {
-
-
- float tex_size = 1.0/tex_pixel_size;
+ float tex_size = 1.0 / tex_pixel_size;
if (pixel < margin_begin) {
return pixel * tex_pixel_size;
- } else if (pixel >= draw_size-margin_end) {
- return (tex_size-(draw_size-pixel)) * tex_pixel_size;
+ } else if (pixel >= draw_size - margin_end) {
+ return (tex_size - (draw_size - pixel)) * tex_pixel_size;
} else {
- if (!np_draw_center){
+ if (!np_draw_center) {
draw_center--;
}
- if (np_repeat==0) { //stretch
+ if (np_repeat == 0) { //stretch
//convert to ratio
float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
//scale to source texture
return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
- } else if (np_repeat==1) { //tile
+ } else if (np_repeat == 1) { //tile
//convert to ratio
float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
//scale to source texture
return (margin_begin + ofs) * tex_pixel_size;
- } else if (np_repeat==2) { //tile fit
+ } else if (np_repeat == 2) { //tile fit
//convert to ratio
float src_area = draw_size - margin_begin - margin_end;
float dst_area = tex_size - margin_begin - margin_end;
- float scale = max(1.0,floor(src_area / max(dst_area,0.0000001) + 0.5));
+ float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
//convert to ratio
float ratio = (pixel - margin_begin) / src_area;
- ratio = mod(ratio * scale,1.0);
+ ratio = mod(ratio * scale, 1.0);
return (margin_begin + ratio * dst_area) * tex_pixel_size;
}
}
-
}
#endif
@@ -443,42 +411,39 @@ void main() {
#ifdef USE_NINEPATCH
- int draw_center=2;
+ int draw_center = 2;
uv = vec2(
- map_ninepatch_axis(pixel_size_interp.x,abs(dst_rect.z),color_texpixel_size.x,np_margins.x,np_margins.z,np_repeat_h,draw_center),
- map_ninepatch_axis(pixel_size_interp.y,abs(dst_rect.w),color_texpixel_size.y,np_margins.y,np_margins.w,np_repeat_v,draw_center)
- );
+ map_ninepatch_axis(pixel_size_interp.x, abs(dst_rect.z), color_texpixel_size.x, np_margins.x, np_margins.z, np_repeat_h, draw_center),
+ map_ninepatch_axis(pixel_size_interp.y, abs(dst_rect.w), color_texpixel_size.y, np_margins.y, np_margins.w, np_repeat_v, draw_center));
- if (draw_center==0) {
- color.a=0.0;
+ if (draw_center == 0) {
+ color.a = 0.0;
}
- uv = uv*src_rect.zw+src_rect.xy; //apply region if needed
+ uv = uv * src_rect.zw + src_rect.xy; //apply region if needed
#endif
if (clip_rect_uv) {
- uv = clamp(uv,src_rect.xy,src_rect.xy+abs(src_rect.zw));
+ uv = clamp(uv, src_rect.xy, src_rect.xy + abs(src_rect.zw));
}
#endif
#if !defined(COLOR_USED)
-//default behavior, texture by color
+ //default behavior, texture by color
#ifdef USE_DISTANCE_FIELD
- const float smoothing = 1.0/32.0;
- float distance = textureLod(color_texture, uv,0.0).a;
+ const float smoothing = 1.0 / 32.0;
+ float distance = textureLod(color_texture, uv, 0.0).a;
color.a = smoothstep(0.5 - smoothing, 0.5 + smoothing, distance) * color.a;
#else
- color *= texture( color_texture, uv );
+ color *= texture(color_texture, uv);
#endif
#endif
-
-
vec3 normal;
#if defined(NORMAL_USED)
@@ -489,59 +454,52 @@ void main() {
#endif
if (use_default_normal) {
- normal.xy = textureLod(normal_texture, uv,0.0).xy * 2.0 - 1.0;
- normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
- normal_used=true;
+ normal.xy = textureLod(normal_texture, uv, 0.0).xy * 2.0 - 1.0;
+ normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
+ normal_used = true;
} else {
- normal = vec3(0.0,0.0,1.0);
+ normal = vec3(0.0, 0.0, 1.0);
}
-
-
#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
+ vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
-
-{
- float normal_depth=1.0;
+ {
+ float normal_depth = 1.0;
#if defined(NORMALMAP_USED)
- vec3 normal_map=vec3(0.0,0.0,1.0);
+ vec3 normal_map = vec3(0.0, 0.0, 1.0);
#endif
FRAGMENT_SHADER_CODE
#if defined(NORMALMAP_USED)
- normal = mix(vec3(0.0,0.0,1.0), normal_map * vec3(2.0,-2.0,1.0) - vec3( 1.0, -1.0, 0.0 ), normal_depth );
+ normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth);
#endif
-
-}
+ }
#ifdef DEBUG_ENCODED_32
- highp float enc32 = dot( color,highp vec4(1.0 / (256.0 * 256.0 * 256.0),1.0 / (256.0 * 256.0),1.0 / 256.0,1) );
- color = vec4(vec3(enc32),1.0);
+ highp float enc32 = dot(color, highp vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1));
+ color = vec4(vec3(enc32), 1.0);
#endif
-
- color*=final_modulate;
-
-
+ color *= final_modulate;
#ifdef USE_LIGHTING
vec2 light_vec = transformed_light_uv;
if (normal_used) {
- normal.xy = mat2(local_rot.xy,local_rot.zw) * normal.xy;
+ normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy;
}
- float att=1.0;
+ float att = 1.0;
vec2 light_uv = light_uv_interp.xy;
- vec4 light = texture(light_texture,light_uv);
+ vec4 light = texture(light_texture, light_uv);
- if (any(lessThan(light_uv_interp.xy,vec2(0.0,0.0))) || any(greaterThanEqual(light_uv_interp.xy,vec2(1.0,1.0)))) {
- color.a*=light_outside_alpha; //invisible
+ if (any(lessThan(light_uv_interp.xy, vec2(0.0, 0.0))) || any(greaterThanEqual(light_uv_interp.xy, vec2(1.0, 1.0)))) {
+ color.a *= light_outside_alpha; //invisible
} else {
float real_light_height = light_height;
@@ -549,178 +507,176 @@ FRAGMENT_SHADER_CODE
vec4 real_light_shadow_color = light_shadow_color;
#if defined(USE_LIGHT_SHADER_CODE)
-//light is written by the light shader
+ //light is written by the light shader
light_compute(
- light,
- light_vec,
- real_light_height,
- real_light_color,
- light_uv,
- real_light_shadow_color,
- normal,
- uv,
+ light,
+ light_vec,
+ real_light_height,
+ real_light_color,
+ light_uv,
+ real_light_shadow_color,
+ normal,
+ uv,
#if defined(SCREEN_UV_USED)
- screen_uv,
+ screen_uv,
#endif
- color);
+ color);
#endif
light *= real_light_color;
if (normal_used) {
- vec3 light_normal = normalize(vec3(light_vec,-real_light_height));
- light*=max(dot(-light_normal,normal),0.0);
+ vec3 light_normal = normalize(vec3(light_vec, -real_light_height));
+ light *= max(dot(-light_normal, normal), 0.0);
}
- color*=light;
+ color *= light;
#ifdef USE_SHADOWS
light_vec = light_uv_interp.zw; //for shadows
- float angle_to_light = -atan(light_vec.x,light_vec.y);
+ float angle_to_light = -atan(light_vec.x, light_vec.y);
float PI = 3.14159265358979323846264;
/*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays
float ang*/
- float su,sz;
+ float su, sz;
float abs_angle = abs(angle_to_light);
vec2 point;
float sh;
- if (abs_angle<45.0*PI/180.0) {
+ if (abs_angle < 45.0 * PI / 180.0) {
point = light_vec;
- sh=0.0+(1.0/8.0);
- } else if (abs_angle>135.0*PI/180.0) {
+ sh = 0.0 + (1.0 / 8.0);
+ } else if (abs_angle > 135.0 * PI / 180.0) {
point = -light_vec;
- sh = 0.5+(1.0/8.0);
- } else if (angle_to_light>0.0) {
+ sh = 0.5 + (1.0 / 8.0);
+ } else if (angle_to_light > 0.0) {
- point = vec2(light_vec.y,-light_vec.x);
- sh = 0.25+(1.0/8.0);
+ point = vec2(light_vec.y, -light_vec.x);
+ sh = 0.25 + (1.0 / 8.0);
} else {
- point = vec2(-light_vec.y,light_vec.x);
- sh = 0.75+(1.0/8.0);
-
+ point = vec2(-light_vec.y, light_vec.x);
+ sh = 0.75 + (1.0 / 8.0);
}
-
- highp vec4 s = shadow_matrix * vec4(point,0.0,1.0);
- s.xyz/=s.w;
- su=s.x*0.5+0.5;
- sz=s.z*0.5+0.5;
+ highp vec4 s = shadow_matrix * vec4(point, 0.0, 1.0);
+ s.xyz /= s.w;
+ su = s.x * 0.5 + 0.5;
+ sz = s.z * 0.5 + 0.5;
//sz=lightlength(light_vec);
- highp float shadow_attenuation=0.0;
+ highp float shadow_attenuation = 0.0;
#ifdef USE_RGBA_SHADOWS
-#define SHADOW_DEPTH(m_tex,m_uv) dot(texture((m_tex),(m_uv)),vec4(1.0 / (256.0 * 256.0 * 256.0),1.0 / (256.0 * 256.0),1.0 / 256.0,1) )
+#define SHADOW_DEPTH(m_tex, m_uv) dot(texture((m_tex), (m_uv)), vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1))
#else
-#define SHADOW_DEPTH(m_tex,m_uv) (texture((m_tex),(m_uv)).r)
+#define SHADOW_DEPTH(m_tex, m_uv) (texture((m_tex), (m_uv)).r)
#endif
-
-
#ifdef SHADOW_USE_GRADIENT
-#define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture,vec2(m_ofs,sh)); shadow_attenuation+=1.0-smoothstep(sd,sd+shadow_gradient,sz); }
+#define SHADOW_TEST(m_ofs) \
+ { \
+ highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \
+ shadow_attenuation += 1.0 - smoothstep(sd, sd + shadow_gradient, sz); \
+ }
#else
-#define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture,vec2(m_ofs,sh)); shadow_attenuation+=step(sz,sd); }
+#define SHADOW_TEST(m_ofs) \
+ { \
+ highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \
+ shadow_attenuation += step(sz, sd); \
+ }
#endif
-
#ifdef SHADOW_FILTER_NEAREST
SHADOW_TEST(su);
#endif
-
#ifdef SHADOW_FILTER_PCF3
- SHADOW_TEST(su+shadowpixel_size);
+ SHADOW_TEST(su + shadowpixel_size);
SHADOW_TEST(su);
- SHADOW_TEST(su-shadowpixel_size);
- shadow_attenuation/=3.0;
+ SHADOW_TEST(su - shadowpixel_size);
+ shadow_attenuation /= 3.0;
#endif
-
#ifdef SHADOW_FILTER_PCF5
- SHADOW_TEST(su+shadowpixel_size*2.0);
- SHADOW_TEST(su+shadowpixel_size);
+ SHADOW_TEST(su + shadowpixel_size * 2.0);
+ SHADOW_TEST(su + shadowpixel_size);
SHADOW_TEST(su);
- SHADOW_TEST(su-shadowpixel_size);
- SHADOW_TEST(su-shadowpixel_size*2.0);
- shadow_attenuation/=5.0;
+ SHADOW_TEST(su - shadowpixel_size);
+ SHADOW_TEST(su - shadowpixel_size * 2.0);
+ shadow_attenuation /= 5.0;
#endif
-
#ifdef SHADOW_FILTER_PCF7
- SHADOW_TEST(su+shadowpixel_size*3.0);
- SHADOW_TEST(su+shadowpixel_size*2.0);
- SHADOW_TEST(su+shadowpixel_size);
+ SHADOW_TEST(su + shadowpixel_size * 3.0);
+ SHADOW_TEST(su + shadowpixel_size * 2.0);
+ SHADOW_TEST(su + shadowpixel_size);
SHADOW_TEST(su);
- SHADOW_TEST(su-shadowpixel_size);
- SHADOW_TEST(su-shadowpixel_size*2.0);
- SHADOW_TEST(su-shadowpixel_size*3.0);
- shadow_attenuation/=7.0;
+ SHADOW_TEST(su - shadowpixel_size);
+ SHADOW_TEST(su - shadowpixel_size * 2.0);
+ SHADOW_TEST(su - shadowpixel_size * 3.0);
+ shadow_attenuation /= 7.0;
#endif
-
#ifdef SHADOW_FILTER_PCF9
- SHADOW_TEST(su+shadowpixel_size*4.0);
- SHADOW_TEST(su+shadowpixel_size*3.0);
- SHADOW_TEST(su+shadowpixel_size*2.0);
- SHADOW_TEST(su+shadowpixel_size);
+ SHADOW_TEST(su + shadowpixel_size * 4.0);
+ SHADOW_TEST(su + shadowpixel_size * 3.0);
+ SHADOW_TEST(su + shadowpixel_size * 2.0);
+ SHADOW_TEST(su + shadowpixel_size);
SHADOW_TEST(su);
- SHADOW_TEST(su-shadowpixel_size);
- SHADOW_TEST(su-shadowpixel_size*2.0);
- SHADOW_TEST(su-shadowpixel_size*3.0);
- SHADOW_TEST(su-shadowpixel_size*4.0);
- shadow_attenuation/=9.0;
+ SHADOW_TEST(su - shadowpixel_size);
+ SHADOW_TEST(su - shadowpixel_size * 2.0);
+ SHADOW_TEST(su - shadowpixel_size * 3.0);
+ SHADOW_TEST(su - shadowpixel_size * 4.0);
+ shadow_attenuation /= 9.0;
#endif
#ifdef SHADOW_FILTER_PCF13
- SHADOW_TEST(su+shadowpixel_size*6.0);
- SHADOW_TEST(su+shadowpixel_size*5.0);
- SHADOW_TEST(su+shadowpixel_size*4.0);
- SHADOW_TEST(su+shadowpixel_size*3.0);
- SHADOW_TEST(su+shadowpixel_size*2.0);
- SHADOW_TEST(su+shadowpixel_size);
+ SHADOW_TEST(su + shadowpixel_size * 6.0);
+ SHADOW_TEST(su + shadowpixel_size * 5.0);
+ SHADOW_TEST(su + shadowpixel_size * 4.0);
+ SHADOW_TEST(su + shadowpixel_size * 3.0);
+ SHADOW_TEST(su + shadowpixel_size * 2.0);
+ SHADOW_TEST(su + shadowpixel_size);
SHADOW_TEST(su);
- SHADOW_TEST(su-shadowpixel_size);
- SHADOW_TEST(su-shadowpixel_size*2.0);
- SHADOW_TEST(su-shadowpixel_size*3.0);
- SHADOW_TEST(su-shadowpixel_size*4.0);
- SHADOW_TEST(su-shadowpixel_size*5.0);
- SHADOW_TEST(su-shadowpixel_size*6.0);
- shadow_attenuation/=13.0;
+ SHADOW_TEST(su - shadowpixel_size);
+ SHADOW_TEST(su - shadowpixel_size * 2.0);
+ SHADOW_TEST(su - shadowpixel_size * 3.0);
+ SHADOW_TEST(su - shadowpixel_size * 4.0);
+ SHADOW_TEST(su - shadowpixel_size * 5.0);
+ SHADOW_TEST(su - shadowpixel_size * 6.0);
+ shadow_attenuation /= 13.0;
#endif
- //color*=shadow_attenuation;
- color=mix(real_light_shadow_color,color,shadow_attenuation);
+ //color *= shadow_attenuation;
+ color = mix(real_light_shadow_color, color, shadow_attenuation);
//use shadows
#endif
}
//use lighting
#endif
- //color.rgb*=color.a;
+ //color.rgb *= color.a;
frag_color = color;
-
}
diff --git a/drivers/gles3/shaders/canvas_shadow.glsl b/drivers/gles3/shaders/canvas_shadow.glsl
index c757990de0..b06e9076d9 100644
--- a/drivers/gles3/shaders/canvas_shadow.glsl
+++ b/drivers/gles3/shaders/canvas_shadow.glsl
@@ -1,20 +1,18 @@
[vertex]
-
-
uniform highp mat4 projection_matrix;
uniform highp mat4 light_matrix;
uniform highp mat4 world_matrix;
uniform highp float distance_norm;
-layout(location=0) in highp vec3 vertex;
+layout(location = 0) in highp vec3 vertex;
out highp vec4 position_interp;
void main() {
- gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex,1.0)));
- position_interp=gl_Position;
+ gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex, 1.0)));
+ position_interp = gl_Position;
}
[fragment]
@@ -22,28 +20,22 @@ void main() {
in highp vec4 position_interp;
#ifdef USE_RGBA_SHADOWS
-
-layout(location=0) out lowp vec4 distance_buf;
-
+layout(location = 0) out lowp vec4 distance_buf;
#else
-
-layout(location=0) out highp float distance_buf;
-
+layout(location = 0) out highp float distance_buf;
#endif
void main() {
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0;//bias;
+ highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
#ifdef USE_RGBA_SHADOWS
highp vec4 comp = fract(depth * vec4(256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0));
comp -= comp.xxyz * vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
- distance_buf=comp;
+ distance_buf = comp;
#else
- distance_buf=depth;
-
+ distance_buf = depth;
#endif
}
-
diff --git a/drivers/gles3/shaders/copy.glsl b/drivers/gles3/shaders/copy.glsl
index 1b7c626d3c..e17b71df27 100644
--- a/drivers/gles3/shaders/copy.glsl
+++ b/drivers/gles3/shaders/copy.glsl
@@ -1,13 +1,12 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
+layout(location = 0) in highp vec4 vertex_attrib;
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-layout(location=4) in vec3 cube_in;
+layout(location = 4) in vec3 cube_in;
#else
-layout(location=4) in vec2 uv_in;
+layout(location = 4) in vec2 uv_in;
#endif
-layout(location=5) in vec2 uv2_in;
+layout(location = 5) in vec2 uv2_in;
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
out vec3 cube_interp;
@@ -32,7 +31,7 @@ void main() {
#else
uv_interp = uv_in;
#ifdef V_FLIP
- uv_interp.y = 1.0-uv_interp.y;
+ uv_interp.y = 1.0 - uv_interp.y;
#endif
#endif
@@ -44,7 +43,6 @@ void main() {
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
#endif
-
}
[fragment]
@@ -72,38 +70,33 @@ uniform samplerCube source_cube; //texunit:0
uniform sampler2D source; //texunit:0
#endif
-
#ifdef USE_MULTIPLIER
uniform float multiplier;
#endif
#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
-vec4 texturePanorama(vec3 normal,sampler2D pano ) {
+vec4 texturePanorama(vec3 normal, sampler2D pano) {
vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y)
- );
-
- if(st.x < 0.0)
- st.x += M_PI*2.0;
+ atan(normal.x, normal.z),
+ acos(normal.y));
- st/=vec2(M_PI*2.0,M_PI);
+ if (st.x < 0.0)
+ st.x += M_PI * 2.0;
- return textureLod(pano,st,0.0);
+ st /= vec2(M_PI * 2.0, M_PI);
+ return textureLod(pano, st, 0.0);
}
#endif
-
uniform float stuff;
uniform vec2 pixel_size;
in vec2 uv2_interp;
-
#ifdef USE_BCS
uniform vec3 bcs;
@@ -118,20 +111,17 @@ uniform sampler2D color_correction; //texunit:1
layout(location = 0) out vec4 frag_color;
-
-
-
void main() {
//vec4 color = color_interp;
#ifdef USE_PANORAMA
- vec4 color = texturePanorama( normalize(cube_interp), source );
+ vec4 color = texturePanorama(normalize(cube_interp), source);
#elif defined(USE_ASYM_PANO)
- // When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
+ // When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
// Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
@@ -142,72 +132,68 @@ void main() {
cube_normal = mat3(pano_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
- vec4 color = texturePanorama( normalize(cube_normal.xyz), source );
+ vec4 color = texturePanorama(normalize(cube_normal.xyz), source);
#elif defined(USE_CUBEMAP)
- vec4 color = texture( source_cube, normalize(cube_interp) );
+ vec4 color = texture(source_cube, normalize(cube_interp));
#else
- vec4 color = textureLod( source, uv_interp,0.0 );
+ vec4 color = textureLod(source, uv_interp, 0.0);
#endif
-
-
#ifdef LINEAR_TO_SRGB
//regular Linear -> SRGB conversion
vec3 a = vec3(0.055);
- color.rgb = mix( (vec3(1.0)+a)*pow(color.rgb,vec3(1.0/2.4))-a , 12.92*color.rgb , lessThan(color.rgb,vec3(0.0031308)));
+ color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
#endif
#ifdef SRGB_TO_LINEAR
- color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)),vec3(2.4)),color.rgb * (1.0 / 12.92),lessThan(color.rgb,vec3(0.04045)));
+ color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
#endif
#ifdef DEBUG_GRADIENT
- color.rg=uv_interp;
- color.b=0.0;
+ color.rg = uv_interp;
+ color.b = 0.0;
#endif
#ifdef DISABLE_ALPHA
- color.a=1.0;
+ color.a = 1.0;
#endif
-
#ifdef GAUSSIAN_HORIZONTAL
- color*=0.38774;
- color+=texture( source, uv_interp+vec2( 1.0, 0.0)*pixel_size )*0.24477;
- color+=texture( source, uv_interp+vec2( 2.0, 0.0)*pixel_size )*0.06136;
- color+=texture( source, uv_interp+vec2(-1.0, 0.0)*pixel_size )*0.24477;
- color+=texture( source, uv_interp+vec2(-2.0, 0.0)*pixel_size )*0.06136;
+ color *= 0.38774;
+ color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
+ color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
+ color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
+ color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
#endif
#ifdef GAUSSIAN_VERTICAL
- color*=0.38774;
- color+=texture( source, uv_interp+vec2( 0.0, 1.0)*pixel_size )*0.24477;
- color+=texture( source, uv_interp+vec2( 0.0, 2.0)*pixel_size )*0.06136;
- color+=texture( source, uv_interp+vec2( 0.0,-1.0)*pixel_size )*0.24477;
- color+=texture( source, uv_interp+vec2( 0.0,-2.0)*pixel_size )*0.06136;
+ color *= 0.38774;
+ color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
+ color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
+ color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
+ color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
#endif
#ifdef USE_BCS
- color.rgb = mix(vec3(0.0),color.rgb,bcs.x);
- color.rgb = mix(vec3(0.5),color.rgb,bcs.y);
- color.rgb = mix(vec3(dot(vec3(1.0),color.rgb)*0.33333),color.rgb,bcs.z);
+ color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
+ color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
+ color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
#endif
#ifdef USE_COLOR_CORRECTION
- color.r = texture(color_correction,vec2(color.r,0.0)).r;
- color.g = texture(color_correction,vec2(color.g,0.0)).g;
- color.b = texture(color_correction,vec2(color.b,0.0)).b;
+ color.r = texture(color_correction, vec2(color.r, 0.0)).r;
+ color.g = texture(color_correction, vec2(color.g, 0.0)).g;
+ color.b = texture(color_correction, vec2(color.b, 0.0)).b;
#endif
#ifdef USE_MULTIPLIER
- color.rgb*=multiplier;
+ color.rgb *= multiplier;
#endif
frag_color = color;
}
-
diff --git a/drivers/gles3/shaders/cube_to_dp.glsl b/drivers/gles3/shaders/cube_to_dp.glsl
index 5ffc78c0b9..2911746bb7 100644
--- a/drivers/gles3/shaders/cube_to_dp.glsl
+++ b/drivers/gles3/shaders/cube_to_dp.glsl
@@ -1,8 +1,7 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
@@ -14,7 +13,6 @@ void main() {
[fragment]
-
uniform highp samplerCube source_cube; //texunit:0
in vec2 uv_interp;
@@ -25,55 +23,53 @@ uniform highp float bias;
void main() {
- highp vec3 normal = vec3( uv_interp * 2.0 - 1.0, 0.0 );
-/*
- if(z_flip) {
- normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ highp vec3 normal = vec3(uv_interp * 2.0 - 1.0, 0.0);
+ /*
+ if (z_flip) {
+ normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
} else {
- normal.z = -0.5 + 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ normal.z = -0.5 + 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
}
-*/
+ */
- //normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
- //normal.xy*=1.0+normal.z;
+ //normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
+ //normal.xy *= 1.0 + normal.z;
- normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
+ normal = normalize(normal);
+ /*
+ normal.z = 0.5;
normal = normalize(normal);
+ */
-/*
- normal.z=0.5;
- normal=normalize(normal);
-*/
if (!z_flip) {
- normal.z=-normal.z;
+ normal.z = -normal.z;
}
- //normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
- float depth = texture(source_cube,normal).r;
+ //normal = normalize(vec3(uv_interp * 2.0 - 1.0, 1.0));
+ float depth = texture(source_cube, normal).r;
// absolute values for direction cosines, bigger value equals closer to basis axis
vec3 unorm = abs(normal);
- if ( (unorm.x >= unorm.y) && (unorm.x >= unorm.z) ) {
- // x code
- unorm = normal.x > 0.0 ? vec3( 1.0, 0.0, 0.0 ) : vec3( -1.0, 0.0, 0.0 ) ;
- } else if ( (unorm.y > unorm.x) && (unorm.y >= unorm.z) ) {
- // y code
- unorm = normal.y > 0.0 ? vec3( 0.0, 1.0, 0.0 ) : vec3( 0.0, -1.0, 0.0 ) ;
- } else if ( (unorm.z > unorm.x) && (unorm.z > unorm.y) ) {
- // z code
- unorm = normal.z > 0.0 ? vec3( 0.0, 0.0, 1.0 ) : vec3( 0.0, 0.0, -1.0 ) ;
+ if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
+ // x code
+ unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
+ } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
+ // y code
+ unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
+ } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
+ // z code
+ unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
} else {
- // oh-no we messed up code
- // has to be
- unorm = vec3( 1.0, 0.0, 0.0 );
+ // oh-no we messed up code
+ // has to be
+ unorm = vec3(1.0, 0.0, 0.0);
}
- float depth_fix = 1.0 / dot(normal,unorm);
-
+ float depth_fix = 1.0 / dot(normal, unorm);
depth = 2.0 * depth - 1.0;
float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
- gl_FragDepth = (linear_depth*depth_fix+bias) / z_far;
+ gl_FragDepth = (linear_depth * depth_fix + bias) / z_far;
}
-
diff --git a/drivers/gles3/shaders/cubemap_filter.glsl b/drivers/gles3/shaders/cubemap_filter.glsl
index 485fbb6ee0..1462aacf89 100644
--- a/drivers/gles3/shaders/cubemap_filter.glsl
+++ b/drivers/gles3/shaders/cubemap_filter.glsl
@@ -1,21 +1,19 @@
[vertex]
+layout(location = 0) in highp vec2 vertex;
-layout(location=0) in highp vec2 vertex;
-
-layout(location=4) in highp vec2 uv;
+layout(location = 4) in highp vec2 uv;
out highp vec2 uv_interp;
void main() {
- uv_interp=uv;
- gl_Position=vec4(vertex,0,1);
+ uv_interp = uv;
+ gl_Position = vec4(vertex, 0, 1);
}
[fragment]
-
precision highp float;
precision highp int;
@@ -36,90 +34,85 @@ uniform int face_id;
uniform float roughness;
in highp vec2 uv_interp;
-
layout(location = 0) out vec4 frag_color;
-
#define M_PI 3.14159265359
-
-vec3 texelCoordToVec(vec2 uv, int faceID)
-{
- mat3 faceUvVectors[6];
-/*
- // -x
- faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
-*/
-
- // -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
-
- // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
- vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
- return normalize(result);
+vec3 texelCoordToVec(vec2 uv, int faceID) {
+ mat3 faceUvVectors[6];
+ /*
+ // -x
+ faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
+
+ // +x
+ faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
+
+ // -y
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
+
+ // +y
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
+
+ // -z
+ faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
+
+ // +z
+ faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
+ */
+
+ // -x
+ faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
+
+ // +x
+ faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
+
+ // -y
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
+
+ // +y
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
+
+ // -z
+ faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
+
+ // +z
+ faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
+
+ // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
+ vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
+ return normalize(result);
}
-vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N)
-{
+vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
// Compute distribution direction
float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
+ float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
// Convert to spherical direction
@@ -137,33 +130,29 @@ vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N)
}
// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
-float GGX(float NdotV, float a)
-{
+float GGX(float NdotV, float a) {
float k = a / 2.0;
return NdotV / (NdotV * (1.0 - k) + k);
}
// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
-float G_Smith(float a, float nDotV, float nDotL)
-{
+float G_Smith(float a, float nDotV, float nDotL) {
return GGX(nDotL, a * a) * GGX(nDotV, a * a);
}
float radicalInverse_VdC(uint bits) {
- bits = (bits << 16u) | (bits >> 16u);
- bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
- bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
- bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
- bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
- return float(bits) * 2.3283064365386963e-10; // / 0x100000000
+ bits = (bits << 16u) | (bits >> 16u);
+ bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
+ bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
+ bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
+ bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
+ return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
vec2 Hammersley(uint i, uint N) {
- return vec2(float(i)/float(N), radicalInverse_VdC(i));
+ return vec2(float(i) / float(N), radicalInverse_VdC(i));
}
-
-
#ifdef LOW_QUALITY
#define SAMPLE_COUNT 64u
@@ -178,37 +167,33 @@ uniform bool z_flip;
#ifdef USE_SOURCE_PANORAMA
-vec4 texturePanorama(vec3 normal,sampler2D pano ) {
+vec4 texturePanorama(vec3 normal, sampler2D pano) {
vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y)
- );
-
- if(st.x < 0.0)
- st.x += M_PI*2.0;
+ atan(normal.x, normal.z),
+ acos(normal.y));
- st/=vec2(M_PI*2.0,M_PI);
+ if (st.x < 0.0)
+ st.x += M_PI * 2.0;
- return textureLod(pano,st,0.0);
+ st /= vec2(M_PI * 2.0, M_PI);
+ return textureLod(pano, st, 0.0);
}
#endif
#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-
vec4 textureDualParaboloidArray(vec3 normal) {
vec3 norm = normalize(normal);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z<0.0) {
- norm.y=0.5-norm.y+0.5;
+ norm.xy /= 1.0 + abs(norm.z);
+ norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
+ if (norm.z < 0.0) {
+ norm.y = 0.5 - norm.y + 0.5;
}
- return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index) ), 0.0);
-
+ return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index)), 0.0);
}
#endif
@@ -217,19 +202,18 @@ void main() {
#ifdef USE_DUAL_PARABOLOID
- vec3 N = vec3( uv_interp * 2.0 - 1.0, 0.0 );
- N.z = 0.5 - 0.5*((N.x * N.x) + (N.y * N.y));
+ vec3 N = vec3(uv_interp * 2.0 - 1.0, 0.0);
+ N.z = 0.5 - 0.5 * ((N.x * N.x) + (N.y * N.y));
N = normalize(N);
if (z_flip) {
- N.y=-N.y; //y is flipped to improve blending between both sides
- N.z=-N.z;
+ N.y = -N.y; //y is flipped to improve blending between both sides
+ N.z = -N.z;
}
-
#else
- vec2 uv = (uv_interp * 2.0) - 1.0;
- vec3 N = texelCoordToVec(uv, face_id);
+ vec2 uv = (uv_interp * 2.0) - 1.0;
+ vec3 N = texelCoordToVec(uv, face_id);
#endif
//vec4 color = color_interp;
@@ -237,49 +221,46 @@ void main() {
#ifdef USE_SOURCE_PANORAMA
- frag_color=vec4(texturePanorama(N,source_panorama).rgb,1.0);
+ frag_color = vec4(texturePanorama(N, source_panorama).rgb, 1.0);
#endif
#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
- frag_color=vec4(textureDualParaboloidArray(N).rgb,1.0);
+ frag_color = vec4(textureDualParaboloidArray(N).rgb, 1.0);
#endif
#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
- N.y=-N.y;
- frag_color=vec4(texture(N,source_cube).rgb,1.0);
+ N.y = -N.y;
+ frag_color = vec4(texture(N, source_cube).rgb, 1.0);
#endif
-
-
-
#else
vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
- for(uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
+ for (uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
vec2 xi = Hammersley(sampleNum, SAMPLE_COUNT);
- vec3 H = ImportanceSampleGGX( xi, roughness, N );
- vec3 V = N;
- vec3 L = normalize(2.0 * dot( V, H ) * H - V);
+ vec3 H = ImportanceSampleGGX(xi, roughness, N);
+ vec3 V = N;
+ vec3 L = normalize(2.0 * dot(V, H) * H - V);
- float ndotl = clamp(dot(N, L),0.0,1.0);
+ float ndotl = clamp(dot(N, L), 0.0, 1.0);
- if (ndotl>0.0) {
+ if (ndotl > 0.0) {
#ifdef USE_SOURCE_PANORAMA
- sum.rgb += texturePanorama(H,source_panorama).rgb *ndotl;
+ sum.rgb += texturePanorama(H, source_panorama).rgb * ndotl;
#endif
#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
- sum.rgb += textureDualParaboloidArray(H).rgb *ndotl;
+ sum.rgb += textureDualParaboloidArray(H).rgb * ndotl;
#endif
#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
- H.y=-H.y;
- sum.rgb += textureLod(source_cube, H, 0.0).rgb *ndotl;
+ H.y = -H.y;
+ sum.rgb += textureLod(source_cube, H, 0.0).rgb * ndotl;
#endif
sum.a += ndotl;
}
@@ -289,6 +270,4 @@ void main() {
frag_color = vec4(sum.rgb, 1.0);
#endif
-
}
-
diff --git a/drivers/gles3/shaders/effect_blur.glsl b/drivers/gles3/shaders/effect_blur.glsl
index c8567b4d53..3872ee8d1d 100644
--- a/drivers/gles3/shaders/effect_blur.glsl
+++ b/drivers/gles3/shaders/effect_blur.glsl
@@ -1,8 +1,7 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
@@ -39,7 +38,6 @@ uniform sampler2D source_ssao; //texunit:1
uniform float lod;
uniform vec2 pixel_size;
-
layout(location = 0) out vec4 frag_color;
#ifdef SSAO_MERGE
@@ -48,31 +46,31 @@ uniform vec4 ssao_color;
#endif
-#if defined (GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
+#if defined(GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
uniform float glow_strength;
#endif
-#if defined(DOF_FAR_BLUR) || defined (DOF_NEAR_BLUR)
+#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
#ifdef DOF_QUALITY_LOW
-const int dof_kernel_size=5;
-const int dof_kernel_from=2;
-const float dof_kernel[5] = float[] (0.153388,0.221461,0.250301,0.221461,0.153388);
+const int dof_kernel_size = 5;
+const int dof_kernel_from = 2;
+const float dof_kernel[5] = float[](0.153388, 0.221461, 0.250301, 0.221461, 0.153388);
#endif
#ifdef DOF_QUALITY_MEDIUM
-const int dof_kernel_size=11;
-const int dof_kernel_from=5;
-const float dof_kernel[11] = float[] (0.055037,0.072806,0.090506,0.105726,0.116061,0.119726,0.116061,0.105726,0.090506,0.072806,0.055037);
+const int dof_kernel_size = 11;
+const int dof_kernel_from = 5;
+const float dof_kernel[11] = float[](0.055037, 0.072806, 0.090506, 0.105726, 0.116061, 0.119726, 0.116061, 0.105726, 0.090506, 0.072806, 0.055037);
#endif
#ifdef DOF_QUALITY_HIGH
-const int dof_kernel_size=21;
-const int dof_kernel_from=10;
-const float dof_kernel[21] = float[] (0.028174,0.032676,0.037311,0.041944,0.046421,0.050582,0.054261,0.057307,0.059587,0.060998,0.061476,0.060998,0.059587,0.057307,0.054261,0.050582,0.046421,0.041944,0.037311,0.032676,0.028174);
+const int dof_kernel_size = 21;
+const int dof_kernel_from = 10;
+const float dof_kernel[21] = float[](0.028174, 0.032676, 0.037311, 0.041944, 0.046421, 0.050582, 0.054261, 0.057307, 0.059587, 0.060998, 0.061476, 0.060998, 0.059587, 0.057307, 0.054261, 0.050582, 0.046421, 0.041944, 0.037311, 0.032676, 0.028174);
#endif
uniform sampler2D dof_source_depth; //texunit:1
@@ -88,7 +86,6 @@ uniform sampler2D source_dof_original; //texunit:2
#endif
-
#ifdef GLOW_FIRST_PASS
uniform float exposure;
@@ -112,53 +109,51 @@ uniform float camera_z_near;
void main() {
-
-
#ifdef GAUSSIAN_HORIZONTAL
vec2 pix_size = pixel_size;
- pix_size*=0.5; //reading from larger buffer, so use more samples
- vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.214607;
- color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.189879;
- color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.157305;
- color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.071303;
- color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.189879;
- color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.157305;
- color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.071303;
+ pix_size *= 0.5; //reading from larger buffer, so use more samples
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.214607;
+ color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.189879;
+ color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.157305;
+ color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.071303;
+ color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.189879;
+ color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.157305;
+ color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.071303;
frag_color = color;
#endif
#ifdef GAUSSIAN_VERTICAL
- vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pixel_size,lod )*0.38774;
- color+=textureLod( source_color, uv_interp+vec2( 0.0, 1.0)*pixel_size,lod )*0.24477;
- color+=textureLod( source_color, uv_interp+vec2( 0.0, 2.0)*pixel_size,lod )*0.06136;
- color+=textureLod( source_color, uv_interp+vec2( 0.0,-1.0)*pixel_size,lod )*0.24477;
- color+=textureLod( source_color, uv_interp+vec2( 0.0,-2.0)*pixel_size,lod )*0.06136;
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.38774;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.24477;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.06136;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.24477;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.06136;
frag_color = color;
#endif
-//glow uses larger sigma for a more rounded blur effect
+ //glow uses larger sigma for a more rounded blur effect
#ifdef GLOW_GAUSSIAN_HORIZONTAL
vec2 pix_size = pixel_size;
- pix_size*=0.5; //reading from larger buffer, so use more samples
- vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.174938;
- color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.165569;
- color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.140367;
- color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.106595;
- color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.165569;
- color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.140367;
- color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.106595;
- color*=glow_strength;
+ pix_size *= 0.5; //reading from larger buffer, so use more samples
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.174938;
+ color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.165569;
+ color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.140367;
+ color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.106595;
+ color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.165569;
+ color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.140367;
+ color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.106595;
+ color *= glow_strength;
frag_color = color;
#endif
#ifdef GLOW_GAUSSIAN_VERTICAL
- vec4 color =textureLod( source_color, uv_interp+vec2(0.0, 0.0)*pixel_size,lod )*0.288713;
- color+=textureLod( source_color, uv_interp+vec2(0.0, 1.0)*pixel_size,lod )*0.233062;
- color+=textureLod( source_color, uv_interp+vec2(0.0, 2.0)*pixel_size,lod )*0.122581;
- color+=textureLod( source_color, uv_interp+vec2(0.0,-1.0)*pixel_size,lod )*0.233062;
- color+=textureLod( source_color, uv_interp+vec2(0.0,-2.0)*pixel_size,lod )*0.122581;
- color*=glow_strength;
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.288713;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.233062;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.122581;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.233062;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.122581;
+ color *= glow_strength;
frag_color = color;
#endif
@@ -166,47 +161,45 @@ void main() {
vec4 color_accum = vec4(0.0);
- float depth = textureLod( dof_source_depth, uv_interp, 0.0).r;
+ float depth = textureLod(dof_source_depth, uv_interp, 0.0).r;
depth = depth * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
#endif
- float amount = smoothstep(dof_begin,dof_end,depth);
- float k_accum=0.0;
+ float amount = smoothstep(dof_begin, dof_end, depth);
+ float k_accum = 0.0;
- for(int i=0;i<dof_kernel_size;i++) {
+ for (int i = 0; i < dof_kernel_size; i++) {
- int int_ofs = i-dof_kernel_from;
+ int int_ofs = i - dof_kernel_from;
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
float tap_k = dof_kernel[i];
- float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
+ float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
tap_depth = tap_depth * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
#endif
- float tap_amount = mix(smoothstep(dof_begin,dof_end,tap_depth),1.0,int_ofs==0);
- tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
-
- vec4 tap_color = textureLod( source_color, tap_uv, 0.0) * tap_k;
-
- k_accum+=tap_k*tap_amount;
- color_accum+=tap_color*tap_amount;
+ float tap_amount = mix(smoothstep(dof_begin, dof_end, tap_depth), 1.0, int_ofs == 0);
+ tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
+ vec4 tap_color = textureLod(source_color, tap_uv, 0.0) * tap_k;
+ k_accum += tap_k * tap_amount;
+ color_accum += tap_color * tap_amount;
}
- if (k_accum>0.0) {
- color_accum/=k_accum;
+ if (k_accum > 0.0) {
+ color_accum /= k_accum;
}
- frag_color = color_accum;///k_accum;
+ frag_color = color_accum; ///k_accum;
#endif
@@ -214,47 +207,45 @@ void main() {
vec4 color_accum = vec4(0.0);
- float max_accum=0.0;
+ float max_accum = 0.0;
- for(int i=0;i<dof_kernel_size;i++) {
+ for (int i = 0; i < dof_kernel_size; i++) {
- int int_ofs = i-dof_kernel_from;
+ int int_ofs = i - dof_kernel_from;
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
- float ofs_influence = max(0.0,1.0-float(abs(int_ofs))/float(dof_kernel_from));
+ float ofs_influence = max(0.0, 1.0 - float(abs(int_ofs)) / float(dof_kernel_from));
float tap_k = dof_kernel[i];
- vec4 tap_color = textureLod( source_color, tap_uv, 0.0);
+ vec4 tap_color = textureLod(source_color, tap_uv, 0.0);
- float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
+ float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
tap_depth = tap_depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
#endif
- float tap_amount = 1.0-smoothstep(dof_end,dof_begin,tap_depth);
- tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
+ float tap_amount = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
+ tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
#ifdef DOF_NEAR_FIRST_TAP
- tap_color.a= 1.0-smoothstep(dof_end,dof_begin,tap_depth);
+ tap_color.a = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
#endif
- max_accum=max(max_accum,tap_amount*ofs_influence);
-
- color_accum+=tap_color*tap_k;
+ max_accum = max(max_accum, tap_amount * ofs_influence);
+ color_accum += tap_color * tap_k;
}
- color_accum.a=max(color_accum.a,sqrt(max_accum));
-
+ color_accum.a = max(color_accum.a, sqrt(max_accum));
#ifdef DOF_NEAR_BLUR_MERGE
- vec4 original = textureLod( source_dof_original, uv_interp, 0.0);
- color_accum = mix(original,color_accum,color_accum.a);
+ vec4 original = textureLod(source_dof_original, uv_interp, 0.0);
+ color_accum = mix(original, color_accum, color_accum.a);
#endif
@@ -265,37 +256,32 @@ void main() {
#endif
-
-
#ifdef GLOW_FIRST_PASS
#ifdef GLOW_USE_AUTO_EXPOSURE
- frag_color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
+ frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
#endif
- frag_color*=exposure;
+ frag_color *= exposure;
- float luminance = max(frag_color.r,max(frag_color.g,frag_color.b));
- float feedback = max( smoothstep(glow_hdr_threshold,glow_hdr_threshold+glow_hdr_scale,luminance), glow_bloom );
+ float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
+ float feedback = max(smoothstep(glow_hdr_threshold, glow_hdr_threshold + glow_hdr_scale, luminance), glow_bloom);
frag_color *= feedback;
#endif
-
#ifdef SIMPLE_COPY
- vec4 color =textureLod( source_color, uv_interp,0.0);
+ vec4 color = textureLod(source_color, uv_interp, 0.0);
frag_color = color;
#endif
#ifdef SSAO_MERGE
- vec4 color =textureLod( source_color, uv_interp,0.0);
- float ssao =textureLod( source_ssao, uv_interp,0.0).r;
+ vec4 color = textureLod(source_color, uv_interp, 0.0);
+ float ssao = textureLod(source_ssao, uv_interp, 0.0).r;
- frag_color = vec4( mix(color.rgb,color.rgb*mix(ssao_color.rgb,vec3(1.0),ssao),color.a), 1.0 );
+ frag_color = vec4(mix(color.rgb, color.rgb * mix(ssao_color.rgb, vec3(1.0), ssao), color.a), 1.0);
#endif
-
-
}
diff --git a/drivers/gles3/shaders/exposure.glsl b/drivers/gles3/shaders/exposure.glsl
index 001b90a0f1..18fff1ae36 100644
--- a/drivers/gles3/shaders/exposure.glsl
+++ b/drivers/gles3/shaders/exposure.glsl
@@ -1,18 +1,14 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
gl_Position = vertex_attrib;
-
}
[fragment]
-
uniform highp sampler2D source_exposure; //texunit:0
#ifdef EXPOSURE_BEGIN
@@ -33,66 +29,56 @@ uniform highp float max_luminance;
layout(location = 0) out highp float exposure;
-
-
void main() {
-
-
#ifdef EXPOSURE_BEGIN
-
- ivec2 src_pos = ivec2(gl_FragCoord.xy)*source_render_size/target_size;
+ ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
#if 1
//more precise and expensive, but less jittery
- ivec2 next_pos = ivec2(gl_FragCoord.xy+ivec2(1))*source_render_size/target_size;
- next_pos = max(next_pos,src_pos+ivec2(1)); //so it at least reads one pixel
- highp vec3 source_color=vec3(0.0);
- for(int i=src_pos.x;i<next_pos.x;i++) {
- for(int j=src_pos.y;j<next_pos.y;j++) {
- source_color += texelFetch(source_exposure,ivec2(i,j),0).rgb;
+ ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
+ next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
+ highp vec3 source_color = vec3(0.0);
+ for (int i = src_pos.x; i < next_pos.x; i++) {
+ for (int j = src_pos.y; j < next_pos.y; j++) {
+ source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
}
}
- source_color/=float( (next_pos.x-src_pos.x)*(next_pos.y-src_pos.y) );
+ source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
#else
- highp vec3 source_color = texelFetch(source_exposure,src_pos,0).rgb;
+ highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
#endif
- exposure = max(source_color.r,max(source_color.g,source_color.b));
+ exposure = max(source_color.r, max(source_color.g, source_color.b));
#else
ivec2 coord = ivec2(gl_FragCoord.xy);
- exposure = texelFetch(source_exposure,coord*3+ivec2(0,0),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(1,0),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(2,0),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(0,1),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(1,1),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(2,1),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(0,2),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(1,2),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(2,2),0).r;
- exposure *= (1.0/9.0);
+ exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
+ exposure *= (1.0 / 9.0);
#ifdef EXPOSURE_END
#ifdef EXPOSURE_FORCE_SET
//will stay as is
#else
- highp float prev_lum = texelFetch(prev_exposure,ivec2(0,0),0).r; //1 pixel previous exposure
- exposure = clamp( prev_lum + (exposure-prev_lum)*exposure_adjust,min_luminance,max_luminance);
+ highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
+ exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
#endif //EXPOSURE_FORCE_SET
-
#endif //EXPOSURE_END
#endif //EXPOSURE_BEGIN
-
-
}
-
-
diff --git a/drivers/gles3/shaders/particles.glsl b/drivers/gles3/shaders/particles.glsl
index fbee08c0fe..56e5545efe 100644
--- a/drivers/gles3/shaders/particles.glsl
+++ b/drivers/gles3/shaders/particles.glsl
@@ -1,14 +1,11 @@
[vertex]
-
-
-layout(location=0) in highp vec4 color;
-layout(location=1) in highp vec4 velocity_active;
-layout(location=2) in highp vec4 custom;
-layout(location=3) in highp vec4 xform_1;
-layout(location=4) in highp vec4 xform_2;
-layout(location=5) in highp vec4 xform_3;
-
+layout(location = 0) in highp vec4 color;
+layout(location = 1) in highp vec4 velocity_active;
+layout(location = 2) in highp vec4 custom;
+layout(location = 3) in highp vec4 xform_1;
+layout(location = 4) in highp vec4 xform_2;
+layout(location = 5) in highp vec4 xform_3;
struct Attractor {
@@ -39,7 +36,6 @@ uniform float lifetime;
uniform mat4 emission_transform;
uniform uint random_seed;
-
out highp vec4 out_color; //tfb:
out highp vec4 out_velocity_active; //tfb:
out highp vec4 out_custom; //tfb:
@@ -47,7 +43,6 @@ out highp vec4 out_xform_1; //tfb:
out highp vec4 out_xform_2; //tfb:
out highp vec4 out_xform_3; //tfb:
-
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData { //ubo:0
@@ -58,7 +53,6 @@ MATERIAL_UNIFORMS
#endif
-
VERTEX_SHADER_GLOBALS
uint hash(uint x) {
@@ -69,13 +63,12 @@ uint hash(uint x) {
return x;
}
-
void main() {
#ifdef PARTICLES_COPY
- out_color=color;
- out_velocity_active=velocity_active;
+ out_color = color;
+ out_velocity_active = velocity_active;
out_custom = custom;
out_xform_1 = xform_1;
out_xform_2 = xform_2;
@@ -83,47 +76,47 @@ void main() {
#else
- bool apply_forces=true;
- bool apply_velocity=true;
- float local_delta=delta;
+ bool apply_forces = true;
+ bool apply_velocity = true;
+ float local_delta = delta;
float mass = 1.0;
- float restart_phase = float(gl_VertexID)/float(total_particles);
+ float restart_phase = float(gl_VertexID) / float(total_particles);
- if (randomness>0.0) {
+ if (randomness > 0.0) {
uint seed = cycle;
if (restart_phase >= system_phase) {
- seed-=uint(1);
+ seed -= uint(1);
}
- seed*=uint(total_particles);
- seed+=uint(gl_VertexID);
+ seed *= uint(total_particles);
+ seed += uint(gl_VertexID);
float random = float(hash(seed) % uint(65536)) / 65536.0;
- restart_phase+=randomness * random * 1.0 / float(total_particles);
+ restart_phase += randomness * random * 1.0 / float(total_particles);
}
- restart_phase*= (1.0-explosiveness);
- bool restart=false;
+ restart_phase *= (1.0 - explosiveness);
+ bool restart = false;
bool shader_active = velocity_active.a > 0.5;
if (system_phase > prev_system_phase) {
// restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
- if (restart_phase >= prev_system_phase && restart_phase < system_phase ) {
- restart=true;
+ if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
+ restart = true;
#ifdef USE_FRACTIONAL_DELTA
local_delta = (system_phase - restart_phase) * lifetime;
#endif
}
- } else if(delta > 0.0) {
+ } else if (delta > 0.0) {
if (restart_phase >= prev_system_phase) {
- restart=true;
+ restart = true;
#ifdef USE_FRACTIONAL_DELTA
local_delta = (1.0 - restart_phase + system_phase) * lifetime;
#endif
- } else if (restart_phase < system_phase ) {
- restart=true;
+ } else if (restart_phase < system_phase) {
+ restart = true;
#ifdef USE_FRACTIONAL_DELTA
local_delta = (system_phase - restart_phase) * lifetime;
#endif
@@ -133,14 +126,14 @@ void main() {
uint current_cycle = cycle;
if (system_phase < restart_phase) {
- current_cycle-=uint(1);
+ current_cycle -= uint(1);
}
uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
int index = int(gl_VertexID);
if (restart) {
- shader_active=emitting;
+ shader_active = emitting;
}
mat4 xform;
@@ -150,23 +143,22 @@ void main() {
#else
if (clear || restart) {
#endif
- out_color=vec4(1.0);
- out_velocity_active=vec4(0.0);
- out_custom=vec4(0.0);
+ out_color = vec4(1.0);
+ out_velocity_active = vec4(0.0);
+ out_custom = vec4(0.0);
if (!restart)
- shader_active=false;
+ shader_active = false;
xform = mat4(
- vec4(1.0,0.0,0.0,0.0),
- vec4(0.0,1.0,0.0,0.0),
- vec4(0.0,0.0,1.0,0.0),
- vec4(0.0,0.0,0.0,1.0)
- );
+ vec4(1.0, 0.0, 0.0, 0.0),
+ vec4(0.0, 1.0, 0.0, 0.0),
+ vec4(0.0, 0.0, 1.0, 0.0),
+ vec4(0.0, 0.0, 0.0, 1.0));
} else {
- out_color=color;
- out_velocity_active=velocity_active;
- out_custom=custom;
- xform = transpose(mat4(xform_1,xform_2,xform_3,vec4(vec3(0.0),1.0)));
+ out_color = color;
+ out_velocity_active = velocity_active;
+ out_custom = custom;
+ xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
}
if (shader_active) {
@@ -181,26 +173,25 @@ VERTEX_SHADER_CODE
if (false) {
vec3 force = vec3(0.0);
- for(int i=0;i<attractor_count;i++) {
+ for (int i = 0; i < attractor_count; i++) {
vec3 rel_vec = xform[3].xyz - attractors[i].pos;
float dist = length(rel_vec);
if (attractors[i].radius < dist)
continue;
- if (attractors[i].eat_radius>0.0 && attractors[i].eat_radius > dist) {
- out_velocity_active.a=0.0;
+ if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
+ out_velocity_active.a = 0.0;
}
rel_vec = normalize(rel_vec);
- float attenuation = pow(dist / attractors[i].radius,attractors[i].attenuation);
+ float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
- if (attractors[i].dir==vec3(0.0)) {
+ if (attractors[i].dir == vec3(0.0)) {
//towards center
- force+=attractors[i].strength * rel_vec * attenuation * mass;
+ force += attractors[i].strength * rel_vec * attenuation * mass;
} else {
- force+=attractors[i].strength * attractors[i].dir * attenuation *mass;
-
+ force += attractors[i].strength * attractors[i].dir * attenuation * mass;
}
}
@@ -216,25 +207,23 @@ VERTEX_SHADER_CODE
}
#endif
} else {
- xform=mat4(0.0);
+ xform = mat4(0.0);
}
xform = transpose(xform);
- out_velocity_active.a = mix(0.0,1.0,shader_active);
+ out_velocity_active.a = mix(0.0, 1.0, shader_active);
out_xform_1 = xform[0];
out_xform_2 = xform[1];
out_xform_3 = xform[2];
#endif //PARTICLES_COPY
-
}
[fragment]
-//any code here is never executed, stuff is filled just so it works
-
+// any code here is never executed, stuff is filled just so it works
#if defined(USE_MATERIAL)
diff --git a/drivers/gles3/shaders/resolve.glsl b/drivers/gles3/shaders/resolve.glsl
index 0b50a9c57b..d860fa544f 100644
--- a/drivers/gles3/shaders/resolve.glsl
+++ b/drivers/gles3/shaders/resolve.glsl
@@ -1,12 +1,10 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
-
void main() {
uv_interp = uv_in;
@@ -20,8 +18,8 @@ precision mediump float;
#endif
in vec2 uv_interp;
-uniform sampler2D source_specular; //texunit:0
-uniform sampler2D source_ssr; //texunit:1
+uniform sampler2D source_specular; // texunit:0
+uniform sampler2D source_ssr; // texunit:1
uniform vec2 pixel_size;
@@ -31,14 +29,12 @@ layout(location = 0) out vec4 frag_color;
void main() {
- vec4 specular = texture( source_specular, uv_interp );
+ vec4 specular = texture(source_specular, uv_interp);
#ifdef USE_SSR
-
- vec4 ssr = textureLod(source_ssr,uv_interp,0.0);
- specular.rgb = mix(specular.rgb,ssr.rgb*specular.a,ssr.a);
+ vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
+ specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
#endif
- frag_color = vec4(specular.rgb,1.0);
+ frag_color = vec4(specular.rgb, 1.0);
}
-
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index 2d6f42679f..cacce93dc5 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -16,50 +16,49 @@ ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/
-//hack to use uv if no uv present so it works with lightmap
-
+// hack to use uv if no uv present so it works with lightmap
/* INPUT ATTRIBS */
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=1) in vec3 normal_attrib;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 1) in vec3 normal_attrib;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-layout(location=2) in vec4 tangent_attrib;
+layout(location = 2) in vec4 tangent_attrib;
#endif
#if defined(ENABLE_COLOR_INTERP)
-layout(location=3) in vec4 color_attrib;
+layout(location = 3) in vec4 color_attrib;
#endif
#if defined(ENABLE_UV_INTERP)
-layout(location=4) in vec2 uv_attrib;
+layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-layout(location=5) in vec2 uv2_attrib;
+layout(location = 5) in vec2 uv2_attrib;
#endif
uniform float normal_mult;
#ifdef USE_SKELETON
-layout(location=6) in uvec4 bone_indices; // attrib:6
-layout(location=7) in vec4 bone_weights; // attrib:7
+layout(location = 6) in uvec4 bone_indices; // attrib:6
+layout(location = 7) in vec4 bone_weights; // attrib:7
#endif
#ifdef USE_INSTANCING
-layout(location=8) in highp vec4 instance_xform0;
-layout(location=9) in highp vec4 instance_xform1;
-layout(location=10) in highp vec4 instance_xform2;
-layout(location=11) in lowp vec4 instance_color;
+layout(location = 8) in highp vec4 instance_xform0;
+layout(location = 9) in highp vec4 instance_xform1;
+layout(location = 10) in highp vec4 instance_xform2;
+layout(location = 11) in lowp vec4 instance_color;
#if defined(ENABLE_INSTANCE_CUSTOM)
-layout(location=12) in highp vec4 instance_custom_data;
+layout(location = 12) in highp vec4 instance_custom_data;
#endif
#endif
-layout(std140) uniform SceneData { //ubo:0
+layout(std140) uniform SceneData { // ubo:0
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
@@ -102,12 +101,10 @@ layout(std140) uniform SceneData { //ubo:0
highp float fog_height_min;
highp float fog_height_max;
highp float fog_height_curve;
-
};
uniform highp mat4 world_transform;
-
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData { //ubo:3
@@ -115,7 +112,7 @@ layout(std140) uniform DirectionalLightData { //ubo:3
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix1;
@@ -135,14 +132,12 @@ struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix;
-
};
-
layout(std140) uniform OmniLightData { //ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
@@ -155,7 +150,6 @@ layout(std140) uniform SpotLightData { //ubo:5
#ifdef USE_FORWARD_LIGHTING
-
uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
@@ -167,49 +161,45 @@ uniform int spot_light_count;
out vec4 diffuse_light_interp;
out vec4 specular_light_interp;
-void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
+void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
- float dotNL = max(dot(N,L), 0.0 );
+ float dotNL = max(dot(N, L), 0.0);
diffuse += dotNL * light_color / M_PI;
if (roughness > 0.0) {
vec3 H = normalize(V + L);
- float dotNH = max(dot(N,H), 0.0 );
- float intensity = (roughness >= 1.0 ? 1.0 : pow( dotNH, (1.0-roughness) * 256.0));
+ float dotNH = max(dot(N, H), 0.0);
+ float intensity = (roughness >= 1.0 ? 1.0 : pow(dotNH, (1.0 - roughness) * 256.0));
specular += light_color * intensity;
-
}
}
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
+void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
- light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular);
+ vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
+ float light_length = length(light_rel_vec);
+ float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w));
+ light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
+ vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
+ float light_length = length(light_rel_vec);
+ float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w));
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff=spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
+ float spot_cutoff = spot_lights[idx].light_params.y;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
-
+ light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x);
- light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular);
+ light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}
-
#endif
/* Varyings */
@@ -225,20 +215,18 @@ out vec4 color_interp;
out vec2 uv_interp;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined (USE_LIGHTMAP)
+#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
out vec2 uv2_interp;
#endif
-
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
-
#if defined(USE_MATERIAL)
-layout(std140) uniform UniformData { //ubo:1
+layout(std140) uniform UniformData { // ubo:1
MATERIAL_UNIFORMS
@@ -257,7 +245,7 @@ out highp float dp_clip;
#define SKELETON_TEXTURE_WIDTH 256
#ifdef USE_SKELETON
-uniform highp sampler2D skeleton_texture; //texunit:-1
+uniform highp sampler2D skeleton_texture; // texunit:-1
#endif
out highp vec4 position_interp;
@@ -272,21 +260,19 @@ void main() {
mat4 world_matrix = world_transform;
-
#ifdef USE_INSTANCING
{
- highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0));
+ highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
vec3 normal = normal_attrib * normal_mult;
-
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 tangent = tangent_attrib.xyz;
- tangent*=normal_mult;
+ tangent *= normal_mult;
float binormalf = tangent_attrib.a;
#endif
@@ -298,10 +284,9 @@ void main() {
#endif
-
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize( cross(normal,tangent) * binormalf );
+ vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_UV_INTERP)
@@ -329,13 +314,13 @@ void main() {
mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
normal = normal_matrix * normal;
#else
- normal = normalize((world_matrix * vec4(normal,0.0)).xyz);
+ normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz);
- binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz);
+ tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
+ binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
@@ -345,45 +330,44 @@ void main() {
#define projection_matrix local_projection
#define world_transform world_matrix
-
#ifdef USE_SKELETON
{
//skeleton transform
ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int
- ivec2 tex_ofs = ivec2( bone_indicesi.x%256, (bone_indicesi.x/256)*3 );
- highp mat3x4 m = mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.x;
-
- tex_ofs = ivec2( bone_indicesi.y%256, (bone_indicesi.y/256)*3 );
+ ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3);
+ highp mat3x4 m;
+ m = mat3x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0))
+ * bone_weights.x;
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.y;
+ tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3);
- tex_ofs = ivec2( bone_indicesi.z%256, (bone_indicesi.z/256)*3 );
+ m += mat3x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0))
+ * bone_weights.y;
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.z;
+ tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3);
+ m += mat3x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0))
+ * bone_weights.z;
- tex_ofs = ivec2( bone_indicesi.w%256, (bone_indicesi.w/256)*3 );
+ tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3);
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.w;
+ m += mat3x4(
+ texelFetch(skeleton_texture, tex_ofs, 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
+ texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0))
+ * bone_weights.w;
- mat4 bone_matrix = transpose(mat4(m[0],m[1],m[2],vec4(0.0,0.0,0.0,1.0)));
+ mat4 bone_matrix = transpose(mat4(m[0], m[1], m[2], vec4(0.0, 0.0, 0.0, 1.0)));
world_matrix = bone_matrix * world_matrix;
}
@@ -396,9 +380,7 @@ VERTEX_SHADER_CODE
}
-
-
-//using local coordinates (default)
+// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
@@ -407,13 +389,13 @@ VERTEX_SHADER_CODE
mat3 normal_matrix = mat3(transpose(inverse(modelview)));
normal = normal_matrix * normal;
#else
- normal = normalize((modelview * vec4(normal,0.0)).xyz);
+ normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent = normalize((modelview * vec4(tangent,0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal,0.0)).xyz);
+ tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
+ binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
@@ -421,74 +403,70 @@ VERTEX_SHADER_CODE
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_inverse_matrix * vertex;
- normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz);
+ normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz);
- binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz);
+ tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
+ binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
-
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
-
#ifdef RENDER_DEPTH
-
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
- vertex_interp.z*= shadow_dual_paraboloid_render_side;
- normal_interp.z*= shadow_dual_paraboloid_render_side;
+ vertex_interp.z *= shadow_dual_paraboloid_render_side;
+ normal_interp.z *= shadow_dual_paraboloid_render_side;
- dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
+ dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
- highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset;
+ highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset;
highp float distance = length(vtx);
vtx = normalize(vtx);
- vtx.xy/=1.0-vtx.z;
- vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
- vtx.z=vtx.z * 2.0 - 1.0;
+ vtx.xy /= 1.0 - vtx.z;
+ vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
+ vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
-
#else
float z_ofs = z_offset;
- z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale;
- vertex_interp.z-=z_ofs;
+ z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale;
+ vertex_interp.z -= z_ofs;
#endif //RENDER_DEPTH_DUAL_PARABOLOID
#endif //RENDER_DEPTH
- gl_Position = projection_matrix * vec4(vertex_interp,1.0);
+ gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
- position_interp=gl_Position;
+ position_interp = gl_Position;
#ifdef USE_VERTEX_LIGHTING
- diffuse_light_interp=vec4(0.0);
- specular_light_interp=vec4(0.0);
+ diffuse_light_interp = vec4(0.0);
+ specular_light_interp = vec4(0.0);
#ifdef USE_FORWARD_LIGHTING
- for(int i=0;i<omni_light_count;i++) {
- light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
+ for (int i = 0; i < omni_light_count; i++) {
+ light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
}
- for(int i=0;i<spot_light_count;i++) {
- light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
+ for (int i = 0; i < spot_light_count; i++) {
+ light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
}
#endif
@@ -496,36 +474,33 @@ VERTEX_SHADER_CODE
vec3 directional_diffuse = vec3(0.0);
vec3 directional_specular = vec3(0.0);
- light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular);
+ light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular);
- float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333));
- float diff_dir_avg = dot(directional_diffuse,vec3(0.33333));
- if (diff_avg>0.0) {
- diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg);
+ float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333));
+ float diff_dir_avg = dot(directional_diffuse, vec3(0.33333));
+ if (diff_avg > 0.0) {
+ diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg);
} else {
- diffuse_light_interp.a=1.0;
+ diffuse_light_interp.a = 1.0;
}
- diffuse_light_interp.rgb+=directional_diffuse;
+ diffuse_light_interp.rgb += directional_diffuse;
- float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333));
- float spec_dir_avg = dot(directional_specular,vec3(0.33333));
- if (spec_avg>0.0) {
- specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg);
+ float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333));
+ float spec_dir_avg = dot(directional_specular, vec3(0.33333));
+ if (spec_avg > 0.0) {
+ specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg);
} else {
- specular_light_interp.a=1.0;
+ specular_light_interp.a = 1.0;
}
- specular_light_interp.rgb+=directional_specular;
+ specular_light_interp.rgb += directional_specular;
#endif //USE_LIGHT_DIRECTIONAL
-
#endif // USE_VERTEX_LIGHTING
-
}
-
[fragment]
/* texture unit usage, N is max_texture_unity-N
@@ -569,14 +544,11 @@ in vec3 binormal_interp;
in highp vec3 vertex_interp;
in vec3 normal_interp;
-
/* PBR CHANNELS */
#ifdef USE_RADIANCE_MAP
-
-
-layout(std140) uniform Radiance { //ubo:2
+layout(std140) uniform Radiance { // ubo:2
mat4 radiance_inverse_xform;
float radiance_ambient_contribution;
@@ -587,19 +559,19 @@ layout(std140) uniform Radiance { //ubo:2
#ifdef USE_RADIANCE_MAP_ARRAY
-uniform sampler2DArray radiance_map; //texunit:-2
+uniform sampler2DArray radiance_map; // texunit:-2
-vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) {
+vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) {
vec3 norm = normalize(p_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+ norm.xy /= 1.0 + abs(norm.z);
+ norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
// we need to lie the derivatives (normg) and assume that DP side is always the same
// to get proper texture filtering
- vec2 normg=norm.xy;
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
+ vec2 normg = norm.xy;
+ if (norm.z > 0.0) {
+ norm.y = 0.5 - norm.y + 0.5;
}
// thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
@@ -608,22 +580,22 @@ vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) {
float index = p_roughness * RADIANCE_MAX_LOD;
int indexi = int(index * 256.0);
- vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz;
- vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz;
- return mix(base,next,float(indexi%256)/256.0);
+ vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz;
+ vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz;
+ return mix(base, next, float(indexi % 256) / 256.0);
}
#else
-uniform sampler2D radiance_map; //texunit:-2
+uniform sampler2D radiance_map; // texunit:-2
-vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) {
+vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
vec3 norm = normalize(p_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
+ norm.xy /= 1.0 + abs(norm.z);
+ norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
+ if (norm.z > 0.0) {
+ norm.y = 0.5 - norm.y + 0.5;
}
return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}
@@ -634,8 +606,6 @@ vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) {
/* Material Uniforms */
-
-
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData {
@@ -702,7 +672,7 @@ layout(std140) uniform DirectionalLightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix1;
@@ -712,8 +682,7 @@ layout(std140) uniform DirectionalLightData {
mediump vec4 shadow_split_offsets;
};
-
-uniform highp sampler2DShadow directional_shadow; //texunit:-4
+uniform highp sampler2DShadow directional_shadow; // texunit:-4
#endif
@@ -721,52 +690,48 @@ uniform highp sampler2DShadow directional_shadow; //texunit:-4
in vec4 diffuse_light_interp;
in vec4 specular_light_interp;
#endif
-//omni and spot
+// omni and spot
struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix;
};
-
-layout(std140) uniform OmniLightData { //ubo:4
+layout(std140) uniform OmniLightData { // ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
-layout(std140) uniform SpotLightData { //ubo:5
+layout(std140) uniform SpotLightData { // ubo:5
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
-
-uniform highp sampler2DShadow shadow_atlas; //texunit:-5
-
+uniform highp sampler2DShadow shadow_atlas; // texunit:-5
struct ReflectionData {
mediump vec4 box_extents;
mediump vec4 box_offset;
mediump vec4 params; // intensity, 0, interior , boxproject
- mediump vec4 ambient; //ambient color, energy
+ mediump vec4 ambient; // ambient color, energy
mediump vec4 atlas_clamp;
- highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
- //notes: for ambientblend, use distance to edge to blend between already existing global environment
+ highp mat4 local_matrix; // up to here for spot and omni, rest is for directional
+ // notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(std140) uniform ReflectionProbeData { //ubo:6
ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
-uniform mediump sampler2D reflection_atlas; //texunit:-3
-
+uniform mediump sampler2D reflection_atlas; // texunit:-3
#ifdef USE_FORWARD_LIGHTING
@@ -781,39 +746,38 @@ uniform int reflection_count;
#endif
-
#if defined(SCREEN_TEXTURE_USED)
-uniform highp sampler2D screen_texture; //texunit:-7
+uniform highp sampler2D screen_texture; // texunit:-7
#endif
#ifdef USE_MULTIPLE_RENDER_TARGETS
-layout(location=0) out vec4 diffuse_buffer;
-layout(location=1) out vec4 specular_buffer;
-layout(location=2) out vec4 normal_mr_buffer;
+layout(location = 0) out vec4 diffuse_buffer;
+layout(location = 1) out vec4 specular_buffer;
+layout(location = 2) out vec4 normal_mr_buffer;
#if defined(ENABLE_SSS)
-layout(location=3) out float sss_buffer;
+layout(location = 3) out float sss_buffer;
#endif
#else
-layout(location=0) out vec4 frag_color;
+layout(location = 0) out vec4 frag_color;
#endif
in highp vec4 position_interp;
-uniform highp sampler2D depth_buffer; //texunit:-8
+uniform highp sampler2D depth_buffer; // texunit:-8
#ifdef USE_CONTACT_SHADOWS
float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
- if (abs(dir.z)>0.99)
+ if (abs(dir.z) > 0.99)
return 1.0;
- vec3 endpoint = pos+dir*max_distance;
+ vec3 endpoint = pos + dir * max_distance;
vec4 source = position_interp;
vec4 dest = projection_matrix * vec4(endpoint, 1.0);
@@ -822,51 +786,48 @@ float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
vec2 screen_rel = to_screen - from_screen;
- if (length(screen_rel)<0.00001)
- return 1.0; //too small, don't do anything
+ if (length(screen_rel) < 0.00001)
+ return 1.0; // too small, don't do anything
- /*float pixel_size; //approximate pixel size
+ /*
+ float pixel_size; // approximate pixel size
if (screen_rel.x > screen_rel.y) {
- pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x));
+ pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x));
} else {
- pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y));
-
- }*/
- vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,max_distance*0.5), 1.0); //todo un-harcode the 0.04
-
-
-
- vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size;
+ pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y));
+ }
+ */
+ vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0);
+ vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size;
float steps = length(screen_rel) / length(pixel_incr);
- steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation
- //steps=10.0;
+ steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation
+ //steps = 10.0;
- vec4 incr = (dest - source)/steps;
- float ratio=0.0;
- float ratio_incr = 1.0/steps;
+ vec4 incr = (dest - source) / steps;
+ float ratio = 0.0;
+ float ratio_incr = 1.0 / steps;
- while(steps>0.0) {
- source += incr*2.0;
- bias+=incr*2.0;
+ while (steps > 0.0) {
+ source += incr * 2.0;
+ bias += incr * 2.0;
vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
- float depth = texture(depth_buffer,uv_depth.xy).r;
+ float depth = texture(depth_buffer, uv_depth.xy).r;
if (depth < uv_depth.z) {
- if (depth > (bias.z/bias.w) * 0.5 + 0.5) {
- return min(pow(ratio,4.0),1.0);
+ if (depth > (bias.z / bias.w) * 0.5 + 0.5) {
+ return min(pow(ratio, 4.0), 1.0);
} else {
return 1.0;
}
}
-
- ratio+=ratio_incr;
- steps-=1.0;
+ ratio += ratio_incr;
+ steps -= 1.0;
}
return 1.0;
@@ -874,7 +835,6 @@ float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
#endif
-
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
@@ -896,51 +856,48 @@ float G_GGX_2cos(float cos_theta_m, float alpha) {
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5*alpha;
+ float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
- // float cos2 = cos_theta_m*cos_theta_m;
- // float sin2 = (1.0-cos2);
- // return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) );
+ // float cos2 = cos_theta_m * cos_theta_m;
+ // float sin2 = (1.0 - cos2);
+ // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha*alpha;
- float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m;
- return alpha2/(M_PI * d * d);
+ float alpha2 = alpha * alpha;
+ float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
+ return alpha2 / (M_PI * d * d);
}
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0-cos2);
+ float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 ), 0.001);
+ return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0-cos2);
- float r_x = cos_phi/alpha_x;
- float r_y = sin_phi/alpha_y;
- float d = cos2 + sin2*(r_x * r_x + r_y * r_y);
+ float sin2 = (1.0 - cos2);
+ float r_x = cos_phi / alpha_x;
+ float r_y = sin_phi / alpha_y;
+ float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}
-
-float SchlickFresnel(float u)
-{
- float m = 1.0-u;
- float m2 = m*m;
- return m2*m2*m; // pow(m,5)
+float SchlickFresnel(float u) {
+ float m = 1.0 - u;
+ float m2 = m * m;
+ return m2 * m2 * m; // pow(m,5)
}
-float GTR1(float NdotH, float a)
-{
- if (a >= 1.0) return 1.0/M_PI;
- float a2 = a*a;
- float t = 1.0 + (a2-1.0)*NdotH*NdotH;
- return (a2-1.0) / (M_PI*log(a2)*t);
+float GTR1(float NdotH, float a) {
+ if (a >= 1.0) return 1.0 / M_PI;
+ float a2 = a * a;
+ float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
+ return (a2 - 1.0) / (M_PI * log(a2) * t);
}
vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
@@ -952,7 +909,7 @@ vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {
#if defined(USE_LIGHT_SHADER_CODE)
-//light is written by the light shader
+ // light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
@@ -961,9 +918,8 @@ void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec
LIGHT_SHADER_CODE
-
#else
- float NdotL = dot(N,L);
+ float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
@@ -975,10 +931,9 @@ LIGHT_SHADER_CODE
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
-
#if defined(DIFFUSE_LAMBERT_WRAP)
- //energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
+ // energy conserving lambert wrap shader
+ diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
@@ -986,12 +941,11 @@ LIGHT_SHADER_CODE
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
-
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (- 0.5 / (sigma2 + 0.33) + 0.17*diffuse_color / (sigma2 + 0.13) );
+ vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
@@ -999,21 +953,20 @@ LIGHT_SHADER_CODE
#elif defined(DIFFUSE_TOON)
- diffuse_brdf_NL = smoothstep(-roughness,max(roughness,0.01),NdotL);
+ diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
-
vec3 H = normalize(V + L);
- float cLdotH = max(0.0,dot(L, H));
+ float cLdotH = max(0.0, dot(L, H));
float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness;
float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV);
float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
+ /*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
@@ -1021,10 +974,11 @@ LIGHT_SHADER_CODE
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;*/
+ diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
+ */
}
#else
- //lambert
+ // lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
@@ -1034,70 +988,67 @@ LIGHT_SHADER_CODE
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif
-
#if defined(LIGHT_USE_RIM)
- float rim_light = pow(max(0.0,1.0-cNdotV), max(0.0,(1.0-roughness)*16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
+ float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
+ diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
}
-
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
-
// D
#if defined(SPECULAR_BLINN)
vec3 H = normalize(V + L);
- float cNdotH = max(dot(N,H), 0.0 );
- float intensity = pow( cNdotH, (1.0-roughness) * 256.0);
+ float cNdotH = max(dot(N, H), 0.0);
+ float intensity = pow(cNdotH, (1.0 - roughness) * 256.0);
specular_light += light_color * intensity * specular_blob_intensity * attenuation;
#elif defined(SPECULAR_PHONG)
- vec3 R = normalize(-reflect(L,N));
- float cRdotV = max(0.0,dot(R,V));
- float intensity = pow( cRdotV, (1.0-roughness) * 256.0);
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
+ vec3 R = normalize(-reflect(L, N));
+ float cRdotV = max(0.0, dot(R, V));
+ float intensity = pow(cRdotV, (1.0 - roughness) * 256.0);
+ specular_light += light_color * intensity * specular_blob_intensity * attenuation;
#elif defined(SPECULAR_TOON)
- vec3 R = normalize(-reflect(L,N));
- float RdotV = dot(R,V);
- float mid = 1.0-roughness;
- mid*=mid;
- float intensity = smoothstep(mid-roughness*0.5, mid+roughness*0.5, RdotV) * mid;
+ vec3 R = normalize(-reflect(L, N));
+ float RdotV = dot(R, V);
+ float mid = 1.0 - roughness;
+ mid *= mid;
+ float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
- //none..
+ // none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
vec3 H = normalize(V + L);
- float cNdotH = max(dot(N,H), 0.0);
- float cLdotH = max(dot(L,H), 0.0);
+ float cNdotH = max(dot(N, H), 0.0);
+ float cLdotH = max(dot(L, H), 0.0);
-# if defined(LIGHT_USE_ANISOTROPY)
+#if defined(LIGHT_USE_ANISOTROPY)
- float aspect = sqrt(1.0-anisotropy*0.9);
- float rx = roughness/aspect;
- float ry = roughness*aspect;
- float ax = rx*rx;
- float ay = ry*ry;
- float XdotH = dot( T, H );
- float YdotH = dot( B, H );
+ float aspect = sqrt(1.0 - anisotropy * 0.9);
+ float rx = roughness / aspect;
+ float ry = roughness * aspect;
+ float ax = rx * rx;
+ float ay = ry * ry;
+ float XdotH = dot(T, H);
+ float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
-# else
+#else
float alpha = roughness * roughness;
float D = D_GGX(cNdotH, alpha);
float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
-# endif
+#endif
// F
float F0 = 1.0; // FIXME
float cLdotH5 = SchlickFresnel(cLdotH);
@@ -1110,19 +1061,18 @@ LIGHT_SHADER_CODE
#if defined(LIGHT_USE_CLEARCOAT)
if (clearcoat_gloss > 0.0) {
-# if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
+#if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
vec3 H = normalize(V + L);
-# endif
-# if !defined(SPECULAR_SCHLICK_GGX)
- float cNdotH = max(dot(N,H), 0.0);
- float cLdotH = max(dot(L,H), 0.0);
+#endif
+#if !defined(SPECULAR_SCHLICK_GGX)
+ float cNdotH = max(dot(N, H), 0.0);
+ float cLdotH = max(dot(L, H), 0.0);
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
-
float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
@@ -1130,45 +1080,42 @@ LIGHT_SHADER_CODE
#endif
}
-
#endif //defined(USE_LIGHT_SHADER_CODE)
}
-
float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
#ifdef SHADOW_MODE_PCF_13
- float avg=textureProj(shadow,vec4(pos,depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
- return avg*(1.0/13.0);
+ float avg = textureProj(shadow, vec4(pos, depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
+ return avg * (1.0 / 13.0);
#elif defined(SHADOW_MODE_PCF_5)
- float avg=textureProj(shadow,vec4(pos,depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
- return avg*(1.0/5.0);
+ float avg = textureProj(shadow, vec4(pos, depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
+ avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
+ return avg * (1.0 / 5.0);
#else
- return textureProj(shadow,vec4(pos,depth,1.0));
+ return textureProj(shadow, vec4(pos, depth, 1.0));
#endif
-
}
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
@@ -1177,239 +1124,227 @@ in highp float dp_clip;
#endif
-
-
#if 0
-//need to save texture depth for this
-
+// need to save texture depth for this
vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {
float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
float d = scale * distance;
- /**
- * Armed with the thickness, we can now calculate the color by means of the
- * precalculated transmittance profile.
- * (It can be precomputed into a texture, for maximum performance):
- */
+ /**
+ * Armed with the thickness, we can now calculate the color by means of the
+ * precalculated transmittance profile.
+ * (It can be precomputed into a texture, for maximum performance):
+ */
float dd = -d * d;
- vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
- vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
- vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
- vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
- vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
- vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
-
- /**
- * Using the profile, we finally approximate the transmitted lighting from
- * the back of the object:
- */
- return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
+ vec3 profile =
+ vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
+ vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
+ vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
+ vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
+ vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
+ vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
+
+ /**
+ * Using the profile, we finally approximate the transmitted lighting from
+ * the back of the object:
+ */
+ return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
}
#endif
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
+void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
- float omni_attenuation = pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w );
+ vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
+ float light_length = length(light_rel_vec);
+ float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
+ float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w);
vec3 light_attenuation = vec3(omni_attenuation);
#if !defined(SHADOWS_DISABLED)
- if (omni_lights[idx].light_params.w>0.5) {
- //there is a shadowmap
+ if (omni_lights[idx].light_params.w > 0.5) {
+ // there is a shadowmap
- highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
- float shadow_len=length(splane);
- splane=normalize(splane);
- vec4 clamp_rect=omni_lights[idx].light_clamp;
+ highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
+ float shadow_len = length(splane);
+ splane = normalize(splane);
+ vec4 clamp_rect = omni_lights[idx].light_clamp;
- if (splane.z>=0.0) {
+ if (splane.z >= 0.0) {
- splane.z+=1.0;
+ splane.z += 1.0;
- clamp_rect.y+=clamp_rect.w;
+ clamp_rect.y += clamp_rect.w;
} else {
- splane.z=1.0 - splane.z;
+ splane.z = 1.0 - splane.z;
/*
- if (clamp_rect.z<clamp_rect.w) {
- clamp_rect.x+=clamp_rect.z;
+ if (clamp_rect.z < clamp_rect.w) {
+ clamp_rect.x += clamp_rect.z;
} else {
- clamp_rect.y+=clamp_rect.w;
+ clamp_rect.y += clamp_rect.w;
}
*/
-
}
- splane.xy/=splane.z;
- splane.xy=splane.xy * 0.5 + 0.5;
+ splane.xy /= splane.z;
+ splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
- splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
- float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect);
+ splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
+ float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect);
#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a));
- shadow=min(shadow,contact_shadow);
+ if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) {
+ float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a));
+ shadow = min(shadow, contact_shadow);
}
#endif
- light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
+ light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
}
#endif //SHADOWS_DISABLED
-
- light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim * omni_attenuation,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
-
+ light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
}
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
+void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
- float spot_attenuation = pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w );
+ vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
+ float light_length = length(light_rel_vec);
+ float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
+ float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w);
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff=spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
- float spot_rim = max(0.0001,(1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation*= 1.0 - pow( spot_rim, spot_lights[idx].light_params.x);
+ float spot_cutoff = spot_lights[idx].light_params.y;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
+ spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x);
vec3 light_attenuation = vec3(spot_attenuation);
#if !defined(SHADOWS_DISABLED)
- if (spot_lights[idx].light_params.w>0.5) {
+ if (spot_lights[idx].light_params.w > 0.5) {
//there is a shadowmap
- highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
- splane.xyz/=splane.w;
+ highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0));
+ splane.xyz /= splane.w;
- float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp);
+ float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp);
#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a));
- shadow=min(shadow,contact_shadow);
+ if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) {
+ float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a));
+ shadow = min(shadow, contact_shadow);
}
#endif
- light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
+ light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
}
#endif //SHADOWS_DISABLED
- light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim * spot_attenuation,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
-
+ light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
}
-void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) {
+void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
- vec3 ref_vec = normalize(reflect(vertex,normal));
- vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
+ vec3 ref_vec = normalize(reflect(vertex, normal));
+ vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz;
vec3 box_extents = reflections[idx].box_extents.xyz;
- if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
+ if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
+ float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
//make blend more rounded
- blend=mix(length(inner_pos),blend,blend);
- blend*=blend;
- blend=max(0.0, 1.0-blend);
+ blend = mix(length(inner_pos), blend, blend);
+ blend *= blend;
+ blend = max(0.0, 1.0 - blend);
- if (reflections[idx].params.x>0.0){// compute reflection
+ if (reflections[idx].params.x > 0.0) { // compute reflection
- vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;
+ vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz;
if (reflections[idx].params.w > 0.5) { //box project
vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos)/nrdir;
- vec3 rbmin = (-box_extents - local_pos)/nrdir;
+ vec3 rbmax = (box_extents - local_pos) / nrdir;
+ vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));
+ vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
}
-
- vec4 clamp_rect=reflections[idx].atlas_clamp;
+ vec4 clamp_rect = reflections[idx].atlas_clamp;
vec3 norm = normalize(local_ref_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
+ norm.xy /= 1.0 + abs(norm.z);
+ norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
+ if (norm.z > 0.0) {
+ norm.y = 0.5 - norm.y + 0.5;
}
- vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
- atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
+ vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
+ atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
highp vec4 reflection;
- reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb;
+ reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb;
if (reflections[idx].params.z < 0.5) {
- reflection.rgb = mix(skybox,reflection.rgb,blend);
+ reflection.rgb = mix(skybox, reflection.rgb, blend);
}
- reflection.rgb*=reflections[idx].params.x;
+ reflection.rgb *= reflections[idx].params.x;
reflection.a = blend;
- reflection.rgb*=reflection.a;
+ reflection.rgb *= reflection.a;
- reflection_accum+=reflection;
+ reflection_accum += reflection;
}
#ifndef USE_LIGHTMAP
- if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
-
+ if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox
- vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;
+ vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz;
- vec3 splane=normalize(local_amb_vec);
- vec4 clamp_rect=reflections[idx].atlas_clamp;
+ vec3 splane = normalize(local_amb_vec);
+ vec4 clamp_rect = reflections[idx].atlas_clamp;
- splane.z*=-1.0;
- if (splane.z>=0.0) {
- splane.z+=1.0;
- clamp_rect.y+=clamp_rect.w;
+ splane.z *= -1.0;
+ if (splane.z >= 0.0) {
+ splane.z += 1.0;
+ clamp_rect.y += clamp_rect.w;
} else {
- splane.z=1.0 - splane.z;
- splane.y=-splane.y;
+ splane.z = 1.0 - splane.z;
+ splane.y = -splane.y;
}
- splane.xy/=splane.z;
- splane.xy=splane.xy * 0.5 + 0.5;
+ splane.xy /= splane.z;
+ splane.xy = splane.xy * 0.5 + 0.5;
splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
- splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
+ splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
highp vec4 ambient_out;
- ambient_out.a=blend;
- ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
- ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
+ ambient_out.a = blend;
+ ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb;
+ ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a);
if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
+ ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
- ambient_accum+=ambient_out;
+ ambient_accum += ambient_out;
} else {
highp vec4 ambient_out;
- ambient_out.a=blend;
- ambient_out.rgb=reflections[idx].ambient.rgb;
+ ambient_out.a = blend;
+ ambient_out.rgb = reflections[idx].ambient.rgb;
if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
+ ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
- ambient_accum+=ambient_out;
-
+ ambient_accum += ambient_out;
}
#endif
}
@@ -1448,13 +1383,13 @@ uniform bool gi_probe_blend_ambient2;
vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
- float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
- float alpha=0.0;
+ float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
+ float alpha = 0.0;
vec3 color = vec3(0.0);
- while(dist < max_distance && alpha < 0.95) {
+ while (dist < max_distance && alpha < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
+ vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter));
float a = (1.0 - alpha);
color += scolor.rgb * a;
alpha += a * scolor.a;
@@ -1462,35 +1397,33 @@ vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 am
}
if (blend_ambient) {
- color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
+ color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95));
}
return color;
}
-void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
-
-
+void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
- vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz;
- vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz;
+ vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz;
+ vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz;
ref_vec = normalize(ref_pos - probe_pos);
- probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias;
+ probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias;
-/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
+ /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
out_diff.a = 1.0;
return;*/
//out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
//return;
//this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) {
+ if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) {
return;
}
- vec3 blendv = abs(probe_pos/bounds * 2.0 - 1.0);
- float blend = clamp(1.0-max(blendv.x,max(blendv.y,blendv.z)), 0.0, 1.0);
+ vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0);
+ float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
//float blend=1.0;
float max_distance = length(bounds);
@@ -1499,14 +1432,13 @@ void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec
#ifdef VCT_QUALITY_HIGH
#define MAX_CONE_DIRS 6
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
- vec3(0, 0, 1),
- vec3(0.866025, 0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5)
- );
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
+ vec3(0, 0, 1),
+ vec3(0.866025, 0, 0.5),
+ vec3(0.267617, 0.823639, 0.5),
+ vec3(-0.700629, 0.509037, 0.5),
+ vec3(-0.700629, -0.509037, 0.5),
+ vec3(0.267617, -0.823639, 0.5));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
float cone_angle_tan = 0.577;
@@ -1515,54 +1447,50 @@ void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec
#define MAX_CONE_DIRS 4
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.707107, 0, 0.707107),
vec3(0, 0.707107, 0.707107),
vec3(-0.707107, 0, 0.707107),
- vec3(0, -0.707107, 0.707107)
- );
+ vec3(0, -0.707107, 0.707107));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
float cone_angle_tan = 0.98269;
- max_distance*=0.5;
+ max_distance *= 0.5;
float min_ref_tan = 0.2;
#endif
- vec3 light=vec3(0.0);
- for(int i=0;i<MAX_CONE_DIRS;i++) {
-
- vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos);
- light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias);
+ vec3 light = vec3(0.0);
+ for (int i = 0; i < MAX_CONE_DIRS; i++) {
+ vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos);
+ light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias);
}
- light*=multiplier;
+ light *= multiplier;
- out_diff += vec4(light*blend,blend);
+ out_diff += vec4(light * blend, blend);
//irradiance
- vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias);
+ vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI)), max_distance, p_bias);
irr_light *= multiplier;
//irr_light=vec3(0.0);
- out_spec += vec4(irr_light*blend,blend);
-
+ out_spec += vec4(irr_light * blend, blend);
}
-
void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
roughness = roughness * roughness;
- vec3 ref_vec = normalize(reflect(normalize(pos),normal));
+ vec3 ref_vec = normalize(reflect(normalize(pos), normal));
//find arbitrary tangent and bitangent, then build a matrix
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent,bitangent,normal);
+ mat3 normal_mat = mat3(tangent, bitangent, normal);
vec4 diff_accum = vec4(0.0);
vec4 spec_accum = vec4(0.0);
@@ -1574,35 +1502,32 @@ void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_sp
out_specular = vec3(0.0);
- gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum);
+ gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum);
if (gi_probe2_enabled) {
- gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum);
+ gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum);
}
- if (diff_accum.a>0.0) {
- diff_accum.rgb/=diff_accum.a;
+ if (diff_accum.a > 0.0) {
+ diff_accum.rgb /= diff_accum.a;
}
- if (spec_accum.a>0.0) {
- spec_accum.rgb/=spec_accum.a;
+ if (spec_accum.a > 0.0) {
+ spec_accum.rgb /= spec_accum.a;
}
- out_specular+=spec_accum.rgb;
- out_ambient+=diff_accum.rgb;
-
+ out_specular += spec_accum.rgb;
+ out_ambient += diff_accum.rgb;
}
#endif
-
-
void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
- if (dp_clip>0.0)
+ if (dp_clip > 0.0)
discard;
#endif
@@ -1622,37 +1547,36 @@ void main() {
vec2 anisotropy_flow = vec2(1.0, 0.0);
#if defined(ENABLE_AO)
- float ao=1.0;
- float ao_light_affect=0.0;
+ float ao = 1.0;
+ float ao_light_affect = 0.0;
#endif
float alpha = 1.0;
#if defined(DO_SIDE_CHECK)
- float side=gl_FrontFacing ? 1.0 : -1.0;
+ float side = gl_FrontFacing ? 1.0 : -1.0;
#else
- float side=1.0;
+ float side = 1.0;
#endif
-
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize(binormal_interp)*side;
- vec3 tangent = normalize(tangent_interp)*side;
+ vec3 binormal = normalize(binormal_interp) * side;
+ vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
- vec3 normal = normalize(normal_interp)*side;
+ vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_UV_INTERP)
vec2 uv = uv_interp;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined (USE_LIGHTMAP)
+#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
@@ -1665,33 +1589,31 @@ void main() {
vec3 normalmap = vec3(0.5);
#endif
- float normaldepth=1.0;
+ float normaldepth = 1.0;
#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
+ vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
-#if defined (ENABLE_SSS)
- float sss_strength=0.0;
+#if defined(ENABLE_SSS)
+ float sss_strength = 0.0;
#endif
{
-
FRAGMENT_SHADER_CODE
}
-
#if defined(ALPHA_SCISSOR_USED)
- if (alpha<alpha_scissor) {
+ if (alpha < alpha_scissor) {
discard;
}
#endif
#ifdef USE_OPAQUE_PREPASS
- if (alpha<opaque_prepass_threshold) {
+ if (alpha < opaque_prepass_threshold) {
discard;
}
@@ -1699,33 +1621,33 @@ FRAGMENT_SHADER_CODE
#if defined(ENABLE_NORMALMAP)
- normalmap.xy=normalmap.xy*2.0-1.0;
- normalmap.z=sqrt(max(0.0, 1.0-dot(normalmap.xy,normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
+ normalmap.xy = normalmap.xy * 2.0 - 1.0;
+ normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;
+ normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
#endif
#if defined(LIGHT_USE_ANISOTROPY)
- if (anisotropy>0.01) {
+ if (anisotropy > 0.01) {
//rotation matrix
- mat3 rot = mat3( tangent, binormal, normal );
+ mat3 rot = mat3(tangent, binormal, normal);
//make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
+ tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
+ binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
- if (albedo.a<0.99) {
+ if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
-/////////////////////// LIGHTING //////////////////////////////
+ /////////////////////// LIGHTING //////////////////////////////
//apply energy conservation
@@ -1735,44 +1657,40 @@ FRAGMENT_SHADER_CODE
vec3 diffuse_light = diffuse_light_interp.rgb;
#else
- vec3 specular_light = vec3(0.0,0.0,0.0);
- vec3 diffuse_light = vec3(0.0,0.0,0.0);
+ vec3 specular_light = vec3(0.0, 0.0, 0.0);
+ vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
#endif
vec3 ambient_light;
- vec3 env_reflection_light = vec3(0.0,0.0,0.0);
-
- vec3 eye_vec = -normalize( vertex_interp );
-
+ vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
+ vec3 eye_vec = -normalize(vertex_interp);
#ifdef USE_RADIANCE_MAP
#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light=vec3(0.0,0.0,0.0);
+ ambient_light = vec3(0.0, 0.0, 0.0);
#else
{
{ //read radiance from dual paraboloid
- vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
- ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);
- vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy;
+ vec3 ref_vec = reflect(-eye_vec, normal); //2.0 * ndotv * normal - view; // reflect(v, n);
+ ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
+ vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy;
env_reflection_light = radiance;
-
}
//no longer a cubemap
//vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
-
}
#ifndef USE_LIGHTMAP
{
- vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
- vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy;
+ vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
+ vec3 env_ambient = textureDualParaboloid(radiance_map, ambient_dir, 1.0) * bg_energy;
- ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
+ ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution);
//ambient_light=vec3(0.0,0.0,0.0);
}
#endif
@@ -1781,23 +1699,23 @@ FRAGMENT_SHADER_CODE
#else
#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light=vec3(0.0,0.0,0.0);
+ ambient_light = vec3(0.0, 0.0, 0.0);
#else
- ambient_light=ambient_light_color.rgb;
+ ambient_light = ambient_light_color.rgb;
#endif //AMBIENT_LIGHT_DISABLED
#endif
- ambient_light*=ambient_energy;
+ ambient_light *= ambient_energy;
- float specular_blob_intensity=1.0;
+ float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
- specular_blob_intensity*=specular * 2.0;
+ specular_blob_intensity *= specular * 2.0;
#endif
#if defined(USE_LIGHT_DIRECTIONAL)
- vec3 light_attenuation=vec3(1.0);
+ vec3 light_attenuation = vec3(1.0);
float depth_z = -vertex.z;
#ifdef LIGHT_DIRECTIONAL_SHADOW
@@ -1811,261 +1729,234 @@ FRAGMENT_SHADER_CODE
if (depth_z < shadow_split_offsets.x) {
#endif //LIGHT_USE_PSSM4
- vec3 pssm_coord;
- float pssm_fade=0.0;
+ vec3 pssm_coord;
+ float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- vec3 pssm_coord2;
- bool use_blend=true;
+ float pssm_blend;
+ vec3 pssm_coord2;
+ bool use_blend = true;
#endif
-
#ifdef LIGHT_USE_PSSM4
+ if (depth_z < shadow_split_offsets.y) {
- if (depth_z < shadow_split_offsets.y) {
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ if (depth_z < shadow_split_offsets.x) {
+ highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
+ splane = (shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif
- } else {
+ } else {
- highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix3 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
+ splane = (shadow_matrix3 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#endif
+ }
+ } else {
- }
- } else {
-
-
- if (depth_z < shadow_split_offsets.z) {
+ if (depth_z < shadow_split_offsets.z) {
- highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix4 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z);
+ splane = (shadow_matrix4 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z);
#endif
- } else {
+ } else {
- highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z);
+ highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend=false;
+ use_blend = false;
#endif
-
+ }
}
- }
-
-
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ if (depth_z < shadow_split_offsets.x) {
+ highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
+ splane = (shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif
- } else {
- highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
+ } else {
+ highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend=false;
+ use_blend = false;
#endif
-
- }
+ }
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- { //regular orthogonal
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- }
+ { //regular orthogonal
+ highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ }
#endif
+ //one one sample
- //one one sample
-
- float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp);
+ float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp);
#if defined(LIGHT_USE_PSSM_BLEND)
- if (use_blend) {
- shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend);
- }
+ if (use_blend) {
+ shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
+ }
#endif
#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && shadow_color_contact.a>0.0) {
+ if (shadow > 0.01 && shadow_color_contact.a > 0.0) {
- float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a);
- shadow=min(shadow,contact_shadow);
-
- }
+ float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a);
+ shadow = min(shadow, contact_shadow);
+ }
#endif
- light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade);
-
-
+ light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade);
}
-
#endif // !defined(SHADOWS_DISABLED)
#endif //LIGHT_DIRECTIONAL_SHADOW
#ifdef USE_VERTEX_LIGHTING
- diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a);
- specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a);
+ diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a);
+ specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a);
#else
- light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb,light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+ light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
#endif
-
#endif //#USE_LIGHT_DIRECTIONAL
#ifdef USE_GI_PROBES
- gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light);
+ gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light);
#endif
#ifdef USE_LIGHTMAP
- ambient_light = texture(lightmap,uv2).rgb * lightmap_energy;
+ ambient_light = texture(lightmap, uv2).rgb * lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
- vec3 cone_dirs[12] = vec3[] (
- vec3(0, 0, 1),
- vec3(0.866025, 0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5),
- vec3(0, 0, -1),
- vec3(0.866025, 0, -0.5),
- vec3(0.267617, 0.823639, -0.5),
- vec3(-0.700629, 0.509037, -0.5),
- vec3(-0.700629, -0.509037, -0.5),
- vec3(0.267617, -0.823639, -0.5)
- );
-
-
- vec3 local_normal = normalize(camera_matrix * vec4(normal,0.0)).xyz;
+ vec3 cone_dirs[12] = vec3[](
+ vec3(0, 0, 1),
+ vec3(0.866025, 0, 0.5),
+ vec3(0.267617, 0.823639, 0.5),
+ vec3(-0.700629, 0.509037, 0.5),
+ vec3(-0.700629, -0.509037, 0.5),
+ vec3(0.267617, -0.823639, 0.5),
+ vec3(0, 0, -1),
+ vec3(0.866025, 0, -0.5),
+ vec3(0.267617, 0.823639, -0.5),
+ vec3(-0.700629, 0.509037, -0.5),
+ vec3(-0.700629, -0.509037, -0.5),
+ vec3(0.267617, -0.823639, -0.5));
+
+ vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
- for(int i=0;i<12;i++) {
- float amount = max(0.0,dot(local_normal,cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i]*amount;
- sum+=amount;
+ for (int i = 0; i < 12; i++) {
+ float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
+ captured += lightmap_captures[i] * amount;
+ sum += amount;
}
- captured/=sum;
+ captured /= sum;
if (lightmap_capture_sky) {
- ambient_light = mix( ambient_light, captured.rgb, captured.a);
+ ambient_light = mix(ambient_light, captured.rgb, captured.a);
} else {
ambient_light = captured.rgb;
}
-
}
#endif
#ifdef USE_FORWARD_LIGHTING
-
- highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
- highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);
- for(int i=0;i<reflection_count;i++) {
- reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum);
+ highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
+ highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
+ for (int i = 0; i < reflection_count; i++) {
+ reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum);
}
- if (reflection_accum.a>0.0) {
- specular_light+=reflection_accum.rgb/reflection_accum.a;
+ if (reflection_accum.a > 0.0) {
+ specular_light += reflection_accum.rgb / reflection_accum.a;
} else {
- specular_light+=env_reflection_light;
+ specular_light += env_reflection_light;
}
#ifndef USE_LIGHTMAP
- if (ambient_accum.a>0.0) {
- ambient_light=ambient_accum.rgb/ambient_accum.a;
+ if (ambient_accum.a > 0.0) {
+ ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
-
#ifdef USE_VERTEX_LIGHTING
- diffuse_light*=albedo;
+ diffuse_light *= albedo;
#else
- for(int i=0;i<omni_light_count;i++) {
- light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
+ for (int i = 0; i < omni_light_count; i++) {
+ light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light);
}
- for(int i=0;i<spot_light_count;i++) {
- light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
+ for (int i = 0; i < spot_light_count; i++) {
+ light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light);
}
#endif //USE_VERTEX_LIGHTING
#endif
-
-
-
#ifdef RENDER_DEPTH
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
- specular_light*=reflection_multiplier;
- ambient_light*=albedo; //ambient must be multiplied by albedo at the end
+ specular_light *= reflection_multiplier;
+ ambient_light *= albedo; //ambient must be multiplied by albedo at the end
#if defined(ENABLE_AO)
- ambient_light*=ao;
- ao_light_affect = mix(1.0,ao,ao_light_affect);
- specular_light*=ao_light_affect;
- diffuse_light*=ao_light_affect;
+ ambient_light *= ao;
+ ao_light_affect = mix(1.0, ao, ao_light_affect);
+ specular_light *= ao_light_affect;
+ diffuse_light *= ao_light_affect;
#endif
-
-
//energy conservation
- diffuse_light *= 1.0-metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
- ambient_light *= 1.0-metallic;
-
+ diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
+ ambient_light *= 1.0 - metallic;
{
@@ -2076,27 +1967,24 @@ FRAGMENT_SHADER_CODE
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
+ const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
- float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
- float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
- vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
+ float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0);
+ float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
+ vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo);
specular_light *= AB.x * specular_color + AB.y;
#endif
-
}
if (fog_color_enabled.a > 0.5) {
- float fog_amount=0.0;
-
-
+ float fog_amount = 0.0;
#ifdef USE_LIGHT_DIRECTIONAL
- vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) );
+ vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0));
#else
vec3 fog_color = fog_color_enabled.rgb;
@@ -2106,78 +1994,67 @@ FRAGMENT_SHADER_CODE
if (fog_depth_enabled) {
- float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex));
+ float fog_z = smoothstep(fog_depth_begin, z_far, length(vertex));
- fog_amount = pow(fog_z,fog_depth_curve);
+ fog_amount = pow(fog_z, fog_depth_curve);
if (fog_transmit_enabled) {
vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
- float transmit = pow(fog_z,fog_transmit_curve);
- fog_color = mix(max(total_light,fog_color),fog_color,transmit);
+ float transmit = pow(fog_z, fog_transmit_curve);
+ fog_color = mix(max(total_light, fog_color), fog_color, transmit);
}
}
if (fog_height_enabled) {
- float y = (camera_matrix * vec4(vertex,1.0)).y;
- fog_amount = max(fog_amount,pow(smoothstep(fog_height_min,fog_height_max,y),fog_height_curve));
+ float y = (camera_matrix * vec4(vertex, 1.0)).y;
+ fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
float rev_amount = 1.0 - fog_amount;
-
emission = emission * rev_amount + fog_color * fog_amount;
- ambient_light*=rev_amount;
- specular_light*rev_amount;
- diffuse_light*=rev_amount;
-
+ ambient_light *= rev_amount;
+ specular_light *rev_amount;
+ diffuse_light *= rev_amount;
}
#ifdef USE_MULTIPLE_RENDER_TARGETS
-
#ifdef SHADELESS
- diffuse_buffer=vec4(albedo.rgb,0.0);
- specular_buffer=vec4(0.0);
+ diffuse_buffer = vec4(albedo.rgb, 0.0);
+ specular_buffer = vec4(0.0);
#else
-
-
//approximate ambient scale for SSAO, since we will lack full ambient
- float max_emission=max(emission.r,max(emission.g,emission.b));
- float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
- float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
- float total_ambient = max_ambient+max_diffuse+max_emission;
- float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
+ float max_emission = max(emission.r, max(emission.g, emission.b));
+ float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b));
+ float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b));
+ float total_ambient = max_ambient + max_diffuse + max_emission;
+ float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0;
#if defined(ENABLE_AO)
- ambient_scale=mix(0.0,ambient_scale,ambient_occlusion_affect_ao_channel);
+ ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel);
#endif
- diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
- specular_buffer=vec4(specular_light,metallic);
+ diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale);
+ specular_buffer = vec4(specular_light, metallic);
#endif //SHADELESS
- normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);
+ normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness);
-#if defined (ENABLE_SSS)
+#if defined(ENABLE_SSS)
sss_buffer = sss_strength;
#endif
-
#else //USE_MULTIPLE_RENDER_TARGETS
-
#ifdef SHADELESS
- frag_color=vec4(albedo,alpha);
+ frag_color = vec4(albedo, alpha);
#else
- frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
+ frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
#endif //SHADELESS
#endif //USE_MULTIPLE_RENDER_TARGETS
-
-
#endif //RENDER_DEPTH
-
-
}
diff --git a/drivers/gles3/shaders/screen_space_reflection.glsl b/drivers/gles3/shaders/screen_space_reflection.glsl
index b2e6f7a736..73b1ddbb0e 100644
--- a/drivers/gles3/shaders/screen_space_reflection.glsl
+++ b/drivers/gles3/shaders/screen_space_reflection.glsl
@@ -1,8 +1,7 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
out vec2 pos_interp;
@@ -11,12 +10,11 @@ void main() {
uv_interp = uv_in;
gl_Position = vertex_attrib;
- pos_interp.xy=gl_Position.xy;
+ pos_interp.xy = gl_Position.xy;
}
[fragment]
-
in vec2 uv_interp;
in vec2 pos_interp;
@@ -40,81 +38,67 @@ uniform float depth_tolerance;
uniform float distance_fade;
uniform float curve_fade_in;
-
layout(location = 0) out vec4 frag_color;
-
-vec2 view_to_screen(vec3 view_pos,out float w) {
- vec4 projected = projection * vec4(view_pos, 1.0);
- projected.xyz /= projected.w;
- projected.xy = projected.xy * 0.5 + 0.5;
- w=projected.w;
- return projected.xy;
+vec2 view_to_screen(vec3 view_pos, out float w) {
+ vec4 projected = projection * vec4(view_pos, 1.0);
+ projected.xyz /= projected.w;
+ projected.xy = projected.xy * 0.5 + 0.5;
+ w = projected.w;
+ return projected.xy;
}
-
-
#define M_PI 3.14159265359
void main() {
-
- ////
-
- vec4 diffuse = texture( source_diffuse, uv_interp );
- vec4 normal_roughness = texture( source_normal_roughness, uv_interp);
+ vec4 diffuse = texture(source_diffuse, uv_interp);
+ vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
vec3 normal;
-
- normal = normal_roughness.xyz*2.0-1.0;
+ normal = normal_roughness.xyz * 2.0 - 1.0;
float roughness = normal_roughness.w;
- float depth_tex = texture(source_depth,uv_interp).r;
+ float depth_tex = texture(source_depth, uv_interp).r;
- vec4 world_pos = inverse_projection * vec4( uv_interp*2.0-1.0, depth_tex*2.0-1.0, 1.0 );
- vec3 vertex = world_pos.xyz/world_pos.w;
+ vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
+ vec3 vertex = world_pos.xyz / world_pos.w;
vec3 view_dir = normalize(vertex);
vec3 ray_dir = normalize(reflect(view_dir, normal));
- if (dot(ray_dir,normal)<0.001) {
- frag_color=vec4(0.0);
+ if (dot(ray_dir, normal) < 0.001) {
+ frag_color = vec4(0.0);
return;
}
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
-
- //ray_dir = normalize(vec3(1,1,-1));
-
+ //ray_dir = normalize(vec3(1, 1, -1));
////////////////
-
- //make ray length and clip it against the near plane (don't want to trace beyond visible)
+ // make ray length and clip it against the near plane (don't want to trace beyond visible)
float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
- vec3 ray_end = vertex + ray_dir*ray_len;
+ vec3 ray_end = vertex + ray_dir * ray_len;
float w_begin;
- vec2 vp_line_begin = view_to_screen(vertex,w_begin);
+ vec2 vp_line_begin = view_to_screen(vertex, w_begin);
float w_end;
- vec2 vp_line_end = view_to_screen( ray_end, w_end);
- vec2 vp_line_dir = vp_line_end-vp_line_begin;
-
- //we need to interpolate w along the ray, to generate perspective correct reflections
-
- w_begin = 1.0/w_begin;
- w_end = 1.0/w_end;
+ vec2 vp_line_end = view_to_screen(ray_end, w_end);
+ vec2 vp_line_dir = vp_line_end - vp_line_begin;
+ // we need to interpolate w along the ray, to generate perspective correct reflections
+ w_begin = 1.0 / w_begin;
+ w_end = 1.0 / w_end;
- float z_begin = vertex.z*w_begin;
- float z_end = ray_end.z*w_end;
+ float z_begin = vertex.z * w_begin;
+ float z_end = ray_end.z * w_end;
- vec2 line_begin = vp_line_begin/pixel_size;
- vec2 line_dir = vp_line_dir/pixel_size;
+ vec2 line_begin = vp_line_begin / pixel_size;
+ vec2 line_dir = vp_line_dir / pixel_size;
float z_dir = z_end - z_begin;
float w_dir = w_end - w_begin;
-
// clip the line to the viewport edges
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
@@ -124,126 +108,114 @@ void main() {
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
line_dir *= line_clip;
z_dir *= line_clip;
- w_dir *=line_clip;
+ w_dir *= line_clip;
- //clip z and w advance to line advance
- vec2 line_advance = normalize(line_dir); //down to pixel
- float step_size = length(line_advance)/length(line_dir);
- float z_advance = z_dir*step_size; // adapt z advance to line advance
- float w_advance = w_dir*step_size; // adapt w advance to line advance
+ // clip z and w advance to line advance
+ vec2 line_advance = normalize(line_dir); // down to pixel
+ float step_size = length(line_advance) / length(line_dir);
+ float z_advance = z_dir * step_size; // adapt z advance to line advance
+ float w_advance = w_dir * step_size; // adapt w advance to line advance
- //make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
- float advance_angle_adj = 1.0/max(abs(line_advance.x),abs(line_advance.y));
- line_advance*=advance_angle_adj; // adapt z advance to line advance
- z_advance*=advance_angle_adj;
- w_advance*=advance_angle_adj;
+ // make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
+ float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
+ line_advance *= advance_angle_adj; // adapt z advance to line advance
+ z_advance *= advance_angle_adj;
+ w_advance *= advance_angle_adj;
vec2 pos = line_begin;
float z = z_begin;
float w = w_begin;
- float z_from=z/w;
- float z_to=z_from;
+ float z_from = z / w;
+ float z_to = z_from;
float depth;
- vec2 prev_pos=pos;
+ vec2 prev_pos = pos;
- bool found=false;
+ bool found = false;
- float steps_taken=0.0;
+ float steps_taken = 0.0;
- for(int i=0;i<num_steps;i++) {
+ for (int i = 0; i < num_steps; i++) {
- pos+=line_advance;
- z+=z_advance;
- w+=w_advance;
+ pos += line_advance;
+ z += z_advance;
+ w += w_advance;
- //convert to linear depth
+ // convert to linear depth
- depth = texture(source_depth, pos*pixel_size).r * 2.0 - 1.0;
+ depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
#endif
- depth=-depth;
+ depth = -depth;
z_from = z_to;
- z_to = z/w;
+ z_to = z / w;
- if (depth>z_to) {
- //if depth was surpassed
- if (depth<=max(z_to,z_from)+depth_tolerance) {
- //check the depth tolerance
- found=true;
+ if (depth > z_to) {
+ // if depth was surpassed
+ if (depth <= max(z_to, z_from) + depth_tolerance) {
+ // check the depth tolerance
+ found = true;
}
break;
}
- steps_taken+=1.0;
- prev_pos=pos;
+ steps_taken += 1.0;
+ prev_pos = pos;
}
-
-
-
if (found) {
- float margin_blend=1.0;
+ float margin_blend = 1.0;
-
- vec2 margin = vec2((viewport_size.x+viewport_size.y)*0.5*0.05); //make a uniform margin
- if (any(bvec4(lessThan(pos,-margin),greaterThan(pos,viewport_size+margin)))) {
- //clip outside screen + margin
- frag_color=vec4(0.0);
+ vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); // make a uniform margin
+ if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
+ // clip outside screen + margin
+ frag_color = vec4(0.0);
return;
}
{
//blend fading out towards external margin
- vec2 margin_grad = mix(pos-viewport_size,-pos,lessThan(pos,vec2(0.0)));
- margin_blend = 1.0-smoothstep(0.0,margin.x,max(margin_grad.x,margin_grad.y));
- //margin_blend=1.0;
-
+ vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
+ margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
+ //margin_blend = 1.0;
}
vec2 final_pos;
float grad;
- grad=steps_taken/float(num_steps);
- float initial_fade = curve_fade_in==0.0 ? 1.0 : pow(clamp(grad,0.0,1.0),curve_fade_in);
- float fade = pow(clamp(1.0-grad,0.0,1.0),distance_fade)*initial_fade;
- final_pos=pos;
-
-
-
-
-
-
+ grad = steps_taken / float(num_steps);
+ float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
+ float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
+ final_pos = pos;
#ifdef REFLECT_ROUGHNESS
-
vec4 final_color;
- //if roughness is enabled, do screen space cone tracing
+ // if roughness is enabled, do screen space cone tracing
if (roughness > 0.001) {
///////////////////////////////////////////////////////////////////////////////////////
- //use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
+ // use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
- float gloss = 1.0-roughness;
+ float gloss = 1.0 - roughness;
float cone_angle = roughness * M_PI * 0.5;
vec2 cone_dir = final_pos - line_begin;
float cone_len = length(cone_dir);
- cone_dir = normalize(cone_dir); //will be used normalized from now on
+ cone_dir = normalize(cone_dir); // will be used normalized from now on
float max_mipmap = filter_mipmap_levels - 1.0;
- float gloss_mult=gloss;
+ float gloss_mult = gloss;
- float rem_alpha=1.0;
+ float rem_alpha = 1.0;
final_color = vec4(0.0);
- for(int i=0;i<7;i++) {
+ for (int i = 0; i < 7; i++) {
- float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
+ float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
float radius;
{
- //fit to sphere inside cone (sphere ends at end of cone), something like this:
+ // fit to sphere inside cone (sphere ends at end of cone), something like this:
// ___
// \O/
// V
@@ -257,31 +229,31 @@ void main() {
radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
}
- //find the place where screen must be sampled
- vec2 sample_pos = ( line_begin + cone_dir * (cone_len - radius) ) * pixel_size;
- //radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
- float mipmap = clamp( log2( radius ), 0.0, max_mipmap );
+ // find the place where screen must be sampled
+ vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
+ // radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
+ float mipmap = clamp(log2(radius), 0.0, max_mipmap);
+ //mipmap = max(mipmap - 1.0, 0.0);
- //mipmap = max(mipmap-1.0,0.0);
- //do sampling
+ // do sampling
vec4 sample_color;
{
- sample_color = textureLod(source_diffuse,sample_pos,mipmap);
+ sample_color = textureLod(source_diffuse, sample_pos, mipmap);
}
- //multiply by gloss
- sample_color.rgb*=gloss_mult;
- sample_color.a=gloss_mult;
+ // multiply by gloss
+ sample_color.rgb *= gloss_mult;
+ sample_color.a = gloss_mult;
rem_alpha -= sample_color.a;
- if(rem_alpha < 0.0) {
+ if (rem_alpha < 0.0) {
sample_color.rgb *= (1.0 - abs(rem_alpha));
}
- final_color+=sample_color;
+ final_color += sample_color;
- if (final_color.a>=0.95) {
+ if (final_color.a >= 0.95) {
// This code of accumulating gloss and aborting on near one
// makes sense when you think of cone tracing.
// Think of it as if roughness was 0, then we could abort on the first
@@ -290,29 +262,21 @@ void main() {
break;
}
- cone_len-=radius*2.0; //go to next (smaller) circle.
-
- gloss_mult*=gloss;
-
+ cone_len -= radius * 2.0; // go to next (smaller) circle.
+ gloss_mult *= gloss;
}
} else {
- final_color = textureLod(source_diffuse,final_pos*pixel_size,0.0);
+ final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
}
- frag_color = vec4(final_color.rgb,fade*margin_blend);
+ frag_color = vec4(final_color.rgb, fade * margin_blend);
#else
- frag_color = vec4(textureLod(source_diffuse,final_pos*pixel_size,0.0).rgb,fade*margin_blend);
+ frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
#endif
-
-
} else {
- frag_color = vec4(0.0,0.0,0.0,0.0);
+ frag_color = vec4(0.0, 0.0, 0.0, 0.0);
}
-
-
-
}
-
diff --git a/drivers/gles3/shaders/ssao.glsl b/drivers/gles3/shaders/ssao.glsl
index 219f0957e0..2eeeac31c3 100644
--- a/drivers/gles3/shaders/ssao.glsl
+++ b/drivers/gles3/shaders/ssao.glsl
@@ -1,12 +1,11 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
gl_Position = vertex_attrib;
- gl_Position.z=1.0;
+ gl_Position.z = 1.0;
}
[fragment]
@@ -14,21 +13,15 @@ void main() {
#define TWO_PI 6.283185307179586476925286766559
#ifdef SSAO_QUALITY_HIGH
-
#define NUM_SAMPLES (80)
-
#endif
#ifdef SSAO_QUALITY_LOW
-
#define NUM_SAMPLES (15)
-
#endif
#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
-
#define NUM_SAMPLES (40)
-
#endif
// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
@@ -43,19 +36,21 @@ void main() {
// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
-const int ROTATIONS[] = int[]( 1, 1, 2, 3, 2, 5, 2, 3, 2,
-3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
-9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
-11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
-11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
-19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
-13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
-29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
-31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
-19, 27, 21, 25, 39, 29, 17, 21, 27 );
+const int ROTATIONS[] = int[](
+ 1, 1, 2, 3, 2, 5, 2, 3, 2,
+ 3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
+ 9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
+ 11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
+ 11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
+ 19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
+ 13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
+ 29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
+ 31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
+ 19, 27, 21, 25, 39, 29, 17, 21, 27
+);
//#define NUM_SPIRAL_TURNS (7)
-const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES-1];
+const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
uniform sampler2D source_depth; //texunit:0
uniform highp usampler2D source_depth_mipmaps; //texunit:1
@@ -90,44 +85,41 @@ vec3 reconstructCSPosition(vec2 S, float z) {
}
vec3 getPosition(ivec2 ssP) {
- vec3 P;
- P.z = texelFetch(source_depth, ssP, 0).r;
+ vec3 P;
+ P.z = texelFetch(source_depth, ssP, 0).r;
- P.z = P.z * 2.0 - 1.0;
+ P.z = P.z * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
+ P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
#endif
- P.z = -P.z;
+ P.z = -P.z;
- // Offset to pixel center
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
- return P;
+ // Offset to pixel center
+ P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
+ return P;
}
/** Reconstructs screen-space unit normal from screen-space position */
vec3 reconstructCSFaceNormal(vec3 C) {
- return normalize(cross(dFdy(C), dFdx(C)));
+ return normalize(cross(dFdy(C), dFdx(C)));
}
-
-
/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
-vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR){
- // Radius relative to ssR
- float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
- float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
+vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
+ // Radius relative to ssR
+ float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
+ float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
- ssR = alpha;
- return vec2(cos(angle), sin(angle));
+ ssR = alpha;
+ return vec2(cos(angle), sin(angle));
}
-
/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
- // Derivation:
- // mipLevel = floor(log(ssR / MAX_OFFSET));
+ // Derivation:
+ // mipLevel = floor(log(ssR / MAX_OFFSET));
int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
@@ -138,98 +130,91 @@ vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
// Manually clamp to the texture size because texelFetch bypasses the texture unit
ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
-
if (mipLevel < 1) {
//read from depth buffer
P.z = texelFetch(source_depth, mipP, 0).r;
P.z = P.z * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-
#endif
P.z = -P.z;
} else {
//read from mipmaps
- uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel-1).r;
- P.z = -(float(d)/65535.0)*camera_z_far;
+ uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
+ P.z = -(float(d) / 65535.0) * camera_z_far;
}
-
// Offset to pixel center
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
return P;
}
-
-
/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
- to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
+ to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
- Note that units of H() in the HPG12 paper are meters, not
- unitless. The whole falloff/sampling function is therefore
- unitless. In this implementation, we factor out (9 / radius).
+ Note that units of H() in the HPG12 paper are meters, not
+ unitless. The whole falloff/sampling function is therefore
+ unitless. In this implementation, we factor out (9 / radius).
- Four versions of the falloff function are implemented below
+ Four versions of the falloff function are implemented below
*/
-float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius,in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
- // Offset on the unit disk, spun for this pixel
- float ssR;
- vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
- ssR *= ssDiskRadius;
+float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
+ // Offset on the unit disk, spun for this pixel
+ float ssR;
+ vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
+ ssR *= ssDiskRadius;
- // The occluding point in camera space
- vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
+ // The occluding point in camera space
+ vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
- vec3 v = Q - C;
+ vec3 v = Q - C;
- float vv = dot(v, v);
- float vn = dot(v, n_C);
+ float vv = dot(v, v);
+ float vn = dot(v, n_C);
- const float epsilon = 0.01;
- float radius2 = p_radius*p_radius;
+ const float epsilon = 0.01;
+ float radius2 = p_radius * p_radius;
- // A: From the HPG12 paper
- // Note large epsilon to avoid overdarkening within cracks
- //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
+ // A: From the HPG12 paper
+ // Note large epsilon to avoid overdarkening within cracks
+ //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
- // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
- float f=max(radius2 - vv, 0.0);
- return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
+ // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
+ float f = max(radius2 - vv, 0.0);
+ return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
- // C: Medium contrast (which looks better at high radii), no division. Note that the
- // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
- // more computationally efficient and happens to be aesthetically pleasing.
- // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
+ // C: Medium contrast (which looks better at high radii), no division. Note that the
+ // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
+ // more computationally efficient and happens to be aesthetically pleasing.
+ // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
- // D: Low contrast, no division operation
- // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
+ // D: Low contrast, no division operation
+ // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
}
-
-
void main() {
-
-
// Pixel being shaded
ivec2 ssC = ivec2(gl_FragCoord.xy);
// World space point being shaded
vec3 C = getPosition(ssC);
-/* if (C.z <= -camera_z_far*0.999) {
- // We're on the skybox
- visibility=1.0;
- return;
- }*/
+ /*
+ if (C.z <= -camera_z_far * 0.999) {
+ // We're on the skybox
+ visibility=1.0;
+ return;
+ }
+ */
- //visibility=-C.z/camera_z_far;
+ //visibility = -C.z / camera_z_far;
//return;
#if 0
- vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
+ vec3 n_C = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
#else
vec3 n_C = reconstructCSFaceNormal(C);
n_C = -n_C;
@@ -251,7 +236,7 @@ void main() {
#endif
float sum = 0.0;
for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius,i, randomPatternRotationAngle);
+ sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
}
float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
@@ -271,10 +256,10 @@ void main() {
sum = 0.0;
for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius,radius2, i, randomPatternRotationAngle);
+ sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
}
- A= min(A,max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
+ A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
#endif
// Bilateral box-filter over a quad for free, respecting depth edges
// (the difference that this makes is subtle)
@@ -286,8 +271,4 @@ void main() {
}
visibility = A;
-
}
-
-
-
diff --git a/drivers/gles3/shaders/ssao_blur.glsl b/drivers/gles3/shaders/ssao_blur.glsl
index 472dc21acf..5526d0de18 100644
--- a/drivers/gles3/shaders/ssao_blur.glsl
+++ b/drivers/gles3/shaders/ssao_blur.glsl
@@ -1,26 +1,21 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
gl_Position = vertex_attrib;
- gl_Position.z=1.0;
+ gl_Position.z = 1.0;
}
[fragment]
-
uniform sampler2D source_ssao; //texunit:0
uniform sampler2D source_depth; //texunit:1
uniform sampler2D source_normal; //texunit:3
-
layout(location = 0) out float visibility;
-
//////////////////////////////////////////////////////////////////////////////////////////////
// Tunable Parameters:
@@ -28,18 +23,18 @@ layout(location = 0) out float visibility;
uniform float edge_sharpness;
/** Step in 2-pixel intervals since we already blurred against neighbors in the
- first AO pass. This constant can be increased while R decreases to improve
- performance at the expense of some dithering artifacts.
+ first AO pass. This constant can be increased while R decreases to improve
+ performance at the expense of some dithering artifacts.
- Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
- unobjectionable after shading was applied but eliminated most temporal incoherence
- from using small numbers of sample taps.
- */
+ Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
+ unobjectionable after shading was applied but eliminated most temporal incoherence
+ from using small numbers of sample taps.
+ */
uniform int filter_scale;
/** Filter radius in pixels. This will be multiplied by SCALE. */
-#define R (4)
+#define R (4)
//////////////////////////////////////////////////////////////////////////////////////////////
@@ -47,13 +42,13 @@ uniform int filter_scale;
// Gaussian coefficients
const float gaussian[R + 1] =
-// float[](0.356642, 0.239400, 0.072410, 0.009869);
-// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
- float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
-// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
+// float[](0.356642, 0.239400, 0.072410, 0.009869);
+// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
+ float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
+// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
-/** (1, 0) or (0, 1)*/
-uniform ivec2 axis;
+/** (1, 0) or (0, 1) */
+uniform ivec2 axis;
uniform float camera_z_far;
uniform float camera_z_near;
@@ -65,18 +60,18 @@ void main() {
ivec2 ssC = ivec2(gl_FragCoord.xy);
float depth = texelFetch(source_depth, ssC, 0).r;
- //vec3 normal = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
+ //vec3 normal = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
depth = depth * 2.0 - 1.0;
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
float depth_divide = 1.0 / camera_z_far;
-// depth*=depth_divide;
+ //depth *= depth_divide;
/*
- if (depth > camera_z_far*0.999) {
- discard;//skybox
+ if (depth > camera_z_far * 0.999) {
+ discard; //skybox
}
*/
@@ -96,23 +91,21 @@ void main() {
if (r != 0) {
ivec2 ppos = ssC + axis * (r * filter_scale);
- float value = texelFetch(source_ssao, clamp(ppos,ivec2(0),clamp_limit), 0).r;
- ivec2 rpos = clamp(ppos,ivec2(0),clamp_limit);
+ float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
+ ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
float temp_depth = texelFetch(source_depth, rpos, 0).r;
//vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
temp_depth = temp_depth * 2.0 - 1.0;
temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
-// temp_depth *= depth_divide;
+ //temp_depth *= depth_divide;
// spatial domain: offset gaussian tap
float weight = 0.3 + gaussian[abs(r)];
- //weight *= max(0.0,dot(temp_normal,normal));
+ //weight *= max(0.0, dot(temp_normal, normal));
// range domain (the "bilateral" weight). As depth difference increases, decrease weight.
- weight *= max(0.0, 1.0
- - edge_sharpness * abs(temp_depth - depth)
- );
+ weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
sum += value * weight;
totalWeight += weight;
diff --git a/drivers/gles3/shaders/ssao_minify.glsl b/drivers/gles3/shaders/ssao_minify.glsl
index 647c762438..777a0069fc 100644
--- a/drivers/gles3/shaders/ssao_minify.glsl
+++ b/drivers/gles3/shaders/ssao_minify.glsl
@@ -1,7 +1,6 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
@@ -10,7 +9,6 @@ void main() {
[fragment]
-
#ifdef MINIFY_START
#define SDEPTH_TYPE highp sampler2D
@@ -32,28 +30,23 @@ layout(location = 0) out mediump uint depth;
void main() {
-
ivec2 ssP = ivec2(gl_FragCoord.xy);
- // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
- // On DX9, the bit-and can be implemented with floating-point modulo
+ // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
+ // On DX9, the bit-and can be implemented with floating-point modulo
#ifdef MINIFY_START
float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
fdepth = fdepth * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- fdepth = ((fdepth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
#endif
fdepth /= camera_z_far;
- depth = uint(clamp(fdepth*65535.0,0.0,65535.0));
+ depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
#else
depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
#endif
-
-
}
-
-
diff --git a/drivers/gles3/shaders/subsurf_scattering.glsl b/drivers/gles3/shaders/subsurf_scattering.glsl
index fc66d66198..af0d5a0e62 100644
--- a/drivers/gles3/shaders/subsurf_scattering.glsl
+++ b/drivers/gles3/shaders/subsurf_scattering.glsl
@@ -1,12 +1,10 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
-
void main() {
uv_interp = uv_in;
@@ -19,87 +17,77 @@ void main() {
#define QUALIFIER const
#ifdef USE_25_SAMPLES
-
-const int kernel_size=25;
+const int kernel_size = 25;
QUALIFIER vec2 kernel[25] = vec2[] (
- vec2(0.530605, 0.0),
- vec2(0.000973794, -3.0),
- vec2(0.00333804, -2.52083),
- vec2(0.00500364, -2.08333),
- vec2(0.00700976, -1.6875),
- vec2(0.0094389, -1.33333),
- vec2(0.0128496, -1.02083),
- vec2(0.017924, -0.75),
- vec2(0.0263642, -0.520833),
- vec2(0.0410172, -0.333333),
- vec2(0.0493588, -0.1875),
- vec2(0.0402784, -0.0833333),
- vec2(0.0211412, -0.0208333),
- vec2(0.0211412, 0.0208333),
- vec2(0.0402784, 0.0833333),
- vec2(0.0493588, 0.1875),
- vec2(0.0410172, 0.333333),
- vec2(0.0263642, 0.520833),
- vec2(0.017924, 0.75),
- vec2(0.0128496, 1.02083),
- vec2(0.0094389, 1.33333),
- vec2(0.00700976, 1.6875),
- vec2(0.00500364, 2.08333),
- vec2(0.00333804, 2.52083),
- vec2(0.000973794, 3.0)
+ vec2(0.530605, 0.0),
+ vec2(0.000973794, -3.0),
+ vec2(0.00333804, -2.52083),
+ vec2(0.00500364, -2.08333),
+ vec2(0.00700976, -1.6875),
+ vec2(0.0094389, -1.33333),
+ vec2(0.0128496, -1.02083),
+ vec2(0.017924, -0.75),
+ vec2(0.0263642, -0.520833),
+ vec2(0.0410172, -0.333333),
+ vec2(0.0493588, -0.1875),
+ vec2(0.0402784, -0.0833333),
+ vec2(0.0211412, -0.0208333),
+ vec2(0.0211412, 0.0208333),
+ vec2(0.0402784, 0.0833333),
+ vec2(0.0493588, 0.1875),
+ vec2(0.0410172, 0.333333),
+ vec2(0.0263642, 0.520833),
+ vec2(0.017924, 0.75),
+ vec2(0.0128496, 1.02083),
+ vec2(0.0094389, 1.33333),
+ vec2(0.00700976, 1.6875),
+ vec2(0.00500364, 2.08333),
+ vec2(0.00333804, 2.52083),
+ vec2(0.000973794, 3.0)
);
-
#endif //USE_25_SAMPLES
#ifdef USE_17_SAMPLES
-
-const int kernel_size=17;
-
+const int kernel_size = 17;
QUALIFIER vec2 kernel[17] = vec2[](
- vec2(0.536343, 0.0),
- vec2(0.00317394, -2.0),
- vec2(0.0100386, -1.53125),
- vec2(0.0144609, -1.125),
- vec2(0.0216301, -0.78125),
- vec2(0.0347317, -0.5),
- vec2(0.0571056, -0.28125),
- vec2(0.0582416, -0.125),
- vec2(0.0324462, -0.03125),
- vec2(0.0324462, 0.03125),
- vec2(0.0582416, 0.125),
- vec2(0.0571056, 0.28125),
- vec2(0.0347317, 0.5),
- vec2(0.0216301, 0.78125),
- vec2(0.0144609, 1.125),
- vec2(0.0100386, 1.53125),
- vec2(0.00317394,2.0)
+ vec2(0.536343, 0.0),
+ vec2(0.00317394, -2.0),
+ vec2(0.0100386, -1.53125),
+ vec2(0.0144609, -1.125),
+ vec2(0.0216301, -0.78125),
+ vec2(0.0347317, -0.5),
+ vec2(0.0571056, -0.28125),
+ vec2(0.0582416, -0.125),
+ vec2(0.0324462, -0.03125),
+ vec2(0.0324462, 0.03125),
+ vec2(0.0582416, 0.125),
+ vec2(0.0571056, 0.28125),
+ vec2(0.0347317, 0.5),
+ vec2(0.0216301, 0.78125),
+ vec2(0.0144609, 1.125),
+ vec2(0.0100386, 1.53125),
+ vec2(0.00317394, 2.0)
);
-
#endif //USE_17_SAMPLES
#ifdef USE_11_SAMPLES
-
-const int kernel_size=11;
-
+const int kernel_size = 11;
QUALIFIER vec2 kernel[11] = vec2[](
- vec2(0.560479, 0.0),
- vec2(0.00471691, -2.0),
- vec2(0.0192831, -1.28),
- vec2(0.03639, -0.72),
- vec2(0.0821904, -0.32),
- vec2(0.0771802, -0.08),
- vec2(0.0771802, 0.08),
- vec2(0.0821904, 0.32),
- vec2(0.03639, 0.72),
- vec2(0.0192831, 1.28),
- vec2(0.00471691,2.0)
+ vec2(0.560479, 0.0),
+ vec2(0.00471691, -2.0),
+ vec2(0.0192831, -1.28),
+ vec2(0.03639, -0.72),
+ vec2(0.0821904, -0.32),
+ vec2(0.0771802, -0.08),
+ vec2(0.0771802, 0.08),
+ vec2(0.0821904, 0.32),
+ vec2(0.03639, 0.72),
+ vec2(0.0192831, 1.28),
+ vec2(0.00471691, 2.0)
);
-
#endif //USE_11_SAMPLES
-
-
uniform float max_radius;
uniform float camera_z_far;
uniform float camera_z_near;
@@ -115,28 +103,24 @@ layout(location = 0) out vec4 frag_color;
void main() {
- float strength = texture(source_sss,uv_interp).r;
- strength*=strength; //stored as sqrt
+ float strength = texture(source_sss, uv_interp).r;
+ strength *= strength; //stored as sqrt
// Fetch color of current pixel:
vec4 base_color = texture(source_diffuse, uv_interp);
-
- if (strength>0.0) {
-
+ if (strength > 0.0) {
// Fetch linear depth of current pixel:
float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
float scale = unit_size; //remember depth is negative by default in OpenGL
#else
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
float scale = unit_size / depth; //remember depth is negative by default in OpenGL
#endif
-
-
// Calculate the final step to fetch the surrounding pixels:
vec2 step = max_radius * scale * dir;
step *= strength; // Modulate it using the alpha channel.
@@ -157,35 +141,33 @@ void main() {
#ifdef ENABLE_FOLLOW_SURFACE
// If the difference in depth is huge, we lerp color back to "colorM":
- float depth_cmp = texture(source_depth, offset).r *2.0 - 1.0;
+ float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
#endif
- float s = clamp(300.0f * scale *
- max_radius * abs(depth - depth_cmp),0.0,1.0);
+ float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
color = mix(color, base_color.rgb, s);
#endif
// Accumulate:
- color*=kernel[i].x;
+ color *= kernel[i].x;
#ifdef ENABLE_STRENGTH_WEIGHTING
float color_s = texture(source_sss, offset).r;
- color_weight+=color_s * kernel[i].x;
- color*=color_s;
+ color_weight += color_s * kernel[i].x;
+ color *= color_s;
#endif
color_accum += color;
-
}
#ifdef ENABLE_STRENGTH_WEIGHTING
- color_accum/=color_weight;
+ color_accum /= color_weight;
#endif
- frag_color = vec4(color_accum,base_color.a); //keep alpha (used for SSAO)
+ frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
} else {
frag_color = base_color;
}
diff --git a/drivers/gles3/shaders/tonemap.glsl b/drivers/gles3/shaders/tonemap.glsl
index 63475c9039..56876bdb72 100644
--- a/drivers/gles3/shaders/tonemap.glsl
+++ b/drivers/gles3/shaders/tonemap.glsl
@@ -1,25 +1,24 @@
[vertex]
-layout (location = 0) in highp vec4 vertex_attrib;
-layout (location = 4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
-void main()
-{
+void main() {
gl_Position = vertex_attrib;
uv_interp = uv_in;
- #ifdef V_FLIP
- uv_interp.y = 1.0f - uv_interp.y;
- #endif
+#ifdef V_FLIP
+ uv_interp.y = 1.0f - uv_interp.y;
+#endif
}
[fragment]
#if !defined(GLES_OVER_GL)
- precision mediump float;
+precision mediump float;
#endif
in vec2 uv_interp;
@@ -30,109 +29,99 @@ uniform float exposure;
uniform float white;
#ifdef USE_AUTO_EXPOSURE
- uniform highp sampler2D source_auto_exposure; //texunit:1
- uniform highp float auto_exposure_grey;
+uniform highp sampler2D source_auto_exposure; //texunit:1
+uniform highp float auto_exposure_grey;
#endif
#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
- #define USING_GLOW // only use glow when at least one glow level is selected
+#define USING_GLOW // only use glow when at least one glow level is selected
- uniform highp sampler2D source_glow; //texunit:2
- uniform highp float glow_intensity;
+uniform highp sampler2D source_glow; //texunit:2
+uniform highp float glow_intensity;
#endif
#ifdef USE_BCS
- uniform vec3 bcs;
+uniform vec3 bcs;
#endif
#ifdef USE_COLOR_CORRECTION
- uniform sampler2D color_correction; //texunit:3
+uniform sampler2D color_correction; //texunit:3
#endif
-layout (location = 0) out vec4 frag_color;
+layout(location = 0) out vec4 frag_color;
#ifdef USE_GLOW_FILTER_BICUBIC
- // w0, w1, w2, and w3 are the four cubic B-spline basis functions
- float w0(float a)
- {
- return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
- }
-
- float w1(float a)
- {
- return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
- }
-
- float w2(float a)
- {
- return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
- }
-
- float w3(float a)
- {
- return (1.0f / 6.0f) * (a * a * a);
- }
-
- // g0 and g1 are the two amplitude functions
- float g0(float a)
- {
- return w0(a) + w1(a);
- }
-
- float g1(float a)
- {
- return w2(a) + w3(a);
- }
-
- // h0 and h1 are the two offset functions
- float h0(float a)
- {
- return -1.0f + w1(a) / (w0(a) + w1(a));
- }
-
- float h1(float a)
- {
- return 1.0f + w3(a) / (w2(a) + w3(a));
- }
-
- uniform ivec2 glow_texture_size;
-
- vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod)
- {
- float lod = float(p_lod);
- vec2 tex_size = vec2(glow_texture_size >> p_lod);
- vec2 pixel_size = vec2(1.0f) / tex_size;
-
- uv = uv * tex_size + vec2(0.5f);
-
- vec2 iuv = floor(uv);
- vec2 fuv = fract(uv);
-
- float g0x = g0(fuv.x);
- float g1x = g1(fuv.x);
- float h0x = h0(fuv.x);
- float h1x = h1(fuv.x);
- float h0y = h0(fuv.y);
- float h1y = h1(fuv.y);
-
- vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
- vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
- vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
- vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
-
- return g0(fuv.y) * (g0x * textureLod(tex, p0,lod) +
- g1x * textureLod(tex, p1,lod)) +
- g1(fuv.y) * (g0x * textureLod(tex, p2,lod) +
- g1x * textureLod(tex, p3,lod));
- }
-
- #define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
+// w0, w1, w2, and w3 are the four cubic B-spline basis functions
+float w0(float a) {
+ return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
+}
+
+float w1(float a) {
+ return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
+}
+
+float w2(float a) {
+ return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
+}
+
+float w3(float a) {
+ return (1.0f / 6.0f) * (a * a * a);
+}
+
+// g0 and g1 are the two amplitude functions
+float g0(float a) {
+ return w0(a) + w1(a);
+}
+
+float g1(float a) {
+ return w2(a) + w3(a);
+}
+
+// h0 and h1 are the two offset functions
+float h0(float a) {
+ return -1.0f + w1(a) / (w0(a) + w1(a));
+}
+
+float h1(float a) {
+ return 1.0f + w3(a) / (w2(a) + w3(a));
+}
+
+uniform ivec2 glow_texture_size;
+
+vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
+ float lod = float(p_lod);
+ vec2 tex_size = vec2(glow_texture_size >> p_lod);
+ vec2 pixel_size = vec2(1.0f) / tex_size;
+
+ uv = uv * tex_size + vec2(0.5f);
+
+ vec2 iuv = floor(uv);
+ vec2 fuv = fract(uv);
+
+ float g0x = g0(fuv.x);
+ float g1x = g1(fuv.x);
+ float h0x = h0(fuv.x);
+ float h1x = h1(fuv.x);
+ float h0y = h0(fuv.y);
+ float h1y = h1(fuv.y);
+
+ vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
+ vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
+ vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
+ vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
+
+ return g0(fuv.y) * (g0x * textureLod(tex, p0, lod) +
+ g1x * textureLod(tex, p1, lod)) +
+ g1(fuv.y) * (g0x * textureLod(tex, p2, lod) +
+ g1x * textureLod(tex, p3, lod));
+}
+
+#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#else
- #define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
+#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
#endif
-vec3 tonemap_filmic(vec3 color, float white)
-{
+vec3 tonemap_filmic(vec3 color, float white) {
const float A = 0.15f;
const float B = 0.50f;
const float C = 0.10f;
@@ -147,8 +136,7 @@ vec3 tonemap_filmic(vec3 color, float white)
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
}
-vec3 tonemap_aces(vec3 color, float white)
-{
+vec3 tonemap_aces(vec3 color, float white) {
const float A = 2.51f;
const float B = 0.03f;
const float C = 2.43f;
@@ -161,96 +149,90 @@ vec3 tonemap_aces(vec3 color, float white)
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
}
-vec3 tonemap_reindhart(vec3 color, float white)
-{
+vec3 tonemap_reindhart(vec3 color, float white) {
return clamp((color) / (1.0f + color) * (1.0f + (color / (white))), vec3(0.0f), vec3(1.0f)); // whitepoint is probably not in linear space here!
}
-vec3 linear_to_srgb(vec3 color) // convert linear rgb to srgb, assumes clamped input in range [0;1]
-{
+vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1]
const vec3 a = vec3(0.055f);
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
}
-vec3 apply_tonemapping(vec3 color, float white) // inputs are LINEAR, always outputs clamped [0;1] color
-{
- #ifdef USE_REINDHART_TONEMAPPER
- return tonemap_reindhart(color, white);
- #endif
+vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR, always outputs clamped [0;1] color
+#ifdef USE_REINDHART_TONEMAPPER
+ return tonemap_reindhart(color, white);
+#endif
- #ifdef USE_FILMIC_TONEMAPPER
- return tonemap_filmic(color, white);
- #endif
+#ifdef USE_FILMIC_TONEMAPPER
+ return tonemap_filmic(color, white);
+#endif
- #ifdef USE_ACES_TONEMAPPER
- return tonemap_aces(color, white);
- #endif
+#ifdef USE_ACES_TONEMAPPER
+ return tonemap_aces(color, white);
+#endif
return clamp(color, vec3(0.0f), vec3(1.0f)); // no other seleced -> linear
}
-vec3 gather_glow(sampler2D tex, vec2 uv) // sample all selected glow levels
-{
+vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
vec3 glow = vec3(0.0f);
- #ifdef USE_GLOW_LEVEL1
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL1
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
+#endif
- #ifdef USE_GLOW_LEVEL2
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL2
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
+#endif
- #ifdef USE_GLOW_LEVEL3
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL3
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
+#endif
- #ifdef USE_GLOW_LEVEL4
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL4
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
+#endif
- #ifdef USE_GLOW_LEVEL5
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL5
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
+#endif
- #ifdef USE_GLOW_LEVEL6
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL6
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
+#endif
- #ifdef USE_GLOW_LEVEL7
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
- #endif
+#ifdef USE_GLOW_LEVEL7
+ glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
+#endif
return glow;
}
-vec3 apply_glow(vec3 color, vec3 glow) // apply glow using the selected blending mode
-{
- #ifdef USE_GLOW_REPLACE
- color = glow;
- #endif
+vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode
+#ifdef USE_GLOW_REPLACE
+ color = glow;
+#endif
- #ifdef USE_GLOW_SCREEN
- color = max((color + glow) - (color * glow), vec3(0.0));
- #endif
+#ifdef USE_GLOW_SCREEN
+ color = max((color + glow) - (color * glow), vec3(0.0));
+#endif
- #ifdef USE_GLOW_SOFTLIGHT
- glow = glow * vec3(0.5f) + vec3(0.5f);
+#ifdef USE_GLOW_SOFTLIGHT
+ glow = glow * vec3(0.5f) + vec3(0.5f);
- color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
- color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
- color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
- #endif
+ color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
+ color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
+ color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
+#endif
- #if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
- color += glow;
- #endif
+#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
+ color += glow;
+#endif
return color;
}
-vec3 apply_bcs(vec3 color, vec3 bcs)
-{
+vec3 apply_bcs(vec3 color, vec3 bcs) {
color = mix(vec3(0.0f), color, bcs.x);
color = mix(vec3(0.5f), color, bcs.y);
color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z);
@@ -258,8 +240,7 @@ vec3 apply_bcs(vec3 color, vec3 bcs)
return color;
}
-vec3 apply_color_correction(vec3 color, sampler2D correction_tex)
-{
+vec3 apply_color_correction(vec3 color, sampler2D correction_tex) {
color.r = texture(correction_tex, vec2(color.r, 0.0f)).r;
color.g = texture(correction_tex, vec2(color.g, 0.0f)).g;
color.b = texture(correction_tex, vec2(color.b, 0.0f)).b;
@@ -267,15 +248,14 @@ vec3 apply_color_correction(vec3 color, sampler2D correction_tex)
return color;
}
-void main()
-{
+void main() {
vec3 color = textureLod(source, uv_interp, 0.0f).rgb;
// Exposure
- #ifdef USE_AUTO_EXPOSURE
- color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
- #endif
+#ifdef USE_AUTO_EXPOSURE
+ color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
+#endif
color *= exposure;
@@ -283,33 +263,33 @@ void main()
color = apply_tonemapping(color, white);
- #ifdef KEEP_3D_LINEAR
- // leave color as is (-> don't convert to SRGB)
- #else
- color = linear_to_srgb(color); // regular linear -> SRGB conversion
- #endif
+#ifdef KEEP_3D_LINEAR
+ // leave color as is (-> don't convert to SRGB)
+#else
+ color = linear_to_srgb(color); // regular linear -> SRGB conversion
+#endif
// Glow
- #ifdef USING_GLOW
- vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
+#ifdef USING_GLOW
+ vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
- // high dynamic range -> SRGB
- glow = apply_tonemapping(glow, white);
- glow = linear_to_srgb(glow);
+ // high dynamic range -> SRGB
+ glow = apply_tonemapping(glow, white);
+ glow = linear_to_srgb(glow);
- color = apply_glow(color, glow);
- #endif
+ color = apply_glow(color, glow);
+#endif
// Additional effects
- #ifdef USE_BCS
- color = apply_bcs(color, bcs);
- #endif
+#ifdef USE_BCS
+ color = apply_bcs(color, bcs);
+#endif
- #ifdef USE_COLOR_CORRECTION
- color = apply_color_correction(color, color_correction);
- #endif
+#ifdef USE_COLOR_CORRECTION
+ color = apply_color_correction(color, color_correction);
+#endif
frag_color = vec4(color, 1.0f);
}