summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.cpp70
-rw-r--r--drivers/gles3/shaders/copy.glsl24
-rw-r--r--drivers/gles3/shaders/scene.glsl77
3 files changed, 125 insertions, 46 deletions
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp
index 4c9d0f181e..6117c91a6a 100644
--- a/drivers/gles3/rasterizer_scene_gles3.cpp
+++ b/drivers/gles3/rasterizer_scene_gles3.cpp
@@ -2142,7 +2142,6 @@ void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements, int p_
first = false;
}
- glFrontFace(GL_CW);
glBindVertexArray(0);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING, false);
@@ -2351,22 +2350,7 @@ void RasterizerSceneGLES3::_draw_sky(RasterizerStorageGLES3::Sky *p_sky, const C
glDepthFunc(GL_LEQUAL);
glColorMask(1, 1, 1, 1);
- float flip_sign = p_vflip ? -1 : 1;
-
- Vector3 vertices[8] = {
- Vector3(-1, -1 * flip_sign, 1),
- Vector3(0, 1, 0),
- Vector3(1, -1 * flip_sign, 1),
- Vector3(1, 1, 0),
- Vector3(1, 1 * flip_sign, 1),
- Vector3(1, 0, 0),
- Vector3(-1, 1 * flip_sign, 1),
- Vector3(0, 0, 0)
-
- };
-
- //sky uv vectors
- float vw, vh, zn;
+ // Camera
CameraMatrix camera;
if (p_custom_fov) {
@@ -2381,17 +2365,39 @@ void RasterizerSceneGLES3::_draw_sky(RasterizerStorageGLES3::Sky *p_sky, const C
camera = p_projection;
}
- camera.get_viewport_size(vw, vh);
- zn = p_projection.get_z_near();
+ float flip_sign = p_vflip ? -1 : 1;
- for (int i = 0; i < 4; i++) {
+ /*
+ If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
+ To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
+ It also means the uv coordinates are ignored in this mode and we don't need our loop.
+ */
+ bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
- Vector3 uv = vertices[i * 2 + 1];
- uv.x = (uv.x * 2.0 - 1.0) * vw;
- uv.y = -(uv.y * 2.0 - 1.0) * vh;
- uv.z = -zn;
- vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
- vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
+ Vector3 vertices[8] = {
+ Vector3(-1, -1 * flip_sign, 1),
+ Vector3(0, 1, 0),
+ Vector3(1, -1 * flip_sign, 1),
+ Vector3(1, 1, 0),
+ Vector3(1, 1 * flip_sign, 1),
+ Vector3(1, 0, 0),
+ Vector3(-1, 1 * flip_sign, 1),
+ Vector3(0, 0, 0)
+ };
+
+ if (!asymmetrical) {
+ float vw, vh, zn;
+ camera.get_viewport_size(vw, vh);
+ zn = p_projection.get_z_near();
+
+ for (int i = 0; i < 4; i++) {
+ Vector3 uv = vertices[i * 2 + 1];
+ uv.x = (uv.x * 2.0 - 1.0) * vw;
+ uv.y = -(uv.y * 2.0 - 1.0) * vh;
+ uv.z = -zn;
+ vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
+ vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
+ }
}
glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
@@ -2400,16 +2406,24 @@ void RasterizerSceneGLES3::_draw_sky(RasterizerStorageGLES3::Sky *p_sky, const C
glBindVertexArray(state.sky_array);
- storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, true);
+ storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_ASYM_PANO, asymmetrical);
+ storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, !asymmetrical);
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_MULTIPLIER, true);
storage->shaders.copy.bind();
storage->shaders.copy.set_uniform(CopyShaderGLES3::MULTIPLIER, p_energy);
+ if (asymmetrical) {
+ // pack the bits we need from our projection matrix
+ storage->shaders.copy.set_uniform(CopyShaderGLES3::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
+ ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
+ storage->shaders.copy.set_uniform(CopyShaderGLES3::PANO_TRANSFORM, p_transform);
+ }
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
glColorMask(1, 1, 1, 1);
+ storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_ASYM_PANO, false);
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_MULTIPLIER, false);
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, false);
}
@@ -5026,6 +5040,8 @@ void RasterizerSceneGLES3::initialize() {
}
state.debug_draw = VS::VIEWPORT_DEBUG_DRAW_DISABLED;
+
+ glFrontFace(GL_CW);
}
void RasterizerSceneGLES3::iteration() {
diff --git a/drivers/gles3/shaders/copy.glsl b/drivers/gles3/shaders/copy.glsl
index d33193ee50..743fe122d1 100644
--- a/drivers/gles3/shaders/copy.glsl
+++ b/drivers/gles3/shaders/copy.glsl
@@ -27,6 +27,8 @@ void main() {
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
cube_interp = cube_in;
+#elif defined(USE_ASYM_PANO)
+ uv_interp = vertex_attrib.xy;
#else
uv_interp = uv_in;
#ifdef V_FLIP
@@ -59,6 +61,11 @@ in vec3 cube_interp;
in vec2 uv_interp;
#endif
+#ifdef USE_ASYM_PANO
+uniform highp mat4 pano_transform;
+uniform highp vec4 asym_proj;
+#endif
+
#ifdef USE_CUBEMAP
uniform samplerCube source_cube; //texunit:0
#else
@@ -70,7 +77,7 @@ uniform sampler2D source; //texunit:0
uniform float multiplier;
#endif
-#ifdef USE_PANORAMA
+#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
vec4 texturePanorama(vec3 normal,sampler2D pano ) {
@@ -122,6 +129,21 @@ void main() {
vec4 color = texturePanorama( normalize(cube_interp), source );
+#elif defined(USE_ASYM_PANO)
+
+ // When an assymetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
+ // Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
+ // The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
+
+ vec3 cube_normal;
+ cube_normal.z = -1000000.0;
+ cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
+ cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
+ cube_normal = mat3(pano_transform) * cube_normal;
+ cube_normal.z = -cube_normal.z;
+
+ vec4 color = texturePanorama( normalize(cube_normal.xyz), source );
+
#elif defined(USE_CUBEMAP)
vec4 color = texture( source_cube, normalize(cube_interp) );
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index 341a5bf2c7..b322a4c957 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -865,11 +865,57 @@ float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
#endif
-// GGX Specular
-// Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl
-float G1V(float dotNV, float k)
-{
- return 1.0 / (dotNV * (1.0 - k) + k);
+
+// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
+// We're dividing this factor off because the overall term we'll end up looks like
+// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
+//
+// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
+//
+// We're basically regouping this as
+//
+// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
+//
+// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
+//
+// The contents of the D and G (G1) functions (GGX) are taken from
+// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
+// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
+
+float G_GGX_2cos(float cos_theta_m, float alpha) {
+ // Schlick's approximation
+ // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
+ // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
+ // It nevertheless approximates GGX well with k = alpha/2.
+ float k = 0.5*alpha;
+ return 0.5 / (cos_theta_m * (1.0 - k) + k);
+
+ // float cos2 = cos_theta_m*cos_theta_m;
+ // float sin2 = (1.0-cos2);
+ // return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) );
+}
+
+float D_GXX(float cos_theta_m, float alpha) {
+ float alpha2 = alpha*alpha;
+ float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m;
+ return alpha2/(M_PI * d * d);
+}
+
+float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
+ float cos2 = cos_theta_m * cos_theta_m;
+ float sin2 = (1.0-cos2);
+ float s_x = alpha_x * cos_phi;
+ float s_y = alpha_y * sin_phi;
+ return 1.0 / (cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 ));
+}
+
+float D_GXX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
+ float cos2 = cos_theta_m * cos_theta_m;
+ float sin2 = (1.0-cos2);
+ float r_x = cos_phi/alpha_x;
+ float r_y = sin_phi/alpha_y;
+ float d = cos2 + sin2*(r_x * r_x + r_y * r_y);
+ return 1.0 / (M_PI * alpha_x * alpha_y * d * d );
}
@@ -1019,7 +1065,6 @@ LIGHT_SHADER_CODE
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
- float alpha = roughness * roughness;
vec3 H = normalize(V + L);
@@ -1035,26 +1080,22 @@ LIGHT_SHADER_CODE
float ay = ry*ry;
float XdotH = dot( T, H );
float YdotH = dot( B, H );
- float denom = XdotH*XdotH / (ax*ax) + YdotH*YdotH / (ay*ay) + cNdotH*cNdotH;
- float D = 1.0 / ( M_PI * ax*ay * denom*denom );
+ float D = D_GXX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
+ float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
#else
- float alphaSqr = alpha * alpha;
- float denom = cNdotH * cNdotH * (alphaSqr - 1.0) + 1.0;
- float D = alphaSqr / (M_PI * denom * denom);
+ float alpha = roughness * roughness;
+ float D = D_GGX(cNdotH, alpha);
+ float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
#endif
// F
float F0 = 1.0; // FIXME
float cLdotH5 = SchlickFresnel(cLdotH);
float F = mix(cLdotH5, 1.0, F0);
- // V
- float k = alpha / 2.0f;
- float vis = G1V(cNdotL, k) * G1V(cNdotV, k);
-
- float speci = cNdotL * D * F * vis;
+ float specular_brdf_NL = cNdotL * D * F * G;
- specular_light += speci * light_color * specular_blob_intensity * attenuation;
+ specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif
#if defined(LIGHT_USE_CLEARCOAT)
@@ -1069,7 +1110,7 @@ LIGHT_SHADER_CODE
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G1V(cNdotL, .25) * G1V(cNdotV, .25);
+ float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
specular_light += .25*clearcoat*Gr*Fr*Dr;