diff options
Diffstat (limited to 'drivers/webpold/enc/analysis.c')
-rw-r--r-- | drivers/webpold/enc/analysis.c | 364 |
1 files changed, 0 insertions, 364 deletions
diff --git a/drivers/webpold/enc/analysis.c b/drivers/webpold/enc/analysis.c deleted file mode 100644 index 22cfb492e7..0000000000 --- a/drivers/webpold/enc/analysis.c +++ /dev/null @@ -1,364 +0,0 @@ -// Copyright 2011 Google Inc. All Rights Reserved. -// -// This code is licensed under the same terms as WebM: -// Software License Agreement: http://www.webmproject.org/license/software/ -// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ -// ----------------------------------------------------------------------------- -// -// Macroblock analysis -// -// Author: Skal (pascal.massimino@gmail.com) - -#include <stdlib.h> -#include <string.h> -#include <assert.h> - -#include "./vp8enci.h" -#include "./cost.h" -#include "../utils/utils.h" - -#if defined(__cplusplus) || defined(c_plusplus) -extern "C" { -#endif - -#define MAX_ITERS_K_MEANS 6 - -static int ClipAlpha(int alpha) { - return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha; -} - -//------------------------------------------------------------------------------ -// Smooth the segment map by replacing isolated block by the majority of its -// neighbours. - -static void SmoothSegmentMap(VP8Encoder* const enc) { - int n, x, y; - const int w = enc->mb_w_; - const int h = enc->mb_h_; - const int majority_cnt_3_x_3_grid = 5; - uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp)); - assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec - - if (tmp == NULL) return; - for (y = 1; y < h - 1; ++y) { - for (x = 1; x < w - 1; ++x) { - int cnt[NUM_MB_SEGMENTS] = { 0 }; - const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; - int majority_seg = mb->segment_; - // Check the 8 neighbouring segment values. - cnt[mb[-w - 1].segment_]++; // top-left - cnt[mb[-w + 0].segment_]++; // top - cnt[mb[-w + 1].segment_]++; // top-right - cnt[mb[ - 1].segment_]++; // left - cnt[mb[ + 1].segment_]++; // right - cnt[mb[ w - 1].segment_]++; // bottom-left - cnt[mb[ w + 0].segment_]++; // bottom - cnt[mb[ w + 1].segment_]++; // bottom-right - for (n = 0; n < NUM_MB_SEGMENTS; ++n) { - if (cnt[n] >= majority_cnt_3_x_3_grid) { - majority_seg = n; - } - } - tmp[x + y * w] = majority_seg; - } - } - for (y = 1; y < h - 1; ++y) { - for (x = 1; x < w - 1; ++x) { - VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; - mb->segment_ = tmp[x + y * w]; - } - } - free(tmp); -} - -//------------------------------------------------------------------------------ -// Finalize Segment probability based on the coding tree - -static int GetProba(int a, int b) { - int proba; - const int total = a + b; - if (total == 0) return 255; // that's the default probability. - proba = (255 * a + total / 2) / total; - return proba; -} - -static void SetSegmentProbas(VP8Encoder* const enc) { - int p[NUM_MB_SEGMENTS] = { 0 }; - int n; - - for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { - const VP8MBInfo* const mb = &enc->mb_info_[n]; - p[mb->segment_]++; - } - if (enc->pic_->stats) { - for (n = 0; n < NUM_MB_SEGMENTS; ++n) { - enc->pic_->stats->segment_size[n] = p[n]; - } - } - if (enc->segment_hdr_.num_segments_ > 1) { - uint8_t* const probas = enc->proba_.segments_; - probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); - probas[1] = GetProba(p[0], p[1]); - probas[2] = GetProba(p[2], p[3]); - - enc->segment_hdr_.update_map_ = - (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); - enc->segment_hdr_.size_ = - p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + - p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + - p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + - p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); - } else { - enc->segment_hdr_.update_map_ = 0; - enc->segment_hdr_.size_ = 0; - } -} - -static WEBP_INLINE int clip(int v, int m, int M) { - return v < m ? m : v > M ? M : v; -} - -static void SetSegmentAlphas(VP8Encoder* const enc, - const int centers[NUM_MB_SEGMENTS], - int mid) { - const int nb = enc->segment_hdr_.num_segments_; - int min = centers[0], max = centers[0]; - int n; - - if (nb > 1) { - for (n = 0; n < nb; ++n) { - if (min > centers[n]) min = centers[n]; - if (max < centers[n]) max = centers[n]; - } - } - if (max == min) max = min + 1; - assert(mid <= max && mid >= min); - for (n = 0; n < nb; ++n) { - const int alpha = 255 * (centers[n] - mid) / (max - min); - const int beta = 255 * (centers[n] - min) / (max - min); - enc->dqm_[n].alpha_ = clip(alpha, -127, 127); - enc->dqm_[n].beta_ = clip(beta, 0, 255); - } -} - -//------------------------------------------------------------------------------ -// Simplified k-Means, to assign Nb segments based on alpha-histogram - -static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { - const int nb = enc->segment_hdr_.num_segments_; - int centers[NUM_MB_SEGMENTS]; - int weighted_average = 0; - int map[256]; - int a, n, k; - int min_a = 0, max_a = 255, range_a; - // 'int' type is ok for histo, and won't overflow - int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; - - // bracket the input - for (n = 0; n < 256 && alphas[n] == 0; ++n) {} - min_a = n; - for (n = 255; n > min_a && alphas[n] == 0; --n) {} - max_a = n; - range_a = max_a - min_a; - - // Spread initial centers evenly - for (n = 1, k = 0; n < 2 * nb; n += 2) { - centers[k++] = min_a + (n * range_a) / (2 * nb); - } - - for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough - int total_weight; - int displaced; - // Reset stats - for (n = 0; n < nb; ++n) { - accum[n] = 0; - dist_accum[n] = 0; - } - // Assign nearest center for each 'a' - n = 0; // track the nearest center for current 'a' - for (a = min_a; a <= max_a; ++a) { - if (alphas[a]) { - while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) { - n++; - } - map[a] = n; - // accumulate contribution into best centroid - dist_accum[n] += a * alphas[a]; - accum[n] += alphas[a]; - } - } - // All point are classified. Move the centroids to the - // center of their respective cloud. - displaced = 0; - weighted_average = 0; - total_weight = 0; - for (n = 0; n < nb; ++n) { - if (accum[n]) { - const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; - displaced += abs(centers[n] - new_center); - centers[n] = new_center; - weighted_average += new_center * accum[n]; - total_weight += accum[n]; - } - } - weighted_average = (weighted_average + total_weight / 2) / total_weight; - if (displaced < 5) break; // no need to keep on looping... - } - - // Map each original value to the closest centroid - for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { - VP8MBInfo* const mb = &enc->mb_info_[n]; - const int alpha = mb->alpha_; - mb->segment_ = map[alpha]; - mb->alpha_ = centers[map[alpha]]; // just for the record. - } - - if (nb > 1) { - const int smooth = (enc->config_->preprocessing & 1); - if (smooth) SmoothSegmentMap(enc); - } - - SetSegmentProbas(enc); // Assign final proba - SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. -} - -//------------------------------------------------------------------------------ -// Macroblock analysis: collect histogram for each mode, deduce the maximal -// susceptibility and set best modes for this macroblock. -// Segment assignment is done later. - -// Number of modes to inspect for alpha_ evaluation. For high-quality settings, -// we don't need to test all the possible modes during the analysis phase. -#define MAX_INTRA16_MODE 2 -#define MAX_INTRA4_MODE 2 -#define MAX_UV_MODE 2 - -static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { - const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4; - int mode; - int best_alpha = -1; - int best_mode = 0; - - VP8MakeLuma16Preds(it); - for (mode = 0; mode < max_mode; ++mode) { - const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF, - it->yuv_p_ + VP8I16ModeOffsets[mode], - 0, 16); - if (alpha > best_alpha) { - best_alpha = alpha; - best_mode = mode; - } - } - VP8SetIntra16Mode(it, best_mode); - return best_alpha; -} - -static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, - int best_alpha) { - uint8_t modes[16]; - const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES; - int i4_alpha = 0; - VP8IteratorStartI4(it); - do { - int mode; - int best_mode_alpha = -1; - const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; - - VP8MakeIntra4Preds(it); - for (mode = 0; mode < max_mode; ++mode) { - const int alpha = VP8CollectHistogram(src, - it->yuv_p_ + VP8I4ModeOffsets[mode], - 0, 1); - if (alpha > best_mode_alpha) { - best_mode_alpha = alpha; - modes[it->i4_] = mode; - } - } - i4_alpha += best_mode_alpha; - // Note: we reuse the original samples for predictors - } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); - - if (i4_alpha > best_alpha) { - VP8SetIntra4Mode(it, modes); - best_alpha = ClipAlpha(i4_alpha); - } - return best_alpha; -} - -static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { - int best_alpha = -1; - int best_mode = 0; - const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4; - int mode; - VP8MakeChroma8Preds(it); - for (mode = 0; mode < max_mode; ++mode) { - const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF, - it->yuv_p_ + VP8UVModeOffsets[mode], - 16, 16 + 4 + 4); - if (alpha > best_alpha) { - best_alpha = alpha; - best_mode = mode; - } - } - VP8SetIntraUVMode(it, best_mode); - return best_alpha; -} - -static void MBAnalyze(VP8EncIterator* const it, - int alphas[256], int* const uv_alpha) { - const VP8Encoder* const enc = it->enc_; - int best_alpha, best_uv_alpha; - - VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED - VP8SetSkip(it, 0); // not skipped - VP8SetSegment(it, 0); // default segment, spec-wise. - - best_alpha = MBAnalyzeBestIntra16Mode(it); - if (enc->method_ != 3) { - // We go and make a fast decision for intra4/intra16. - // It's usually not a good and definitive pick, but helps seeding the stats - // about level bit-cost. - // TODO(skal): improve criterion. - best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); - } - best_uv_alpha = MBAnalyzeBestUVMode(it); - - // Final susceptibility mix - best_alpha = (best_alpha + best_uv_alpha + 1) / 2; - alphas[best_alpha]++; - *uv_alpha += best_uv_alpha; - it->mb_->alpha_ = best_alpha; // Informative only. -} - -//------------------------------------------------------------------------------ -// Main analysis loop: -// Collect all susceptibilities for each macroblock and record their -// distribution in alphas[]. Segments is assigned a-posteriori, based on -// this histogram. -// We also pick an intra16 prediction mode, which shouldn't be considered -// final except for fast-encode settings. We can also pick some intra4 modes -// and decide intra4/intra16, but that's usually almost always a bad choice at -// this stage. - -int VP8EncAnalyze(VP8Encoder* const enc) { - int ok = 1; - int alphas[256] = { 0 }; - VP8EncIterator it; - - VP8IteratorInit(enc, &it); - enc->uv_alpha_ = 0; - do { - VP8IteratorImport(&it); - MBAnalyze(&it, alphas, &enc->uv_alpha_); - ok = VP8IteratorProgress(&it, 20); - // Let's pretend we have perfect lossless reconstruction. - } while (ok && VP8IteratorNext(&it, it.yuv_in_)); - enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; - if (ok) AssignSegments(enc, alphas); - - return ok; -} - -#if defined(__cplusplus) || defined(c_plusplus) -} // extern "C" -#endif |