summaryrefslogtreecommitdiff
path: root/drivers/webpold/enc/analysis.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/webpold/enc/analysis.c')
-rw-r--r--drivers/webpold/enc/analysis.c364
1 files changed, 364 insertions, 0 deletions
diff --git a/drivers/webpold/enc/analysis.c b/drivers/webpold/enc/analysis.c
new file mode 100644
index 0000000000..22cfb492e7
--- /dev/null
+++ b/drivers/webpold/enc/analysis.c
@@ -0,0 +1,364 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// This code is licensed under the same terms as WebM:
+// Software License Agreement: http://www.webmproject.org/license/software/
+// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
+// -----------------------------------------------------------------------------
+//
+// Macroblock analysis
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+#include "./vp8enci.h"
+#include "./cost.h"
+#include "../utils/utils.h"
+
+#if defined(__cplusplus) || defined(c_plusplus)
+extern "C" {
+#endif
+
+#define MAX_ITERS_K_MEANS 6
+
+static int ClipAlpha(int alpha) {
+ return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
+}
+
+//------------------------------------------------------------------------------
+// Smooth the segment map by replacing isolated block by the majority of its
+// neighbours.
+
+static void SmoothSegmentMap(VP8Encoder* const enc) {
+ int n, x, y;
+ const int w = enc->mb_w_;
+ const int h = enc->mb_h_;
+ const int majority_cnt_3_x_3_grid = 5;
+ uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
+ assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
+
+ if (tmp == NULL) return;
+ for (y = 1; y < h - 1; ++y) {
+ for (x = 1; x < w - 1; ++x) {
+ int cnt[NUM_MB_SEGMENTS] = { 0 };
+ const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
+ int majority_seg = mb->segment_;
+ // Check the 8 neighbouring segment values.
+ cnt[mb[-w - 1].segment_]++; // top-left
+ cnt[mb[-w + 0].segment_]++; // top
+ cnt[mb[-w + 1].segment_]++; // top-right
+ cnt[mb[ - 1].segment_]++; // left
+ cnt[mb[ + 1].segment_]++; // right
+ cnt[mb[ w - 1].segment_]++; // bottom-left
+ cnt[mb[ w + 0].segment_]++; // bottom
+ cnt[mb[ w + 1].segment_]++; // bottom-right
+ for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
+ if (cnt[n] >= majority_cnt_3_x_3_grid) {
+ majority_seg = n;
+ }
+ }
+ tmp[x + y * w] = majority_seg;
+ }
+ }
+ for (y = 1; y < h - 1; ++y) {
+ for (x = 1; x < w - 1; ++x) {
+ VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
+ mb->segment_ = tmp[x + y * w];
+ }
+ }
+ free(tmp);
+}
+
+//------------------------------------------------------------------------------
+// Finalize Segment probability based on the coding tree
+
+static int GetProba(int a, int b) {
+ int proba;
+ const int total = a + b;
+ if (total == 0) return 255; // that's the default probability.
+ proba = (255 * a + total / 2) / total;
+ return proba;
+}
+
+static void SetSegmentProbas(VP8Encoder* const enc) {
+ int p[NUM_MB_SEGMENTS] = { 0 };
+ int n;
+
+ for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
+ const VP8MBInfo* const mb = &enc->mb_info_[n];
+ p[mb->segment_]++;
+ }
+ if (enc->pic_->stats) {
+ for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
+ enc->pic_->stats->segment_size[n] = p[n];
+ }
+ }
+ if (enc->segment_hdr_.num_segments_ > 1) {
+ uint8_t* const probas = enc->proba_.segments_;
+ probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
+ probas[1] = GetProba(p[0], p[1]);
+ probas[2] = GetProba(p[2], p[3]);
+
+ enc->segment_hdr_.update_map_ =
+ (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
+ enc->segment_hdr_.size_ =
+ p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
+ p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
+ p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
+ p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
+ } else {
+ enc->segment_hdr_.update_map_ = 0;
+ enc->segment_hdr_.size_ = 0;
+ }
+}
+
+static WEBP_INLINE int clip(int v, int m, int M) {
+ return v < m ? m : v > M ? M : v;
+}
+
+static void SetSegmentAlphas(VP8Encoder* const enc,
+ const int centers[NUM_MB_SEGMENTS],
+ int mid) {
+ const int nb = enc->segment_hdr_.num_segments_;
+ int min = centers[0], max = centers[0];
+ int n;
+
+ if (nb > 1) {
+ for (n = 0; n < nb; ++n) {
+ if (min > centers[n]) min = centers[n];
+ if (max < centers[n]) max = centers[n];
+ }
+ }
+ if (max == min) max = min + 1;
+ assert(mid <= max && mid >= min);
+ for (n = 0; n < nb; ++n) {
+ const int alpha = 255 * (centers[n] - mid) / (max - min);
+ const int beta = 255 * (centers[n] - min) / (max - min);
+ enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
+ enc->dqm_[n].beta_ = clip(beta, 0, 255);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Simplified k-Means, to assign Nb segments based on alpha-histogram
+
+static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
+ const int nb = enc->segment_hdr_.num_segments_;
+ int centers[NUM_MB_SEGMENTS];
+ int weighted_average = 0;
+ int map[256];
+ int a, n, k;
+ int min_a = 0, max_a = 255, range_a;
+ // 'int' type is ok for histo, and won't overflow
+ int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
+
+ // bracket the input
+ for (n = 0; n < 256 && alphas[n] == 0; ++n) {}
+ min_a = n;
+ for (n = 255; n > min_a && alphas[n] == 0; --n) {}
+ max_a = n;
+ range_a = max_a - min_a;
+
+ // Spread initial centers evenly
+ for (n = 1, k = 0; n < 2 * nb; n += 2) {
+ centers[k++] = min_a + (n * range_a) / (2 * nb);
+ }
+
+ for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
+ int total_weight;
+ int displaced;
+ // Reset stats
+ for (n = 0; n < nb; ++n) {
+ accum[n] = 0;
+ dist_accum[n] = 0;
+ }
+ // Assign nearest center for each 'a'
+ n = 0; // track the nearest center for current 'a'
+ for (a = min_a; a <= max_a; ++a) {
+ if (alphas[a]) {
+ while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
+ n++;
+ }
+ map[a] = n;
+ // accumulate contribution into best centroid
+ dist_accum[n] += a * alphas[a];
+ accum[n] += alphas[a];
+ }
+ }
+ // All point are classified. Move the centroids to the
+ // center of their respective cloud.
+ displaced = 0;
+ weighted_average = 0;
+ total_weight = 0;
+ for (n = 0; n < nb; ++n) {
+ if (accum[n]) {
+ const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
+ displaced += abs(centers[n] - new_center);
+ centers[n] = new_center;
+ weighted_average += new_center * accum[n];
+ total_weight += accum[n];
+ }
+ }
+ weighted_average = (weighted_average + total_weight / 2) / total_weight;
+ if (displaced < 5) break; // no need to keep on looping...
+ }
+
+ // Map each original value to the closest centroid
+ for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
+ VP8MBInfo* const mb = &enc->mb_info_[n];
+ const int alpha = mb->alpha_;
+ mb->segment_ = map[alpha];
+ mb->alpha_ = centers[map[alpha]]; // just for the record.
+ }
+
+ if (nb > 1) {
+ const int smooth = (enc->config_->preprocessing & 1);
+ if (smooth) SmoothSegmentMap(enc);
+ }
+
+ SetSegmentProbas(enc); // Assign final proba
+ SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
+}
+
+//------------------------------------------------------------------------------
+// Macroblock analysis: collect histogram for each mode, deduce the maximal
+// susceptibility and set best modes for this macroblock.
+// Segment assignment is done later.
+
+// Number of modes to inspect for alpha_ evaluation. For high-quality settings,
+// we don't need to test all the possible modes during the analysis phase.
+#define MAX_INTRA16_MODE 2
+#define MAX_INTRA4_MODE 2
+#define MAX_UV_MODE 2
+
+static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
+ const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
+ int mode;
+ int best_alpha = -1;
+ int best_mode = 0;
+
+ VP8MakeLuma16Preds(it);
+ for (mode = 0; mode < max_mode; ++mode) {
+ const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF,
+ it->yuv_p_ + VP8I16ModeOffsets[mode],
+ 0, 16);
+ if (alpha > best_alpha) {
+ best_alpha = alpha;
+ best_mode = mode;
+ }
+ }
+ VP8SetIntra16Mode(it, best_mode);
+ return best_alpha;
+}
+
+static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
+ int best_alpha) {
+ uint8_t modes[16];
+ const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
+ int i4_alpha = 0;
+ VP8IteratorStartI4(it);
+ do {
+ int mode;
+ int best_mode_alpha = -1;
+ const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
+
+ VP8MakeIntra4Preds(it);
+ for (mode = 0; mode < max_mode; ++mode) {
+ const int alpha = VP8CollectHistogram(src,
+ it->yuv_p_ + VP8I4ModeOffsets[mode],
+ 0, 1);
+ if (alpha > best_mode_alpha) {
+ best_mode_alpha = alpha;
+ modes[it->i4_] = mode;
+ }
+ }
+ i4_alpha += best_mode_alpha;
+ // Note: we reuse the original samples for predictors
+ } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
+
+ if (i4_alpha > best_alpha) {
+ VP8SetIntra4Mode(it, modes);
+ best_alpha = ClipAlpha(i4_alpha);
+ }
+ return best_alpha;
+}
+
+static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
+ int best_alpha = -1;
+ int best_mode = 0;
+ const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
+ int mode;
+ VP8MakeChroma8Preds(it);
+ for (mode = 0; mode < max_mode; ++mode) {
+ const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF,
+ it->yuv_p_ + VP8UVModeOffsets[mode],
+ 16, 16 + 4 + 4);
+ if (alpha > best_alpha) {
+ best_alpha = alpha;
+ best_mode = mode;
+ }
+ }
+ VP8SetIntraUVMode(it, best_mode);
+ return best_alpha;
+}
+
+static void MBAnalyze(VP8EncIterator* const it,
+ int alphas[256], int* const uv_alpha) {
+ const VP8Encoder* const enc = it->enc_;
+ int best_alpha, best_uv_alpha;
+
+ VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
+ VP8SetSkip(it, 0); // not skipped
+ VP8SetSegment(it, 0); // default segment, spec-wise.
+
+ best_alpha = MBAnalyzeBestIntra16Mode(it);
+ if (enc->method_ != 3) {
+ // We go and make a fast decision for intra4/intra16.
+ // It's usually not a good and definitive pick, but helps seeding the stats
+ // about level bit-cost.
+ // TODO(skal): improve criterion.
+ best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
+ }
+ best_uv_alpha = MBAnalyzeBestUVMode(it);
+
+ // Final susceptibility mix
+ best_alpha = (best_alpha + best_uv_alpha + 1) / 2;
+ alphas[best_alpha]++;
+ *uv_alpha += best_uv_alpha;
+ it->mb_->alpha_ = best_alpha; // Informative only.
+}
+
+//------------------------------------------------------------------------------
+// Main analysis loop:
+// Collect all susceptibilities for each macroblock and record their
+// distribution in alphas[]. Segments is assigned a-posteriori, based on
+// this histogram.
+// We also pick an intra16 prediction mode, which shouldn't be considered
+// final except for fast-encode settings. We can also pick some intra4 modes
+// and decide intra4/intra16, but that's usually almost always a bad choice at
+// this stage.
+
+int VP8EncAnalyze(VP8Encoder* const enc) {
+ int ok = 1;
+ int alphas[256] = { 0 };
+ VP8EncIterator it;
+
+ VP8IteratorInit(enc, &it);
+ enc->uv_alpha_ = 0;
+ do {
+ VP8IteratorImport(&it);
+ MBAnalyze(&it, alphas, &enc->uv_alpha_);
+ ok = VP8IteratorProgress(&it, 20);
+ // Let's pretend we have perfect lossless reconstruction.
+ } while (ok && VP8IteratorNext(&it, it.yuv_in_));
+ enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
+ if (ok) AssignSegments(enc, alphas);
+
+ return ok;
+}
+
+#if defined(__cplusplus) || defined(c_plusplus)
+} // extern "C"
+#endif