diff options
Diffstat (limited to 'drivers/webpold/enc/analysis.c')
-rw-r--r-- | drivers/webpold/enc/analysis.c | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/drivers/webpold/enc/analysis.c b/drivers/webpold/enc/analysis.c new file mode 100644 index 0000000000..22cfb492e7 --- /dev/null +++ b/drivers/webpold/enc/analysis.c @@ -0,0 +1,364 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// This code is licensed under the same terms as WebM: +// Software License Agreement: http://www.webmproject.org/license/software/ +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ +// ----------------------------------------------------------------------------- +// +// Macroblock analysis +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <stdlib.h> +#include <string.h> +#include <assert.h> + +#include "./vp8enci.h" +#include "./cost.h" +#include "../utils/utils.h" + +#if defined(__cplusplus) || defined(c_plusplus) +extern "C" { +#endif + +#define MAX_ITERS_K_MEANS 6 + +static int ClipAlpha(int alpha) { + return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha; +} + +//------------------------------------------------------------------------------ +// Smooth the segment map by replacing isolated block by the majority of its +// neighbours. + +static void SmoothSegmentMap(VP8Encoder* const enc) { + int n, x, y; + const int w = enc->mb_w_; + const int h = enc->mb_h_; + const int majority_cnt_3_x_3_grid = 5; + uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp)); + assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec + + if (tmp == NULL) return; + for (y = 1; y < h - 1; ++y) { + for (x = 1; x < w - 1; ++x) { + int cnt[NUM_MB_SEGMENTS] = { 0 }; + const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; + int majority_seg = mb->segment_; + // Check the 8 neighbouring segment values. + cnt[mb[-w - 1].segment_]++; // top-left + cnt[mb[-w + 0].segment_]++; // top + cnt[mb[-w + 1].segment_]++; // top-right + cnt[mb[ - 1].segment_]++; // left + cnt[mb[ + 1].segment_]++; // right + cnt[mb[ w - 1].segment_]++; // bottom-left + cnt[mb[ w + 0].segment_]++; // bottom + cnt[mb[ w + 1].segment_]++; // bottom-right + for (n = 0; n < NUM_MB_SEGMENTS; ++n) { + if (cnt[n] >= majority_cnt_3_x_3_grid) { + majority_seg = n; + } + } + tmp[x + y * w] = majority_seg; + } + } + for (y = 1; y < h - 1; ++y) { + for (x = 1; x < w - 1; ++x) { + VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; + mb->segment_ = tmp[x + y * w]; + } + } + free(tmp); +} + +//------------------------------------------------------------------------------ +// Finalize Segment probability based on the coding tree + +static int GetProba(int a, int b) { + int proba; + const int total = a + b; + if (total == 0) return 255; // that's the default probability. + proba = (255 * a + total / 2) / total; + return proba; +} + +static void SetSegmentProbas(VP8Encoder* const enc) { + int p[NUM_MB_SEGMENTS] = { 0 }; + int n; + + for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { + const VP8MBInfo* const mb = &enc->mb_info_[n]; + p[mb->segment_]++; + } + if (enc->pic_->stats) { + for (n = 0; n < NUM_MB_SEGMENTS; ++n) { + enc->pic_->stats->segment_size[n] = p[n]; + } + } + if (enc->segment_hdr_.num_segments_ > 1) { + uint8_t* const probas = enc->proba_.segments_; + probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); + probas[1] = GetProba(p[0], p[1]); + probas[2] = GetProba(p[2], p[3]); + + enc->segment_hdr_.update_map_ = + (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); + enc->segment_hdr_.size_ = + p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + + p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + + p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + + p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); + } else { + enc->segment_hdr_.update_map_ = 0; + enc->segment_hdr_.size_ = 0; + } +} + +static WEBP_INLINE int clip(int v, int m, int M) { + return v < m ? m : v > M ? M : v; +} + +static void SetSegmentAlphas(VP8Encoder* const enc, + const int centers[NUM_MB_SEGMENTS], + int mid) { + const int nb = enc->segment_hdr_.num_segments_; + int min = centers[0], max = centers[0]; + int n; + + if (nb > 1) { + for (n = 0; n < nb; ++n) { + if (min > centers[n]) min = centers[n]; + if (max < centers[n]) max = centers[n]; + } + } + if (max == min) max = min + 1; + assert(mid <= max && mid >= min); + for (n = 0; n < nb; ++n) { + const int alpha = 255 * (centers[n] - mid) / (max - min); + const int beta = 255 * (centers[n] - min) / (max - min); + enc->dqm_[n].alpha_ = clip(alpha, -127, 127); + enc->dqm_[n].beta_ = clip(beta, 0, 255); + } +} + +//------------------------------------------------------------------------------ +// Simplified k-Means, to assign Nb segments based on alpha-histogram + +static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { + const int nb = enc->segment_hdr_.num_segments_; + int centers[NUM_MB_SEGMENTS]; + int weighted_average = 0; + int map[256]; + int a, n, k; + int min_a = 0, max_a = 255, range_a; + // 'int' type is ok for histo, and won't overflow + int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; + + // bracket the input + for (n = 0; n < 256 && alphas[n] == 0; ++n) {} + min_a = n; + for (n = 255; n > min_a && alphas[n] == 0; --n) {} + max_a = n; + range_a = max_a - min_a; + + // Spread initial centers evenly + for (n = 1, k = 0; n < 2 * nb; n += 2) { + centers[k++] = min_a + (n * range_a) / (2 * nb); + } + + for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough + int total_weight; + int displaced; + // Reset stats + for (n = 0; n < nb; ++n) { + accum[n] = 0; + dist_accum[n] = 0; + } + // Assign nearest center for each 'a' + n = 0; // track the nearest center for current 'a' + for (a = min_a; a <= max_a; ++a) { + if (alphas[a]) { + while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) { + n++; + } + map[a] = n; + // accumulate contribution into best centroid + dist_accum[n] += a * alphas[a]; + accum[n] += alphas[a]; + } + } + // All point are classified. Move the centroids to the + // center of their respective cloud. + displaced = 0; + weighted_average = 0; + total_weight = 0; + for (n = 0; n < nb; ++n) { + if (accum[n]) { + const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; + displaced += abs(centers[n] - new_center); + centers[n] = new_center; + weighted_average += new_center * accum[n]; + total_weight += accum[n]; + } + } + weighted_average = (weighted_average + total_weight / 2) / total_weight; + if (displaced < 5) break; // no need to keep on looping... + } + + // Map each original value to the closest centroid + for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { + VP8MBInfo* const mb = &enc->mb_info_[n]; + const int alpha = mb->alpha_; + mb->segment_ = map[alpha]; + mb->alpha_ = centers[map[alpha]]; // just for the record. + } + + if (nb > 1) { + const int smooth = (enc->config_->preprocessing & 1); + if (smooth) SmoothSegmentMap(enc); + } + + SetSegmentProbas(enc); // Assign final proba + SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. +} + +//------------------------------------------------------------------------------ +// Macroblock analysis: collect histogram for each mode, deduce the maximal +// susceptibility and set best modes for this macroblock. +// Segment assignment is done later. + +// Number of modes to inspect for alpha_ evaluation. For high-quality settings, +// we don't need to test all the possible modes during the analysis phase. +#define MAX_INTRA16_MODE 2 +#define MAX_INTRA4_MODE 2 +#define MAX_UV_MODE 2 + +static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { + const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4; + int mode; + int best_alpha = -1; + int best_mode = 0; + + VP8MakeLuma16Preds(it); + for (mode = 0; mode < max_mode; ++mode) { + const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF, + it->yuv_p_ + VP8I16ModeOffsets[mode], + 0, 16); + if (alpha > best_alpha) { + best_alpha = alpha; + best_mode = mode; + } + } + VP8SetIntra16Mode(it, best_mode); + return best_alpha; +} + +static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, + int best_alpha) { + uint8_t modes[16]; + const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES; + int i4_alpha = 0; + VP8IteratorStartI4(it); + do { + int mode; + int best_mode_alpha = -1; + const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; + + VP8MakeIntra4Preds(it); + for (mode = 0; mode < max_mode; ++mode) { + const int alpha = VP8CollectHistogram(src, + it->yuv_p_ + VP8I4ModeOffsets[mode], + 0, 1); + if (alpha > best_mode_alpha) { + best_mode_alpha = alpha; + modes[it->i4_] = mode; + } + } + i4_alpha += best_mode_alpha; + // Note: we reuse the original samples for predictors + } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); + + if (i4_alpha > best_alpha) { + VP8SetIntra4Mode(it, modes); + best_alpha = ClipAlpha(i4_alpha); + } + return best_alpha; +} + +static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { + int best_alpha = -1; + int best_mode = 0; + const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4; + int mode; + VP8MakeChroma8Preds(it); + for (mode = 0; mode < max_mode; ++mode) { + const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF, + it->yuv_p_ + VP8UVModeOffsets[mode], + 16, 16 + 4 + 4); + if (alpha > best_alpha) { + best_alpha = alpha; + best_mode = mode; + } + } + VP8SetIntraUVMode(it, best_mode); + return best_alpha; +} + +static void MBAnalyze(VP8EncIterator* const it, + int alphas[256], int* const uv_alpha) { + const VP8Encoder* const enc = it->enc_; + int best_alpha, best_uv_alpha; + + VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED + VP8SetSkip(it, 0); // not skipped + VP8SetSegment(it, 0); // default segment, spec-wise. + + best_alpha = MBAnalyzeBestIntra16Mode(it); + if (enc->method_ != 3) { + // We go and make a fast decision for intra4/intra16. + // It's usually not a good and definitive pick, but helps seeding the stats + // about level bit-cost. + // TODO(skal): improve criterion. + best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); + } + best_uv_alpha = MBAnalyzeBestUVMode(it); + + // Final susceptibility mix + best_alpha = (best_alpha + best_uv_alpha + 1) / 2; + alphas[best_alpha]++; + *uv_alpha += best_uv_alpha; + it->mb_->alpha_ = best_alpha; // Informative only. +} + +//------------------------------------------------------------------------------ +// Main analysis loop: +// Collect all susceptibilities for each macroblock and record their +// distribution in alphas[]. Segments is assigned a-posteriori, based on +// this histogram. +// We also pick an intra16 prediction mode, which shouldn't be considered +// final except for fast-encode settings. We can also pick some intra4 modes +// and decide intra4/intra16, but that's usually almost always a bad choice at +// this stage. + +int VP8EncAnalyze(VP8Encoder* const enc) { + int ok = 1; + int alphas[256] = { 0 }; + VP8EncIterator it; + + VP8IteratorInit(enc, &it); + enc->uv_alpha_ = 0; + do { + VP8IteratorImport(&it); + MBAnalyze(&it, alphas, &enc->uv_alpha_); + ok = VP8IteratorProgress(&it, 20); + // Let's pretend we have perfect lossless reconstruction. + } while (ok && VP8IteratorNext(&it, it.yuv_in_)); + enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; + if (ok) AssignSegments(enc, alphas); + + return ok; +} + +#if defined(__cplusplus) || defined(c_plusplus) +} // extern "C" +#endif |